
Rapid cancer cell proliferation, combined 
with structural and functional abnormalities 
in tumour blood vessels, results in regions 
within solid tumours that have reduced oxy-
gen availability1. Oxygen availability decreases 
as the distance from the nearest blood vessel 
increases. Intratumoural hypoxia is associ-
ated with disorganized vascular networks 
with intercapillary distances that are greater 
than the diffusion distance of oxygen (which 
is ~100–200 μm, depending on the local 
oxygen concentration in the blood and the 
rates of oxygen consumption)2. The direct 
measurement of the tumour partial pressure 
of oxygen (PO2) using Eppendorf microelec-
trodes (which remains the gold standard for 
determining oxygen levels) has revealed that 
patients whose primary tumours are poorly 
oxygenated (those with PO2 <10 mmHg) have 
an increased risk of metastasis and mortal-
ity1,3,4. The best understood mechanism of 
how cancer cells adapt to a hypoxic environ-
ment is through the transcriptional activity of 
hypoxia-inducible factors (hypoxia-inducible 
factor 1 (HIF1) and HIF2; see BOX 1)5. The 
role of hypoxia and HIFs in reprogramming 
cancer cells by regulating the expression of 
multiple genes involved in angiogenesis, by 
regulating the metabolism of glucose and by 
regulating cancer cell invasion and metastasis 
has been extensively reviewed elsewhere6–10. 
Recent reviews also highlight the importance 
of hypoxia in recruiting the stromal cell com-
ponents of the tumour microenvironment11,12. 
In this Opinion article, we focus on how 
hypoxia affects extracellular matrix (ECM) 
deposition, remodelling and degradation, 
which might potentiate cancer metastasis. 

Central to this emerging paradigm are three 
crucial findings: the ECM is a dynamic struc-
ture that influences tumour progression13–18; 
multiple cell types, including cancer cells, 
contribute to ECM production19–23; and the 
remodelled ECM within regions of intra
tumoural hypoxia could be a pathway rather 
than an obstacle for cancer metastasis24–27.

The ECM and cancer
The ECM is composed of approximately 300 
proteins that regulate tissue homeostasis, 
organ development, inflammation and dis-
ease19. The major constituents of the ECM are 
fibrous proteins (such as collagens, elastins, 
fibronectins and laminins) and proteoglycans 
(such as chondroitin sulphate, heparan sul-
phate, keratan sulphate and hyaluronic acid) 
that are locally secreted and assembled into 
an organized mesh, which forms the struc-
tural framework for most tissues28. Molecular 
approaches aiming to correlate clinical out-
comes with specific gene expression patterns 
within the primary tumour have highlighted 
genes that encode tumour-associated ECM 
components19,29–34. An increased expression 
of genes encoding proteins that mediate 
ECM remodelling has been associated with 
increased mortality in patients with breast, 
lung and gastric cancers35,36. These studies 
corroborate histological findings that show 
an excessive ECM deposition (also termed 
fibrosis) within solid tumours37–43.

The most well-recognized ECM altera-
tion that occurs in the tumour tissue is 
increased collagen deposition44–53. Collagens 
are the most abundant ECM components, 
constituting up to 90% of the ECM and 30% 

of the total protein in humans, and they pro-
vide the structural integrity and the tensile 
strength of human tissues and organs54. In 
the context of cancer biology, collagens regu-
late the physical and the biochemical proper-
ties of the tumour microenvironment, which 
modulate cancer cell polarity, migration and 
signalling17,55–58. Collagen I deposition 
and cancer metastasis have been causally 
linked using mice engineered to express a 
collagenase-resistant α1 chain of type I col-
lagen (Col1a1tm1jae mice)59. Col1a1tm1jae mice 
were crossed with mouse mammary tumour 
virus promoter-driven polyoma middle T 
antigen (MMTV-PyMT) transgenic mice 
to model increased type I collagen depo-
sition during the progression of human 
breast cancer59–61. Col1a1tm1jae;MMTV-PyMT 
bitransgenic mice had a threefold increase 
in the incidence of tumour formation and 
metastasis compared with their wild-type 
littermates60. Furthermore, histological stud-
ies of human breast carcinomas have shown 
that fibrosis is localized to hypoxic regions 
within tumours and correlates with immuno
staining of the HIF1 target gene product 
carbonic anhydrase IX (CAIX)51,52. Highly 
fibrotic tumours also have the highest CAIX 
immune reactivity, which can independently 
predict patient relapse rate and shorter 
disease-free survival51,53. In this Opinion 
article, we discuss emerging data that has 
provided experimental evidence linking the 
mechanisms of hypoxia-induced collagen 
deposition and remodelling to those of 
invasion and metastasis. 

Tumour ECM synthesis and degradation
The current view of tumour fibrosis suggests 
that recruited and resident fibroblasts and 
myofibroblasts within the primary tumour 
are mediators of tumour fibrosis. These  
cells are activated by proteins that are 
secreted by cancer cells, most notably by 
transforming growth factor‑β (TGFβ), which 
stimulates the synthesis of ECM proteins 
and the remodelling of the ECM by pro-
teases produced by cancer-associated fibro-
blasts62. Fibroblasts that are isolated from 
the site of a healing wound or from fibrotic 
tissues secrete higher levels of normal ECM 
constituents and proliferate more than 
their normal counterparts that are isolated 
from healthy organs, which is an explana-
tion for the increase in matrix deposition 
that occurs within a tumour63. Although it 
is well accepted that invasive carcinoma is 
often associated with increased ECM depo-
sition in tumours64, there is also evidence 
for an increased deposition of ECM in 
hypoxic tumour regions. Recent studies have 
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Of the deaths attributed to cancer, 90% are due to metastasis, and treatments that 
prevent or cure metastasis remain elusive. Emerging data indicate that hypoxia and 
the extracellular matrix (ECM) might have crucial roles in metastasis. During tumour 
evolution, changes in the composition and the overall content of the ECM reflect 
both its biophysical and biological properties and these strongly influence tumour 
and stromal cell properties, such as proliferation and motility. Originally thought of 
as independent contributors to metastatic spread, recent studies have established 
a direct link between hypoxia and the composition and the organization of the ECM, 
which suggests a new model in which multiple microenvironmental signals might 
converge to synergistically influence metastatic outcome.
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uncovered mechanisms of tumour fibrosis 
that specifically occur under hypoxic condi-
tions and that involve not only fibroblasts 
but also other cell types, including cancer 
cells20,21,65–68.

Hypoxia induces increased collagen gene 
expression. Hypoxia and HIF1 have been 
implicated in renal, liver and adipose tissue 
fibrosis69–71. Dermal, cardiac and renal fibro-
blasts cultured under hypoxic conditions 
show increased type I procollagen α1 mRNA 
levels72–74. Furthermore, increased levels 
of type I, II and IV procollagen mRNA are 
present in the peripheral lung parenchyma 
and pulmonary artery of rats that have been 
exposed to hypoxia75. However, studies that 
describe the regulation of collagen gene 
expression in hypoxic cancer cells in vitro 
and during cancer progression in vivo are 
lacking. By contrast, the dramatic effect of 
hypoxia on the post-translational modifica-
tion of collagen is a matter of considerable 
investigation, as described below.

HIF1 regulates the expression of intracellular 
collagen-modifying enzymes. Collagen 
biogenesis originates with gene transcrip-
tion and is followed by the translation of 
mRNA into procollagen (pro-α‑chains) 
(FIG. 1). At least 28 collagen subtypes, which 
are encoded by 42 genes that generate 42 
distinct pro-α‑chains, have been identi-
fied in vertebrates76. Within the endoplas-
mic reticulum, the pro-α‑chains undergo 
multiple post-translational modifications, 
which include the hydroxylation of proline 
and lysine residues, followed by the glyco-
sylation of hydroxylysine residues76. The 
modification of proline to 4‑hydroxyproline 
is essential for the thermal stability of the 
collagen triple helix77. Procollagen α‑chains 
that are not hydroxylated are improperly 

folded, which leads to proteolytic degrada-
tion and to reduced collagen deposition76,78. 
Three isoforms of the prolyl 4‑hydroxylase 
α-subunit (P4HA) have been identified 
(P4HA isoform 1 (P4HA1), P4HA2 and 
P4HA3) that form A2B2 tetramers with 
P4HB, which results in the generation of 
P4H1 (from P4HA1), P4H2 (from P4HA2) 
and P4H3 (from P4HA3) holoenzymes79,80. 
Three procollagen-lysine 2‑oxyglutarate 
5‑dioxygenase genes (PLOD1, PLOD2 and 
PLOD3) encode enzymes that mediate 
collagen lysine hydroxylation. Collagen 
crosslinks that are derived from hydroxy-
lated lysine residues compared with non-
hydroxylated lysine residues have increased 
stability, which leads to increased tissue 
stiffness81. Thus, stiff tissues, such as bones, 
cartilage and tendons, contain a higher 
percentage of hydroxylated lysine residues 
in collagen compared with soft tissues, such 
as the skin81.

HIF1 regulates the expression of P4HA1, 
P4HA2, PLOD1 and PLOD2 in cancer cells, 
fibroblasts, chondrocytes and endothelial 
cells20,21,67,82–86. Abrogating the expression 
of HIF1α, P4HA1 or P4HA2 through the 
stable transfection of cells with short hair-
pin RNA (shRNA) vectors inhibits collagen 
deposition from both breast cancer cells and 
fibroblasts in vitro21,82. Reducing the levels of 
HIF1α, P4HA1 or P4HA2 in vivo results in 
decreased fibrosis and decreased tissue stiff-
ness in orthotopic tumours that are formed 
by the injection of human breast cancer cells 
into the mammary fat pads of immuno-
deficient mice21,68. Decreasing the levels of 
HIF2α expression in breast cancer cells had 
no effect21. Importantly, P4HA1 or P4HA2 
knockdown inhibited the spontaneous 
metastasis of breast cancer cells to the lungs 
and to the lymph nodes of mice by reducing 
the formation of collagen fibres, which are 

required for cancer cell adhesion, spreading 
and invasion21,68. In contrast to P4HA1 and 
P4HA2, the depletion of PLOD2 in breast 
cancer cells did not suppress collagen depo-
sition in vitro or in vivo, but reduced tumour 
stiffness by reducing fibrillar collagen con-
tent20. PLOD2 knockdown also significantly 
impaired the invasion of cancer cells into 
the adjacent normal tissue of the mouse 
mammary fat pad, reduced the number of 
circulating tumour cells and prevented the 
spontaneous metastasis of breast cancer 
cells to the lungs and to the lymph nodes of 
mice20. In murine models of sarcoma, abro-
gating HIF1-dependent PLOD2 expres-
sion disrupted collagen modification, cell 
migration, and pulmonary metastasis67. 
Taken together, the studies described above 
indicate that hypoxia might regulate ECM 
deposition by multiple cell types within the 
tumour microenvironment20,21,67,68,82,83,86. In 
addition to the marked effects of collagen 
prolyl and lysyl hydroxylase expression in 
experimental mouse models of metastasis, 
P4HA1, P4HA2 and PLOD2 expression 
have also been suggested as biomarkers for 
human cancer progression in several  
independent studies (BOX 2).

HIFs regulate extracellular collagen-
modifying enzymes. Following enzymatic 
modification of type I collagen by hydroxy-
lation, two α1(I)-chains and one α2(I)-
chain associate to form a triple helix that is 
secreted into the extracellular space (FIG. 1). 
Collagen peptidases cleave the carboxy- and 
amino‑terminal peptides, and type I collagen 
fibrils form spontaneously, are covalently 
crosslinked on hydroxylysine and lysine resi-
dues and form structurally stable collagen I 
fibres76,87. Fibrillar collagens, such as type I 
collagen, establish the interstitial matrix 
and contribute to tissue stiffness with exten-
sive post-translational modifications that 
increase tensile strength54. Non-fibrillar col-
lagens, such as type IV collagen, constitute a 
key component of the basement membrane, 
which is a compact sheet-like structure that 
functions as a barrier to separate tumour 
cells from the adjacent stroma88.

Collagen crosslinking is extracellularly 
initiated by the lysyl oxidase (LOX) family of 
secreted enzymes that oxidatively deaminate 
lysine or hydroxylysine collagen residues87. 
Three LOX enzymes — LOX, LOX-like pro-
tein 2 (LOXL2) and LOXL4 — are important 
hypoxia-induced and HIF‑regulated target 
gene products that are involved in collagen 
crosslinking and tumour fibrosis65,89–93. In 
addition to collagen crosslinking within the 
primary tumour, secreted LOX has been 

Box 1 | Regulation of HIFs

Hypoxia-inducible factors (HIFs) are transcription factors that function as heterodimers, which 
consist of an oxygen-regulated HIF1α (or HIF2α) subunit and a constitutively expressed HIF1β 
subunit178,179. HIFs bind to the consensus sequence 5ʹ-RCGTG‑3ʹ that is present within or near 
HIF-regulated genes180. HIF1α protein levels are regulated by oxygen-dependent prolyl 
hydroxylation, which is required for binding of the von Hippel–Lindau (VHL) tumour suppressor 
protein, leading to ubiquitylation and proteasomal degradation of HIF1α181. Hydroxylation of HIF1α 
residues Pro402 and Pro564 is catalysed by HIF prolyl hydroxylase domain-containing protein 1 
(PHD1), PHD2 and PHD3 in a reaction that is dependent on the presence of cofactors, oxygen and 
α‑ketoglutarate (also known as 2‑oxoglutarate). Under low oxygen conditions, HIF1α 
hydroxylation, ubiquitylation and degradation are inhibited153. HIF2α, which shares 48% amino 
acid sequence identity with HIF1α, is also oxygen-regulated and binds to HIF1β to form HIF2, 
which activates the transcription of some, but not all, HIF target genes182,183. Many oncogenic 
alterations in cancers cells, including loss of function of VHL, PTEN and p53184–186, as well as 
activation of the PI3K–AKT187 pathway, also cause an increase in HIF activity. Data obtained from 
many recent studies that use a range of approaches have revealed unique roles for HIF1α and 
HIF2α in both normal and cancer cells152.
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shown to localize within the lungs and to 
remodel existing collagen to establish a pre-
metastatic niche containing bone marrow-
derived cells (BMDCs), which facilitates 
colonization of the niche by cancer cells in 
murine models of breast cancer90–91. LOX 
family members are upregulated to vary-
ing levels and in different combinations in 
human breast cancers93. Similarly, breast 
cancer cell lines show different patterns of 

LOX family member expression in response 
to hypoxia, but in each case the expression is 
HIF dependent89. Consideration of the spe-
cific LOX family members that are induced 
by hypoxia is therefore essential to prevent 
collagen remodelling, BMDC recruitment 
and metastasis in the lungs of tumour- 
bearing mice89,90. The pharmacological 
inhibition of LOX by β‑aminopropionitrile 
(βAPN) has been reported to inhibit 

metastasis in experimental mouse models; 
however, βAPN might not inhibit the activ-
ity of all LOX family members93, which sug-
gests that HIFs or pan-LOX inhibitors could 
represent broader targets than currently 
available drugs or antibodies that target only 
a subset of LOX and LOXL proteins.

HIF1 and HIF2 can regulate ECM degra-
dation. In addition to collagen deposition, 
collagen degradation also contributes to 
ECM remodelling and is mediated by sev-
eral families of proteinases that have been 
suggested to promote cancer cell invasion; 
for example, the matrix metalloproteinases 
(MMPs) are a family of zinc-dependent 
enzymes that are divided into several 
subgroups (collagenases, gelatinases, 
stromelysins and cell membrane-bound 
MMPs) with different substrate specifici-
ties. Hypoxia is associated with an increase 
in the expression and the activity of type IV 
collagen-degrading enzymes (MMP2 and 
MMP9) in vitro94–96. MMP2 and MMP9 
are upregulated by hypoxia in breast and 
colon cancer cells via a HIF1‑dependent 
mechanism94–96, whereas membrane-bound 
membrane-type 1 MMP (MT1‑MMP; also 
known as MMP14) is upregulated in a 
HIF2‑dependent manner94,97. In addition 
to collagen degradation by MMPs, hypoxic 
cancer cells also show increased proteo-
lytic activity as a result of HIF-dependent 
increases in their expression of urokinase 
plasminogen activator surface receptor98,99 
(PLAUR). PLAUR promotes cell invasion 
by altering the interactions between integ-
rins and the ECM. When PLAUR expres-
sion levels are depleted by the expression 
of shRNAs, cells with reduced levels of 
PLAUR are incapable of intravasation100. 
Thus, HIFs activate a transcriptional pro-
gramme that results in the degradation of 
the basement membrane while simultane-
ously increasing the de novo synthesis of 
fibrillar collagens to function as a physical 
pathway for tumour invasion (FIG. 2).

Growth factors and ECM deposition
Tumours have long been described as 
‘wounds that won’t heal’ (REF. 101). Similarly, 
hypoxia is known to have a role in both  
normal and pathological wound healing.  
In normal cutaneous wounds, HIF1 is 
important for appropriate angiogenic 
responses, for mobilization of circulating 
angiogenic cells, such as endothelial pre-
cursor cells and mesenchymal stem cells 
(MSCs), and for normal wound contrac-
tion102. Partial reduction of HIF1α expres-
sion is consequently sufficient to impair 

Figure 1 | Biosynthesis of fibrillar collagens.  The biosynthesis of type I collagen and other fibrillar 
collagens can be divided into intracellular (parts a–c) and extracellular (parts d–f) steps. The first intra-
cellular step involves the synthesis of procollagen polypeptides from any of 42 distinct collagen gene 
transcripts (part a). Procollagens are post-translationally modified within the cisternae of the endo-
plasmic reticulum (ER) by prolyl 4‑hydroxylase α-subunit isoform 1 (P4HA1), P4HA2 and P4HA3 and by 
procollagen-lysine 2‑oxyglutarate 5‑dioxygenase 1 (PLOD1), PLOD2 and PLOD3 lysyl hydroxylase 
enzymes (part b). Hydrolysine residues can be further modified to galactosyl hydroxylysine and to 
glucosylgalactosyl hydroxylysine by collagen galactosyltransferase and glucosyltransferase, respec-
tively. The carboxyl termini of three properly hydroxylated procollagen molecules will associate and 
spontaneously propagate a procollagen triple helix from the carboxyl terminus to the amino terminus. 
The triple helical procollagen will be transported from the ER to the extracellular space via the Golgi 
(part c). Two metalloproteinases, a procollagen N‑terminal proteinase and a procollagen C‑terminal 
proteinase, cleave the non-helical termini (part d) and the mature collagen proteins spontaneously 
aggregate to form a collagen fibril (part e). The final step, collagen fibre formation, is initiated by col-
lagen crosslinking, which is catalysed by lysyl oxidase (LOX) family members and occurs via the lysine 
aldehyde- or hydroxylysine aldehyde-initiated pathway (part f). The number and the proportion of the 
various crosslinks are tissue specific and are regulated by the steric relationship between localized 
collagen molecules, the type of collagens co-polymerized and the glycosylation and the hydroxylation 
of the participating amino acid residues. For example, lysine aldehyde-initiated crosslinks are found 
in soft connective tissue, in contrast to hydroxylysine aldehyde-initiated crosslinks, which are found in 
stiff connective tissues. Many non-fibrillar collagens retain a non-collagenous N- or C‑terminal, which 
prevents the spontaneous formation of collagen fibrils, and in these collagens cysteine crosslinks 
might be the only source of covalent intermolecular bonds. Enzymes highlighted in red are induced 
under hypoxic conditions. LOXL, LOX-like protein.
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wound healing103. During wound healing, 
angiogenesis and ECM deposition occur 
in parallel104; therefore, it is not surprising 
that some of the same factors that stimu-
late angiogenesis also promote fibrosis. 
Hypoxia-induced angiogenic growth factor 
production has been well established105. 
HIF1 has been shown to bind to a cis-acting 
hypoxia-response element in the genes that 
encode vascular endothelial growth fac-
tor (VEGF), stromal cell-derived factor 1 
(SDF1; also known as CXCL12), angio
poietin 2 (ANG2), platelet-derived growth 
factor B (PDGFB), placental growth factor 
(PGF), connective tissue growth factor 
(CTGF) and stem cell factor (SCF)106–114 
and can also indirectly promote fibroblast 
growth factor 2 (FGF2)115 production in a 
variety of cell types (TABLE 1).

Although well-known for their influence 
on tumour angiogenesis, many of these 
growth factors also contribute to fibro-
sis116–118, potentially by attracting fibroblasts 
to the primary tumour and/or by activating 
resident fibroblasts. Experimental evidence 
indicates that the recruitment of fibro-
blasts or myofibroblasts to sites of patho-
logical fibrosis is driven by hypoxia119–121. 
Similarly, hypoxia increases the recruit-
ment of bone marrow-derived MSCs in 
murine models of breast cancer, which 
results in increased lymphatic and vascular 
metastasis112,122; for example, VEGF — 
which is released by hypoxic cancer cells 
but more often by endothelial cells, fibro-
blasts and inflammatory cells — has been 
implicated in fibrosis because of its role in 
stromal cell activation and because it leads 
to the production of an ECM that is rich 
in fibronectin and type I collagen63. VEGF 
also induces microvascular permeability, 
which in turn mediates an influx of fibro-
blasts, inflammatory cells and endothelial 
cells to the primary tumour123.

Hypoxia and macrophage recruitment
Hypoxia-induced growth factor secretion 
in the primary tumour also promotes the 
accumulation of macrophages, which rapidly 
respond to the hypoxic microenvironment by 
altering their gene expression patterns124–126. 
The importance of hypoxia in stimulat-
ing macrophage infiltration during wound 
healing has been shown in heterozygous 
HIF1α‑deficient mice, which show con-
siderable delays in myeloid cell infiltra-
tion127. Recent studies highlight a potential 
mechanism of macrophage recruitment into 
hypoxic regions involving the release of sem-
aphorin 3A by hypoxic cancer cells, which 
functions as an attractant for macrophages 
that express neuropilin 1 (NRP1)128. Once in 
the region of hypoxia, macrophages stimulate 
fibrosis by producing growth factors such as 
TGFα, TGFβ1, VEGF, FGF, PDGF, tumour 
necrosis factor-α (TNFα), interleukin‑1 
(IL‑1) and IL‑8, which can attract additional 
macrophages and mesenchymal cells, such 
as fibroblasts and endothelial cells, and can 
further activate stromal cells129. Macrophages 
also directly promote the process of cancer 
cell intravasation into nearby blood vessels130. 
In addition, they contribute to ECM turn
over by secreting MMPs, which suggests that 
the identification of a specific macrophage 
subpopulation and/or soluble mediator that 
preferentially promotes or degrades the ECM 
might be an important determinant of the 
extent of fibrosis within a tumour129. Taken 
together, the studies described above suggest 
that hypoxic signalling engages multiple cell 
types that contribute to ECM remodelling 
within the tumour microenvironment (FIG. 3).

Physical properties of tumour ECM
The physical properties of the tumour ECM 
refer to its stiffness, topography, porosity 
and solubility131. The physical properties of 
the tumour-associated ECM are not only 

fundamentally different from the ECM of 
normal tissues but are also continuously 
remodelled17,132, which reflects the dynamic 
changes that occur in the tumour micro-
environment, including changes in oxygen 
availability.

Tumour Stiffness. Tumour stroma is typi-
cally stiffer than normal stroma; for example, 
breast tumours can be ten times stiffer than 
normal breast tissue57,133 and expression 
of collagen-modifying enzymes, such as 
P4HA1, P4HA2, PLOD2 and LOX, that can 
be induced by hypoxia promote tumour stiff-
ness20,21,58,65,66,82. Stiffening of the ECM causes 
a reciprocal increase in the traction forces 
that are exerted by a cell134,135. Intracellular 
contraction in response to ECM stiffening 
results in an increase in the stiffness of the 
actin cytoskeleton and an increase in cell 
migration57,58,136–138. Increased tumour stiffness 
might regulate tumour progression in several 
ways; for example, increasing matrix stiffness 
increases RHO-generated cytoskeletal ten-
sion to promote focal adhesion assembly and 
to increase growth factor-dependent ERK 
activation123,135. Moreover, matrix stiffness 
facilitates integrin clustering, leading to the 
activation of focal adhesion kinase 1 (FAK1), 
which in turn activates the MAP/ERK 
kinase (MEK; also known as MAP2K)–ERK 
pathway and leads to increased cell survival, 
migration, invasion and proliferation57,138,139. 
Depletion of FAK1 in mouse tumour models 
inhibits local invasion and metastasis, which 
indicates that FAK1 activation might be an 
important mediator of stiffness-induced 
tumour metastasis140–142. Interestingly, matrix 
stiffening can lead to a feed-forward signal-
ling mechanism that further increases matrix 
stiffening; for example, YAP1 is required 
for matrix stiffening by cancer-associated 
fibroblasts during tumour progression143. 
Conversely, stiff matrices and the contractile 
actin cytoskeleton further increase YAP1 
activation143.

Tumour topography. In addition to the 
changes in matrix stiffness that occur during 
tumour progression, the topography of the 
ECM is also highly dynamic. For example, 
invasive breast cancers often contain type I 
collagen fibres that are oriented perpen-
dicular to the tumour margin at the invasive 
front, in contrast to the non-oriented fibrils 
that are often seen in less aggressive breast 
cancers25,26,144,145. Straightened and aligned 
collagen fibres are found at sites of breast 
cancer invasion — a histological pattern 
that is termed tumour-associated collagen 
signature 3 (REF. 146), which is associated 

Box 2 | Collagen hydroxylases and cancer

Procollagen-lysine 2‑oxyglutarate 5‑dioxygenase 2 (PLOD2) was included among the genes 
shown to be upregulated in gene expression screens of cervical cancer188, glioblastoma189 and 
gastric cancer190, and was 1 of 17 genes that predicted breast cancer metastasis to the brain191. 
Gene expression studies also revealed increased PLOD2 mRNA expression in primary sarcoma 
samples from patients with metastatic compared to non-metastatic sarcomas67. Moreover, 
human osteosarcoma samples have two to three times more hydroxylysine content than normal 
bone collagen, which indicates that PLOD activity is increased in these patients44. Increased 
prolyl 4‑hydroxylase α-subunit isoform 1 (P4HA1) expression was revealed by a meta-analysis 
that was used to identify genes that are upregulated across many different cancer types192. 
P4HA2 was determined to be a metastasis-associated protein in oral cavity squamous cell 
carcinoma using comparative tissue proteomics193. Increased P4HA2 expression levels also 
discriminated papillary thyroid cancer from normal thyroid tissue194. Increased P4HA1, P4HA2 or 
PLOD2 mRNA expression is predictive of breast cancer patient survival; the predictive power is 
improved when the expression of all three genes is evaluated and determined to be greater than 
the median expression level20,21.
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with decreased patient survival25. Similarly 
to breast cancer, in early melanomas, col-
lagen is localized to the periphery of the 
tumour144,145,147. By contrast, metastatic mela-
nomas have a less compact ECM structure 
with no barrier between the cancer cells and 
the adjacent normal tissue. Highly aligned 
collagen fibres within a tumour might not just 
be predictive of the metastatic potency of the 
tumour but may also be causative given the 
finding that cancer cells preferentially invade 
along straightened and aligned collagen 
bundles24,26,148.

The ECM isolated from wild-type fibro-
blasts that have been exposed to hypoxia is 
more highly aligned than the ECM deposited 
by fibroblasts that have been cultured under 
ambient conditions, and collagen fibre align-
ment under hypoxic conditions is abrogated 
in fibroblasts transfected with shRNA against 
HIF1α82. Breast cancer cells that have been 
plated on ECM produced by hypoxic cells are 
highly aligned and migrate with directional 
persistence along ECM fibres, in contrast to 
cells that have been plated on ECM produced 
by non-hypoxic cells, which migrate in a 
random manner21. Similarly, in an ortho-
topic mouse model of breast cancer, aligned 
ECM fibres are present in the perinecrotic 
(hypoxic) region of control tumours; by con-
trast, tumours that are derived from breast 
cancer cells expressing shRNA against HIF1α 
have a disorganized ECM comprised of 
almost no fibrillar collagen21.

One potential mechanism of collagen 
alignment in hypoxia might involve the 
activity of the small GTPase RHOA, which 
interacts with RHO-associated protein 
kinase 1 (ROCK1) to mediate myosin II 
phosphorylation, resulting in cell contraction. 
RHOA-mediated ROCK1 activity is required 
for caveolin 1-induced cell contraction, which 
enables cancer cells to align with and poten-
tially to migrate along the pre-existing col-
lagen matrix in vitro149. Experiments in vivo 
also indicate that caveolin 1‑dependent regu-
lation of RHOA is required for fibroblasts to 
produce an aligned matrix149. In renal clear 
cell carcinoma, caveolin 1 is a direct tran-
scriptional target of HIF1 and HIF2 (REF. 150). 
Moreover, hypoxia coordinately regulates the 
expression of RHOA and ROCK1 through 
HIF1- and HIF2‑dependent transcription in 
breast cancer cells, which results in increased 
cell-induced matrix contraction151. An alter-
native or an additional mechanism of collagen 
alignment could involve LOX expression. 
Second harmonic generation (SHG) imaging 
of mammary glands that have been precondi-
tioned with LOX-expressing fibroblasts shows 
that they contain more linearized collagen 

than the mammary glands of control mice58. 
Taken together, these data suggest a model 
in which hypoxic cells can generate and 
organize an aligned ECM through multiple 
mechanisms (FIG. 2).

Biochemical properties of the ECM. The 
structure of the ECM influences the stability 
and the bioavailability of growth factors and 
cytokines14, many of which are generated 
under hypoxic conditions (TABLE 1). The bal-
ance between ECM-mediated confinement 
or distribution of growth factors and their 
concentration will determine their availabil-
ity to cell surface receptors and consequently 
will regulate intracellular signalling14.  
A highly aligned ECM might more readily 
establish a chemoattractive gradient that 
potentiates hypoxic signalling. Conversely, a 
dense collagen network could function as 
a sink for growth factors and thereby could 
reduce their rate of diffusion. Future stud-
ies to determine the ECM arrangement and 
composition that supports the optimal dis-
tribution of growth factors to mediate metas-
tasis might lead to a better understanding of 
how the ECM influences cancer cell motility 
and dissemination.

Potential therapeutic interventions
HIF inhibitors. Increased expression of 
HIF1α and HIF2α has been observed in a 
broad range of human cancers and has been 
associated (in most but not all cases) with 
a poor prognosis152–154, which suggests that 
use of HIF inhibitors has the potential to 
improve patient survival not only by blocking 
ECM deposition but also by blocking dozens 
of other HIF target genes that encode pro-
teins involved in cell survival, angiogenesis, 
metabolic reprogramming, immortalization, 

epithelial-to-mesenchymal transition (EMT), 
stem cell maintenance, resistance to radiation 
and chemotherapy, invasion and metastasis155. 
Although considerable work has been done to 
characterize the role of HIFs in experimental 
cancers with regards to tumour incidence and 
growth152, the direct requirement for HIFs in 
metastasis has only recently been shown in 
both orthotopic models and autochthonous 
breast tumour models156,157. Conditional 
knockout models of HIFs have also aided our 
understanding of how the hypoxic tumour 
environment affects different cell types to 
drive cancer progression; for example, loss 
of either HIF1α or HIF2α in mouse vascular 
endothelial cells has been shown to reduce 
tumour growth because of impaired angio-
genesis158,159. Conversely, haplodeficiency 
of prolyl hydroxylase domain-containing 
protein 2 (PHD2; also known as EGLN1) 
increases the HIF-driven upregulation of 
expression of VEGF receptor 1 (VEGFR1) in 
endothelial cells and decreases intratumoural 
hypoxia, resulting in decreased HIF1α expres-
sion in cancer cells, which reduces pulmonary 
metastasis160,161. The studies described above 
suggest that clinical trials are warranted for 
HIF inhibitors that show efficacy in preclini-
cal models. It will also be crucial to deter-
mine how the activity of each HIFα subunit 
is affected by the potential inhibitor, given 
the reported functional differences between 
HIF1α and HIF2α162,163.

Two inhibitors of HIF1α accumulation 
that have shown anticancer effects in pre-
clinical models are the topoisomerase I 
inhibitor topotecan151 and the cardiac glyco-
side digoxin90,106,157. In addition to reducing 
the expression of many HIF target genes, 
treatment of tumour-bearing mice with 
digoxin reduces tumour fibrosis, as well as 

Figure 2 | Hypoxia promotes ECM remodelling to facilitate metastasis.  Extracellular matrix 
(ECM) remodelling is tightly controlled to maintain tissue integrity. Cancer cells and associated stromal 
cells that have been exposed to hypoxia are transcriptionally reprogrammed to produce: matrix 
metalloproteinases (MMPs) and other proteases, which degrade the basement membrane surrounding 
a tumour (part a); aligned collagen fibres within the interstitial matrix, which function as a highway for 
local invasion, intravasation and metastasis (part b); and growth factors, which might be retained in 
the fibrotic microenvironment and function as chemotactic signals that recruit and activate stromal 
cells to further promote cancer progression (part c).
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lymph node and lung metastasis90,106,157. A 
Phase II clinical trial for digoxin is currently 
being carried out for men with recurrent 
prostate cancer (ClinicalTrials.gov, num-
ber: NCT01162135). In addition, a pilot 
clinical trial of topotecan (ClinicalTrials.gov, 
number: NCT00182676) in patients with 
advanced cancer and HIF1α overexpres-
sion shown on tumour biopsy was recently 
reported in which HIF1α protein levels 
were undetectable in the post-treatment 
biopsy samples from four of seven patients 
who were studied, and decreased tumour 
blood flow was observed in 70% of patients 
by contrast-enhanced dynamic magnetic 
resonance imaging164. Neither trial assessed 
treatment-induced changes to the tumour 
ECM. However, preclinical use of the HIF1α 
inhibitor PX‑478 or overexpression of a 
dominant-negative HIF1α mutant showed 
that the increased fibrotic response identi-
fied in fat pads from mice that were fed a 
high-fat diet could be effectively prevented 
by treatment with PX‑478. The preclinical 
effectiveness of PX‑478 has previously been 
established in tumour models where treat-
ment reduces tumour growth165 and it will be 
interesting to determine the effect of PX‑478 
on tumour fibrosis.

Targeting fibrosis. Blocking collagen 
hydroxylases or lysyl hydroxylases might 
also provide a strategy to reduce tumour 
fibrosis. P4Hs have been regarded as attrac-
tive targets for the pharmacological inhibi-
tion of collagen accumulation in fibrotic 
diseases and severe scarring. P4Hs belong 
to a superfamily of dioxygenases that use 
oxygen and α‑ketoglutarate (also known 
as 2‑oxoglutarate) as substrates. P4Hs are 
competitively inhibited by α‑ketoglutarate 
analogues, including N‑oxalylglycine, 

pyridine 2,4‑dicarboxylate and pyridine 
2,5‑dicarboxylate, coumalic acid and 
3,4‑ethyl dihydroxybenzoate (EDHB)166. As 
these agents are not selective for collagen 
hydroxylases, it is probable that they will also 
inhibit the HIF PHDs and will potentially 
promote HIF expression. Preclinical testing 
will have to be carried out to determine their 
potential usefulness in preventing metas
tasis. Minoxidil has been shown to decrease 
the expression of PLOD mRNAs and the 
activity of PLOD proteins and thereby to 
inhibit fibrosis167. In a mouse model of sar-
coma, minoxidil treatment reduced tumour 
fibrosis and suppressed lung metastasis67.

Studies that target LOX family members 
have focused on blocking the enzymatic 
activity of these proteins using competitive 
inhibitors such as βAPN168 or using neutral-
izing antibodies, which abrogate lung and 
liver metastases in xenograft and transgenic 
mouse models93. d‑penicillamine (DPEN), 
which is a LOXL2 inhibitor, was developed 
and used to treat rheumatoid arthritis and 
biliary cirrhosis but it does have some 
unintended side effects169. A more selective 
inhibitory monoclonal antibody (AB0023) 
against LOXL2 has been developed and 
was effective in reducing fibrosis in pri-
mary and metastatic xenografts as well as 
in liver and lung fibrosis models in mice170. 
The ECM of tumours from mice that 
had been treated with AB0023 showed a 
marked reduction in crosslinked collagen 
compared with results in mice that had 
been treated with the lysyl oxidase inhibi-
tor βAPN170. Treatment with AB0023 also 
resulted in a marked reduction in the num-
ber of activated fibroblasts and endothelial 
cells and led to a decreased production of 
growth factors and cytokines170. The safety 
of the humanized version of AB0023, 

AB0024 (also known as simtuzumab) 
has been tested in Phase I dose escala-
tion trials in patients with advanced solid 
tumours171 (ClinicalTrials.gov, number: 
NCT01323933) and with idiopathic 
pulmonary fibrosis (ClinicalTrials.gov, 
number: NCT01362231). Enrolment for a 
Phase II clinical trial in patients with idi-
opathic pulmonary fibrosis (ClinicalTrials.
gov, number: NCT01759511) has begun. 
Additional non-selective inhibitors of lysyl 
oxidases also include p‑halobenzylamines, 
ethylenediamine and homocysteine 
thiolactone93,172.

Conclusions
Although tumours from two different 
patients might have similar genetic altera-
tions, these tumours will develop in dif-
ferent microenvironmental contexts13, 
which suggests that hypoxia and the ECM 
are important in contributing to tumour 
heterogeneity, which might influence 
metastatic outcome. Hypoxic regions 
within the tumour microenvironment can 
simultaneously relay signals to cancer cells 
and cells that have been recruited to the 
local environment directly (for example, by 
transcriptional reprogramming), through 
paracrine signalling events and, as high-
lighted in this Opinion article, by establish-
ing a hypoxia-induced ECM that is fibrotic, 
stiff and aligned, which are all properties 
that promote metastatic dissemination11,173. 
Further studies are needed to investigate 
the mechanisms by which the hypoxia-
induced ECM might have a role in dynami-
cally maintaining and distributing growth 
factors that provide chemotactic signals 
to recruit cells to the primary tumour and 
that promote the intravasation of cancer 
cells for dissemination to distant organs. 
Advances in imaging techniques, such as 
intravital microscopy, have the potential 
to shed light on this issue and might direct 
our research to appropriate targeting strat-
egies that will be most beneficial to prevent 
metastasis174.

It is also important to consider that the 
collagen-modifying enzymes discussed in 
this Opinion article might have alternative 
roles in cancer progression that are not lim-
ited to fibrosis93. For example, LOX has a role 
in PDGF and insulin growth factor 1 (IGF1) 
signalling, but its precise mechanisms of 
action remain to be elucidated175. Additional 
regulators of the collagen hydroxylases and 
lysyl oxidases remain to be determined; 
for example, TGFβ1 has been shown to 
influence LOX expression93. Furthermore, 
the role of collagen in the regulation of 

Table 1 | Factors induced by HIFs and their role in fibrosis

Factor induced by HIFs Role in fibrosis

Platelet-derived growth factor Stimulates the replication, the survival and the migration 
of myofibroblasts118

Connective tissue growth factor Promotes collagen deposition by myofibroblasts195

Fibroblast growth factor 2 Promotes the proliferation and the differentiation of 
endothelial cells, smooth muscle cells and fibroblasts, and 
stimulates collagen deposition196

Endothelin Promotes fibroblast activation, proliferation and 
differentiation into myofibroblasts197

Angiotensin Stimulates TGFβ production198 and promotes collagen I 
and collagen III deposition199

Insulin growth factor 2 Increases connective tissue growth factor-stimulated 
collagen deposition200

CXC-chemokine ligand 2 Promotes fibrocyte recruitment119

HIFs, hypoxia-inducible factors; TGFβ, transforming growth factor-β.
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ECM composition and assembly (and vice 
versa) is also unknown; for example, col-
lagen I‑containing fibrils do not form in the 
absence of fibronectin in vivo and fibronectin 
fibril assembly has a reciprocal requirement 
for collagen176. Whether fibronectin–pro-
collagen interactions are established before 
the molecules are secreted is unknown and 
suggests that the complex regulation and 
dynamics of the ECM need to be carefully 
investigated in order to design strategies that 
target the ECM. Another important consid-
eration will be the receptors that interact with 
the ECM molecules. A recent study regard-
ing the fibrillar collagen receptor discoidin 
domain receptor 2 (DDR2) has shown that 
DDR2 is required for breast cancer cell inva-
sion and migration in vitro and for metastasis 
in vivo by promoting the stabilization of 
SNAIL1 (REF. 177).

Future preclinical studies are warranted 
to identify new inhibitors and/or to identify 
optimal combinations of existing inhibitors 
that can block hypoxic changes to the ECM 
while maintaining the integrity of the ECM in 
healthy tissues. One major obstacle in the 
field of cancer therapeutics for metastasis 
is the definition of success. Many agents 
effectively target tumour growth but fail to 

prevent metastasis, which is the major cause 
of cancer mortality. For metastasis inhibi-
tors to be tested in early phase clinical trials 
patients that do not already have metastatic 
disease will have to be included in order to 
have meaningful end points and to establish 
efficacy in metastasis prevention.
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