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In Brief

Hung et al. demonstrate that a Piezo1-
dependent intracellular calcium increase
negatively regulates protein kinase A
(PKA) as cells transit from unconfined to
confined spaces. The Piezo1/PKA and
myosin Il signaling modules constitute
two confinement-sensing mechanisms.
This study provides a paradigm by which
signaling enables cells to sense and
adapt to different microenvironments.
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SUMMARY

Cells adopt distinct signaling pathways to optimize
cell locomotion in different physical microenvi-
ronments. However, the underlying mechanism that
enables cells to sense and respond to physical con-
finement is unknown. Using microfabricated devices
and substrate-printing methods along with FRET-
based biosensors, we report that, as cells transition
from unconfined to confined spaces, intracellular
Ca?* level isincreased, leading to phosphodiesterase
1 (PDE1)-dependent suppression of PKA activity.
This Ca®* elevation requires Piezo1, a stretch-acti-
vated cation channel. Moreover, differential regula-
tion of PKA and cell stiffness in unconfined versus
confined cells is abrogated by dual, but not individual,
inhibition of Piezo1 and myosin Il, indicating that
these proteins can independently mediate confine-
ment sensing. Signals activated by Piezol and
myosin Il in response to confinement both feed into
a signaling circuit that optimizes cell motility. This
study provides a mechanism by which confinement-
induced signaling enables cells to sense and adapt
to different physical microenvironments.

INTRODUCTION

Cells optimize their migratory potential by altering migration
modes as they encounter different physical microenvironments
(Liu et al.,, 2015). Cells migrating in a mesenchymal mode
share the typical hallmarks of 2D planar migration, including
actin-based membrane protrusion, integrin-dependent adhe-
sion, and myosin lI-mediated retraction. Alternatively, cells can
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migrate in other modes when squeezing through channel-like
tracks formed between collagen bundles (Liu et al., 2015) or
crawl along 1D linear collagen fibers (Doyle et al., 2009). Using
microfabricated devices and substrate-printing methods that
mimic earmarks of the channel- and fiber-like tracks encoun-
tered in vivo, researchers have identified several key mecha-
nisms that are crucial for cell motility under confinement and
distinct from those used for locomotion on unconfined 2D sub-
stratum (Balzer et al., 2012; Doyle et al., 2009; Harada et al.,
2014; Jacobelliet al., 2010; Stroka et al., 2014). One of the mech-
anisms involves the RhoA/myosin Il signaling axis (Beadle et al.,
2008; Hung et al., 2013; Jacobelli et al., 2010; Liu et al., 2015). In
contrast to Rac1-dependent migration of many cell types on
unconfined 2D surfaces, confined migration does not require
Rac1-mediated protrusive activities, but instead depends on
myosin ll-driven contractility (Hung et al., 2013; Liu et al,
2015). The contractile forces generated by an actomyosin
network propel cell locomotion under physical confinement via
several strategies (Liu et al., 2015; Petrie et al., 2012, 2014; To-
zluoglu et al., 2013). For efficient migration, cells tune the
signaling input in different ways to achieve a balance between
Rac1 and RhoA/myosin II, which leads to a strong Rac1 output
by unconfined cells and a strong myosin Il output by confined
cells (Hung et al., 2013). One unresolved question is how do cells
differentially regulate Rac1 and RhoA/myosin Il in response to
different degrees of confinement.

Using an a4 integrin-expressing CHO cell model (referred to as
CHO-a4WT cells) that recapitulates aspects of the motile activ-
ities of invasive melanoma cells, we have reported that CHO-
a4WT cells respond to physical confinement by tuning Rac1
and RhoA/myosin Il activities to optimize cell motility (Hung
et al., 2013). Intriguingly, the Rac1 activity in CHO-a4WT cells
is tightly regulated by cyclic AMP (cAMP)-dependent protein ki-
nase A (PKA), which phosphorylates the a4 integrin cytoplasmic
tail (Han et al., 2003). PKA, a regulator of a wide array of
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physiological functions (Howe, 2011), is also known to play an
important role in the migration of carcinoma cells and in the regu-
lation of RhoA and Rac1 functions in several cooperative path-
ways (Newell-Litwa and Horwitz, 2011). Therefore, we hypothe-
sized that PKA could play the central role in tuning the complex
networking of RhoA/Rac1 in response to mechanical cues.

Another important unresolved question is: What is the underly-
ing mechanosensing mechanism that allows the cells to respond
to physical confinement? Mechanotransduction involves mech-
anisms by which external force directly induces conformational
change or activation of a mechanosensor. Several mechanisms
have been proposed which involve three major classes of me-
chanosensors: (1) stretch-activated ion channels, (2) elements
of the cytoskeleton and nuclear matrix, and (3) components of
adhesion complexes and extracellular matrix.

Like many stretch-activated cationic channels, Piezo1 (also
named Fam38A) (Coste et al., 2010) serves as a mechanosensor
that tightly regulates cell development, proliferation, and survival
by allowing calcium influx in response to different types of
external forces (Eisenhoffer et al., 2012; Li et al., 2014). In addi-
tion, prior studies have reported that calcium influx plays an
important role of regulating cAMP/PKA activity, which in turn
modulates the phosphorylation level of downstream molecules
(Howe, 2011; Lee et al., 1999). To investigate the interplay be-
tween PKA and confinement-induced mechanosensing mecha-
nisms, we employed well-established Forster resonance energy
transfer (FRET)-based PKA activity and calcium reporters in
conjunction with microfabrication and substrate printing technol-
ogies to explore the real-time modulation of PKA activity, and its
interaction with relevant signaling molecules in response to phys-
ical confinement. We also examined changes in cell mechanicsin
response to confinement using atomic force microscopy.

We demonstrate that efficient cell migration in confined
spaces is achieved by complex feedback interactions between
Piezo1/Ca*/PDE1/PKA and myosin/Rac1 pathways. We also
provide evidence for Piezo1- and myosin ll-mediated confine-
ment-sensing mechanisms. These findings provide a mecha-
nism by which cells adapt to different degrees of physical
confinement and optimize their motile activities.

RESULTS

Differential Modulation of PKA Activity Is Required for
Optimized Migration of CHO-a4WT Cells through
Unconfined versus Confined Spaces

We have reported that a4p1 integrin, ectopically expressed in
CHO cells (CHO-04WT), promotes cell migration through both
unconfined and confined spaces (Hung et al., 2013). Efficient
CHO-04WT cell locomotion in different physical microen-
vironments requires the differential modulation of the binding
between a4 integrin and paxillin such that the binding occurs
preferentially in confined, but not in unconfined cells (Hung
et al., 2013). ad/paxillin binding forms a ternary complex with
GIT1 that inhibits Rac activation (Nishiya et al., 2005). Due to
signaling crosstalk between Rac1 and myosin Il, the differential
regulation of a4/paxillin binding leads to an optimized signaling
output that favors Rac1 activation in unconfined cells versus
myosin Il-driven contractility in confined cells (Hung et al.,

2013). a4/paxillin binding is negatively regulated via PKA-depen-
dent phosphorylation of a4 integrin at Ser988 (Han et al., 2003). In
view of these observations, we hypothesize that PKA is differen-
tially modulated in unconfined versus confined cells. Specifically,
we postulate that physical confinement suppresses PKA activity,
which in turn results in decreased 24Ser988 phosphorylation,
thereby leading to optimized cell migration in confined spaces.

We employed two distinct assays to test our hypothesis and
compare cell motility in unconfined versus confined microenvi-
ronments. In the first assay, cells were induced to migrate toward
a chemotactic source through fibronectin-coated microchannels
of fixed height (10 pum) and length (200 um), but varying widths
(50, 20, 10, 6, or 3 um) (Figure S1A). In this microchannel assay,
cells in wide channels (20 pum or wider) are unconfined, whereas
those in narrow channels (6 um or narrower) are confined (Hung
et al., 2013). The second assay compares the motility of cells
plated on 8 um-wide 1D fibronectin-printed lines (referred to as
1D printed lines hereafter) versus unconfined 2D fibronectin-
coated surfaces. This assay examines cell response to lateral
confinement resulting from adhesion/spreading constraints (Fig-
ure S1D). Although the two assays are distinct, CHO-a4WT cells
inside narrow channels and on 1D printed lines assume an elon-
gated morphology and require myosin IIA for efficient migration
(Doyle et al., 2009; Hung et al., 2013).

To test our hypothesis, we first demonstrated that phosphory-
lation of 04Ser988 was indeed suppressed in CHO-a4WT cells
when confined either in narrow channels or on 1D printed lines
compared to those in wide channels or on 2D surfaces, respec-
tively (Figure S1). We then examined the effects of a PKA acti-
vator, forskolin, and a PKA inhibitor, Rp-cAMPs, on cell migration
as a function of the degree of physical confinement, using our mi-
crochannel assay. CHO-a4WT cells treated with forskolin (50 uM)
migrated as efficiently as vehicle controls in wide (50 or 20 um)
channels, but displayed a markedly reduced velocity in narrow
(10, 6, or 3 um) channels (Figures 1A and 1B; Movie S1). In
contrast to forskolin, PKA inhibition using Rp-cAMPs (50 pM)
had the opposite effect; cells migrated efficiently in narrow chan-
nels, but with significantly lower velocity relative to vehicle control
in wide channels (Figures 1A and 1B; Movie S1). We next tested
the effects of PKA modulation on CHO-a4WT cells migrating on
1D printed lines. In accord with our microchannel data, induction
of PKA activity using forskolin (50 uM) suppressed both the veloc-
ity and instantaneous speed of cells migrating on 1D printed lines
(Figures 1C-1E; Movie S2). On the other hand, inhibition of PKA
activity using Rp-cAMP enhanced 1D cell migration (Figures
1C-1E; Movie S2). Taken together, low PKA activity is required
for optimal migration of CHO-24WT cells in confined spaces,
whereas high PKA activity is necessary for efficient cell migration
in unconfined microenvironments. We propose that cells are
capable of tuning the level of PKA activity in response to different
degrees of physical confinement.

Physical Confinement Suppresses Membrane-
Associated PKA Activity

To test the hypothesis that PKA activity is differentially regulated
in unconfined versus confined spaces, we utilized a FRET-based
PKA activity biosensor, AKAR4, to measure PKA activity levels
in unconfined and confined CHO-a4WT cells. PKA activity is
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Figure 1. Modulation of PKA Activity Has
Differential Effects on Unconfined versus
Confined Cell Migration

(A-E) CHO-a4WT cells were treated with either
the PKA activator forskolin or the PKA inhibitor
Rp-cAMP or appropriate vehicle control and allo-
wed to migrate inside fibronectin-coated micro-
channels (A and B) or on 8 um-wide 1D printed
lines (C—E). Their migration velocities (A and D) and
instantaneous speeds (E) were quantified. The
time-lapse images of migrating cells in designated
channel widths (B) and 1D printed lines (C) are
shown. The data represent the mean + SEM (*p <
0.05). See also Figure S1 and Movies S1 and S2.

confined cells (Figure S2C), indicating
that the differential FRET ratios observed
in unconfined versus confined cells are
indeed due to differences in PKA activ-
ities rather than changes in cell shape.
To substantiate the reduction of PKA
activity observed in confined cells, we
quantified the effects of the PKA inhibitor
H89 (10 uM) in unconfined and confined
CHO-a4WT cells. A smaller reduction
of FRET ratio is indicative of a lower

(i) (min) (fminy) basal PKA activity. Indeed, after 30 min

D E of cell treatment with H89, unconfined
_ 901 * £ —*x @ cells exhibited a pronounced reduction
€ 507 — § 0.6 — (20.6% =+ 4.2%) in FRET ratio, whereas
E 40 . = ;3: . - only a modest decrease (7.0% + 1.2%)
%‘ 304 3 é $ 044 was detected in confined cells (Figures
S 20+ Q . ?02_ _&_ %- 2B and 2C). Similar data were obtained
Z 10+ % § ’ W using Rp-cAMP to inhibit PKA activity
T 0- | : : £ 04 : : : (Figure S2D). Taken together, these data
Cirl Fsk - Ctrl  Rp-cAMP  Fsk indicate that confined CHO-a4WT cells

Rp-cAMP

detected as an increase in FRET ratio (yellow-to-cyan emission
ratio upon excitation of CFP) due to PKA phosphorylation-
induced conformational change of the sensor. To assess plasma
membrane-localized PKA activity, we used a plasma mem-
brane-targeted version of AKAR4, AKAR4-Kras (Depry et al.,
2011) (Figure 2A). AKAR4-Kras was transiently transfected into
CHO-04WT cells, and the initial FRET ratio prior to drug treat-
ments was obtained to quantify the basal levels of membrane-
associated PKA activity (referred to as PKA activity hereafter).
Confined cells exhibited lower initial FRET ratio compared to un-
confined cells (Figures 2B and 2E), indicating that confined cells
had lower basal PKA activity than unconfined cells. As controls,
we first showed that the FRET ratio did not significantly correlate
with transfection efficiency (Figure S2A). Moreover, AKAR4-
Kras, but not a kinase activity-insensitive version of the
biosensor, TA-Kras, detected an increase in PKA activity when
the cells were treated with both forskolin and the phosphodies-
terase inhibitor 3-isobutyl-1-methylxanthine IBMX to stimulate
PKA activity (Figure S2B). In contrast to AKAR4-Kras, TA-Kras
did not generate a differential FRET ratio in unconfined versus
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possess lower basal PKA activity levels

than unconfined cells. Along these lines,
a decrease in PKA activity levels is observed as cells transit
from an unconfined 2D surface to a narrow (3 pm in width) chan-
nel (Figure 2D; Movie S3). In addition, PKA activity was signifi-
cantly lower in cells plated on 1D printed lines than those plated
on 2D surfaces (Figure S3A).

Integrins have been reported to play important roles in the
spatiotemporal regulation of PKA in order to stimulate CHO cell
migration on 2D substrates (Lim et al., 2007). We thus investi-
gated if the reduced PKA activity in confinement is mediated by
a4 and/or o5 integrins. To this end, we quantified the basal PKA
activity levels in three cell lines: CHO-a4WT that expresses
both a4 and o5 integrins, parental CHO that only expresses a5 in-
tegrin, and CHO-B2 that lacks o4 and o5 integrins (Chen et al.,
2012; Schreiner et al., 1989). Interestingly, physical confinement
significantly suppressed PKA activity in all three cell lines (Fig-
ure 2E), suggesting that a4 and a5 integrins are not required for
the differential levels of PKA activity in unconfined versus
confined cells. However, it is noteworthy that the expression of
a4 and a5 integrins elevates the basal levels of PKA activity in
both unconfined and confined cells. Collectively, these results



OPEN

ACCESS
CellPress

A AKAR4-Kras

Cerulean m

cpVE172

H89

Y

.

Normalized PKA activity ©O

—=@— Unconfined
—ae@— Confined

Figure 2. Confinement Suppresses PKA
Activity

(A) Schematic diagram of AKAR4-Kras biosensor.
The biosensor is composed of a substrate pep-
tide, cpVE172, and the phosphoamino-binding
domain (FHA1), each tagged with a fluorescent
protein and the membrane targeting motif CAAX.
(B) CHO-a4WT cells expressing AKAR4-Kras were
plated on unconfined spaces or induced to
migrate into 3 um channels to experience
confinement. Yellow fluorescent protein (YFP) and
FRET ratiometric images of confined and uncon-
fined cells before the PKA inhibitor H89 was added
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indicate that although 24 and o5 integrins enhance the overall
PKA activity, they are not required for the cells to sense and
respond to physical confinement.

Elevated Intracellular Calcium in Confined Cells
Negatively Regulates PKA via Piezo1 and PDE1

In light of prior work showing the role of calcium in cell migration
and the presence of negative crosstalk between calcium and
PKA (Howe, 2011; Lee et al., 1999), we hypothesize that the
changes in PKA activity induced by physical confinement are
regulated via Ca®*-dependent signaling mechanisms. To test
this, we used a FRET-based Ca?* indicator, Yellow Cameleon
3.6 (YC 3.6) (Nagai et al., 2004) to monitor intracellular Ca?* levels
in both unconfined and confined CHO-a4WT cells (Figure 3A).
Upon Ca?* binding, the CaM-M13 molecular switch undergoes
a conformational change, thereby resulting in a FRET ratio in-
crease. Confined CHO-a4WT cells exhibited higher basal Ca®*
levels than unconfined cells (Figures 3B and 3C). Moreover, an
increase in intracellular calcium levels was also observed as cells
transit from a 2D surface to a narrow (3 pm in width) channel (Fig-
ure 3D; Movie S4) or plated on 1D printed lines compared to
those on 2D surfaces (Figure S3B). To investigate the potential
source of higher basal Ca?* levels in confined cells, we treated
CHO-a4WT with the stretch-activated cation channel inhibitor

GHAREE

(D) Time-lapse FRET ratiometric images of a CHO-
adWT cell expressing AKAR4-KRAS, as the cell is
migrating from an unconfined area into a 3 um
channel.

(E) The basal PKA activities of confined and un-
confined CHO-a4WT, CHO, and CHO-B2 cells.
The data in the bar graphs in (C) and (E) represent
the mean + SEM (*p < 0.05).

See also Figure S2 and Movie S3.

GsMTx4 (Suchyna et al., 2000). This
treatment suppressed the Ca®* levels in
confined cells down to those of un-
confined cells (Figure 3C). Moreover,
GsMTx4 failed to alter the Ca®* levels in
unconfined cells (Figure 3C). Because it
has been reported that GsMTx4 most effectively blocks a
stretch-activated cation channel, Piezo1 (Bae et al., 2011; Li
et al., 2014), we transiently knocked down Piezo1 in CHO-
a4WT cells. Immunoblotting showed that the Piezo1 level was
significantly reduced in Piezo1 small interfering (siRNA trans-
fected cells. The efficacy of Piezo1 siRNA was further confirmed
by showing that transfected cells displayed an altered
morphology (e.g., larger spreading area and tail elongation)
consistent with that reported in the literature (Li et al., 2014) (Fig-
ure 3E). Similar to the GsMTx4 treatment, knock down of Piezo1
abolished the confinement-induced elevation of the intracellular
Ca®* level (Figure 3F). Moreover, Piezo1-knockdown cells
migrated slower in narrow (3 um), but not wide (50 um), channels
and required longer times to enter the narrow channels
compared to scramble control cells (Figure 3G). Taken together,
these data suggest that physical confinement elevates intracel-
lular Ca®* via the stretch-activated ion channel Piezo1.

To directly access the effect of Ca?* on PKA, we measured
PKA activity in CHO-a4WT cells transfected with AKAR4-Kras
in the presence or absence of a Ca®* chelator BAPTA-AM
(40 uM). An increase in PKA activity was detected in confined
cells following BAPTA treatment (Figure 4A). This response is
attributed to the higher intracellular calcium levels in untreated
confined cells, which negatively regulate PKA activity. On the
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Figure 3. Piezo1 Regulates Intracellular
Calcium in Response to Confinement

(A) Schematic diagram of FRET-based calcium
indicator YC3.6.

(B) YFP and FRET ratiometric images of uncon-
fined and confined CHO-a4WT cells expressing

* YC3.6.
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siRNA for Piezo1 (siPiezo1) or a control siRNA
(siCtrl). The depletion of Piezo1 by siRNA was
demonstrated by immunoblotting using an anti-
Piezo1 antibody. The actin was stained by phal-
loidin in siCtrl and siPiezo1 transfected cells to
display morphological changes.

(F) The basal calcium levels of unconfined or
confined CHO-a4WT cells transfected with either
siPiezo or siCtlr were quantified by measuring the
initial FRET (i.e., yellow-to-cyan ratio).
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inside fibronectin-coated microchannels of 50 um
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other hand, no significant change was noted in unconfined cells
under BAPTA treatment (Figure 4A), which is consistent with
their low basal intracellular calcium levels. To delineate the
mechanism underlying Ca2*-mediated suppression of PKA ac-
tivity in confined cells, we investigated the potential contribution
of phosphodiesterases (PDEs), which are enzymes that downre-
gulate PKA by hydrolyzing cAMP. As a first step, cells trans-
fected with AKAR4-Kras were treated with the general PDE
inhibitor IBMX (100 uM) (Herbst et al., 2011). Both unconfined
and confined cells treated with IBMX displayed an increase in
PKA activity (Figure 4B), thereby demonstrating the presence
of basal PDE activity in CHO-04WT cells and the inhibitory effect
of PDEs on PKA. Notably, a significant difference in the ampli-
tude of the AKAR4-Kras response was observed between
unconfined and confined cells following treatment with IBMX
(Figures 4A and 4B). The larger increase in PKA activity in
confined cells in response to IBMX indicates that confined cells
exhibit higher PDE activity than unconfined cells, which contrib-
utes to their differential basal PKA activity levels.
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or 3 um in width. The migration velocities and
entering time through a 3 um channel of more than
30 cells were analyzed from three independent

Il siCtrl
7/ siPiezo1

experiments. The data represent the mean + SEM
(*p < 0.05).
See also Movie S4.
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Next, we wished to identify the PDE
responsible for regulating Ca®*-medi-
ated suppression of PKA activity in
confined cells. Certain PDEs, such as PDE1 and PDE4, are
specifically upregulated by Ca®* (Mika et al., 2015; Sonnenburg
et al., 1995). PDE1 is regulated by Ca®*/calmodulin through
direct interactions, whereas PDE4 is regulated through a phos-
phorylation-dependent activation by Ca®*/calmodulin-depen-
dent protein kinase Il (CaMKIl) (Mika et al., 2015). Cell treatment
with the PDE4-specific inhibitor rolipram (10 uM) elicited a
similar increase in PKA activity in both unconfined and confined
cells (Figure 4C). These results indicate that, although PDE4
contributes to the suppression of basal PKA activity, it does
not exert a differential effect in response to physical confine-
ment. In contrast, cell treatment with a PDE1-selective inhibitor
8 methoxy methyl IBMX (8MM-IBMX, 100 uM) caused a pro-
nounced increase in PKA activity levels in confined cells,
whereas only a modest increase was noted in unconfined cells
(Figures 4C and 4D). These data indicate that PDE1 contributes
to the confinement-dependent PKA suppression. As a control,
we inhibited a non-Ca®*-dependent PDE, PDE3, with milrinone
(1 uM) and monitored the FRET response from AKAR4-Kras. As
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(F) The basal PKA activity of unconfined and
confined CHO-04WT cells transfected with
siPiezo1 or siCtrl. The data represent the mean +
SEM. For (D) and (F), n > 40 cells were included in
each condition (*p < 0.05).
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predicted, there was no detectable enhancement in PKA activ-
ity in either unconfined or confined cells, indicating that PDES is
not involved in regulating PKA activity in response to changes
in intracellular Ca®* and physical confinement (Figure 4C).
Importantly, knocking down Piezo1, similar to PDE1 inhibition,
induced a higher PKA activity increase in confined relative to
unconfined spaces (Figure 4E).

Taken together, our data provide clear evidence that the differ-
ential PKA regulation in response to confinement is Ca*-depen-
dent and proceeds mainly through the Piezo1/Ca®*/PDE1
pathway.

Inhibition of Piezo1 and Myosin Il Synergistically
Abrogates Confinement-Induced PKA Suppression

Our finding that Piezo1 is required for confinement-dependent
elevation of intracellular Ca?* suggests that this stretch-acti-

then inhibition of Piezo1 should abrogate

the differential PKA activity in unconfined

versus confined cells. However, knocking

down Piezo1 in CHO-a4WT cells sup-

pressed, but failed to abolish the confine-

ment-induced differential PKA activity
(Figure 4F). Likewise, the confinement-induced differential
PKA activity persisted when the cells were treated with the
PDE1 inhibitor (Figure 4D). These data suggest that cells can
sense confinement via an alternative pathway independent of
Piezo1/PDE1.

External forces have been reported to induce assembly of
myosin |l bi-polar filaments and actomyosin bundles (Fernan-
dez-Gonzalez et al., 2009; Ren et al., 2009). This force-sensitive
activity of myosin Il led us to hypothesize that myosin Il may
also mediate confinement sensing, thereby leading to a
cascade of signaling events that ultimately suppress PKA. To
test this possibility, we treated CHO-a4WT cells with the
myosin inhibitor blebbistatin (50 pM). This treatment caused
a significant increase in PKA activity of both unconfined
and confined CHO-a4WT and parental CHO cells relative to
vehicle control (Figures 5A-5B’). Rac1 is known to activate
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Figure 5. Myosin II- and Piezo1-Dependent
Mechanosensing Contribute to Confine-
ment-Induced PKA Suppression
(A and A’) Unconfined (A) and confined (A") CHO-
ad4WT and CHO cells expressing AKAR4-Kras
were treated with blebbistatin or vehicle control.
The arrows indicate the high PKA activity at the
leading edge of cells.
(B and B’) The PKA activities in unconfined (B) and
confined (B") CHO-a4WT and CHO cells with each
designated drug treatment where quantified and
0 graphed.
(C) CHO-04WT or CHO cells treated with vehicle
control were compared with cells under desig-
nated drug treatments in order to determine the
effect of the drugs on confinement-induced sup-
pression of PKA activity.
(D) CHO-a4WT or CHO cells were transfected with
control siRNA (siCtrl) or Piezo1 siRNA (siPiezo1).
The siPiezo1-transfected cells were treated with
blebbistatin or with vehicle control. The basal PKA
activities of the cells under these treatments
were quantified and presented as integrated
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A-kinase anchoring proteins (AKAPs) that in turn recruit
and activate PKA at the leading edge of migrating cells (West-
phal et al., 2000; Yamashita et al., 2011). Due to the multiple in-
teractions between Rac1- and myosin ll-related pathways,
myosin Il may negatively regulate PKA activity via a Rac1-
dependent pathway. To test this possibility, CHO cells
were treated concurrently with blebbistatin and the Rac1 inhib-
itor NSC23766 (20 uM). This dual treatment abolished the
enhancing effect of blebbistatin on the PKA activity of both un-
confined and confined cells (Figures 5B and 5C), thereby
indicating that myosin Il downregulates PKA activity through
a Rac1-dependent pathway. However, treating the cells with
blebbistatin alone or with blebbistatin and the Rac1 inhibitor
NSC23766 failed to abolish the difference in the PKA activity
of unconfined versus confined cells (Figure 5C), indicating
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un°°‘l‘““§%““"‘°d sensing pathways: one mediated by
Piezo1l via PDE1 and the other by
myosin Il. Each of these confinement-
sensing mediators can act independently in the absence of

the other.

Inhibition of Piezo1 and Myosin Il Synergistically
Abrogates Confinement-Induced Enhancement of Cell
Stiffness

Because stretch-activated cation channels are activated by
increased membrane tension, we evaluated the ability of cells
to resist deformation (referred to as cell stiffness) in response
to confinement imposed by 1D printed lines versus unconfined
cells on 2D surfaces. Specifically, we employed atomic force mi-
croscopy to measure the elastic modulus by indenting a cell with
an atomic force microscopy (AFM) cantilever tip. The applied
force was calculated from the degree of bending (deflection) of
the cantilever as a function of indentation position of the



Figure 6. Confinement Enhances Cell Stiff-
ness via Piezo1- and Myosin lI-Dependent
Mechanosensing

c .I glseﬁt_i_i:‘t‘atin (A) Schematic diagram of AFM technique used for
SN S . B 8MM-IBMX measuring cell stiffness.
g SRR 0 Vehicle Control (B) Representative approach curves from parental
R — CHO CHO-a4WT CHO cells cultured on 2D surfaces or 1D printed
B lines showing deflection (degree bending of AFM
B T o2 S v L = wiiblsiy i
D | approaching curve— \
5 _ i \ 21500_ ) (stiffness) of parental CHO and CHO-a4WT cells
o < fetracting cruve \ b4 § § plated on a 2D printed area or 1D printed lines and
il g -8 . § treated with blebbistatin, GsMTx-4, 8MM-IBMX,
= =i £ 1000 |—'—|_] | I_l_l_] or a vehicle control.
E 40*_128 gr'i':":gl':gg ) § § (D) Bar graphs represent the elastic modulus
S 30 (stiffness) of parental CHO and CHO-a4WT cells
'§ o 500 | plated on a 2D printed area or 1D printed lines and
5 treated with Rp-cAMP, forskolin, or a vehicle
o 104 % control. Elastic modulus is calculated from the
0 —=—_ | [ L1 approach curve. Data represent the mean + SEM
0 200 400 600 800 1000 2D print 1D print 2D print 1D print for n > 35 cells for each condition. *p < 0.05. §p <
Identation (nm) 0.05 for 1D print versus 2D print for each respec-
tive condition.
(E) Integrated dot and box plots comparing the
D CHO CHO-o4WT E CHO-04WT effects of the designated interventions on the
1 20 print 5000 siCtrl_ siPiezo1+VC siPiezo1+Blebb sftiffness'of the cells plated on 1D versus 2D
710 print _+ g 1 - — ] fibronectin-printed substrates. CHO-a4WT or
3000 * N '?‘ b i i . p=0.47 CHO cells transfected with either Piezo1 siRNA
_ . ‘l g 15007 }_;_ —&— s jq + — (siPiezo1) or control siRNA (siCtrl) and treated with
. 1 1T/ % 1T == .{, 4 $ % blebbistatin or vehicle control were examined. *p <
€200, 1 ® ° % 1w 2 D 2 1 0.05. P < 0.0006-
@ § CHO See also Figure S5.
2 51 § siCtrl siPiezo1+VC siPiezo1+Blebb
£ 2 3000 = :
& 1000 4 @ T ] %’ p=056
2 1500 ~ = =
£ ?E%:Ef?‘éi—i:j = = to 2D. Remarkably, dual disruption of
| | BB | B S — | = = o 2D. Remarkably, dua isruption o
0“ «© G\\“\? 5‘@\.\“ & W€ 6*0\\0 20 1D 20 1D 20 1D myosin Il and Piezo1 or PDE1 .effec-
OO @p g0 OO oo o tively abrogated the difference in cell

AFM tip, using the Sneddon/Hertz model (Thomas et al., 2013)
(Figures 6A and 6B).

First, we investigated the effects of various pharmacological
inhibitors on cell stiffness. On both 2D surfaces and 1D printed
lines, blebbistatin, BMM-IBMX, or GsMTx4 treatment reduced
cell stiffness (Figure 6C), whereas inhibition of PKA using Rp-
cAMPs or its activation with forskolin enhanced or diminished
cell stiffness, respectively (Figure 6D). These results indicate
that cell stiffness can be influenced by stretch-activated cation
channels/PDE1/PKA and myosin Il pathways regardless the mi-
croenvironments, possibly involving PKA-dependent regulation
of myosin Il (Figures S5A-S5D).

Next, we compared the stiffness of the cells on 1D printed
lines versus 2D surfaces. The cells on 8 um-wide 1D printed
lines displayed markedly higher stiffness compared to cells
on a 2D surface (controls in Figures 6C and 6D) or on
15 pum- and 40 pm-wide lines (Figure S4F). Notably, the
differential cell stiffness between 2D and 1D persisted under
individual pharmacological (Figures 6C and 6D) or siRNA
(Figure 6E) treatments. Therefore, perturbing PKA, PDE1,
myosin I, or Piezo1l alone did not abolish confinement-
induced enhancement of cell stiffness on 1D compared

stiffness between 1D and 2D (Figures

6E and S4E). These data further support
the existence of two independent confinement-sensing mech-
anisms mediated by Piezo1/PDE1 and myosin Il, respectively.
Furthermore, the difference in cell stiffness between 1D and
2D was abolished by latrunculin treatment, indicating that
both confinement-sensing mechanisms depend on the actin
cytoskeleton (Figure S5F).

Piezo1/ Ca%*/PDE1/PKA Pathway Contributes to
Confined Migration of Invasive Melanoma Cells

In order to investigate the role of the Piezo1/Ca%*/PDE1/PKA
pathway in regulating confined migration of cancer cells, we
tested an invasive melanoma cancer cell line A375-SM. We
have previously shown that A375-SM cells optimize their motile
activities in unconfined and confined spaces by modulating
Rac1 and myosin Il signaling outputs in the same manner as
CHO-a4WT cells (Hung et al., 2013). According to the literature
(Okamoto et al., 2005) and the GEO2R database, A375 cells
express relatively high levels of Piezo1 compared to other
stretch-activated cation channels. Using RT-quantitative (q)
PCR, we confirmed that A375-SM cells indeed express higher
levels of Piezo1 than Piezo2 and other putative stretch-acti-
vated cation channels sensitive to GsMTx-4, including TRPC1
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Figure 7. The Piezo1/Ca%*/PDE1/PKA
Pathway Regulates Confined Migration of
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(A) mRNA expression profile of stretch-activated
cation channels by qRT-PCR.

(B) YFP and FRET ratiometric images of uncon-
fined and confined A375-SM melanoma cells ex-
pressing AKAR4-Kras.

(C) Dot plot comparing the basal PKA activities of
unconfined and confined A375-SM cells.
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(Maroto et al., 2005) and TRPC6 (Spassova et al., 2006) (Fig-
ure 7A). Functional expression of GsMTx4-sensitive Piezo
channels in A375-SM cells was confirmed by recording
whole-cell currents while cells were mechanically stimulated
with a glass probe (Figure S6A). Confinement by narrow chan-
nels or 1D printed lines concurrently suppressed PKA activity
and increased intracellular Ca?* in A375-SM cells (Figures
7B-7D, S6B, and S6C). Similar to our findings with CHO-
adWT cells (Figure 1A), migration of A375-SM cells in narrow
(8 um) channels was markedly repressed by forskolin, but
enhanced by Rp-cAMP (Figure 7E). Moreover, the stretch-acti-
vated cation channel inhibitor GsMTx4 and the PDE1 inhibitor
8MM-IBMX significantly suppressed confined migration, but
not unconfined migration (Figure 7F). Consistent with the phar-
macological inhibitor data, depletion of Piezol or PDE1
reduced only the confined migration of A375-SM cells (Fig-
ure 7G). Although blebbistatin alone also suppressed the
confined migration of A375 and CHO-a24WT cells, no additional
suppression was noted upon simultaneous disruption of Piezo1

o
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I
Confined (D) The basal calcium levels of unconfined versus

confined A375-SM cells, treated with either the
* stretch-activated ion channel inhibitor GsMTx4
(10 uM) or vehicle control, were quantified by
measuring the initial FRET (i.e., yellow-to-cyan
ratio).

(E) A375-SM cells were treated with either the PKA
inhibitor Rp-cAMP or the PKA activator forskolin or
appropriate vehicle control and induced to migrate
inside fibronectin-coated microchannels of 50 um
or 3 um in width.

(F) A375-SM cells were treated with the PDE1 in-
hibitor 8MM-IBMX or GsMTx4 or appropriate
vehicle control and induced to migrate inside
fibronectin-coated microchannels of 50 pum or
3 um in width.

(G) A375-SM cells were transfected with PDE1
siRNA, Piezo1 siRNA, or control siRNA in the
presence or absence of blebbistatin and then
induced to migrate inside fibronectin-coated mi-
crochannels of 50 um or 3 um in width. In (E)-(G),
the migration velocity and time required to enter
3 um channels were determined by analyzing more
than 30 cells from three independent experiments.
(H) Schematic of 3D migration of A375-cells in a
collagen gel.

(I) 3D migration velocity of A375-SM cells treated
with Rp-cAMP, forskolin, or vehicle control.

(J) 3D migration velocity of A375-SM cells trans-
fected with Piezo1 siRNA or Control siRNA.

3D migration velocities were quantified by analyzing
more than 100 cells from four independent experi-
ments. The data represent the mean + SEM
(*p < 0.05). See also Figures S6 and S7.
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and myosin Il activity (Figure 7G; Table S1). These data are
consistent with the notion that myosin Il acts downstream of
the Piezo1/ Ca?*/PDE1/PKA pathway to promote confined
cell migration (Figure S7).

To better mimic the in vivo 3D microenvironment, we next
tested the migration of A375-SM cells in a 3D collagen gel (Fig-
ure 7H). In concert with our microchannel data, forskolin-treated
or Piezo1-knockdown A375-SM cells migrated at a slower veloc-
ity than control cells (Figures 71 and 7J). Collectively, these data
illustrate the critical roles of Piezo1 and PKA in cell migration
through physiologically relevant microenvironments.

DISCUSSION

Combining FRET-based biosensors with microfabrication tech-
niques and AFM, we demonstrate that confinement induces an
elevation of intracellular calcium level, and this response requires
Piezo1, a stretch-activated cation channel. The elevated calcium
in turn suppresses PKA activity near the plasma membrane, viaa



PDE1-dependent pathway. This pathway provides a mechanism
by which cells sense and respond to physical confinement.
Moreover, we provide evidence that myosin Il also contributes
to confinement sensing. We further show that confinement-
induced changes in PKA activity and cell stiffness are completely
abrogated by dual, but not individual, treatment of cells with
Piezo1-RNAi and blebbistatin, indicating that Piezo1 and myosin
Il can independently mediate confinement sensing.

Piezo1 belongs to a family of stretch-activated channels
(SACs) (Coste et al., 2010). It has been reported that SACs facil-
itate Ca2* influx in response to tension at the plasma membrane
of bacteria (Sukharev et al., 1994), specialized eukaryotic sen-
sory cells (Meyers et al., 2003), and skeletal muscle cells (Yeung
et al., 2005). Here, we report that Piezo1 also functions as me-
chanosensor for regulating cell migration under confinement.
When cells move in narrow microchannels or on 1D printed lines,
they are physically confined and forced to elongate. This elonga-
tion may stretch the lipid bilayer and the cortical actomyosin
network, thus generating tension at the plasma membrane, lead-
ing to activation of Piezo1. Besides Piezo1 activation, the inter-
play among confinement, cell elongation, and cell mechanics
may also induce cortical tension and force-sensitive assembly
of myosin Il bi-polar filaments (Fernandez-Gonzalez et al.,
2009; Ren et al., 2009). Alternatively, the cortical tension may
activate other cytoskeletal mechanosensors (Sawada et al.,
2006) that in turn activate myosin Il. Having two independent
sensing machineries mediated by Piezo1 and myosin Il may
enhance the sensitivity of cells to confinement and broaden
the range of confinement signals to be sensed. Moreover,
because myosin Il also acts as a downstream effector directly
contributing to migratory activities, it may “short-cut” the me-
chanotransduction circuit and fasten cell responses to
confinement.

It is known that integrins play a pivotal role in mechanosensing
(Charras and Sahai, 2014). However, we show that o4 and a5 in-
tegrins are dispensable for cells to sense confinement and sup-
press PKA activity. In addition, synergy and compensation are
not observed between a4 integrin and either PDE1 or myosin
Il. These observations are consistent with the notion that in
confined microenvironments integrin-mediated cell adhesion
becomes less important for cell motility (Balzer et al., 2012; Ber-
gert et al., 2015) and confined migration is favored by low adhe-
sion (Bergert et al., 2015; Liu et al., 2015; Raman et al., 2013). We
show that, although not contributing to confinement sensing, a4
integrins do participate in PKA regulation in a confinement-inde-
pendent manner, which supports the AKAP function of a4 integ-
rins as reported in the literature (Lim et al., 2007).

In view of our data and those in the literature, we propose a
model in which confinement signals sensed by two indepen-
dent pathways, the Piezo1 and myosin Il pathways, are inte-
grated through a complex feedback circuit, resulting in optimal
circuit activity for efficient cell migration (Figure S7). One of the
circuits involves a double negative feedback loop between
PKA and myosin Il. In CHO-a4WT cells, confinement-induced
suppression of PKA leads to decreased PKA-dependent phos-
phorylation of a4 integrin at Ser988. Inhibition of «4Ser988
phosphorylation promotes the formation of an a4/paxillin/GIT1
ternary complex that blocks Rac1, thus enhancing myosin Il ac-

tivity (Hung et al., 2013; Nishiya et al., 2005). PKA may also
regulate Rac1 and myosin Il via a4 integrin-independent path-
ways in which RhoA or Rho-GEF is directly phosphorylated
and inhibited by PKA (Diviani et al., 2004; Tkachenko et al.,
2011). Therefore, confinement-induced PKA suppression
leads to enhanced myosin Il activity via a4 integrin-dependent
and -independent pathways. Our data indicate that, myosin Il
acts not only as a downstream PKA effector, but also as an up-
stream regulator that suppresses PKA activity. The suppression
depends on Rac1. Several Rac1 effectors, including WAVE1
and WAVE2, function as AKAPs that recruit and activate PKA
at the cell cortex proximal to the plasma membrane (Westphal
et al., 2000; Yamashita et al., 2011). Therefore, the activity of
membrane-associated PKA could be affected by inhibition of
the Rac1/WAVEs pathways. Thus, PKA and myosin II/Rac1
form a double negative feedback loop. Another circuit activity
involves a positive feedback between Piezo1/calcium and
myosin Il. Calcium can directly enhance myosin Il via calmod-
ulin-mediated pathways (Wolenski, 1995) or via a G protein-
mediated pathway (Somlyo and Somlyo, 2003). On the other
hand, myosin ll-driven contractility plays a key role in activation
of stretch-activated ion channels (Sbrana et al., 2008). The
presence of these feedback loops may allow the circuit system
to respond to physical confinement with ultrasensitivity and
even exhibit switch-like behaviors. As a consequence, small
changes in the physical environment may flip the PKA-Myosin
Il switch, leading to a new balance between Myosin Il and
Rac1 activities, thereby optimizing the efficiency of cell motility.
The combined feedback mechanisms provide a strategy for
signal optimization.

We used cell stiffness as a readout for confinement-induced
cell responses. Our data reveal that cell stiffness can be regu-
lated by myosin Il-dependent and myosin ll-independent path-
ways, and both of these pathways depend on actin filaments.
A potential myosin Il-independent mechanism involves cal-
cium-induced changes in the cortical actin network. Altered dy-
namics and arrangements of actin filaments could increase
cortical tension without an involvement of myosin Il-driven
contractility (Carvalho et al., 2013; Janmey et al., 1990).

Knock down of Piezo1 results in larger cell spreading area and
tail elongation (Figure 3E) reminiscent to myosin IIA-depleted
CHO-a4WT cells (Hung et al., 2013), consistent with the role of
myosin llA in the Piezo1-dependent pathway. It is noteworthy
that myosin IIB-knockdown bone marrow-derived mesenchymal
cells display cell morphology (Raab et al., 2012) similar to that of
MIIA-depleted CHO-a4WT cells. The role of different myosin I
isoforms in confinement sensing of different cell types is worth
further investigating.

In summary, we propose a model in which physical confine-
ment is sensed by Piezo1/Ca®*/PDE1/PKA- and myosin Il-de-
pendent pathways through a complex feedback circuit, resulting
in the regulation of cell locomotion. Tuning of this circuit is also
necessary for the efficient migration of invasive A375-SM mela-
noma cells in different physical microenvironments including
narrow channels and physiologically relevant 3D collagen gels.
Therefore, the mechanotransduction signaling mechanism un-
covered in this work could be a more general mechanism for
cells to sense and adapt to microenvironments with different
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degrees of physical confinement and optimize their motile
activities.

EXPERIMENTAL PROCEDURES

siRNA Experiments

In transient knockdown experiments, PDE1 siRNA (Santa Cruz for CHO cells
and OriGene for A375-SM cells) and Piezo1 siRNA (Santa Cruz for CHO cells
and Life technology for A375-SM cells) were used. Transient transfection was
performed using Lipofectamine 2000.

Microchannel Assay

A polydimethylsiloxane (PDMS)-based microchannel device was fabricated as
previously described (Balzer et al., 2012; Hung et al., 2013; Tong et al., 2012).
Channels were coated with fibronectin (20 pg/ml).

PKA Activity and Intracellular Calcium Imaging

Cells transfected with biosensors, AKAR4-Kras, TA-Kras, or Yellow Cameleon,
were imaged every 10-30 s and analyzed as previously described (Depry et al.,
2011).

Stiffness Measurement

An atomic force microscope (MFP-1D; Asylum Research) (Hanley et al., 2004;
Raman et al., 2011) was used to measure cell stiffness. The cantilever height
was adjusted such that each approach cycle generated a slight force
(~1-2 nN) onto the cell surface before reproach. Reproach velocity was
25 um/s. Stiffness was analyzed and quantified as previously described
(Thomas et al., 2013) using the Sneddon/Hertz model of indentation force to
calculate the elastic modulus (i.e., the stiffness) of the cell.

Tracking Cells Embedded in 3D Collagen | Matrix
A375-SM cells were embedded in 1 mg/ml type-I collagen gels and tracked as
described previously (Fraley et al., 2010).

Statistical Analysis

Data are expressed as mean + SEM. Statistical significance of differences be-
tween means was determined by Student’s t test or one-way ANOVA followed
by the Tukey test for multiple comparisons, where appropriate.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,
seven figures, one table, and four movies and can be found with this article on-
line at http://dx.doi.org/10.1016/j.celrep.2016.04.035.
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