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Advances in digital pathology, specifically imaging instrumentation and data management, have allowed for the
development of computational pathology tools with the potential for better, faster, and cheaper diagnosis, prognosis, and
prediction of disease. Images of tissue sections frequently vary in color appearance across research laboratories and
medical facilities because of differences in tissue fixation, staining protocols, and imaging instrumentation, leading to
difficulty in the development of robust computational tools. To address this challenge, we propose a novel nonlinear
tissue-component discrimination (NLTD) method to register automatically the color space of histopathology images and
visualize individual tissue components, independent of color differences between images. Our results show that the NLTD
method could effectively discriminate different tissue components from different types of tissues prepared at different
institutions. Further, we demonstrate that NLTD can improve the accuracy of nuclear detection and segmentation
algorithms, compared with using conventional color deconvolution methods, and can quantitatively analyze
immunohistochemistry images. Together, the NLTD method is objective, robust, and effective, and can be easily
implemented in the emerging field of computational pathology.
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Advances in imaging instrumentation and data management
provide the foundation for computational approaches to
analyze digitized images of tissue sections and derive objective,
quantitative measurements at the tissue, cellular, subcellular,
and molecular levels.1 Computational pathology approaches
offer a cost-effective platform to increase throughput, accuracy,
and reliability of diagnoses of tissue samples.2,3 Further, the
quantitative nature of computational pathology can be used in
combination with other assays to improve pathologists’
knowledge of disease and help inform treatment strategies
and further stratify patient prognosis. It has been shown that,
by integrating information derived from computational
pathology with a patient’s clinical data, a better prognostic
model can be derived for many diseases, including prostate
cancer,4–6 lung cancer,7 breast cancer,8–12 glioblastoma,13,14

basal cell carcinoma,15,16 and ovarian cancer.17,18

One of central challenges of computational biology, which
limits its large-scale applications, is that images of tissue
sections frequently vary in color appearance across research

laboratories and medical facilities due to differences in tissue
fixation, staining protocols, and imaging instrumentation.
The wide spectrum of image color appearance causes
difficulty in robustly extracting the representative images of
different tissue components, such as nuclei.19 Previous studies
have shown that technician variance or technique differences
can lead to marked differences in staining.20 For example, the
conventional hematoxylin and eosin (H&E) staining techni-
ques have been modified to reduce material use and
processing time21 or to improve the contrast and detail in
the digital image.22 These technique differences provide some
advantage to the pathologist, and also lead to variation in the
staining of slides for use in computational pathology
approaches that must be addressed.

Several stain normalization computational approaches—
including color deconvolution (CD),23 histogram
equalization,24 and the use of the CMYK space25—have been
developed to correct for the difference image appearance
and facilitate the separation of tissue types.19,20 Of these
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approaches, CD is the most commonly used approach
to extract nuclear and cellular images in both H&E
and immunohistochemically (3,3′-diaminobenzidine, DAB)
stained images.2,9,23,26–28 CD uses the method of singular value
decomposition, which seeks to linearly separate the color space
to identify regions rich in each particular dye. However, a
major disadvantage of CD is the requirement of prior
knowledge for each dye’s color spectrum to visualize
accurately tissue components.29 Owing to color appearance
difference between images, using the same stain vector across
images will introduce variance in the representative image for
each dye. Although there are automated methods to determine
the stain vector for individual images, the additional
processing step leads to significant increase in processing time
across large image data sets.30 Furthermore, CD only
decouples the concentration of dye in the histopathological
image, and further processing is needed to separate individual
tissue components such as blood, nuclei, and extracellular
matrix- and cytoplasmic-rich regions for quantification.

In this work, we propose a novel nonlinear tissue-component
discrimination (NLTD) method to register automatically the
color space of histopathology images and obtain representative
images for individual tissue components, such as the nuclei or
cytoplasm, irrespective of perceptual color differences between
images. We demonstrate that the nuclei image obtained from
NLTD display consistent appearance for histopathology images
—including those with distinct color differences—taken from
different tissues types and prepared at different institutions,
including The Cancer Genome Atlas project (TCGA, http://
cancergenome.nih.gov/). Importantly, the processing time of
NLTD is highly comparable to the CD for small images, and
much more efficient for large images, notably whole slide
images. Further, we demonstrated that the nuclei images
derived using NLTD produce highly accurate nucleus tracing
and counting, and NLTD allows for quantitative analysis of
antigen presence in immunohistochemical images. Taken
together, we show that NLTD is an effective approach to
obtain quantitative tissue-component images that can be easily
integrated in emerging computational pathology applications.

MATERIALS AND METHODS
The NLTD method consists of five main steps (Figure 1a),
detailed further here: (1) color joint-histogram creation; (2)
ridge detection; (3) ridge set registration; (4) transformation
function creation; and (5) tissue component image creation.

Color Joint-Histogram Creation
In a typical 8-bit tissue image, I, the color of an individual
pixel, p, at location (xp, yp) is expressed by three intensities
(rp,gp,bp), each of which ranges from 0 to 255, discretely,
that is,

I xp; yp

� �
¼ rp; gp; bp

� �
0rrp; gp; bpr255
���

ih
(1)

For example, if all the intensities of a pixel are zero,
the resultant color is black; conversely, if all are 255, the

resultant color is white. The color joint histogram is
a three-dimensional histogram created by counting the
occurrence of pixels at all different set of red, green, and
blue (RGB) intensities in an image. However, calculating
every color combination in RGB color space and analyzing
three-dimensional RGB color joint histogram is a highly
computationally intensive process. An 8-bit image can
contain more than 16 million unique combinations. To
reduce computational time, it would be advantageous to only
consider two of the three color axes, reducing the number of
unique combinations 256-fold.

In a cohort of 45 H&E images, we found that blue and
green color components are highly correlated within
individual images (Figure 1b). Furthermore, we also found
that the red and green color components are highly correlated
in a set of 81 immunohistochemically stained images (DAB)31

(Figure 1c). These observations show that in both H&E and
DAB images green color channel encodes highly correlative
information to other color channel and implies that the
red-blue color joint histogram (RBJH) can be a representative
simplification of the histopathological image RGB color space.
The RBJH is a two-dimensional matrix, created by counting
the frequency (n) of pixels at different red (r) and blue (b)
intensity values in the image (I), that is,

RBJHðr; bÞ ¼ nIr;b (2)

The resultant RBJH can be visualized as a three-dimensional
surface, with the x and y axes corresponding to the red and
blue color space values, respectively, and the z axis
corresponding to the incidence rate for each red-blue
intensity combinations.

Ridge Detection
The RBJH shows the most abundant color combinations in
the red-blue color space for an image. In the RBJH, distinct
populations of red-blue combinations are readily observed,
corresponding to different tissue components (Figure 1d).
However, to detect and segment individual tissue components
in the RBJH is challenging because of the elongated nonlinear
distribution of red-blue color combinations that complicates
separation of the populations and, consequentially, common
approaches, such as Gaussian mixture models or k-means
clustering, do not work well. Gaussian mixture models fail
because most images’ RBJH do not follow strictly Gaussian
distributions, often having one major peak, along with a long
sparse tail. Similarly, k-means clustering is not effective at
detecting sparse areas in the RBJH. Additionally, both models
require prior knowledge of the numbers of components
present, which we have found can vary from 1 to 3 in most
images. Successful extraction of individual tissue components’
locations in the red-blue color space needs to incorporate the
asymmetric and elongated distribution of red-blue color
combinations that is observed in the RBJH. Therefore, we
propose to identify locations of major tissue components in
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the red-blue color space by tracing the location of ridges of
distinct population in the RBJH (Supplementary Figure S2).

We first identified the major orientation of signal in RBJH
using weighted principal component analysis (PCA)
(Supplementary Figure S1a). PCA is applied to the each red
and blue index of the RBJH, with the frequency (nr,b)
associated with each color combination used as a weight.
The principal component provides the major direction of
the RBJH color space, which can be combined with the
location of the global maximum of the RBJH to create
a major axis (v0). Next, we identify the local maxima tangent
along the major axis in RBJH (Supplementary Figure S1b).
To ensure the all local maximum is detected, this routine
is repeated along two other vectors at angles ± 15° of the
major direction. A map of all local maxima identified is then
created by counting the frequency of local maxima identified
at each red-blue index (Supplementary Figure S1c). This map
is further processed through morphological dilation and
thinning operations to provide a binarized location of
ridges for all distinct populations in RBJH (Supplementary
Figure S1d).

Ridge Set Registration
To register the ridge set maps in RBJH to different tissue
components, we developed a robust algorithm based on each
ridge’s proximity to specified reference color combination
(Supplementary Figure S2a). Four reference color combina-
tions are used: Red (r= 255, b= 0), Blue (r= 0, b= 255),
Black (r= 0, b= 0), and White (r= 255, b= 255). The
Euclidean distance transform32 is calculated for each reference
color combination, and the minimum distance along each
ridge is found. The component with the smallest distance
from a reference color combination is determined to be the
closest. In H&E staining, in general, nuclei would be closer to
black and blue, whereas extracellular matrix- and cytoplasm-
rich areas would be closer to white. Similar logic can be
applied to DAB chromagen staining, where antigen-rich areas
are closer to red than nuclei, which are closer to blue.

In some cases, where the RBJH is more homogeneous,
it is possible that only one ridge is found (Supplementary
Figure S2b). For H&E staining, in general, each image
contains at least two distinct components—nuclei or extracellular
matrix and cytoplasm-rich components. The portion of ridge

Figure 1 Brief overview of nonlinear tissue-component discrimination (NLTD) approach. (a) NLTD applied to an image of a hematoxylin and eosin
(H&E)-stained section (top) and immunohistochemically (IHC) stained image (bottom). Shown are a typical H&E image of a small artery, exhibiting
multiple tissue components (nuclei (N), extracellular matrix (ECM)-rich and cytoplasm (E), blood (B)) and a typical IHC image, stained for LINE-1 ORF1p
expression,31 exhibiting two tissue components (antigen (A) and nuclei (N)). The NLTD method is schematically shown in the center. Briefly, the red-blue
joint histogram is first segmented to identify each region in the red-blue color space. The x axis corresponds to each red color, the y axis shows each
blue-color, and the color axis represents the frequency of each discrete color combination. Ridges for each tissue component are overlaid, on the red-
blue color joint histogram (RBJH). The ridge set is registered and transformed to yield the pseudocolored transformation function for each component.
The pseudocolored grayscale images are shown for the nuclei, non-nuclei, and blood components (purple, pink, and red, respectively) in the far right
box. (b and c) Grayscale correlation values for the red-blue joint histogram, blue-green joint histogram, and red-green joint histogram, with a value of 1
corresponding to a completely correlated colorset. (b) Pancreatic cancer H&E data set (n= 45). (c) Ovarian immunohistochemistry data set (n= 81).
(d) Separation of red-blue color space into individual tissue components: nuclei (purple box); ECM and cytoplasm-rich (pink box).

Tissue-component discrimination
JS Sarnecki et al

www.laboratoryinvestigation.org | Laboratory Investigation | Volume 00 2016 3

http://www.laboratoryinvestigation.org


closer to white and red represents extracellular matrix and
cytoplasm-rich areas and the remaining portion of the ridge
represents the nuclei-rich regions; this necessitates further
segmentation of the ridge. To segment the ridge, the intensity
profile (ie, frequency of color combinations) of the RBJH
along the ridge is first extracted. A peak, corresponding to the
most frequently occurring color combination, commonly
appears that represents the central location of extracellular
matrix and cytoplasm-rich regions on the ridge. Thus, we fit
this intensity profile with a Gaussian distribution to measure
the distribution of the extracellular matrix and cytoplasm-rich
areas along the ridge, and segment the single identified ridge
using a distance of 2 s.d. from the peak into two distinct
ridges corresponding to nuclei or extracellular matrix and
cytoplasm-rich components. For DAB chromagen staining,
the possibility of only one ridge being identified is most likely
due to the lack of presence of antigen to probe in the tissue
section and hence no further segmentation is needed.

Transformation Function Creation
We formulated tissue transformation functions (TF) to
convert the red-blue color space to intensity of different
tissue components (k= 1,2,…,N). We assume the red-blue
color space has different regions that exclusively correspond
to different tissue components based on the proximity to each
ridge in the ridge set. A watershed segmentation is applied to
the ridge of the RBJH to identify regions of the red-blue
color space that represent the unique tissue components
(Supplementary Figure S3a). Additionally, the regions of the
red-blue color space with the most absorption (ie, lower
r and/or b indices) correspond to the strongest signal within
each tissue region. For each particular tissue component, the
red and blue indices that are closest to the tissue’s ridge
indicate a higher likelihood of belonging to that tissue and
also contribute to a stronger signal.

To account for these three factors, we developed a transfor-
mation function, TFk, that account for the tissue component’s
region in red-blue color space (fregion), its absorption (fabsorption),
and the distance from each tissue component’s ridge (fridge)
(Supplementary Figure S3b), expressed by

TFkðr; bÞ ¼ f region;kðr; bÞ ´ f absorption;kðr; bÞ ´ f ridge;kðr; bÞ (3)

where k= 1,2,…,N tissue component.
The tissue region function, fregion, uses the watershed

segmentation result as a basis to exclude any part of the red-
blue color space not belonging to the same tissue component.
The region of the red-blue color space corresponding to the
kth tissue component is defined as Wk. A Gaussian filter, g,
can be applied to the edge of the region to allow for a
smoother transition between components (Supplementary
Figure S3b(i)), that is,

f region;k ¼ Wk#g (4)

The absorption function, fabsorption, for kth tissue
component is obtained by first calculating the Euclidean

distance transform32 (Ddark) of all points in red-blue color
space from the point with highest absorption (ie, darkest) on
the kth tissue-component ridge (Rk), defined as the point on
the ridge closest to black (r= 0, b= 0). To scale the distance
with level of absorption of dye, the absorption function
(Supplementary Figure S3b(ii)), is expressed by

f absorption;k ¼ max Ddarkð Þ � Ddark (5)

The ridge function, fridge, is derived from the Euclidean
distance transform,32 D, which is the minimum distance of
any point in the red-blue color space to a point on the ridge of
the kth tissue component, Rk. To scale the likelihood with
distance, the ridge function (Supplementary Figure S3b(iii)),
is expressed by

f ridge;k ¼ max D Rkð Þð Þ � D Rkð Þ (6)

Tissue Component Image Creation
To obtain the kth tissue-component image, Tk, the red and
blue pixel intensities (rp, bp) at each location (xp,yp) in the
original image, I, were used to create a grayscale image
according to the transformation function, TFk, that is,

Tk xp; yp

� �
¼ TFk rp; bp

� �
(7)

Sample Acquisition
Histopathological images were acquired from pathologists at
the Johns Hopkins University. The tissue samples were
formalin fixed and paraffin embedded. Tissue sections were
fixed for 3 h in formalin on tissue processor, followed by
1–2 h of gross room fixation. Paraffin sections were cut at
5 μm thickness. Sections were then stained with H&E and
digitized using a DP27 5MP color camera. Sections of
pancreatic cancer, colon cancer, ovarian cancer, and
glioblastoma were included. Immunohistochemically (DAB)
stained tissue was acquired through an ovarian cancer tissue
microarray, as described previously.31 Additional tissue
images were acquired from The Cancer Genome Atlas project
(http://cancergenome.nih.gov) and published sources.33,34

Nuclei Detection
To perform a comparison of segmentation results between
CD and the NLTD method, a publicly available data set,33

including both tissue images and ground-truth nuclei
locations, was analyzed. For the NLTD method, the
corresponding nuclei image was obtained and nuclei location
is obtained using following procedure:

(1) Binarize each image using a dynamic threshold, calcu-
lated using Otsu’s method.35

(2) Remove small objects based on a size threshold of 50
pixels.

(3) Watershed segmentation to separate clusters of nuclei.
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The same segmentation approach was used for the
CD image corresponding to the hematoxylin dye. For
each segmented nucleus identified, the nearest ground-truth
nucleus was found. If two segmented nuclei were attached
to the same ground-truth nuclei, the nearest would be
counted as a true positive and the other would be counted
as a false positive. Any segmented nucleus with the nearest
ground-truth nuclei was more than one average cell diameter
away was counted as a false positive. Conversely, any ground-
truth nucleus that did not have any segmented nuclei within
one average cell diameter was counted as a false negative.

Immunohistochemistry Scoring
A TMA of ovarian cancer tissue stained using an antibody
for LINE-1 ORF1p31 was used to evaluate the utility of NLTD
as an immunohistochemistry scoring aide. Each image in
the TMA was separated into two images using the NLTD
method, a nuclei- and an antigen-rich image (Supplementary
Figure S5). Preprocessing steps were performed to only
analyze nuclei-rich regions where antigen staining was
present, and avoid background areas where no staining
should occur. Briefly, the nuclei-rich image was segmented
using Otsu’s thresholding technique.35 Small objects were
removed from the image, followed by morphological opening
and closing operations and another removal of small objects.
After preprocessing, a transformation score was derived based
on the ratio of antigen intensity to nuclei intensity (Equation
(8)). Importantly, only antigen and nuclei intensity in the
areas from the segmented, preprocessed image were counted.

ScoreTransformation ¼ log 10

P
AntigenP
Nuclei

(8)

Hardware and Software
All image processing was performed using MATLAB 2015
(Mathworks). To determine statistical significance, two-tailed
t-tests were performed using Graphpad Prism 6. All
computations were performed on Windows 7 Professional
with an Intel Core i7-3820 processor and 16 GB RAM.

Statistics
To quantify the segmentation results, precision, recall, and
F-score statistics were used.36 For this data set, it is not
possible to assess accuracy or other statistics using true-
negative counts, as the classification system has no negative
result included and only positive occurrences (ie, nuclei) are
identified. Each statistic is defined as follows:

Precision ¼ TP

TPþ FP
(9)

Recall ¼ TP

TPþ FN
(10)

F� score ¼ 2 ´
Precision ´Recall
Precisionþ Recall

(11)

RESULTS
Overview of the NLTD Method
The NLTD method presented in this work consists of five
major steps, as illustrated with an H&E-stained image and
an immunohistochemically stained image in Figure 1a. First,
the RBJH is created. This joint histogram represents the
frequency at which each red and blue pixel intensity
combination occurs in a histopathological image, and serves
as the basis for tissue-component discrimination. The RBJH is
reduced to a set of curves representing the ridges, or local
maxima, using an iterative approach. This ridge set is further
registered with corresponding individual tissue components
(eg, nuclei, extracellular matrix, and cytoplasm-rich, etc).
Further, the ridge set serves as a basis for the creation of a set
of transformation functions used to create individual, grayscale
images from the original image representative of each tissue
component present in the image (see more details in Materials
and Methods section). The resulting set of tissue-component
images can then be used for additional tissue processing
and analysis, including nuclei detection algorithms and
quantitative scoring of immunohistochemically stained
samples. The MATLAB package is available upon request.

Robustness of NLTD
To demonstrate the robustness of the NLTD method, we
applied NLTD to a set of histopathological images with wide
range of apparent colors to show the uniformity in the images
of nuclei extracted using the NLTD method (Figure 2). The
image set spans multiple tissue types, along with several
different image sources: the Johns Hopkins School of Medicine;
images from previous studies performed at University of
California, Santa Barbara34 and the University of Berlin;33 and
publicly available images from the TCGA image database
(http://cancergenome.nih.gov). The results show that even
though the RBJH color space for different images have unique
and different distributions, the NLTD method can successfully
identify and register each tissue-component and extract nuclei
images consistently and robustly.

Processing Time
For most computational pathology applications, the time
associated with processing each image and gleaning important
information can quickly become a barrier with image size
and/or lager cohort of images. Previous work has compared
stain normalization processing time for smaller images
(256 × 256, 512 × 512, and 1024 × 1024).29 Whole slide
imaging, however, often results in much larger images
(10 000 × 10 000 or greater), and it is important for image
processing time to scale well with the size of each image.
In our work, we compared CD, CD using Macenko’s color
normalization method,37 and the NLTD approaches.
Macenko’s approach involves an additional preprocessing
step to determine each individual image’s optimal stain vector
and uses the optimal stain vector for CD. Both CD
approaches were faster than the NLTD method at small
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image size (up to 2500 × 2500), but, as the image size
approached whole slide levels (15 000 × 15 000), the NLTD
method was much faster than both CD-based methods and
took only a quarter of the time to process each image
(Figure 3). This result suggests that NLTD can more

efficiently analyze larger images, which can be very useful
for large data sets, such as the TCGA. Since CD is more time
efficient at smaller sizes, it is possible to partition one large
image into many smaller images (ie, one 10 000 × 10 000
image into one hundred 1000 × 1000 images). However, this
additional processing step would still lead to an increase in
processing time compared with the NLTD approach (3.8 s for
NLTD on one 10 000 × 10 000 image, 11.85 s for CD on one
hundred 1000 × 1000 images). Therefore, the NLTD method
can be more efficiently applied to whole slide images and
reduce the time needed to analyze large cohorts of images.

Improving Nuclei Detection with NLTD
Nuclei detection in histopathological images has been critical
and often used in computational pathology approaches
to develop prognostic and diagnostic models.7–9,11,12,17,33

Currently, CD is commonly used to extract a representative
nuclei image (corresponding to the hematoxylin dye levels) to
apply nuclei detection algorithms.9,28–30,33,38 Here, we show
that using the nuclei image derived from the NLTD method
improves the detection of nuclei over the CD approach.
We first evaluated the contrast of individual nuclei images
created from both the NLTD and the CD method

Figure 3 Processing time of nonlinear tissue-component discrimination
(NLTD) and color deconvolution (CD). Comparison time for processing of
images of various sizes using three different color normalization
techniques: NLTD (squares), CD (circles), and CD using Macencko’s
method of automated stain vector determination (MMCD, diamonds).
Each image used was a three-dimensional red, green, and blue (RGB)
image, with side lengths defined by the x axis. Processing time is shown
on the y axis in seconds as the median of 10 runs for each method at
each image size.

Figure 2 Application of nonlinear tissue-component discrimination (NLTD) across a wide variety of tissue types. The NLTD method is applied on many
different types of tissue. The original tissue image, red-blue color joint histogram (RBJH), registered RBJH, and the nuclei component grayscale image
(pseudocolored purple) are shown (left to right). The registered RBJH shows a purple line for the nucleus component, a pink line for the extracellular
matrix (ECM)/cytoplasmic component, and a red line for the blood component. The sample tissue types are: (a) colon cancer, (b) kidney cancer,
(c) ovarian cancer, (d) lung adenocarcinoma, (e) gastric mucosa, (f) astrocytoma, (g) skin cutaneous melanoma, and (h) breast cancer.
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(Figures 4a–c). By examining the intensity profile along one
axis across nuclei, we found that the nuclei image obtained
from NLTD has a substantial decrease in intensity at the
periphery of the nucleus compared with nuclei images from
CD. This result suggests that the implementation of
segmentation algorithms to the NLTD nuclei image would
be less sensitive to the intensity threshold value and hence
could lead to improvements in the accuracy and robustness of
nuclei segmentation algorithms.

To examine quantitatively the performance of the NLTD
and CD methods in nuclei detection and segmentation, we
applied previous proposed detection algorithm (see more
details in Materials and Methods section) after applying both
color normalization methods (NLTD and CD) to a published
set of 35 images.33 This data set included nuclei locations that
had been previously registered by a pathologist and were used
as ground truth (Figures 4d and e).

To assess each method, the precision, sensitivity, and
F-score were measured. High precision and sensitivity are
both valuable in a nuclei detection system. A system that lacks
precision will lead to unnecessary calculation and validation by
an observer with too many nuclei identifies. Conversely, a
system that is not sensitive will miss many nuclei and
potentially distort the values of nuclei counts or exclude rare
nuclei events, such as mitotic or atypical nuclei. The F-score
provides the harmonic mean between sensitivity and precision
and serves as an overall measure of how accurate the system is.

Among the 35 images tested, we found that, overall, the
images normalized using NLTD have significantly higher
sensitivity in detecting nuclei than the corresponding CD
images (NLTD= 0.868; CD= 0.753), but slightly lower
precision (NLTD= 0.938; CD= 0.976) (Figures 4f–h). The
overall accuracy, as represented by the F-score, for NLTD
images is 0.860 and is significantly higher than the CD images
(F-score= 0.805). The slightly lower precision in our NLTD
system correlates to an overdetection, with more nuclei
identified by the NLTD detection system than the ground
truth. The higher sensitivity, however, means that the NLTD
detection system leaves fewer ground truth nuclei undetected.
Taken together, these results suggest that the NLTD method is
able to provide more accurate nuclei segmentation results,
compared with conventional CD methods.

NLTD for Quantitative Immunohistochemistry Analysis
In addition to providing a platform for image appearance
normalization and nuclei detection, the NLTD method
can be used as a companion diagnostic for analysis of
immunohistochemical labeling quantitatively and objectively.
The intensity level of DAB chromagen labeling is used to
access the level of antigen presence in tissue sample by
pathologists. We applied our method to an ovarian cancer
tissue microarray cohort that had been immunolabeled for
L1ORF1p, a cytoplasm-localizing protein associated with
cancer31 (Figure 5 and Supplementary Figure S4). Each tissue

Figure 4 Evaluation of nonlinear tissue-component discrimination (NLTD) method. (a–c) Nuclei intensity comparison between NLTD and color
deconvolution (CD) approaches. Representative nuclei from several tissue types are shown, along with the NLTD and CD nuclei transformations. The
intensity of each color space is integrates along the dotted lines shown, with the NLTD intensity shown in purple and the CD intensity in brown.
Intensity values are normalized linearly between 0 and 1, with 0 corresponding to the minimum value in the input image, and 1 corresponding to the
maximum. (d) Typical breast cancer image.33 (e) Example of segmentation results from Otsu thresholding of the nuclei NLTD color space. Detected
nuclei are overlaid on top of the image from panel (d). True positives are represented by a green dot, false positives by a red dot, and false negatives
by a yellow dot. (f) Precision, (g) sensitivity, and (h) F-score values for segmentation results from 35 images. (i) Receiver-operating characteristic curve
for change in segmentation parameterization (threshold value) for nuclei detection. Recall (sensitivity) is shown on the x axis, with precision shown on
the y axis. Results from NLTD method are shown in black, with CD shown in gray.
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sample in this cohort was scored by a trained pathologist
using a discrete scoring system (0, 1, 2, or 3). A score of
0 indicates no significant protein expression, whereas a
score of 3 was given for high expression. We applied our
NLTD method to individual tissue images of the TMA to
create component images for antigen- and nuclei-rich
regions. These images were then used to calculate an overall
score corresponding to the level of antigen, normalized
by nuclei intensity (see more details in Materials and
Methods section). Our results showed a strong correlation
(Spearman’s ρ= 0.8122) between our automated scoring
platform and the scoring by the pathologist. Minor
overlap exists between tissues with a score of 1 and 2, but
both high expression (3) and very low expression (0) scores
were well stratified. This result shows the utility of our
NLTD method as a nonparametric tool to assess immuno-
labeling.

DISCUSSION
CD,23 and other associated methods,9,26–29,37 are routinely
used for dye separation in histopathological images, but are
limited by difference in dye appearance between images,
potentially time-consuming automated image processing, and
a need for further postprocessing to identify specific tissue
components, such as the nuclei. The NLTD approach
presented here is able to bypass these limitations, specifically
the requirement of prior knowledge of color information
for different batches of histopathological images. The NLTD
approach makes no inherent assumptions about the histo-
pathological image’s color space, and yields consistent, batch-
invariant tissue component separation in histopathological
images. We demonstrate that the NLTD method can success-
fully identify nuclei for a wide variety of histopathological

images despite large variations in the perceptual color space
(Figure 2). Importantly, no prior knowledge or user input is
required, as our algorithm will automatically register locations
of for each tissue-component, and the method can be used
across multiple batches of images without additional user
input. Therefore, NLTD method can be seamlessly integrated
in computational pathology pipelines that aim to analyze large
cohorts of images, such as the TCGA project (http://
cancergenome.nih.gov/) or Human Protein Atlas Project.39

The TCGA project also provides the opportunity to link
morphological features of the histopathological images with
genomic information, with potential for better understanding
of what effect the changes in gene expression can have on the
morphology of the tissue.

The tissue component images created through the NLTD
method can be readily analyzed to yield additional informa-
tion, such as nuclei information and immunohistochemical
grading. We found that the NLTD method performs nuclei
segmentation better than the CD approach. The segmentation
approach presented here based on a simple implementation
of Otsu’s thresholding, but more refined approaches, as
mentioned in reviews of computational pathology,19,20 should
lead to greater accuracy using tissue-component images from
the NLTD method. We have demonstrated that the nuclei
component images generated using the NLTD method have
greater separation of signal from background compared to
CD, suggesting simpler processes for nuclei edge detection
can be used and lead to significantly reduced segmentation
times. Nuclei detection requires very fast computation since
an individual tissue image can have millions of nuclei, leading
to large increases in total processing time with each additional
nuclei detection step.

The field of computational pathology is rapidly growing,
and there are many opportunities for computational
approaches to provide additional prognostic and diagnostic
information that cannot be provided by pathologists
alone.40–42 The NLTD method presented here provides a
framework that can be easily implemented for many
different applications, including nuclei detection and
immunohistochemistry grading. In addition to these
applications, NLTD could be used as a visualization tool to
normalize tissue appearance across batches, provide texture
information for abundance of certain tissue components in a
sample, or identify rare occurrences in whole slide images,
such as mitotic nuclei. Further, the NLTD method requires
no prior knowledge of an image’s color space and requires no
parameterization from the user, which can allow for
pathologists or medical technicians to apply this approach
without requiring more sophisticated knowledge that may be
needed for optimization methods or complex, linear algebraic
approaches. Taken together, the proposed NLTD method
presents an opportunity to establish a pipeline for
classification and analysis of histopathological images that,
in combination with pathologists’ expertise, can lead to better
diagnosis and treatment planning for patients in the future.

Figure 5 Nonlinear tissue-component discrimination (NLTD) method
as a quantitative descriptor for immunohistochemistry (IHC). Ovarian
tissue samples were stained with an antibody for LINE-1 ORF1p and
manually scored by a pathologist31 on a discrete scale of 0 (no
expression) to 3 (high expression). A quantitative score is calculated using
the NLTD grayscale images. The scores correlate well, with a Spearman's
p= 0.8122.
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