
mitochondrial complex I. However,
F1,6BP also activates Ras and its down-
stream targets ERK and MEK [5]. In turn,
small GTPases of the Ras family directly
bind to the catalytic subunit p110a of
PI3K, activating PI3K-AKT signaling [6].
As a result, a vicious cycle is created
between F1,6P and major oncogenic
drivers (Ras and PI3K-AKT) acting with
HIF-1a to promote the Warburg effect
[7]. Moreover, PFKFB and dimeric
PKM2 translocate into nucleus, where
F2,6BP represses p27Kip1, a strong
inhibitor of cell cycle progression [2], while
dimeric PKM2 promotes c-Myc expres-
sion, favoring the Warburg effect and cell
cycle progression [8].

Unlike regulation occurring in normal
cells, where citrate closely adjusts ana-
bolic and catabolic flows according to
nutrient availability and ATP production,
theWarburg effect reduces themitochon-
drial synthesis of citrate, while the contin-
uous consumption of the molecule in fatty
acid synthesis (FAS) reduces its cytosolic
level. Therefore, the negative and positive
feedbacks of citrate on PFK1-2 and
FBPase, respectively are avoided [9]. To
sustain their continuous need for acetyl-
CoA supplying lipid synthesis and/or pro-
tein acetylation, proliferative cancer cells
can form citrate by alternative pathways,
such as direct carboxylation of a-ketoglu-
tarate (a-KG) (a molecule derived from
glutamate), or directly use acetate as a
substrate for acetyl-CoA synthesis [9].
Consequently, the inhibition of ATP citrate
lyase (ACLY), the cytosolic enzyme trans-
forming citrate into acetyl-CoA and oxa-
loacetate (OAA), leads to an increased
level of citrate and results in the inhibition
of mitogen-activated protein kinase
(MAPK) and IGF-1R/PI3K/AKT prolifer-
ative pathways [10]. In vitro studies
[11,12] showed that high-dose citrate:
(i) inhibits PFK and decreases ATP pro-
duction; (ii) inhibits the growth of numer-
ous cultured cancer cell lines; (iii)
promotes apoptosis with the activation
266 Trends in Cancer, May 2019, Vol. 5, No. 5
of various caspases and extinction of
expression of the antiapoptotic factor
Mcl-1; (iv) reverses dedifferentiation (in
particular through Snail inhibition and E-
cadherin expression); and (v) increases
sensitivity to cisplatin. Furthermore,
experiments involving tumor-bearing
mice (Ras-driven lung and Her2/Neu
mammary cancers) showed that citrate
inhibited tumor growth and additional
benefit was achieved when combined
with cisplatin [12]. For all these argu-
ments, citrate should be considered as
a tool to better understand and disrupt
metabolism sustaining cancer cell prolif-
eration, in particular truncated
gluconeogenesis.
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Spotlight
Solid Stress in Brain
Tumors
Daniele M. Gilkes1,2,* and
Denis Wirtz1,2

A solid brain tumor mass places
compressive forcesonadjacent nor-
mal brain tissue, and clinically
presents as impaired motor perfor-
mance in cancer patients, ultimately
limiting their quality of life. In a recent
article by Jain and colleagues (Nat.
Biomed. Eng. 2019;3:230–245), the
biologicalconsequencesofmechan-
ical forces imparted by a growing
tumor mass are explored in both
mouse models and human brain
tumors, revealinganovelopportunity
for therapeutic intervention.

The role of biomechanics in cancer has
drawn widespread attention [1]. Studies
with a focus on tissue stiffness have con-
sidered breast, prostate, liver, and pan-
creatic cancer whose stiffness is altered
by aberrant extracellular matrix deposition
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Figure 1. Nodular (Right) Brain Tumors Exert
Approximately Twofold Greater Circumferential
and Radial Solid Stress on Surrounding Normal
Tissue than Do Infiltrative (Left) Brain Tumors.
This leads to increased neuronal damage which
correlates with motor impairment in patients with
primary and metastatic brain tumors.
and remodeling [2,3]. Less is known
about the biomechanics of brain tissue
compression that occurs as the result
of a growing tumor mass. The so-called
‘mass effect’ has prognostic significance
for glioblastoma (GBM) [4], the most com-
mon form of adult brain cancer. Brain
tumors compress, or even destroy, sur-
rounding normal tissue and increase
intracranial pressure, resulting in head-
aches, seizures, speech, and/or vision
impairments in patients.

In the most recent edition of Nature Bio-
medical Engineering, Rakesh Jain and
colleagues report measurements and
neurological consequences of tumor-
induced brain deformation or the ‘push-
ing’ of healthy brain matter by a burgeon-
ing tumor [5]. Using two mouse models,
one that reflects nodular tumor growth
(growth as a single, well-defined mass)
and one that mimics infiltrative tumor
growth, the researchers demonstrate that
nodular tumors have higher gradients of
compression and tension that are capa-
ble of locally deforming tumor-adjacent
healthy brain tissue, whereas infiltrative
brain tumors impart lower forces. Consis-
tent with these findings, magnetic reso-
nance imaging (MRI) of tumors from 64
GBM patients reveals that patients with
nodular tumors display more functional
impairment, as measured by Karnofsky
performance scores (KPS), compared
with those patients with infiltrative tumors.
It would also be interesting to measure
the lateral ventricle displacement (LVd)
volume in the same cohort of patients
using methods reported by Chen and
colleagues [6] to determine if LVd also
differs in nodular versus infiltrative type
brain tumors. It is interesting that the
study by Chen and coworkers showed
that GBMs with high LVds are associated
with increased expression of genes
related to increased cellular proliferation,
whereas tumors with low levels of LVd
expressed genes involved in cell migra-
tion. It is tempting to speculate from these
results that the gene expression patterns
also correlate with nodular versus infiltra-
tive tumor types (Figure 1).

To determine how mechanical stresses
generated in the local tumor microenvi-
ronment by nodular tumors may cause
performance reduction, mice bearing
GBM tumors and mice bearing brain
tumors derived from metastatic breast
cancer cells were assessed for vascular
perfusion ability. Using optical coherence
tomography in mice outfitted with trans-
parent cranial windows, Jain and col-
leagues found that nodular tumors
impair vascular perfusion, which occurs
concomitantly with compressed neuro-
nal nuclei leading to neuronal loss. To
test whether these findings were recapit-
ulated in patients with brain tumors, the
perfusion levels of normal tissues adja-
cent to tumors were also measured.
Fifty-three percent of patients displayed
reduced perfusion in their surrounding
brain tissue. Notably, patients with
reduced perfusion had significantly
worse KPS scores. A cohort of 34 breast
cancer patients with brain metastasis
that were nodular in shape had reduced
vascular perfusion that correlated with
impaired performance levels, suggesting
that not only primary but also metastatic
brain tumors suffer from mechanical
compression forces.
To decouple potential biological interac-
tions of the tumor microenvironment
with healthy tissue from the direct
impact of mechanical stimulus, the
group devised a strategy to compress
the brains of non-tumor-bearing mice.
The rate of compression used in the
experimental set-up modeled the rate
of nodular tumor growth measured in
the mouse model. The compression
force gradually deformed the cortex,
mimicking the effect of a growing nodu-
lar tumor in causing reduced vascular
perfusion and density. Ultrastructural
analysis of the altered cortex revealed
signs of cell distress, with reduced neu-
ronal nuclei size. To assess perfor-
mance following compression, the
mice were subjected to Rotarod and
gait tests which showed reduced motor
coordination and movement.

Tomodel the changes that occur following
tumorresection, thebrains frommicebear-
ing nodular tumors with cranial windows
were decompressed by removal of the
cranial window. Removal of the window
led to an increase in perfusion of tumor-
adjacent tissue. Likewise, non-tumor-
bearing mice whose brains were decom-
pressed by removing the solid stress had
increased vascular perfusion and, over
time, displayed an increase in neuronal cell
numbers together with improved, albeit
temporary, motor coordination. This is in
keeping with post-surgery performance
results from GBM patients.

Taken together, the data suggest that
treatment regimens that can reverse or
protect from mechanically induced neuro-
nal cell losswould be beneficial for patients
with brain tumors. To this end, Jain and
colleagues used their mouse compression
device to screen compounds for neuro-
protectiveeffectsagainst solid stress.They
assessed drugs that (i) were capable of
crossing the blood–brain barrier, and (ii)
hadpreviouslybeenshown toprovideneu-
roprotection in ischemia [7,8], a condition
Trends in Cancer, May 2019, Vol. 5, No. 5 267



in which blood perfusion is also compro-
mised. Treatment with lithium, but not
necrostatin-1, valproic acid, or dexameth-
asone, reduced neuronal death and pro-
tectedfromcortical tissuedamage, leading
to improved motor coordination during
compression. To identify a potentialmech-
anism for the protective properties of lith-
ium, RNA sequencing and gene set
enrichmentanalysiswereused tocompare
gene expression profiles from the cortex of
lithium-treated and control mice. Gene
expression in lithium-treated cortex was
enriched for pathways associated with
ion channels, mitochondrial function, and
neuronal differentiation, as well as protec-
tion from apoptosis, autophagy, or ische-
mia � pathways that are indicative of
protection from neuronal damage. Future
studies are warranted to determine if lith-
ium treatment will be efficacious for
patients with brain tumors. Studies
focused on enhancing vascular perfusion
in the brain may also prove useful.

Brain tumors not only have a poor prog-
nosis but also lead to a reduced quality of
life before morbidity. Neuro-oncologists
are increasingly aware that preserving
neurological function is important for
improving the quality of life of their
patients [9]. The current study shows
that patients with nodular tumors may
benefit from neuroprotective therapies,
such as lithium, to spare normal brain
tissue. This would be particularly benefi-
cial for patients with advanced or inoper-
able tumors who will be unable to gain
relief from a surgical intervention. Given
that the brain has been shown to have
heterogeneous stiffness profiles that are
dependent on spatial localization [10], it
is also likely that compression of different
areas of the brain may result in differing
degrees of mechanical and neurological
response, and this would need to be
considered before deciding on an indi-
vidualized treatment regimen. Moreover,
the resulting neurological effect will likely
also be dependent on the function of the
268 Trends in Cancer, May 2019, Vol. 5, No. 5
specific area of the brain that is under
compression. Overall, the study offers
promising hope to improve the quality
of life of patients with nodular-type brain
tumors.
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DUX4 Pathological
Expression: Causes
and Consequences in
Cancer
Carla Dib,1,2

Vlada Zakharova,1,2,3,4

Ekaterina Popova,3
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Boris Chernyak,3

Marc Lipinski,1,2 and
Yegor S. Vassetzky ,1,2,5,*

DUX4, a double homeobox tran-
scription factor, has been mostly
studied in facioscapulohumeral
dystrophy (FSHD), a pathology
linked to a deletion of subtelo-
meric repeats on chromosome
4q. More recently, however, the
gene has been associated with
various sarcomas and haemato-
logical malignancies. Drugs devel-
oped for FSHD could be tested on
cancer cells to develop efficient
treatment strategies for both
pathologies.

DUX4 is a double homeobox transcription
factor encoded within the D4Z4 subtelo-
meric repeat element on chromosome
4q. Recently,DUX4 rearrangements were
reported in a frequent paediatric subtype
of B cell precursor acute lymphoblastic
leukaemia (BCP-ALL) (reviewed in [1]), in
Ewing-like sarcoma [2] and rhabdomyo-
sarcoma (RMS) [3]. Previously, aberrant
expression of DUX4 was identified as a
major factor in the aetiology of faciosca-
pulohumeral dystrophy (FSHD), an auto-
somal dominant disorder. Below, we
discuss features and consequences of
DUX4 gene rearrangements in malignan-
cies and new therapeutic approaches in
the context of FSHD that might prove
useful for cancer treatment.

DUX4 Expression and Gene
Rearrangements
In humans, an aberrantly expressed
DUX4 has been observed in numerous
malignancies, including renal, breast,
and testicular cancers (source: Human
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