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SUMMARY

Image-based assays, such as alkaline phosphatase staining or immunocytochemistry for pluripotent markers, are common methods used
in the stem cell field to assess pluripotency. Although an increased number of image-analysis approaches have been described, there is still
a lack of software availability to automatically quantify pluripotency in large images after pluripotency staining. To address this need,
we developed a robust and rapid image processing software, Pluri-IQ, which allows the automatic evaluation of pluripotency in large
low-magnification images. Using mouse embryonic stem cells (mESC) as a model, we combined an automated segmentation algorithm
with a supervised machine-learning platform to classify colonies as pluripotent, mixed, or differentiated. In addition, Pluri-IQ allows the
automatic comparison between different culture conditions. This efficient user-friendly open-source software can be easily implemented
in images derived from pluripotent cells or cells that express pluripotent markers (e.g., OCT4-GFP) and can be routinely used, decreasing

image assessment bias.

INTRODUCTION

Embryonic stem cells (ESCs) are characterized by their self-
renewal and pluripotent capacities. Due to their properties,
ESCs serve as an important research model to study key
factors that maintain pluripotency, as well as factors that
trigger differentiation. ESCs are morphologically distinct
from differentiated cells, featuring a high nuclear-to-
cytoplasmic ratio and growth as 3D colonies. In the undif-
ferentiated state, ESCs are characterized by high levels of
pluripotency-related transcription factors, such as OCT
3/4, NANOG, and SOX2 (Avilion et al., 2003; Chambers
et al., 2003; Nichols et al., 1998; Hart et al., 2004; Hay
etal., 2004). In addition, the expression of enzyme alkaline
phosphatase (AP) is another hallmark of pluripotency
(Palmgqvist et al., 2005). AP is an enzyme that catalyzes
the hydrolysis of phosphate esters (Stefkova et al., 2015).
ESCs have high levels of AP, which decreases upon ESC dif-
ferentiation (Stefkova et al., 2015; Palmqvist et al., 2005).
The expression specificity of AP and the transcription
factors described above makes them crucial proteins to
evaluate ESC pluripotency in vitro.

Image-based assays are common methods used in stem cell
research to evaluate maintenance and loss of pluripotency.

AP staining is commonly used to assess maintenance/loss
of pluripotency after different stimuli, such as drug treat-
ments, gene silencing, or overexpression (Martello and
Smith, 2014). Immunocytochemistry with antibodies spe-
cific to pluripotent markers is another image-based method
used to analyze stem cell fate (Martello and Smith, 2014).
Immunocytochemistry and AP assays are fast and easy to
perform. Contrary to methods that require suspension cells,
such as flow cytometry, these image-based assays allow col-
ony morphological analysis as they maintain the spatial in-
formation of each cell in the colony. Therefore, the increase
of ESC-image acquisitions creates a demand for image-anal-
ysis programs suitable for ESC-image quantification.
Considering that ESC cultures are usually heterogeneous,
with varying degrees of pluripotency and irregular colony
sizes, several imaging quantification programs have been
developed specifically for ESC. Using phase-contrast im-
ages, different imaging analysis pipelines have been re-
ported to segment ESC colonies and automatically track
their growth and morphology over time (Jaccard et al.,
2014a, 2014b; Narkilahti et al., 2007; Scherf et al., 2012).
Despite their high ability to segment ESC in culture and
monitor ESC growth and confluency, these pipelines do
not provide any other pluripotency measurements. More
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Figure 1. AP Co-localizes with OCT-4 Expression

Cropped image of mESCs cultured for 4 days in pluripotent conditions and stained for AP assay and the pluripotent marker OCT-4. The yellow
arrow shows a portion of a colony differentiated, where no OCT-4 or AP staining is visible; the red arrow shows a pluripotent colony positive
to OCT-4 and AP staining. Scale bar, 100 um. AP, alkaline phosphatase.

recently, phase-contrast images have been used to evaluate
induced pluripotent stem cells (iPSCs) quality (Tokunaga
et al., 2014; Joutsijoki et al., 2016; Maddah et al., 2014).
However, in all these studies, morphology is the key feature,
where iPSCs are classified as good- or bad-quality colonies,
but no other pluripotency measurement is obtained.
In addition to phase-contrast images, other studies have
been reported to segment ESC colonies using immunofluo-
rescence images (Chalfoun etal., 2015; Gorman etal., 2014;
Louetal., 2014; Paduano et al., 2013). Although these pipe-
lines allow the location analysis of labeled cells, which
makes them suitable for pluripotency quantification, the
pipelines developed by some groups rely in high-magnifica-
tion images to evaluate pluripotency marker expression
(Gorman et al., 2014; Lou et al., 2014), whereas others,
despite analyzing labeled cells in low magnification, they
only determine the signal location of different markers in
a colony, constraining the automatic and global pluripo-
tency determination (Paduano et al., 2013).

Therefore, none of the current image-analysis pipelines
allow an easy and robust automatic quantification of
ESC pluripotency in an environment where different de-
grees of pluripotency occur, i.e., the presence of pluripo-
tent colonies, mixed colonies, and differentiated cells. For
instance, to even answer the simple question of whether or
not a treatment induces loss of pluripotency, stem cell
biologists rely on manual scoring, or culture observations af-
ter AP staining. This manual quantification not only limits
reproducibility and objectivity, butitis also time consuming.

Here, using mouse ESC (mESC) as a model we present an
accurate, open-source, and user-friendly software, Pluri-IQ,
which can automatically quantify the percentage of plurip-
otent, mixed, or differentiated cells through culture im-
ages. Pluri-IQ is able to analyze different low-magnification
image sizes, and through core cascade modules (segmenta-
tion, machine learning, validation, and automatic scoring)
accurately quantifies pluripotency through the analysis of
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the pluripotency markers present in the image. Segmenta-
tion provides the outline of each colony and is performed
automatically by Pluri-IQ. Classifiers are built through a
machine-learning interactive process. Manual validation
provides the user with the classifier accuracy, while auto-
matically updating the classifier, which guarantees high ac-
curacy of automatic score classification of each colony as
pluripotent, mixed, or differentiated, with low user input
required.

RESULTS

Image-Based Analysis Outline

To evaluate the performance of Pluri-IQ, we tested its
classification precision over a set of mESCs images. These
mESCs were cultured in different medium conditions that
promote maintenance of pluripotency or induce mESC dif-
ferentiation. Cells were stained with AP. Subsequently, low-
magnification phase-contrast images and a fluorescence
channel for AP staining were acquired.

AP staining was selected as a method for pluripotency
assessment since it is a fast and common protocol to eval-
uate pluripotency (Martello and Smith, 2014). To confirm
that the AP assay utilized only stained pluripotent cells,
we performed the AP assay followed by immunostaining
against the pluripotent marker OCT-4 (Figure 1). Phase-
contrast images, as well as nuclear staining, were used to
provide a general outlook of all colonies. Then, OCT-4
expression was compared with AP staining, and colonies
positive for OCT-4 were also positive for AP (Figure 1, red
arrow), while the portions of colonies that fail to express
OCT-4 do not stain for AP (Figure 1, yellow arrow). These
results show that the AP assay utilized in these experiments
is specific for pluripotent cells.

One of the challenges in characterizing pluripotency
automatically is that the majority of image-based assays,
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Figure 2. Pluri-IQ Approach to Quantify ESCs Pluripotency

Users provide a single image or a large image input, as shown. Upon selection of the ROI, Pluri-IQ segments both phase-contrast image
channel to get all colonies, and the pluripotent marker channel. After segmentation, training is required, through selection of what is
considered pluripotent, mixed, and differentiated colonies, in order to construct a random forest algorithm, which can be added to an
existing training system or to a new training system. Validation is performed by the user, and the accuracy of the Pluri-IQ is calculated. The
random forest algorithm is updated and colonies features are stored in both Excel and MATLAB files. After all these steps are completed,
and segmentation performed to all images, the automatic score is then available. Finally, automatic data comparison is available and
allows the comparison of different conditions automatically, providing figures with the percentage of colonies or area pluripotent, mixed
and differentiated, in addition to storage as Excel file the data comparisons. Scale bars, 100 um (single image); 1,000 um (large image).

Segmentation, training, validation, and automatic score example derived from the raw large image.

including AP staining, are specific for pluripotent cells,
which gives a positive signal when a colony is pluripotent.
However, differentiated colonies are only defined as
such when the positive signal is non-detectable (Figure 1).
In addition, pluripotent colonies acquire different mor-
phologies upon different treatments, and usually, during
ESC differentiation, pluripotent staining is firstly reduced
before it is completely lost. Therefore, mixed colonies,
which we consider a mixture of pluripotent cells and differ-
entiated cells, are prevalent in most cultures and difficult
to impartially classify. Taking all these factors into consid-
eration, we developed an image-analysis approach that
incorporates three major steps in order to automatically
quantify pluripotency: a fast segmentation algorithm
capable of identifying different colony types in both large
phase-contrast and fluorescent images, an interactive
machine-learning algorithm to classify colonies as pluripo-
tent, mixed, or differentiated, and a validation algorithm
responsible for the measurement of classification accu-
racy to increase the trust on the automatic pluripotency
quantification and the comparison of different conditions
(Figure 2).

Image Properties and Colony Segmentation
A reliable pluripotency evaluation requires an overview
of the entire well plate. However, automatic image

acquisition often leads to colonies on the border of
the image and, consequently, loss of partial colony infor-
mation. Such colonies are thus, not suitable for quantifi-
cation. Therefore, we designed a pipeline that allows
the analysis of single or multiple TIFF images combined
(stitched together during or after single image acquisi-
tion) in order to fulfill the criteria described above
(Figure 1).

To detect and segment the colonies, we developed
a custom script written in MATLAB (MathWorks), FACT
(fast and accurate colony tracing), which does not require
user input (Figure 3). Colony detection and segmentation
is primarily performed in the phase-contrast image. The
image background is first calculated: fast Fourier trans-
form is applied to the raw image; the transformed image
obtained is filtered with a cutoff frequency of 0.2 in the
Fourier domain, followed by an inverse fast Fourier trans-
form, resulting in a reconstructed image with only low
frequency features. The background is removed from
the raw image through subtraction of the low frequency
image from the raw image, which isolates the high-fre-
quency information, cells, and colonies (Figure 3). Then,
the local contrast is highlighted using a 3 X 3 high-
frequency filter and binarized using Otsu thresholding,
which separates the foreground from the background.
A sobel filter is applied to the subtracted background
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Figure 3. Colony Detection and Segmen-
tation Pipeline

The raw image is processed by the difference
of erosion and dilation followed by Otsu
thresholding to create the first mask. The
raw image is also processed by removing
the background level through fast Fourier
transform, creating a background sub-

| tracted image, from which we extract the
Local Contrast

Morphological
Operations

gradient and local contrast and produce two
more masks through Otsu thresholding. The
three masks are added together and if the
pixel value is greater than 1, the object
is incorporated into the final mask. The
outline and label of the final mask is added
to the raw image to show the outcome of the
segmentation. Scale bar, 500 um.

Colony Mask

Colony ID

image to obtain the image gradient. Raw images are also
processed by morphological operations erosion and dila-
tion, and the difference between these two processes is
used to obtain a binary mask. The binary mask from the
local contrast, gradient, and morphological operations
applied to the raw image is added together, and the final
mask is produced when the value of the cumulative
mask is greater than 1 (Figure 3). Given that ESCs grow
in colonies, we added two particular restrictions in the
algorithm: (1) the segmentation algorithm was adapted
to ignore single cells (however, single cells can be
included by manually adapting this segmentation algo-
rithm parameter); and (2) differentiated and mixed col-
onies tend to occupy a large area and, by eliminating all
colonies on the periphery of the region of interest (ROI),
biased results were obtained. Therefore, colonies in the
periphery are only discarded if their pixel size is below
7 x 10* pixels. After colony segmentation is completed,
all colonies detected are assigned with a specific number
(ID), with the colony ID derived from the phase-contrast
image applied to the pluripotent marker image (Figure 3).
After segmentation is performed, the results are saved as
new TIFF images, which allows for segmentation inspec-
tion. A similar procedure is applied for fluorescence im-
ages, with a small nuance: if there are saturated pixel in
the image, the software will automatically fill them in as
a positive hint for a colony.
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Segmentation Accuracy

To evaluate segmentation accuracy, large phase-con-
trast images (10,078 x 10,054 pixels), with different de-
grees of pluripotency, morphology, and confluency were
analyzed by FACT and compared with previously pub-
lished segmentation algorithms: Phantast (Jaccard et al.,.
2014b), and empirical gradient threshold (EGT) (Chalfoun
et al., 2015) (Figures 4A and S1). We selected Phantast
and EGT as they have both been shown to successfully
segment ESCs images. While Phantast requires user input
for accurate segmentation, EGT does not. Our results
show that both Phantast and FACT are able to segment
large images, whereas EGT fails to segment some image
fractions (Figures 4A and S1). We then decided to directly
compare FACT segmentation with Phantast segmentation,
and calculate FACT precision, recall, specificity, and dice
index (Figures 4B and 4C). Quantitatively, we achieved
an average precision of 94.24 + 0.02; an average recall of
93.95 + 0.02; an average specificity of 96.35 + 0.03, and
an average dice index of 94.06 + 0.01. These results
show that our segmentation method (FACT) can provide
accurate image segmentation on a wide range of cell
colony morphologies, from a large sheet of cells to indi-
vidualized colonies, without any additional user input.
Moreover, these results demonstrate that our segmenta-
tion algorithm, without tuning requirements, is as robust
and accurate as Phantast.
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Figure 4. Comparison between FACT
Algorithm Segmentation and Phantast
and EGT Segmentation Algorithms

(A) FACT, Phantast, and EGT segmenta-
tion results. Binary images, where white
is representative of presence of a colony.
Scale bar, 500 pum.

(B) Direct comparison between FACT
and Phantast segmentation. White regions
represent segmentation overlap between

Phantast

A Raw Image
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Image7| 0916 | 0941 | 0970 | 0928 index of FACT segmentation was compared

FACT and Phantast

Machine-Learning Classification

Once segmentation is performed, automatic pluripotency
classification poses a further challenge. Pluripotent cells
in culture conditions have different colony height, area,
and circularity. To classify a colony as pluripotent, the in-
tensity of the pluripotent marker must be high, whereas a
differentiated colony has low or undetectable pluripotent
signal. Mixed colonies are described to (1) have a combina-
tion of high and low intensity pluripotency markers, or
(2) have a dim positive signal, above the positive staining
threshold. However, intensity signal is dependent on the
colony morphology, which makes automatic pluripotency
classification through image-based analysis a challenge. To
tackle this issue, we used a supervised colony classification
approach to differentiate between the three colony types.
We selected the random forest classifier (Breiman, 2001),
due to its robustness and computational simplicity. We de-
signed an interactive classification approach, where users
can build a classifier by interactively training and vali-
dating their own image sets (Figure 5A). During this cycle,
users are expected to after selecting the training set images,
to pick the best subset of colonies that fit the pluripotent,
mixed, and differentiated standard parameters from each
image. After selecting the colonies, the classifier is built tak-
ing into account different colony features from both phase-
contrast and pluripotent marker images (Table S1), and an

with Phantast segmentation. EGT, empirical
gradient threshold; FACT, fast and accurate
colony tracing.

See also Figure S1.

Excel file is created with each colony feature (Figure SA).
Thus, when a new colony is presented to the program,
the software evaluates all the features of the new colony
and classifies this colony according to the classifier pool
where its features best fit. Since fluorescence intensity is
one of the features to characterize pluripotency, and inten-
sity is dependent on microscopy settings upon acquisition,
different training sets can be created and uploaded to atten-
uate the misclassification due to the difference between
independent experiments.

Manual Validation Algorithm

To evaluate the accuracy of colony classification, we devel-
oped an interactive validation algorithm that allows the
user to validate the classification of the selected training
set (Figure 5B). After the selection of different images,
a phase-contrast and fluorescent marker image derived
from a random selected colony is shown in addition
to its intensity pluripotent marker plot (Figure 5B1-5B6).
Manual validation is allowed through the selection of the
pluripotent, mixed, or differentiated button (Figure 5B7),
with the opportunity to go back to a previous colony and
overwrite the previous classification (back button), to skip
a colony (skip button), or to finalize the manual validation
process without the need to validate the entire image (out
button) (Figure 5B7). The classification results are exported
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Figure 5. —-Machine-Learning and Manual
Validation Overview

(A) Machine-learning overview. Upon se-
lection of the images to use as training
set, the user interactively selects first the
pluripotent colonies, then the mixed col-
onies and, finally, the differentiated col-
onies presented in the image. After this
procedure is complete for all the images in

Pluripotent

L

Constructing Random Forest Algorithm.

the training set, the classifier is built, with
the possibility to add the training set to a
previous classifier, or create a new training
set. An Excel file with all the colony features
as well as the pluripotency score is created,
where score 1 is differentiated, 2 mixed, and
3 pluripotent colony. Green, pluripotent
marker AP; red, colony border obtained by
the phase-contrast segmentation image.

(B) Manual validation overview: (B1) image
overview. Purple arrow shows an example of
a pluripotent colony. Red arrow shows the
colony picked to validate the classifier pre-
diction. (B2) Phase-contrast image and
(B3) pluripotent marker image of the colony
picked to validate the classifier prediction.
(B4) Example of a pluripotent colony. (B5)
Classifier prediction and progress bar with

Differentiated

nnnnnnnnnnnn

the total number of colonies present in the
image and the number of colonies already
validated. (B6) Normalized number of pixel

B8
versus pluripotent marker intensity. (B7)

Graphical user interface used to validate
each colony as pluripotent, mixed, or
differentiated. (B8) After manual validation

completed, the manual accuracy is auto-

with each colony ID to Excel and MATLAB files. These files
provide a detailed summary of each colony feature, as well
as the classifier prediction and user manual validation
(Figure 5B8). In addition, the accuracy score is shown at
the end of each large image-analysis. Finally, in order to
increase precision, every time that manual validation is
completed, the classifier is updated.

Performance Evaluation

To evaluate our colony classification approach, we used six
large images derived from different mESCs cultures, with a
wide range of pluripotent percentages and colony shapes.
We started by creating a training set selecting 15 pluripo-
tent colonies, 15 mixed colonies, and 20 differentiated
colonies from one of the large images (Figure 6A1). Then,
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matic shown, and the random forest algo-
rithm is updated. Segmentation information
summary is saved as an Excel file.

See Table S1.

we ran the manual validation on the same image, evalu-
ating all the colonies, and we achieved an accuracy of
97.6%. Afterward, we ran the automatic score on the other
5 large images and manually evaluated 100 colonies from
each image to obtain the pluripotency classification accu-
racy (Figure 6A1). All images had an accuracy classification
above 90%. To test the number of colonies that should be
selected to train the classifier, we went back and selected
only five pluripotent, five mixed, and five differentiated
colonies, and created a new classification set (Figure 6A2).
The accuracy decreased to 59% when we manually vali-
dated 150 colonies from the same image. After the manual
validation classifier update, we ran the automatic score on
the five large images that we had previously ran, and manu-
ally validated the results. All images had similar accuracy
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Figure 6. Pluri-IQ Performance Evaluation in Different mESC Culture Conditions

(A1) The training set was built by selecting 15 pluripotent, 15 mixed, and 20 differentiated colonies. Manual validation showed that
accuracy of the classifier is ~ 97%. Classifier was updated after manual validation and automatic score was run in five different large
images. Manual validation performed afterward showed accuracy values all above 90%. Scale bar, 500 um (in raw images).

(A2) After selection of a reduced number of colonies to train the classifier, the manual accuracy decreased to ~59%. However, the update
of the classifier after the manual training leads to an increase of accuracy classification.

(legend continued on next page)
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values to the previous classifier set (Figure 6A2). These re-
sults demonstrate that our manual validation is important
and capable of maintaining high accuracy values, without
the need to tune the training system multiple times, since
manual validation updates the classifier.

To validate Pluri-IQ pipeline, mESCs were cultured in me-
dium with serum and leukemia inhibitory factor (LIF), and
seeded with different densities (6,000, 8,000, or 10,000
cells/cm?), in medium with serum but in absence of LIF
(referred as —LIF), in medium with serum and Antimycin
A (referred as AA), and in serum-free medium with
CHIR99021 and PD0325901 (referred as 2i). After valida-
tion and automatic score, automatic comparison between
different conditions was performed, with an Excel file as
output (Figure 6B1). Our results show that the highest
number of pluripotent colonies is obtained when mESCs
are cultured in 2i medium, whereas the absence of LIF in
medium with serum induces the highest differentiation.
In addition, the increase in mESC density induces a
decrease in the percentage of pluripotent colonies and an
increase in differentiated colonies. Finally, when mESCs
are cultured in the absence of LIF but in the presence of a
complex III mitochondria inhibitor, AA, mESC differentia-
tion is decreased (Figure 6B2). To confirm the cell fate in
different conditions, we performed qRT-PCR analysis in
mESC cultured in the presence of LIF (6,000 cells/cm?),
2i, AA, and in the absence of LIF, conditions known to
affect pluripotency (Figure 6C). To evaluate mESC fate,
we selected four pluripotent genes (KIf4, Dppa3, Esrrb,
and Oct4) and two early differentiation genes (Fgf5 and T)
and compared the relative mRNA expression of the
different conditions with +LIF condition. Cells cultured
in the absence of LIF had a low expression of pluripotent
markers (KIf4, Dppa3, and Esrrb) and an increased expres-
sion of differentiated markers (Fgf5 and T) (Figure 6C),
which suggests that this cell culture condition had a high
percentage of differentiated colonies and low percentage
of pluripotent colonies, in agreement with the results ob-
tained by Pluri-IQ software (Figure 6B2). Cells cultured in
the presence of 2i had a significant increase of the pluripo-
tent marker KIf4, and low expression of the differentiated
markers Fgf5 and T (Figure 6C). This result suggests that
these cells have a higher percentage of pluripotent colonies
than mESC cultured in the presence of LIF, which is in
accordance with the results obtained by Pluri-IQ (Fig-
ure 6B2). Finally, when cells were cultured in the presence

of AA they had low expression of KIf4, when compared
with cells cultured in the presence of LIF (Figure 6C), which
suggests that AA culture conditions promotes a decrease
of pluripotent colonies when compared with mESC
cultured in the presence of LIF. Thus, through qRT-PCR,
we also verify that mESC cultured in the presence of 2i me-
dium have the highest pluripotency levels, whereas mESC
cultured in the absence of LIF promote colony differentia-
tion. These results are also in agreement with the literature
(Ying et al., 2008; Pereira et al., 2013; Palmqvist et al.,
2005), which demonstrates that our pipeline is able to
accurately classify colony pluripotency even in the pres-
ence of different colony densities and morphologies.

We decided to use the same rationale, and evaluate Pluri-
IQ accuracy in fluorescence images (Figure 7). We utilized
images from mESC cultured in serum with LIF (pluripo-
tency medium) or in a neuronal differentiation medium
(referred as N2B27). Cells were stained for the pluripotent
marker OCT-4. After uploading the images and their seg-
mentation performed, the classifier was created utilizing
16 pluripotent colonies, 14 mixed colonies, and 10 differ-
entiated colonies selected from two large images (Figure 7C,
upper panel). Manual validation was performed on the
same images, and an accuracy of 87% was achieved. We
then used the training set to automatic score two new
images (Figure 7C, bottom panel). The mESC classification
accuracy was approximately 90%. After comparing both
conditions, we saw that, in agreement with the literature,
mESCs cultured in the presence of neuronal differentiation
medium have more differentiated and mixed colonies
than cells cultured in the presence of LIF (Figure 7D).
In addition, when we measured colony parameters such
as nuclear cytoplasmic ratio, the results obtained were in
agreement with previous studies: nuclear/cytoplasm ratio
decreased with colony differentiation (Figure S2). These re-
sults demonstrate that our pipeline also accurately classifies
pluripotency in fluorescence images.

Graphical User Interface

We created a simple and straightforward graphical user
interface, which confers an easy comprehension of the pro-
cessing pipeline (Figures 7A and 7B). Users are first required
to select their type of image staining, AP or immunofluores-
cence, and upload two images: a single channel image of
phase-contrast (or fluorescence cytoplasmic) image, and a
single channel pluripotent marker image. In addition to

(B1) Excel sheet output derived from the automatic data comparison.

(B2) Percentage of pluripotent, mixed, and differentiated colonies (left) and area (right) of each condition. A minimum of 100 colonies
was analyzed per condition. Color code: green, pluripotent colonies; blue, mixed colonies; red, differentiated colonies.

(C) Normalized mRNA expression fold change (determined by RT-gPCR) of mESC cultured for 4 days in the presence of 2i medium, LIF, 50 nM
AA orin the absence of LIF. All samples were analyzed in two technical replicates. All data are presented as means + SEM. *p < 0.01. AA,
Antimycin A; LIF, leukemia inhibitory factor; 2i, serum-free medium with CHIR99021, PD0325901, and LIF.
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these two images, nuclear staining can also be uploaded in
order to calculate the nucleus to cytoplasmic ratio. After
successfully uploading the images and selecting the ROI,
segmentation is performed and the results are saved as
new TIFF images, which allows for segmentation inspec-
tion (Figure 7C). To proceed to the automatic pluripotency
quantification, the interface requires the uploading of a
training classifier set and selection of each condition folder
(Figure 7B). The colony quantification results are exported
as color-coded images and Excel files. Finally, data compar-
ison interface automatically quantifies the colony pluripo-
tency percentage, pluripotency colony area percentage,
pluripotency mean area and circularity, and nuclear/cyto-
plasm ratio, exporting these results to an Excel file.

DISCUSSION

Considering the widespread practice in stem cell labora-
tories to quantify pluripotency through image-based
assays, we sought to develop a software that allows the
automatic quantification of pluripotency, with a low
requirement of user input. Here, we report the develop-
ment of an efficient, accurate, open-source, and user-
friendly pipeline for pluripotency quantification of low-
magnification images, Pluri-IQ. This software segments
colonies from large images with high precision, without
the requirement of user input. Subsequently, through a
machine-learning process, it automatically and accurately
classifies pluripotent, mixed, and differentiated colonies.
In parallel, we implemented a manual validation algo-
rithm, which allows for the validation of the program
by the user, through visualization of each colony and its
corresponding pluripotent marker expression. The storage
of each colony features, as well as its pluripotency score
in Excel file, enables post-data treatment result analysis.
Importantly, we developed a user-friendly software that
is accurate and efficient, with low user input requirements.
Pluri-IQ uses as input large images, and presents relevant
advantages compared with others since it does not require

segmentation parameters to be refined in order to discharge
background or detect and segment colonies, as in ilastik
(http://ilastik.org/), and does not require users to create a
specific pipeline of analysis as in CelProfiler (http://
cellprofiler.org/). Although training data is required, the
software interactivity allows the user to quickly select
the best colonies of each classification, without requiring
the selection of the best features to tune machine learning,
as in ilastik. After machine learning is complete, manual
validation promotes the evaluation of the classifier accu-
racy at the same time that the classifier is updated. Finally,
after high accuracy is achieved, it is possible to run a
fast automatic score, followed by data comparison. Pluri-
IQ was already tested in two independent laboratories,
and high precision classification of mESC colonies was
achieved. Although mESC were used as a model in this
study, the procedure should be easily extendable to other
types of pluripotent cells (hESC, iPSCs, etc). Nevertheless,
it is important to take into account that Pluri-IQ relies on
image quality and user experience of pluripotency classifi-
cation. Moreover, for certain experimental protocols that
involve pluripotency assessment it may be deemed neces-
sary to extend image analysis to include also qRT-PCR or
western blot.

Different approaches to characterize cell fate have
been developed in order to increase data consistency and
reproducibility (French et al., 2015). Although Pluri-IQ is
specifically designed to measure pluripotency percentage
in images, image-based assays to evaluate pluripotency
are routinely performed. The necessity to infer if a different
medium, small hairpin RNA, or other stimuli maintain plu-
ripotency or induces differentiation makes quantification
of pluripotency a common and required practice in stem
cell laboratories (French et al.,, 2015). Usually, fast and
easy assays, such as image-based-assays, are performed to
quantify pluripotency; however, this quantification is still
evaluated manually. We have presented a robust method
to evaluate the pluripotency of colonies through a fast
Fourier transform-based segmentation, which works in
both phase-contrast as well as in fluorescence images.

Figure 7. Pluri-IQ Application Pipeline and Its Performance Evaluation in Immunofluorescence Images

(A) The main graphical user interface (GUI) of Pluri-IQ.

(B) GUT used to select different folders containing the images to perform manual validation, autoscoring or data comparison.

(C) Pluri-IQ pipeline: two different images with different degrees of pluripotency were used to create the machine-learning training set
(upper panel). After each channel segmentation and colony identification, a fluorescence training set was created and manually validated.
After the classifier automatic update, two new images were scored automatically by Pluri-IQ and classification accuracy was evaluated
(bottom panel). Scale bar, 500 um (in raw images). Color code on the raw images: green, actin; red, OCT4. Color code on the images
prediction: green, pluripotent colonies (Plur); blue, mixed colonies (Mix); red, differentiated colonies (Dif).

(D) Percentage of pluripotent, mixed, and differentiated colonies in the two different experimental conditions. Data derived from the
automatic data comparison in Pluri-IQ. Results derived from two replicates. LIF, pluripotency medium; N2B27, neuronal differentiation
medium.

See also Figure S2.
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Using the information produced by the segmentation,
we can very efficiently classify the colonies as pluripotent,
mixed or differentiated without using time-consuming
methodologies that are currently employed. Based on our
case study, we can conclude that Pluri-IQ is applicable in
both large phase-contrast and fluorescence low-magnifica-
tion images. Moreover, Pluri-IQ is able to analyze condi-
tions that promote or destabilize pluripotency, allowing
result collection in a faster and more impartial manner,
thus increasing unbiased reproducibility.

EXPERIMENTAL PROCEDURES

Recall, Precision, Specificity, and Dice Index
Calculations

To compare FACT and Phantast segmentation we calculated recall,
precision, specificity, and dice index values defined in Equations
1-4, as described previously (Intawong et al., 2013; Zou et al.,
2004). In brief, TP (true positives) represents the number of
segmented colonies in FACT that were also segmented in Phantast;
FN (false negatives) represent the number of colonies not
segmented in FACT but segmented in Phantast; FP (false positives)
represent the number of colonies segmented in FACT and not
segmented in Phantast; TN (true negatives) represent the number
of pixel that are not considered a colony in both FACT and
Phantast; X represents FACT segmentation regions and Y repre-
sents the Phantast segmentation regions.

Recall :% (Equation 1)
Precision = % (Equation 2)
Specificity = % (Equation 3)

Dice Index = ;(8 § (Equation 4)

Classification Accuracy

Classification accuracy was measured by comparing the colony
prediction of the classifier with the classification given by the
user through manual validation. The number of positive hits was
then divided by the total number of colonies evaluated in order
to obtain the accuracy percentage.

Data Comparison

The percentage of pluripotent, mixed, and differentiated colonies,
as well as the percentage of pluripotent, mixed, and differentiated
colony area are calculated for each large image. In addition, mean
area, circularity, and nuclear/cytoplasm ratio, as well as SEM, are
provided. The percentage of pluripotent, mixed, and differentiated
colonies in an image is measured by calculating the number of col-
onies in each classification and dividing it by the total number of
colonies present in the image. The pluripotent, mixed, and differ-
entiated area of each image is measured by the summation of each

classifier area, followed by ratio between each sum of classifier area
and the total area occupied by colonies. Mean area and mean circu-
larity are calculated by averaging the pluripotent, mixed, and
differentiated area and circularity in each image, respectively. Nu-
clear/cytoplasm ratio of each large image is calculated using colony
average area derived from DNA staining image, and colony average
area derived from cytoplasm image.

Software Availability

Pluri-IQ was implemented using MATLAB on a 64-bit Windows
OS laptop with intel i7 processor with 8 GB of RAM memory.
The software will be hosted at the CNC website (http://www.
cnbc.pt/equipment/microscopyUnit.asp#divimageAnalysis) both
as a compiled MATLAB standalone application (requires installa-
tion of 64 bit MATLAB runtime, available for free at www.
mathworks.com/products/compiler/mcr.html) and MATLAB.m
files. In our application, we made use of Custom GINPUT by Jiro
Doke, Nov 07, 2012 (https://www.mathworks.com/matlabcentral/
fileexchange/38703-custom-ginput/content/ginputc.m, retrieved
June 2016) and uipickfiles: uigetfile on steroids by Douglas Schwarz,
Apr 25, 2006 (https://www.mathworks.com/matlabcentral/
fileexchange/10867-uipickfiles-uigetfile-on-steroids, retrieved May
2016).

Cell Culture

Mouse embryonic cell line (E14Tg2a.4, derived from 129P2/
OlaHsd, RRID:MMRRC_015890-UCD) was cultured at 37°C, 5%
CO, and two different culture media were used for ESC mainte-
nance and propagation: (1) medium with serum (KODMEM),
consisting in KnockOut-DMEM (Thermo Fisher Scientific) sup-
plemented with 15% fetal bovine serum, ESC-qualified, USDA-
approved regions (Thermo Fisher Scientific), 2 mM L-glutamine
(Thermo Fisher Scientific), 1% non-essential amino acids (Sigma-
Aldrich), 100 U/mL penicillin/streptomycin (Thermo Fisher Scien-
tific), 0.1 mM 2-mercapthoethanol (Thermo Fisher Scientific) and
1,000 U/mL of ESGRO LIF (Merck Millipore); and (2) serum-free
medium (2i), consisting of 1:1 mix of DMEM/F12 (Thermo Fisher
Scientific) and Neurobasal medium (Thermo Fisher Scientific),
N2 (Clontech), and B27 (Thermo Fisher Scientific) supplements,
100 U/mL penicillin/streptomycin, 0.1 mM 2-mercapthoethanol,
2 mM L-glutamine, and 1,000x dilution of the supplements LIF
and MEK/GSK3 inhibitors (Merck Millipore). To induce sponta-
neous differentiation, mESCs were maintained in KODMEM in
the absence of LIF for 4 days. AA (50 nM, Sigma-Aldrich) was
used to block complex III mitochondria respiratory chain. AA
was added to cells cultured in KODMEM medium in the absence
of LIE.

To induce neuronal differentiation, 10,000 cells/cm? mESC
were seeded on 0.1% gelatin-coated plates and cultured in N2B27
serum-free medium for 5 days. Medium was replaced every 2 days.
N2B27isa 1:1 mix of Neurobasal medium (Thermo Fisher Scientific),
1:2 mix of minimum essential medium (Thermo Fisher Scientific)
and 1:2 mix of Ham’s F12 Nutrient Mix (Thermo Fisher Scien-
tific), supplemented with 1 mM L-glutamine, 100 U/mL penicillin/
streptomycin, 0.1 mM 2-mercapthoethanol, 1.5 g/L D-glucose,
1.5 g/L AlbuMAX I Lipid-Rich BSA (Thermo Fisher Scientific),
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7.5 mM HEPES (Thermo Fisher Scientific), B27 (Thermo Fisher
Scientific), and N2 (Thermo Fisher Scientific).

AP Staining

mESCs were fixed with 4% paraformaldehyde (Electron Micro-
scopy Sciences) at room temperature (RT) and stained with Vector
Red AP vector kit (no. SK5100, Vector Laboratories) as described in
the manufacturer’s instructions. In brief, after mESC were fixed,
cells were washed twice with PBS and incubated with substrate
working solution (2 drops of reagents 1, 2, and 3 diluted in 5 mL
of Tris-HCl 150 mM, pH 8.5, buffer containing 0.1% Tween
[Sigma-Aldrich]) for 30 min on the dark. After incubation, cells
were washed once with 150 mM Tris-HCl and then PBS was added.
Fluorescence as well as phase-contrast images were taken.

Immunocytochemistry

mESCs were fixed with 4% paraformaldehyde for 15 min at RT.
Cells were then washed 3 times with PBS, permeabilized with
0.1% Triton X-100 (Sigma-Aldrich) in PBS for 10 min, and blocked
for non-specific binding with 1% BSA (Sigma-Aldrich) in PBS for
1 hr at RT, followed by incubation overnight at 4°C primary anti-
body: rabbit anti-OCT-4 (no. 2840, Cell Signaling Technology) at
1:100 dilution. Cells were then washed with PBS for 3 times and
incubated for 1 hr at RT with a solution containing secondary anti-
body: anti-rabbit Alexa Fluor 488 (Thermo Fisher Scientific) at
1:200 dilution; Hoechst 33342 (Sigma-Aldrich) at 1:50 dilution
and phalloidin Alexa Fluor 647 (no. A22287, Thermo Fisher Scien-
tific) at a dilution 1:40 dilution. Cells were then washed 3 times
with PBS and images were taken.

Imaging Acquisition

All images were collected with a Nikon DS-QiMc camera installed
on a customized Nikon TE300 epifluorescent microscope (Nikon,
Melville, NY), equipped with a motorized stage and motorized
excitation and emission filters (Prior Scientific, Rockland, MA)
controlled by Nikon NIS Elements. Images were acquired with a
10x Plan Fluor lens (N.A. 0.3, Nikon, Melville, NY) and different
grid numbers with a 20% overlap were acquired in order to ensure
that the entire well was imaged. Image size from the camera was
1,280 x 1,280 pixels, and the pixel size 0.57 pm. For immunofluo-
rescence images, three fluorescence channels for Hoechst 33342,
Alexa Fluor 488 and Alexa Fluor 647 were recorded, while for AP
staining the fluorescence channel Alexa Fluor 568 and phase-
contrast channel were recorded.

RNA Extraction and Purification

RNA was extracted of each condition by incubating cells with trizol
(Life Technologies) for 1 min at RT. The solution was then collected
to eppendorf tubes and mechanical disrupted by vortex each sam-
ple for 30 s. Then, RNA extraction was performed according to
manufacturer’s instructions (Direct-zol RNA MiniPrep, Zymo).

cDNA Synthesis and Quantitative Real-Time PCR

One microgram of total RNA was used to synthesize first-strand
DNA through the iScriptTM cDNA Synthesis Kit (Bio-Rad), accord-
ing to manufacturer’s instructions.
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qPCR was performed using mouse-specific primers and iTaq
Universal SYBR Green master mix (Bio-Rad). Primer sequences,
which were obtained in the PrimerBank database (Spandidos
et al., 2008, 2010; Wang and Seed, 2003) are described in the
Table S2. All samples were analyzed in technical duplicates. The
expression of each target mRNA was calculated based on the
threshold cycle (Ct) as 272D, where ACt = Ctuarger = Ct rpipo
and -A(ACT) = ACtest — ACteontrolr Control condition refers to
mESC cultured in the presence of LIF. All data are presented as
mean + SEM. qPCR data analysis was performed using the Bio-
Rad CFX manager software 3.1, and gene expression was consid-
ered significantly different to the control when regulation
threshold was higher than 2.0 and p value threshold was lower
than 0.05.

SUPPLEMENTAL INFORMATION

Supplemental Information includes two figures and two tables and
can be found with this article online at http://dx.doi.org/10.1016/
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