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Dimensional and temporal controls of
three-dimensional cell migration by zyxin
and binding partners

1,2,%

Stephanie I. Fraley"2*, Yunfeng Feng23*, Anijil Giri"2, Gregory D. Longmore?3 & Denis Wirtz'-2

Spontaneous molecular oscillations are ubiquitous in biology. But to our knowledge, periodic
cell migratory patterns have not been observed. Here we report the highly regular, periodic
migration of cells along rectilinear tracks generated inside three-dimensional matrices,
with each excursion encompassing several cell lengths, a phenotype that does not occur
on conventional substrates. Short hairpin RNA depletion shows that these one-dimensional
oscillations are uniquely controlled by zyxin and binding partners a-actinin and p130Cas,
but not vasodilator-stimulated phosphoprotein and cysteine-rich protein 1. Oscillations
are recapitulated for cells migrating along one-dimensional micropatterns, but not on two-
dimensional compliant substrates. These results indicate that although two-dimensional
motility can be well described by speed and persistence, three-dimensional motility requires
two additional parameters, the dimensionality of the cell paths in the matrix and the temporal
control of cell movements along these paths. These results also suggest that the zyxin/o-
actinin/p130Cas module may ensure that motile cells in a three-dimensional matrix explore
the largest space possible in minimum time.
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pontaneous molecular oscillations in cells are common
S in biology'. Examples in eukaryotic and prokaryotic cells
include genetic oscillations during circadian rhythms?, oscil-
latory actin waves that drive protrusion activity in the lamella of
spreading cells®#, oscillating Purkinje neuron activity that causes
involuntary eye movement®, oscillations of spindle asters in
C. elegans®’, spontaneous oscillations of auditory hair bundles,
which modify and modulate the mechanical properties of the hair
bundle, allowing for their adaptation to sounds of different fre-
quency®®, RhoA-mediated periodic contraction of the actin cortex
and associated periodic shape oscillations in spreading cells and in
cells partially detached from their substratum, following microtu-
bules disassembly!?-15, and periodic pole-to-pole oscillations of Min
proteins, which control the formation and location of the Z-ring in
elongated bacterial cells'®~2!. Oscillations of cellular organelles and
whole-cell shape oscillations have also been observed. For instance,
the out-of-phase retractions of the trailing edge and leading edge in
keratocytes result in periodic lateral oscillations of the cell body??
and the nucleus of neurons undergo interkinetic oscillations dur-
ing retinal development?3. Moreover, the nucleus, the microtubule-
organizing center and the Golgi apparatus of the fibroblastic cells
and gliomas patterned on narrow adhesive stripes can undergo
oscillatory motion along the stripes®#2°, although these oscillations
are temporarily random, that is, the movement of these confined
cells is not periodic. These different types of spontaneous oscilla-
tions occur in the absence of external force and are independent of
initial conditions!. However, to our knowledge, spontaneous large-
scale periodic migration of a whole cell in the absence of an exter-
nally applied oscillatory chemical, stiffness or electric gradient has
not been observed (Supplementary Movies 1 and 2 illustrate such
periodic migrations).

The protein zyxin, which concentrates mainly at focal adhesions,
along stress fibres (SF), and at the leading edge of cells on flat sub-
strates, regulates cell motility?6-30, Here we investigated whether
and how zyxin regulated the motility of cells embedded inside a
three-dimensional (3D) matrix, a more physiological setting. In a
previous paper!, we found that zyxin depletion yielded higher 3D
cell speed compared with control cells (whereas the depletion of
other focal adhesion proteins typically decreased cell speed), as well
as higher 3D-persistent distance of migration, higher protrusion
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Figure 1| Cells depleted of zyxin or other focal adhesion proteins undergo
trajectory of a single WT cell placed on a conventional 2D collagen |-coated

Zyxin shRNA + WT Zyxin

o

activity, higher growth rate of protrusions and higher cell-induced
force applied onto the matrix, but unchanged two-dimensional (2D)
cell speed on 2D substrates. Here we focus on the shape of trajecto-
ries forged by cells in matrix, which we contrast to the conventional
2D case.

Results
Depletion of zyxin induces oscillatory migration in 3D matrix.
Similar to other single cells on 2D substrates, wild-type (WT) HT-
1080 fibrosarcoma cells underwent random migration, that is,
the trajectories of these cells were conventional 2D random walks
(Fig. 1a,b; Supplementary Movie 3). This means that the paths taken
by the cells on substrates were 2D (as shown below, these paths could
have been one-dimensional (1D); Table 1) and that cells moved in
a temporally random fashion along these 2D paths (they could
have been periodic). These cellular trajectories are well described
by just two parameters: cell speed and persistence time2, that is
computer-generated 2D random-walk trajectories using only these
two parameters are qualitatively similar3>. Similarly, short hairpin
RNA interference (shRNAi) zyxin-depleted cells placed on 2D
substratum showed random-walk motility (Fig. 1¢; Supplementary
Movie 4; see Supplementary Fig. S1 for the characterization of the
cells used in this paper). Moreover, the zyxin-depleted cells in which
RNAi-resistant enhanced green fluorescent protein (EGFP)-zyxin
was re-expressed (Fig. 1d), as well as cells depleted of other focal
adhesion proteins, including talin (Fig. 1e), p130Cas (Fig. 1f), as well
as vasodilator-stimulated phosphoprotein (VASP), focal adhesion
kinase (FAK) and vinculin®!> all showed random-walk motility.
Inside a 3D collagen I matrix, fully embedded WT HT1080
cells underwent 3D random-walk motility (Fig. 2a, Supplementary
Movies 5 and 6). However, in striking contrast, the zyxin-depleted
cells in a 3D matrix displayed highly periodic, oscillatory motion
(Fig. 2b-d and Supplementary Movies 1 and 2). Zyxin-depleted
cells moved unidirectionally over distances of several cell lengths
before undergoing a sharp change in direction of exactly 180°, typi-
cally without a pause and/or lateral movement, and proceeded in
the opposite direction for approximately the same time and same
distance, and so on (Fig. 2¢,d), along tracks that were either rectilin-
ear or sometimes gently curved (Fig. 2b—d; Supplementary Movies 1
and 2). Lengths and durations of the excursions varied somewhat
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temporally random migration on a 2D substrate. (a) Evolution of a typical
glass substrate. Scale bar represents 20 um. (b-f) Typical trajectories of a

Talin shRNA

single WT cell (b), zyxin-depleted cell (¢), zyxin-depleted cell where WT zyxin was re-expressed (d), talin-depleted cell (e) and p130Cas-depleted cell (f)
placed on flat 2D collagen I-coated glass substrates. These trajectories are confined to the 2D plane of the substrate and are temporally random. Colour-

coded asterisks indicate cell positions along the 1,000-min long trajectories

at 100-min time intervals. Scale bar in panel (b) represents 20 um and applies

to all trajectories. Single-cell trajectories in panels (b-f) are representative of the most abundant motile phenotype for each case.

NATURE COMN

AUNICATIONS | 3:719 | DOI: 10.1038/ncomms1711 | www.nature.com/naturecommunications

© 2012 Macmillan Publishers Limited. All rights reserved.



NATURE COMMUNICATIONS | DOI: 10.1038/ncomms1711 A RT | C |_ E

Table 1| Modes of cell migration.

Trajectory Characteristics Condition Trajectory Characteristics Condition
Temporal Dimensional Temporal Dimensional
2D Substrate 3D matrix

fm———— . Wild Type, Zyxin R tuiaty 7 Wild Type, VASP

] I shRNA, Zyxin f"' -1

1 'l ShRNA + Wild Tvpe 1 shRNA, crp1 shRNA,
,' @ 1 Random 2D . lin sh yz : 1 Random 3D Zyxin VBDmu, Zyxin
] ! Zyxin, Talin ShRNA, 1} ShRNA + Wild Type
| A—— ! p130cas shRNA, FAK 1 1, .

shRNA Zyxin

Periodic 2D Not Observed Periodic 3D Not Observed
Random D Not Observed Random 2D Not Observed
Periodic 1D Not Observed Periodic 2D Not Observed
Unidirectional Not Observed Random 1D a—;i/t)i(?ri]nA?BRDNA,
Periodic 1D Zyxin shRNA
1D Stripe Unidirectional p130cas shRNA
Random D Wild Type, a-actinin

shRNA, Zyxin AABD

Periodic 1D Zyxin shRNA

[ —

1)1

: : Wild Type, Zyxin

: : Unidirectional shRNA, o-actinin

: : shRNA, Zyxin AABD

Left columns: schematics of possible and observed cell trajectories in 1D, 2D and 3D microenvironments. Middle columns: temporal and dimensional characteristics of cell migration. Right columns:
types of cells (WT or shRNA-depleted of specific proteins), in which such migratory patterns were observed in this paper. On 2D substrates, focal adhesion proteins (zyxin, vinculin, talin, and so on)
do not control the dimensional and temporal characters of migration of cells. However, in 3D matrices, zyxin controls both the dimensional and temporal characters of the cell trajectories. Moreover,
the depletion of p130Cas and a-actinin, respectively, induces (mostly) 1D unidirectional and 1D random migration inside the 3D matrix. Finally, along the 1D stripes, depletion of zyxin and a-actinin
induces periodic and random migration of cells, respectively. Note that the lines of a 1D random or periodic cell trajectory are in actuality and by definition identically overlapping, but are drawn slightly
separated here for clarity.

cell to cell, but for each cell, they showed low coeflicients of varia-  occurred despite the fact that zyxin-depleted cells were completely
tions (Fig. 2¢,d), that is, these oscillations were periodic, not tempo-  embedded inside the matrix, which would a priori allow for move-
rally random. These large-scale 1D periodic migratory oscillations  ments of the cells in the entire 3D space of the matrix. Indeed, WT
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Figure 2 | Zyxin mediates the 3D temporally random migration of single tumour cells in a 3D matrix. (a,b) Evolution of a typical random trajectory of

a single WT cell (@) and typical evolution of a highly regular oscillatory trajectory of a single zyxin-depleted cell (b), both fully embedded inside a 3D
collagen | matrix. Scale bar represents 20 um. (c,d) Representative trajectories and corresponding time-dependent displacements along 1D tracks of

two matrix-embedded zyxin-depleted cells (top and bottom panels). Each unidirectional movement of the cell, until it moved in the opposite direction,
was colour-coded for ease of visualization. The right panels show the time-dependent displacements along the 1D paths in colours corresponding to the
excursions shown in the left panels. Coefficients of variations (CV) of lengths and durations of the 1D periodic excursions are noted. (e-i) Typical trajectory
(left) and percentages (right) of individual WT cells (e) and zyxin-depleted cells (f), zyxin-depleted cells where FH tagged-zyxin was expressed (g),
talin-depleted cells (h), FAK-depleted cells (i) showing either a 1D unidirectional (white bar), 1D periodic (red bar), 1D random (blue bar), or conventional
migration phenotype that was both 3D and temporally random (black bar). A coloured star indicates a value of zero. Colour-coded asterisks indicate cell
positions along the 1,000-min long trajectories at 100-min time intervals. Scale bar in panel (e) represents 20 um and applies to all trajectories. Single-
cell trajectories in panels (a), (b) and (e-i) are representative of the most abundant motile phenotype for each case. Bar graphs show percentages of cells

undergoing different modes of motility within each shRNA population; N =3 biological repeats averaged for each graph; at least 30 cells were analysed.
***P<0.001; **P<0.01; *P<0.05.
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Figure 3 | Schematic of time-dependent trajectories of cells fully
embedded inside 3D matrices. (a) Conventional 3D random migration,
as observed with WT cells and cells depleted of focal adhesions proteins
such as vinculin, talin, FAK and VASP. (b) 1D unidirectional migration,

as observed with p130Cas-depleted cells. (¢) 1D random migration, as
observed with a-actinin-depleted cells. (d) 1D periodic migration, as
observed with zyxin-depleted cells (see also classification in Table 1).

cells inside a matrix generated trajectories that had an open 3D
spatial topology (Fig. 2a,e). The 1D periodic migratory patterns of
the zyxin-depleted cells could not have been computer-generated
as random walks by manipulating the values of cell speed and/or
persistence®*. Hence, our results reveal that, unlike for the 2D case,
the two parameters, speed and persistence, are not sufficient to
describe the 3D cell migration.

Ninety-six percent of WT cells underwent conventional 3D ran-
dom-walk migration in the matrix, with 4% undergoing 1D ran-
dom or 1D unidirectional migration (Fig. 2e). In contrast, just 20%
of the zyxin-depleted cells underwent 3D random-walk motion,
70% underwent 1D periodic oscillatory migration and 10% under-
went 1D unidirectional migration during the 16.5h of observation
(Fig. 2f). This difference may reflect the extent of zyxin depletion
between individual cells. This remarkable 1D/oscillatory pheno-
type was largely rescued when RNAi-resistant EGFP-zyxin was re-
introduced in zyxin-depleted cells (Fig. 2g). Indeed, nearly 80% of
the zyxin-depleted cells co-expressing RNAi-resistant EGFP-zyxin
underwent regular random-walk motion in the 3D matrix that was
similar to the 3D migration of the WT cells. Only 21% underwent
1D periodic motion and 1% underwent 1D unidirectional migration
confined to 1D tracks inside the matrix (Fig. 2g). Hence, the
1D/oscillatory zyxin phenotype is specifically caused by zyxin
depletion and not an off-target effect of RNAI.

Zyxin phenotype is unique among focal adhesion proteins. Next,
we assessed whether the 1D/oscillatory phenotype showed by cells
depleted of the focal adhesion protein zyxin was shared by cells
depleted of other well-known focal adhesion proteins. The deple-
tion of major focal adhesion proteins, including talin (Fig. 2h) and
FAK(Fig. 2i) did not qualitatively affect the mode of cell motility
inside a 3D matrix compared with control WT cells; close to 100%
of the cells depleted of these proteins formed the 3D random trajec-
tories inside the matrix.

Finally, we verified that the 1D/oscillatory phenotype showed by
HT-1080 fibrosarcoma cells depleted of zyxin was shared by other
human fibrosarcoma cells, including 8387 fibrosarcomas (Sup-
plementary Fig. S2). Zyxin-depleted 8387 fibrosarcomas cells also
showed regular 1D periodic migratory oscillations within the 3D
matrix. Together, these results indicate that zyxin has the distinct
function of controlling the dimensionality of the trajectories (that is,
3D paths as opposed to rectilinear 1D paths in the matrix, Fig. 3a,b)
and the temporal character of the migratory patterns along these
paths (that is, temporally random as opposed to periodic oscillatory
or unidirectional, Fig. 3¢,d) inside a 3D matrix (see also Table 1).

Zyxin phenotype is mediated by partners o-actinin and p130Cas.
Within cells on substrates, zyxin is localized to focal adhesions, SF
and the leading edge of many motile cells where it interacts with its
known binding partners: the F-actin-binding and crosslinking pro-
tein ot-actinin, the cysteine-rich protein 1, the scaffolding protein
p130Cas and the F-actin assembly regulator VASP30-3%36, We asked
whether these proteins regulated 3D cell motility similarly to zyxin.
ShRNAI at-actinin- and p130Cas-depleted cells showed no periodic
migratory phenotype motion, but displayed motility phenotypes
closer to the 1D/oscillatory phenotype than 3D random motility
by being more frequently 1D (Fig. 4). Indeed, although 45% of the
o-actinin-depleted cells still showed 3D random-walk motility, 55%
forged 1D trajectories in the 3D matrix; these cells migrated ran-
domly (that is, randomly changed their polarization) or unidirec-
tionally (that is, maintained a constant polarization) along these 1D
tracks, and no cells showed periodic oscillatory migration (Fig. 4a;
Table 1). The p130Cas-depleted cells still showed 65% 3D random-
walk motility, but 35% forged 1D unidirectional trajectories in
the 3D matrix (Fig. 4c; Table 1). Hence, the 1D migration of
p130Cas-depleted cells in matrix was neither temporally random
nor periodic, but rather unidirectional, adding a third main type
of temporal pattern of migration along the 1D paths in the matrix
(Table 1). In contrast, VASP- and cysteine-rich protein 1-depleted
cells underwent mostly regular 3D random-walk migration in
matrix (Fig. 4b and d), giving rise to a distribution profile of cell
motility similar to the WT cells (Fig. 2e). As controls, we found that
o-actinin-, VASP- and p130Cas-depleted cells all underwent 2D
random-walk motility on substrates (not shown).

By re-introducing RNAi-resistant mutants of zyxin selectively
incapable of interacting with VASP or a-actinin, into zyxin-depleted
cells (Fig. 4e), we asked whether the capacity of zyxin to interact
with these proteins could explain zyxin’s function in migrating cells
in 3D. The expression of zyxin VBDmu—a zyxin mutant that can-
not bind VASP, but can bind oi-actinin and p130Cas (Fig. 4e and
f)—in zyxin-depleted cells eliminated the oscillatory motion of
most cells. Migratory patterns of these cells were either conven-
tional 3D random walks, 1D random or 1D unidirectional (Fig. 4f),
a motility profile similar to the WT cells. These results indicated that
the ability of zyxin to bind VASP had no significant role in regulat-
ing the temporal and dimensional controls of motility by zyxin in
a 3D matrix.

In contrast, the expression of zyxin AABD —a zyxin mutant
lacking its o-actinin-binding domain, but retaining its VASP-
and p130Cas-binding ability (Fig. 4e,g)—in zyxin-depleted cells
converted these cells to a temporally random 1D migration pheno-
type (Fig. 4g). Seventy percent of these cells showed a 1D tempo-
rally random migration phenotype, whereas nearly all of the rest
showed a 3D random-walk motility phenotype or 1D unidirectional
(Fig. 4g). That the distributions of modes of migratory patterns in
o-actinin-depleted cells (Fig. 4a) and in zyxin AABD cells (Fig. 4g)
were different is likely to stem from the fact that o-actinin-
binding partners, other than zyxin, are not directly affected in the
case of zyxin AABD while they are for total o-actinin depletion.
These results indicated that ai-actinin and the ability of zyxin to
bind a-actinin had a significant role in the regulation of the dimen-
sionality of motility patterns of cells in matrix

Zyxin-depleted cells form straight channels in a 3D matrix.
To move through the matrix, cells need to protrude®! and remodel
the surrounding matrix3’. Reflection confocal microscopy of the
(unlabelled) collagen I matrix containing the cells revealed the
microchannels generated by the movements of cells in the matrix.
These studies showed that WT cells formed tortuous, thick, 3D, hol-
low tracks within the matrix, which were consistent with the 3D
random-walk motion of the WT cells (Fig. 5a). The WT cells rarely
moved back into empty channels left in their wake, as they preferred
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Figure 4 | Regulation of dimensionality and temporal character of cellular migration by binding partners of zyxin. (a-d) Types of migration of

a-actinin-depleted cells (a), VASP-depleted cells (b), 130Cas-depleted cell
3D collagen | matrix for 12-h observation time. Cells displayed either 1D hig

s (€) and cysteine-rich protein 1 (CRP-1)-depleted cells (d) embedded in a
hly persistent (unidirectional) migration (white bars), 1D periodic oscillatory

migration (red bars), 1D random migration (blue bars), or 3D random migration (black bars) inside the 3D matrix. A coloured star indicates a value of zero.
Insets, typical trajectories of the corresponding cells. Colour-coded asterisks indicate cell positions along the 1,000-min long trajectories at 100-min time
intervals. Scale bar in panel (a), 20 um, applies to all trajectories in the insets of Fig. 4. (e). Schematic of the protein zyxin, which contains domains that
bind to a-actinin, VASP and LIM domains that bind p130Cas. (f,g) Fractions of zyxin VBDmu cells (a zyxin mutant that cannot bind VASP) (f) and zyxin
AABD cells (a zyxin mutant that lacks its oi-actinin binding domain) (g) that undergo either 1D highly persistent (unidirectional) migration (white bars),

1D oscillatory migration (red bars), 1D random migration (blue bars), or 3D

random migration (black bars) inside the 3D matrix. Insets, typical trajectories

of the corresponding cells. Bar graphs in panels (a-d, f,g) show percentages of cells undergoing different modes of motility within each shRNA population.
N =3 biological repeats averaged for each graph; at least 30 cells were analysed for each condition. ***P<0.001; **P<0.01; *P<0.05.

to deform and digest the matrix ahead of them?3$, indicated by the
large majority that underwent 3D random migration (see cell tra-
jectories, Fig. 2a,e, and Supplementary Movies 5 and 6). Hence,
the periodic migratory oscillations of the zyxin-depleted cells in
the matrix cannot be merely explained by cells retracing the chan-
nel formed during the first excursion because of the reduced steric
interactions. In contrast to W'T cells, the zyxin-depleted cells formed
highly regular, thin, 1D tracks in the matrix (Fig. 5b), consistent
with the 1D motion of the zyxin-depleted cells in the matrix. After
forming a straight channel in the matrix during their first excursion,
the zyxin-depleted cells moved back and forth in a highly regular
manner along that channel (Fig. 2).

6

Zyxin depletion promotes polarized protrusions in 3D matrix.
HT-1080 cells in a 3D matrix generate pseudopodial protrusions
that follow collagen fibres at the cell’s leading edge, as they simul-
taneously pull on the fibres3!. We hypothesized that, to mediate
1D motility inside the 3D matrix, zyxin depletion favoured the for-
mation of protrusions oriented along the major cell axis—only in
the direction of migration—to induce motility along the 1D tracks
within the 3D matrix, instead of being isotropically oriented along
the cell periphery. To test this, starting from a first recorded protru-
sion arbitrarily taken as being oriented in the north direction, we
determined the time-dependent angular distribution of subsequent
protrusions along the cell periphery (Fig. 5c—j; Supplementary
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Figure 5 | Regulation of cellular protrusion orientation and migratory patterns by zyxin and binding partners. (a,b) Confocal reflection micrographs
of typical tracks generated by an individual WT cell (a) and a zyxin-depleted cell (b) fully embedded inside a collagen | matrix. Scale bars represent

20 um. (c-j) Angular distributions of pseudopodial protrusions displayed by WT cells (¢), zyxin-depleted cells (d), talin-depleted cells (e), FAK-depleted
cells (f), VASP-depleted cells (g), a-actinin-depleted cells (h), p130Cas-depleted cells (i) and zyxin AABD cells (j) along the periphery of cells fully
embedded inside a 3D matrix for a 12-h observation time. For each case, the direction of the first recorded protrusion is arbitrarily taken as pointing
north, corresponding to the positive y axis of the graphs. Axes labels represent the fraction of the total number of protrusions, measured across multiple
cells, which occurred in each radial direction about the centroid of the cells during the 12-h observation. Graphs of protrusion orientation summarize
results within the specified mode of motility sub-population for a minimum of 100 protrusions and 8 cells over 12 h. Supplementary Figure S3 explains
the methodology used to determine the orientation of protrusions in further detail.

Fig. S3 shows the methodology used here to measure the orientation
of protrusions). Pseudopodia generated by the WT cells formed an
isotropic angular distribution within ~12h, as protrusions occurred
not only at the front, but also on the sides of the cell (Fig. 5¢).

In contrast, the angular distribution of protrusions in periodi-
cally migrating zyxin-depleted cells was significantly more polarized
(Fig. 5d). The absence of zyxin prevented these cells from gener-
ating protrusions uniformly along the cell periphery. Protrusions
in talin-depleted cells showed a less uniform angular distribution
than the WT cells, but were much more isotropic than the zyxin-
depleted cells, with many protrusions at angles different from north
and south (Fig. 5e). We note that the angular distribution of protru-
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sions in talin-depleted cells is more enriched in the original north-
ern direction than WT cells, because they have a persistence time
of motility that is significantly longer than the WT cells (38 versus
23 min3!). Finally, p130Cas-depleted cells, which displayed a signif-
icant population of persistent (unidirectional) 1D trajectories inside
a 3D matrix (inset, Fig. 4c), showed a distribution that essentially
favoured just one narrow peak after 12h (Fig. 5i; unidirectional cell
population only).

Next, we determined the angular distributions of protrusions in
zyxin AABD (does not bind oi-actinin) and zyxin VBDmu (does not
bind VASP) cells (Fig. 4e), as well as o-actinin-depleted cells and
VASP-depleted cells. The majority of zyxin AABD cells maintained the
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polarized directionality of protrusions, as seen with zyxin-depleted
cells (Fig. 5j; only protrusions of cells undergoing 1D random migra-
tion are plotted), but their protrusions were unevenly distributed
between the north and south poles, giving rise to the randomness
of their 1D trajectories and further supporting the link between the
dimensionality and temporal characteristics of the 3D cell motility
and the angular distribution of protrusions. Protrusions in ca-actinin-
depleted cells were also mostly polarized north and south, but slightly
less so than in zyxin-depleted cells (Fig. 5h; only cells undergoing 1D
random migration are shown), as expected as these cells undergo 1D
random-walk motility in the matrix (Fig. 4a). The angular distribu-
tion of protrusions in o-actinin-depleted cells was more enriched in
the original northern direction, because they have a persistence time
of motility that is significantly longer than WT cells3!.

In summary, the angular distributions of protrusions strongly
correlated with the type of displacements of cells inside a 3D
matrix: isotropic for WT cells whose motion is dimensionally 3D,
temporally random and single-peaked for unidirectional motion
of p130Cas-depleted cells, and two-peaked for zyxin-depleted cells
whose motion is 1D and oscillatory. Hence, zyxin depletion caused
cells to forge 1D tracks inside the matrix, because it confined cell
protrusions to two diametrically opposed directions along the cell
axis in a temporally regular way.

Zyxin depletion induces oscillatory migrations on 1D tracks.
Individual zyxin-depleted cells generate highly linear tracks along
which they travel back-and-forth in the matrix (Figs 2, 5), but
undergo temporally and spatially random migration on substrates.
We asked whether the oscillatory component of the 1D/periodic
oscillatory motion of the zyxin-depleted cells in the matrix was ini-
tiated by cues imparted by the fibrillar nature of the matrix, which
elongated the cells. To address this question, we confined cells
within 20-um-wide collagen I-coated stripes on substrates flanked
by non-adhesive polyethylene glycol-coated stripes to restrict cell
motion to quasi 1D tracks similar to those spontaneously generated
by zyxin-depleted cells inside a matrix3. The width of the stripes
was chosen to be similar to the width of the tracks in 3D (Fig. 5b).
This approach allowed us to separate the temporal aspects of migra-
tion in matrix (temporally random versus periodic versus unidirec-
tional) from dimensional aspects of migration (1D versus 3D). On
stripes, WT cells underwent 1D random-walk motion, albeit more
persistent than observed in the 2D and 3D environments (Fig. 6a,d,e;
Supplementary Movie 7). As cells on stripes can reorient their
microtubule-organizing center and Golgi by encountering obsta-
cles??, we tracked cells far from the marked edges of the patterns.

In contrast, 75% of zyxin-depleted cells adopted a highly regu-
lar, periodic pattern of migration along the stripes, similar to the
described 1D oscillatory movement of the zyxin-depleted cells
inside a 3D matrix (Fig. 6b,f,g; Supplementary Movie 8). Although
the lengths and durations of the oscillations varied from cell to cell,
the coeflicients of variation in the length, duration and cell speed
of the 1D persistent moves for each zyxin-depleted cell was much
lower than those of the WT cells (Fig. 6c).

The confinement of cells to stripes qualitatively changed the
organization of filamentous actin and zyxin compared with the 2D
case. As expected, EGFP-zyxin was positioned at the leading edge
and at focal adhesions on conventional substrates (Fig. 7a). How-
ever, in majority of the cells on 1D stripes, EGFP-zyxin co-localized
with actin at the leading and trailing edges, and cortically around
the cell body (Fig. 7b, left panel). Few cells displayed discrete focal
adhesions in these leading and trailing edges (Fig. 7b, right panel),
and these focal adhesions were fewer and smaller than in the tradi-
tional 2D case, as previously described®. The EGFP-zyxin in cells
fully embedded inside a matrix do not form large clusters either3!.
Similarly, actin filament bundles, readily visible at the basal surface
of cells on substrates, largely disappeared at the ventral side and

concentrated at the cortex when cells were confined to stripes
(Fig. 7b), similarly to the concentration of actin bundles at the
cortex in cells in the matrix3'.

For zyxin AABD cells (Fig. 7¢c,d) and a-actinin-depleted cells
(Fig. 7e,f) on stripes, only temporally random and some unidi-
rectional migration, comparable to WT cells, was observed. These
results suggested that temporal and dimensional attributes of cell
migration in matrix were tightly controlled by molecular mecha-
nisms similar to those controlling the migration of cells along engi-
neered 1D tracks. These results also suggest that elongating the
zyxin-depleted cells may be sufficent to trigger and sustain periodic
migration.

Oscillatory migration is not due to matrix compliance. By
moving cells from a 2D substratum to the more physiological envi-
ronment of a 3D matrix, both the dimensionality of the cellular
environment and the mechanical compliance of the environment
are altered. A glass substratum coated with a thin layer of collagen I
has a stiffness of ~10°Pa, whereas a collagen I matrix has a low stiff-
ness of ~200 Pa%’. To assess whether the oscillatory motion of the
zyxin-depleted cells was caused by the high compliance of the col-
lagen matrix, and not its three-dimensionality, the WT and zyxin-
depleted cells were placed on planar compliant substrates using col-
lagen-coated polyacrylamide gels containing controlled densities of
crosslinkers, corresponding to stiffness values of 1, 50 and 500 kPa.
We found that the WT and zyxin-depleted cells continued to show
regular random-walk migration on soft substrates, which was quali-
tatively similar to that on glass substrates (Fig. 8). This suggests that
the compliance of the 3D matrix alone does not mediate the 1D
oscillatory motion of zyxin-depleted cells.

Discussion

Although the periodic motion of subcellular structures is a regu-
lar occurrence in eukaryotic and bacterial cells, to our knowledge,
this is the first report of large-scale periodic oscillatory migration of
cells. These periodic oscillations are spontaneous, that is, not driven
by an external field, such as an alternating chemotactic gradient
or an alternating electric-field gradient. This phenotype occurs in
fibrillar matrix, which is physiologically more relevant than conven-
tional 2D substrates. These studies reveal that, in addition to speed
and persistence, cell migration in a 3D matrix also involves control
of dimensional (1D versus 2D versus 3D) and temporal proper-
ties (periodic versus unidirectional versus random; Table 1) of cell
movements. Hence, these results reveal that the basic aspects of 3D
cell motility are exquisitely more regulated than 2D motility.

This work indicates that the periodic motion of zyxin-depleted
cells, although completely abrogated on conventional substrates,
can be recapitulated using 1D adhesive stripes to which cells are
confined in their movements. Hence, these results also support
the notion that 3D motility is more similar to 1D motility than 2D
motility!. The fact that highly regular periodicity of the migration
of zyxin-depleted cells in matrix, both in duration and travelled
distance of each excursion, could be recapitulated using 1D stripes
further suggest that the periodic migration of these cells may be
initiated by a polarization cue (fibrillar collagen or linear stripes),
propogated by an inability of the cells to reorient, and regulated by
internal ‘clock’ and ‘ruler’, as opposed to extracellular-matrix hin-
drances or interactions.

How does zyxin ensure random migration of cells in 3D?
Accumulating data in 2D studies has indicated that zyxin serves
a unique mechanosensing and mechanotransducing role?”-2%42,
Inresponsetocyclicstretch orshearstress, zyxinrelocalizes from focal
adhesions to terminal ends of SF and is required for SF thickening,
maintenance and repair in response to external forces?42. Whether
the oscillation of the zyxin-depleted cells is a reflection of altered
mechanosensing is a possibility, but it is unlikely to represent this
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Figure 6 | The oscillatory motion of zyxin-depleted cells in 3D matrix is recapitulated on 1D confining stripes on flat substrates. (a,b) Typical
random 1D movements of WT cells (a) and periodic oscillatory 1D movements of zyxin-depleted cells (b) confined to collagen-I-coated, 20-um-wide
stripes flanked by non-adhesive 10-pum-wide polyethylene glycol stripes on substrates. Dotted lines on micrographs represent borders of the patterned
collagen stripe on which the cell is migrating. Scale bar represents 20 um. (¢) Coefficients of variations of the length, duration and cell speed during
each unidirectional excursion of WT and zyxin-depleted cells on 1D stripes. (d-g) Typical colour-coded trajectories (left) and corresponding time-
dependent movements along the 1D stripes (right) of the WT cells (d,e) and zyxin-depleted cells (f,g) on 1D stripes. CV, coefficients of variations.
Migration of the cells along the 1D stripes were either 1D unidirectional (white bars), 1D periodic (red bars), or 1D random (blue bars). Bar graph in

(c), the excursions of at least eight cells were analysed for WT and zyxin shRNA. Remaining bar graphs show percentages of cells undergoing different
modes of migration within each shRNA population. N=3 biological repeats averaged for each graph; at least 25 cells were analysed for each graph.

**P<0.01; *P<0.05.

function of zyxin, as this has been shown to require VASP bind-
ing and localization to SF7-2%, whereas prevention of cellular oscil-
lations in 3D by zyxin did not require VASP binding. Whether
zyxin influences cell polarity response in a 3D matrix is another
possibility, but the precise polarity responses of migrating cells

in physiological 3D matrices remain to be defined and may well
be distinct from cells on substrates. Moreover, zyxin has not
been implicated in the direct regulation of cell polarity in cells
migrating on substrates. We note that the enhanced persistence
induced by depletion of zyxin is not sufficient to induce 1D/periodic
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Figure 7 | One-dimensional confining stripes recapitulate zyxin and actin localization of cells in 3D matrix and recapitulate the role of a-actinin in
cellular migratory patterns. (a,b) Confocal micrographs of individual WT cells on flat collagen-coated 2D substrates (a) or 20-um-wide collagen-coated
stripes (b). Cells were stained for F-actin (green) and zyxin (red). Images were focused on the ventral side of the cells. Scale bar represents 20 um.
Outlines of 1D micropatterns are shown with dotted lines. (c-f) Typical colour-coded trajectories (left, ¢,e) and corresponding time-dependent movements
along the 1D stripes (right, c,e) of zyxin AABD cells (¢,d) and o-actinin-depleted cells (e f). CV, coefficients of variations. Fractions of cells showing either
1D unidirectional migration (white bars), 1D periodic oscillatory migration (red bars), or 1D random migration (blue bars) are displayed in panels (d) and
(F). A coloured star indicates a value of zero. Bar graphs show percentages of cells undergoing different modes of migration within each shRNA population;

at least 25 cells were analysed for each graph. **P<0.01; *P<0.05.

migration. Indeed, the inhibition of Rho GTPase Racl, which is
known to enhance the persistence of migration*, did not induce
significant 1D periodic migration in matrix (Supplementary
Fig. S4). Rather, treated cells displayed the full range of dimen-
sional and temporal characteristics associated with various modes
of motility (Table 1). The drug NSC23766, which mainly targets
and inhibits the Rho GTPase Rac 13844, was applied at a final
concentration of 10 uM.

Genetic and protein oscillations in cells often stem from negative
feedback loops containing at least three regulatory elements*>46, By
analogy, periodic 1D migratory oscillations may involve a negative
feedback loop, which is likely to contain the major polarity complex
Cdc42-PAR3-PAR6-aPKC and members of the Rho GTPase fam-
ily*”-4%. The presence of a feedback loop may be induced by the
(similar) 1D confinement of cells both in 1D micropatterns and in
3D matrix. Indeed, cell shape independent of other factors can have
profound effects on the spatial distribution and level of activity of
proteins, and therefore on signalling pathways?. Hence, after their

10

initial elongation along the 1D fibres, cells in matrix control the
dimensionality of their migratory patterns. It is not per se the extra-
cellular matrix composed of 1D fibres that sustains the 1D migra-
tion of zyxin-depleted cells, as the lengths of cell excursions is much
longer than both the pore size and the length of collagen fibres of the
matrix. When adhesion ligands are presented in a linearly restricted
fashion (via patterning on glass or collagen fibres in reconstituted
matrices), cell morphology is similarly elongated instead of show-
ing the broad, flat and thin morphology of cells on substrates.
A signature of this similar cellular confinement may be reflected
by the status of focal adhesions. On substrates, large focal plaques
form along the basal surface of cells, but for 3D and 1D topolo-
gies, adhesion size and number are significantly reduced and their
composition altered31->0-52,

Methods

Cell culture. HT-1080 cells (ATCC, Manassas, VA) were cultured in Dulbecco’s
modified Eagle’s medium supplemented with 10% (v/v) fetal bovine serum (ATCC)
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Figure 8 | The 1D/oscillatory motion of zyxin-depleted cells in 3D matrix
is not recapitulated on compliant surfaces. Typical trajectories of WT
cells (top) and zyxin-depleted cells (bottom) placed on very compliant
(0.03% bis concentration in polyacrylamide gels), compliant (0.3% bis
concentration) and stiff (glass) collagen-I-coated substrates. Colour-coded
asterisks indicate cell positions along the 1,000-min long trajectories

at 100-min time intervals. Scale bar (top) is 20 um and applies to all
trajectories. Here, 100% of WT and zyxin-depleted cells on compliant
substrates showed 2D random trajectories; none showed 1D migration.

and 500 ul of Gentimicin (Sigma, St. Louis, MO). Medium for HT-1080 cells
transfected with shRNA constructs (see more below) also included 1.5-pugml~ 1
puromycin for selection. Cells were maintained at 37 °C and 5% CO in a humidi-
fied environment during culture and imaging. The cells were passaged every 2-3
days for a maximum of 20 passages for WT and 2 weeks for transfected cells. The
8387 fibrosarcoma cells (McCormick Lab, Michigan State University) were cultured
in Eagles MEM (Invitrogen) supplemented with 1 mM sodium pyruvate (Sigma),
0.25mM L-serine (Sigma), 0.15mM L-aspartic acid (Sigma), 10% fetal bovine
serum (Hyclone) and 100 Uml~! penicillin and streptomycin (Invitrogen).

Depletion of proteins with shRNAs. The RNAi sequences targeting mRNA of
each probed protein were selected with the RNAi design online programme from
Dharmacon (http://www.dharmacon.com). Three to four targeting sites were
chosen for each gene. After testing in HT1080 cells and 8387 fibrosarcomas with
lentivirus-mediated RNAI, those that showed more than 90% depletion were
selected for motility experiments. Depletion of talin, vinculin, FAK, p130Cas and
zyxin in HT1080 cells was conducted as described in Fraley et al.3!. The sequences
used to deplete oi-actinin and VASP are (the number after the sequence denotes the
targeting position in mRNA): mh-ACTN1,4 5-GCAGAGAAGTTCCGGCAGA-3
(1299); mh-ACTN1,4 5-GACCAAGATGGAGGAGATC-3" (2123); mh-VASP
5"-GAGCCAAACTCAGGAAAGT-3’ (586). To rescue the zyxin-depleted cells, we
generated an RNAi-resistant isoform of hZyxin (rrhZyxin) with four point muta-
tions in the zyxin shRNA target sequence, keeping encoded amino acids intact
(Supplementary Fig. S1A). Full-length rrhZyxin was obtained by overlapping PCR
and subcloned into pFLRu-hZyxin-shRNA(756) in-frame with a C-terminal Flag-
His tag. The zyxin mutant cDNA lacking the oi-actinin-binding domain (zyxin
AABD) was synthesized by removing amino acid residues 22-42 using rrhZyxin as
a template, zyxin mutant lacking the VASP-binding domain (zyxin VBDmu) was
constructed by making four point mutations (F71A, F93A, F104A, F114A), using
rrhZyxin as a template kindly provided by Dr. Mary Beckerle (University of Utah).
The two zyxin mutant cDNAs were subcloned into or pFLRu-hZyxin-shRNA(756)
in-frame with C-terminal Flag-His tag; all constructs were sequence-validated.
The ShRNA expression cassettes were constructed by joint PCR, as described3!.

To rescue the depleted zyxin, an RNAi-resistant isoform of rrhZyxin was gener-
ated with zyxin shRNA target sequence, keeping encoded amino acids intact,
based upon wobble base pairing rules. Full-length rrhZyxin was obtained by joint
PCR and subcloned into pFLRu-hZyxin-shRNA(756) in-frame with C-terminal
Flag-His tag. To construct C-terminal GFP-tagged zyxin in a lentiviral vector, we
synthesized hZyxin cDNA by PCR and cloned it into the lentiviral vector pFLRu-
GFP. Lentiviruses were generated and assessment of protein depletion in HT1080
(Supplementary Fig. S1) and 8387 fibrosarcoma cells (Supplementary Fig. S2) was
conducted as described in Fraley et al.>!. We note that the expression of a mutant
zyxin first involves an shRNA-based depletion of endogeneous zyxin. Therefore,
the two-part transduction, when zyxin mutant are expressed, results in some small
residual 1D periodic behaviour, which is likely due to differences in expression
levels of mutant zyxin (Fig. 2).

2D collagen I substrata. Two-dimensional cell culture plates were prepared by
adding soluble rat tail type I collagen in acetic acid (BD Biosciences, San Jose, CA)

to achieve a coverage of 33 tigcm ~ 2 and incubated at room temperature for 2 h.
Plates were then washed gently three times with PBS and plated with a low
density of cells.

1D collagen | micropatterns. One-dimensional, 20-um-wide stripes were
patterned on glass coverslips using established microlithography techniques,

as described?3. Polydimethylsiloxane stamps were made by curing on an etched
silicon wafer at 60 °C for 3 h. They were then coated with soluble rat tail type

I collagen in acetic acid (BD Biosciences) and incubated at room temperature

for 10 min. Simultaneously, glass coverslips were incubated in 5% (v/v) trimethox-
ysilane (Sigma) in ethanol for 20 min in the dark. Next, the coverslips were washed
well with ethanol, then dried along with the coated stamps using pressurized N,.
The coated stamps were applied to the coverslips using tweezers to avoid smudging
and then swiftly removed. A 1 mgml~! solution of polyethylene glycol in room
temperature PBS was then made and added to the stamped surface to incubate

for 2h in the dark. Coverslips were gently washed with room temperature PBS
three times before cells were plated. Stamped 1D stripes are 3 mm in length. Care
was taken to image in the middle of the patterned surface (to avoid edge effects),
which was outlined with permanent marker on the bottom of the dish at the time
of stamping.

3D collagen | matrices. Cell-impregnated 3D collagen matrices were prepared
by mixing cells suspended in culture medium and 10x reconstitiution buffer
(2.2g sodium bicarbonate and 4.8 g HEPES 4-(2-hydroxyethyl)-1-pipera-
zineethanesulfonic acid) in 100 ml nanopure water), 1:1 (v/v), with soluble rat tail
type I collagen in acetic acid (BD Biosciences) to achieve a final concentration
of 2mgml~ 1 collagen. Then, NaOH (1 M) was added to normalize pH (pH 7.0,
15-30 ul 1 M NaOH) and the mixture was placed in multi-well, coverslip-bottom
culture plates (LabTek, Campbell, CA). All ingredients were kept chilled to avoid
premature collagen polymerization, with care taken during mixing to avoid the
introduction of bubbles into the collagen solution. Collagen gels were allowed

to solidify overnight in an incubator at 37 °C and 5% CO,, then 500 ul of cell
culture medium was added on top of the gels before use in experiments>>38,

Cell density was kept low so as to ensure that single-cell motility measurements
were accurate.

Immunofluorescence microscopy and reflection confocal microscopy. To
visualize collagen, F-actin, and focal adhesions in cells plated 1D stripes, cells were
fixed, permeablized, then incubated with primary antibodies against collagen I
and zyxin for 1h, or made to express EGFP-zyxin before plating and fixing. Then,
they were washed and incubated with secondary antibody and Alexa Fluor 488
phalloidin (Invitrogen) for 1h. Images of cells were collected using a Nikon A1
confocal microscope equipped with a X60 water-immersion objective (Nikon)
and controlled by Nikon Elements imaging software (NIS-3.1).

To visualize tracks left in the 3D collagen matrices by embedded cells, a Nikon
Al confocal microscope was configured to capture only reflected light from the
488-nm laser used to illuminate the sample and using a x60 oil-immersion
objective, NA =1.4, WD=210um (Nikon).

Cell tracking and trajectories. Cells embedded in the 3D collagen matrices
were imaged at low magnification (x10) for 16.5h. Single cells were tracked
using image recognition software (Metamorph/Metavue), with position (x

and y coordinates) measurements taken every 2 min. Trajectories were plotted
based on this coordinate data. The 1D distance versus time graph for any given
zyxin-depleted cell was plotted by comparing each position coordinate to the
coordinate at the preceding time point to determine whether the cell was moving
forward or backward. Then a ‘+” or ‘-’ sign (forward or backward, respectively)
was applied to the distance travelled between the two time points. Summing
these distances and plotting them against time gives the distance versus time
graph. Supplementary Movies 1,2,3,4,5,6 and 7 illustrate the methodology used
in this paper to track individual cells on 1D and 2D substrates, and inside a 3D
matrix, respectively. We note that only matrix-embedded cells, at least 200 um
away from the glass substrate, were monitored so as to avoid possible edge
effects®!.

Cell protrusion orientation. Protrusions at least 5um in length were monitored
using a Roper Scientific Cascade 1 K CCD camera mounted on a Nikon TE2000E
microscope. Low-magnification images were taken 2 min apart for at least 12h.
The length and position of the protrusions along the cell periphery were computed
using tools in the Metamorph software and by hand. For protrusion orientation
measurements, the space around the cell, originating at the cell’s centriod, was
divided into eight equal partitions with the northern partition aligned with the
longest initial cellular protrusion. The fraction of total cellular protrusions that
each of the eight partitions encompassed was calculated for each cell. Then all the
data was combined to plot a final graph representing the fraction of protrusions
in each partition. The protrusions of at least ten cells were characterized on three
different days for each condition. Supplementary Figure S4 illustrates the method
used in this paper to compute the orientation of protrusions during cell migration
in matrix.
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Statistics. The number of cells examined for each experiment is indicated in the
figure captions. Mean values, s.e.m. and statistical analysis were calculated and
plotted using Graphpad Prism (Graphpad Software, San Diego, CA). One-way
analysis of variance and Tukey post-tests or pairwise two-tailed ¢-tests, depend-
ing on number of variables compared, were conducted to determine significance,
which was indicated using the following guide scale: ***for P<0.001, **for P<0.01
and *for P<0.05.

References

1. Kruse, K. & Julicher, E Oscillations in cell biology. Curr. Opin. Cell Biol. 17,
20-26 (2005).

2. King, D. P. & Takahashi, J. S. Molecular genetics of circadian rhythms in
mammals. Annu. Rev. Neurosci. 23, 713-742 (2000).

3. Giannone, G. et al. Periodic lamellipodial contractions correlate with rearward
actin waves. Cell 116, 431-443 (2004).

4. Kruse, K., Camalet, S. & Julicher, E. Self-propagating patterns in active filament
bundles. Phys. Rev. Lett. 87, 138101 (2001).

5. Yoshida, T., Katoh, A., Ohtsuki, G., Mishina, M. & Hirano, T. Oscillating
Purkinje neuron activity causing involuntary eye movement in a mutant
mouse deficient in the glutamate receptor d2 subunit. J. Neurosci. 24,
2440-2448 (2004).

6. Grill, S. W, Kruse, K. & Jilicher, E. Theory of mitotic spindle oscillations.
Phys. Rev. Lett. 94, 108104-108104 (2005).

7. Pecreaux, J. et al. Spindle oscillations during asymmetric cell division require a
threshold number of active cortical force generators. Curr. Biol. 16, 2111-2122
(2006).

8. Martin, P, Bozovic, D., Choe, Y. & Hudspeth, A. J. Spontaneous oscillation by
hair bundles of the bullfrog’s sacculus. J. Neurosci. 23, 4533-4548 (2003).

9. Martin, P, Hudspeth, A. J. & Julicher, E Comparison of a hair bundle’s
spontaneous oscillations with its response to mechanical stimulation reveals
the underlying active process. Proc. Natl Acad. Sci. USA 98, 14380-14385
(2001).

10. Pletjushkina, O. J. et al. Induction of cortical oscillations in spreading cells by

depolymerization of microtubules. Cell Motil. Cytoskeleton 48, 235-244 (2001).

. Costigliola, N. et al. RhoA regulates calcium-independent periodic
contractions of the cell cortex. Biophys. J. 99, 1053-1063 (2010).

12. Kapustina, M. et al. Mechanical and biochemical modeling of cortical

oscillations in spreading cells. Biophys. J. 94, 4605-4620 (2008).

13. Weinreb, G. E,, Elston, T. C. & Jacobson, K. Causal mapping as a tool to
mechanistically interpret phenomena in cell motility: application to cortical
oscillations in spreading cells. Cell Motil. Cytoskeleton 63, 523-532 (2006).

14. Salbreux, G., Joanny, J. E, Prost, J. & Pullarkat, P. Shape oscillations of non-
adhering fibroblast cells. Phys. Biol. 4, 268-284 (2007).

15. Paluch, E., Piel, M., Prost, J., Bornens, M. & Sykes, C. Cortical actomyosin
breakage triggers shape oscillations in cells and cell fragments. Biophys. J. 89,
724-733 (2005).

16. Dajkovic, A., Lan, G., Sun, S. X, Wirtz, D. & Lutkenhaus, J. MinC Spatially
Controls Bacterial Cytokinesis by Antagonizing the Scaffolding Function of
FtsZ. Curr. Biol. 18, 235-244 (2008).

17. Raskin, D. M. & de Boer, P. A. MinDE-dependent pole-to-pole oscillation
of division inhibitor MinC in Escherichia coli. J. Bacteriol. 181, 6419-6424
(1999).

18. Raskin, D. M. & de Boer, P. A. Rapid pole-to-pole oscillation of a protein
required for directing division to the middle of Escherichia coli. Proc. Natl
Acad. Sci. USA 96, 4971-4976 (1999).

19. Loose, M., Kruse, K. & Schwille, P. Protein self-organization: lessons from the
min system. Annu. Rev. Biophys. 40, 315-336.

20. Loose, M., Fischer-Friedrich, E., Herold, C., Kruse, K. & Schwille, P. Min
protein patterns emerge from rapid rebinding and membrane interaction of
MinE. Nat. Struct. Mol. Biol. 18, 577-583.

. Loose, M., Fischer-Friedrich, E., Ries, J., Kruse, K. & Schwille, P. Spatial
regulators for bacterial cell division self-organize into surface waves in vitro.
Science 320, 789-792 (2008).

22. Barnhart, E. L., Allen, G. M., Julicher, E. & Theriot, J. A. Bipedal locomotion in

crawling cells. Biophys. J. 98, 933-942 (2010).

23. Del Bene, F, Wehman, A. M., Link, B. A. & Baier, H. Regulation of
neurogenesis by interkinetic nuclear migration through an apical-basal notch
gradient. Cell 134, 1055-1065 (2008).

24. Szabo, B. et al. Auto-reverse nuclear migration in bipolar mammalian cells on
micropatterned surfaces. Cell Motil. Cytoskeleton 59, 38-49 (2004).

25. Pouthas, E. et al. In migrating cells, the Golgi complex and the position of the
centrosome depend on geometrical constraints of the substratum. J. Cell Sci.
121, 2406-2414 (2008).

26. Feng, Y. et al. The LIM protein, Limdl, regulates AP-1 activation through an
interaction with Traf6 to influence osteoclast development. J. Biol. Chem. 282,
39-48 (2007).

27. Yoshigi, M., Hoffman, L. M., Jensen, C. C., Yost, H. J. & Beckerle, M. C.
Mechanical force mobilizes zyxin from focal adhesions to actin filaments and
regulates cytoskeletal reinforcement. J. Cell. Biol. 171, 209-215 (2005).

1

—

2

—

28.

29.

30.

3

—

32.

33.

34.

35.

36.

37.

38.

39.

40.

4

—

42.

43.

44,

45.

46.

47.

48.

49.

50.

5

—

52.

Hirota, T. et al. Zyxin, a regulator of actin filament assembly, targets the mitotic
apparatus by interacting with h-warts/LATS1 tumor suppressor. J. Cell Biol.
149, 1073-1086 (2000).

Smith, M. A. et al. A zyxin-mediated mechanism for actin stress fiber
maintenance and repair. Dev. Cell 19, 365-376 (2010).

Hoffman, L. M. et al. Genetic ablation of zyxin causes Mena/VASP
mislocalization, increased motility, and deficits in actin remodeling. J. Cell
Biol. 172, 771-782 (2006).

. Fraley, S. I et al. A distinctive role for focal adhesion proteins in three-

dimensional cell motility. Nat. Cell Biol. 12, 598-604 (2010).

Lauffenburger, D. A. & Horwitz, A. E Cell migration: A physically integrated
molecular process. Cell 84, 359-369 (1996).

Khatau, S. B. et al. A perinuclear actin cap regulates nuclear shape. Proc. Natl
Acad. Sci. USA 106, 19017-19022 (2009).

Haber, C,, Ruiz, S. A. & Wirtz, D. Shape anisotropy of a single random-walk
polymer. Proc. Natl Acad. Sci. USA 97, 10792-10795 (2000).

Schmeichel, K. L. & Beckerle, M. C. LIM domains of cysteine-rich protein 1
(CRP1) are essential for its zyxin-binding function. Biochem. J. 331(Part 3),
885-892 (1998).

Crawford, A. W., Michelsen, J. W. & Beckerle, M. C. An interaction between
zyxin and alpha-actinin. J. Cell. Biol. 116, 1381-1393 (1992).

Sabeh, E, Shimizu-Hirota, R. & Weiss, S. J. Protease-dependent versus
-independent cancer cell invasion programs: three-dimensional amoeboid
movement revisited. J. Cell Biol. 185, 11-19 (2009).

Bloom, R. J., George, ]. P,, Celedon, A., Sun, S. X. & Wirtz, D. Mapping local
matrix remodeling induced by a migrating tumor cell using three-dimensional
multiple-particle tracking. Biophys. J. 95, 4077-4088 (2008).

Rape, A. D., Guo, W. H. & Wang, Y. L. The regulation of traction force in
relation to cell shape and focal adhesions. Biomaterials 32, 2043-2051 (2011).
Yeung, T. et al. Effects of substrate stiffness on cell morphology, cytoskeletal
structure, and adhesion. Cell Motil. Cytoskeleton 60, 24-34 (2005).

. Doyle, A. D., Wang, . W,, Matsumoto, K. & Yamada, K. M. One-dimensional

topography underlies three-dimensional fibrillar cell migration. J. Cell Biol.
184, 481-490 (2009).

Colombelli, J. et al. Mechanosensing in actin stress fibers revealed by a close
correlation between force and protein localization. J. Cell Sci. 122, 1665-1679
(2009).

Pankov, R. et al. A Rac switch regulates random versus directionally persistent
cell migration. J. Cell Biol. 170, 793-802 (2005).

Gao, Y., Dickerson, J. B., Guo, E, Zheng, ]. & Zheng, Y. Rational design and
characterization of a Rac GTPase-specific small molecule inhibitor. Proc. Natl
Acad. Sci. USA 101, 7618-7623 (2004).

Pigolotti, S., Krishna, S. & Jensen, M. H. Oscillation patterns in negative
feedback loops. Proc. Natl Acad. Sci. USA 104, 6533-6537 (2007).

Bryant, D. M. & Mostov, K. E. From cells to organs: building polarized tissue.
Nat. Rev. Mol. Cell Biol. 9, 887-901 (2008).

Lee, J. S., Chang, M. L, Tseng, Y. & Wirtz, D. Cdc42 mediates nucleus
movement and MTOC polarization in Swiss 3T3 fibroblasts under mechanical
shear stress. Mol. Biol. Cell 16, 871-880 (2005).

Daniels, B. R., Perkins, E. M., Dobrowsky, T. M., Sun, S. X. & Wirtz, D.
Asymmetric enrichment of PIE-1 in the Caenorhabditis elegans zygote
mediated by binary counterdiffusion. J. Cell Biol. 184, 473-479 (2009).
Daniels, B. R., Dobrowsky, T. M., Perkins, E. M., Sun, S. X. & Wirtz, D. MEX-5
enrichment in the C. elegans early embryo mediated by differential diffusion.
Development 137, 2579-2585 (2010).

Meyers, J., Craig, J. & Odde, D. J. Potential for control of signaling pathways via
cell size and shape. Curr. Biol. 16, 1685-1693 (2006).

. Fraley, S. I, Feng, Y., Wirtz, D. & Longmore, G. D. Reply: reducing background

fluorescence reveals adhesions in 3D matrices. Nat. Cell Biol. 13, 5-7 (2011).
Biggs, M. J., Richards, R. G. & Dalby, M. J. Nanotopographical modification:
a regulator of cellular function through focal adhesions. Nanomedicine 6,

619-633 (2010).

Acknowledgements

We thank Dr. J. Justin McCormick (Michigan State University, USA) for providing

us with 8387 fibrosarcoma cells and Dr. Mary Beckerle (University of Utah, USA)

for providing us with the zyxin VBD mutant. This research was supported in part

by NIH Grant U54CA143868. S. I. F. was supported by an Achievement Reward for
College Scientists (ARCS) and a National Science Foundation graduate fellowship.

D. W. acknowledges fruitful discussions with Prof. Sean X. Sun (Johns Hopkins PSOC,
USA) and Professor Timothy Elston (University of North Carolina and Johns Hopkins
PSOC, USA).

Author contributions

Y. E generated knockdowns; A. G. generated the CRP-1 knockdown cell line and
performed associated migration experiments; S. I. F. performed all the other experiments
and analysis, and co-wrote the manuscript; G. L. and D. W. co-supervised the project
and co-wrote the manuscript.

12 NATURE COMMUNICATIONS | 3:719 | DOI: 10.1038/ncomms1711 | www.nature.com/naturecommunications
© 2012 Macmillan Publishers Limited. All rights reserved.



NATURE COMMUNICATIONS | DOI: 101038 /ncomms1711

ARTICLE

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial
interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Fraley, S. I et al. Dimensional and temporal controls of
three-dimensional cell migration by zyxin and binding partners. Nat. Commun.
3:719 doi: 10.1038/ncomms1711 (2012).

NATURE COMMUNICATIONS | 3:719 | DOI: 10.1038/ncomms1711 | www.nature.com/naturecommunications 13
© 2012 Macmillan Publishers Limited. All rights reserved.



SUPPLEMENTARY INFORMATION
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Supplementary Figure S1. Depletion of zyxin and zyxin-associated proteins in HT1080 cells and
expression of zyxin mutants in zyxin-depleted HT0180 cells. A and B. Zyxin constructs used in the
studies. C. Western blots for Zyxin and oa-tubulin in HT1080 cells + mock vector, HT1080 cells +
luciferase vector, HT1080 cells + Zyxin-sh756, HT1080 cells + Zyxin-sh756 + rrhZyxin-FH,
HT1080 cells + Zyxin-sh756 + rrhZyxinABD-FH, and HTI1080 cells + Zyxin-sh756 +
rrthZyxinVBD-FH. D. Western blots for Talinl,2 and o-tubulin in HT1080 cells + mock vector,
HT1080 cells + luciferase vector, HT-1080 cells + Talinl,2-sh1372, and HT1080 cells + Talinl,2-
sh6706. E. Western blots for a-actininl,4 and B-tubulin in HT1080 cells + mock vector, HT1080 cells
+ luciferase vector, HT1080 cells + a-actininl,4-sh822, HT1080 cells + a-actininl,4-sh1299, and
HT1080 cells + a-actininl,4-sh2287. F. Western blots for FAK and B-tubulin in HT1080 cells + mock
vector, HT1080 cells + luciferase vector, HT1080 cells + FAK-sh332, and HT1080 cells + FAK-
sh507. G. Western blots for VASP and B-tubulin in HT1080 cells + mock vector, HT1080 cells +
luciferase vector, HT1080 cells + VASP-sh444, HT1080 cells + VASP-sh586, HT1080 cells + FAK-
sh444+ rthVASP-FH. H. P130Cas and o-tubulin in HT1080 cells + mock vector, HT-1080 cells +
luciferase vector, HT1080 cells + sh-1336, and HT1080 cells + sh-2226. G. VASP and a-tubulin in
HT-1080 cells + mock vector, HT-1080 cells + luciferase vector, HT-1080 cells + sh-444, HT-1080
cells + sh-586, HT-1080 cells + VASP-sh444 + rrhVASP-FH. See more details in the Methods

section.
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Supplementary Figure S2. 1-D oscillatory motion of zyxin-depleted human 8387 fibrosarcoma
cells in 3-D matrices. A. Western blots for Zyxin and B-tubulin in 8487 cells + mock vector, 8487

3



cells + luciferase vector, and 8487 cells + Zyxin-sh623, 8487 cells + Zyxin-sh756. B. Trajectories of
individual 8487 cell 1, cell 2, and 3 in a 2mg/ml 3-D collagen I matrix, the first day after embedding

(top row) and on the second day (bottom row).



12-h timelapse

1
2
3
4
5
6
7
Al

Total 22

-0.3 0.3

-0.3

Supplementary Figure S3. Method used to compute the orientation of protrusions generated by
cells inside a 3D matrix. A. Radial protrusion plot divided into 8 segments which is positioned onto
the cell centroid with segment 1 (red) arbitrarily aligned with the initial major protrusion at time zero.
B. Cartoon of a single cell migrating over twelve hours where the radial protrusion plot is aligned with
the first major protrusion of the cell at time zero (top) and maintained in that alignment over the course

of the timelapse. C. Table of number of protrusions (right column) occurring in each radial protrusion



plot segment (left column) for the single cell. D. A plot of the orientation summary for the single cell
where the distance of each point from the origin represents the fraction of protrusions occurring in that

segment of the radial plot, with the positive y-axis corresponding to segment 1 (red), etc.
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Supplementary Figure S4. Effect of Racl inhibition on 3D cell migration. Fraction of cells
showing a 1D unidirectional migration, 1D periodic motion, 1D random motion, and 3D random

motion in a collagen I matrix. No significance among the bars.





