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Abstract 

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest forms of cancer. 

Accumulating evidence indicates the tumor microenvironment is highly associated with 

tumorigenesis through regulation of cellular physiology, signaling systems, and gene 

expression profiles of cancer cells. Yet the mechanisms by which the microenvironment 

evolves from normal pancreas architecture to precursor lesions and invasive cancer is 

poorly understood. Obtaining high-content and high-resolution information from a 

complex tumor microenvironment in large volumetric landscapes represents a key 

challenge in the field of cancer biology. To address this challenge, we established a novel 

method to reconstruct three-dimensional (3D) centimeter-scale tissues containing billions 

of cells from serially sectioned histological samples, utilizing deep learning approaches 

to recognize eight distinct tissue subtypes from hematoxylin and eosin stained sections 

at micrometer and single-cell resolution. Using samples from a range of normal, 

precancerous, and invasive pancreatic cancer tissue, we map in 3D modes of cancer 

invasion in the tumor microenvironment, and emphasize the need for further 3D 

quantification of biological systems.   
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Introduction 

The growth and spread of invasive cancer, and the relationship of invasive cancers to 

pre-existing structures such as vessels, nerves, and ducts, is best understood through 

accurate three dimensional (3D) representations.(1-3) Pancreatic ductal adenocarcinoma 

(PDAC) is one of the deadliest forms of cancer, with a 5-year survival rate of only 9%.(4) 

PDAC arises from well-characterized precursor lesions in the pancreatic ducts, is 

surrounded by an immunosuppressive desmoplastic stroma, and has a proclivity for 

vascular invasion and metastasis to the liver.(5) These biological factors are insufficiently 

understood when studied in two dimensions (2D), as it is difficult if not impossible to infer 

information such as connectivity and 3D cell density and morphology from 2D media.   

Therefore, increased knowledge of the 3D microenvironment of the pancreas and 

changes to this microenvironment with progressive tumorigenesis will lead to a better 

understanding of the underlying biology of pancreatic cancer. While many surrogates for 

studying tumorigenesis in 3D have been developed in vitro and in vivo, (6-10) quantitative 

3D study of naturally occurring cancers in human tissues (cancer in situ) is generally 

lacking. Data derived from analyses of cancer within large 3D human tissue samples, in 

particular, have the potential to significantly increase our knowledge of the human tumor 

microenvironment. 

Recent advances in tissue clearing techniques have been employed to explore 

human diseases in 3D.(11-16) In pancreatic cancer, tissue clearing has been used to 

show that sustained epithelial-to-mesenchymal transition is not required for vascular 

invasion.(2) However, inconsistent clearing and poor antibody penetration into the dense 

desmoplastic stroma that characterizes PDAC, as well as limits on the size of tissues that 

can be successfully cleared, hinder the power of tissue clearing techniques when applied 

to pancreatic cancer.(13, 16) The reconstruction of serial, hematoxylin and eosin (H&E) 

stained sections has also been implemented to study disease in 3D.(17-19) Though time-

consuming manual annotations or costly immunohistochemical (IHC) labeling or mass 

spectrometry has been introduced to identify biological components in 3D,(17, 18) the 

costs and time associated with labelling cellular and structural bodies in serial sections 

largely limits its applicability. 
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Here, we demonstrate a novel method for the 3D reconstruction and quantification 

of large tissue volumes at single-cell resolution, which we name CODA. CODA digitally 

reconstructs 3D tissues from scanned, serially sectioned H&E tissue sections using 

image registration techniques. The method incorporates deep learning semantic 

segmentation to label eight distinct tissue types of the human pancreas without 

incorporation of additional stains. CODA is also capable of single-cell analysis and is 

utilized here to quantify in 3D cellular content and spatial distributions amongst different 

non-neoplastic and neoplastic tissue types, information that is important in the design of 

early detection tests.(20) With CODA, we analyzed normal pancreas tissue and pancreas 

tissue containing cancer precursors and PDAC in tissues of cm-dimension and m-

resolution. We derived detailed 3D insight of PDAC development and progression in situ. 

 

Results 

CODA: 3D reconstruction and labelling of serial histological sections  

To study pancreatic cancer invasion, we identified a human pancreas sample (S04-

PDAC) containing poorly differentiated infiltrating ductal adenocarcinoma immediately 

adjacent to a large region of grossly normal pancreas (Supplementary Table 1). The 

formalin-fixed paraffin-embedded sample was serially sectioned every 4µm.  Sections 

were stained with H&E and digitized at 20x magnification, providing x and y (lateral) 

resolution of 0.5µm and z (axial) resolution of 4m (Figure 1A). We developed CODA, a 

workflow for the digital reconstruction of these serial tissue images into a high-resolution, 

multi-labelled tissue volume amenable to the extraction of high-content cellular and non-

cellular information.  

First, the independent serial images were mapped to a common coordinate system 

using image registration. Tissue sections were coarsely aligned using whole field affine 

registration. However, reconstruction of serial histological sections is complicated by the 

malleability of tissue, which unpredictably stretches, folds, and splits to produce 

nonuniform deformation between z-planes.(21) Therefore, we further applied an elastic  
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Figure 1 | CODA. A Human pancreatic tissue is formalin fixed, paraffin embedded (FFPE), serially-

sectioned, stained, and scanned at high resolution.  B Tissue images are registered to create a digital 

volume.  Correlation of tissue image intensity in the xy dimension of single tissue sections is used as a 

reference for registration quality.  Correlation of intensity in the z dimension in unregistered image stacks, 

and registered image stacks with different z-resolutions show that we maintain 99% registration quality 

with a z resolution of 12µm.  C Cells are identified using the hematoxylin channel of color deconvolved 

images.  2D serial cell counts are corrected using the in-situ measured nuclear diameter of cells in different 

tissue bodies.  D  DeepLab deep learning semantic segmentation is created using manual annotations of 

tissue types which are randomly overlaid on large black tiles for training.  Tissue images are then labelled 

to a resolution of 2µm.  E 3D reconstruction of >1000 serially sectioned pancreas tissue.  3D renderings 

are created at the cm, mm, and µm scale at both the tissue and single cell level. 
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registration approach to account for local tissue warping. Elastic registration approaches 

compute nonlinear transformations and have been successfully used to register 

histological images.(17-19, 22) Uniquely, our approach was developed and optimized for 

the registration of pancreas tissue sections and incorporates downsampling to increase 

its speed. We found the registration process performs similarly between consecutive 

tissue sections or tissue sections up to five z-planes apart (Figure 1B, Supplementary 

Figure 1), allowing us to improve the throughput of the workflow by processing only one 

in three serial images. Overall, the registration workflow serially aligned the S04-PDAC 

tissue sample containing 1,499 serial histological sections in 3 h.  

  We further established an automated cell detection workflow to locate all nuclei in 

each histological section based on color deconvolution and a previously established 

algorithm described in ref.(23) During validation, automated cell detection performed 

similarly (94% consistency) to manual cell annotation (Figure 1C, Supplementary Figure 

2A). In situ diameters of each cell type were measured and incorporated to extrapolate 

true 3D cell counts from cell counts on serial 2D z-planes (Supplementary Figure 2B). 

To visualize and quantify the architecture of the pancreas, labeling distinct tissue 

subtypes in the volume is crucial. Deep learning methods have been successfully used 

to identify many structures in H&E images, such as inflammation,(24) cancer cells,(25, 

26) and extracellular matrix (ECM).(27) We established a deep learning workflow utilizing 

DeepLab semantic segmentation and a pretrained ResNet50 network (Supplementary 

Figure 3A) (28) to label eight pancreas tissue subtypes recognizable by trained 

pathologists in H&E images without additional molecular probes. A total of eight tissue 

subtypes were identified: normal ductal epithelium, precursors (pancreatic intraepithelial 

neoplasia [PanIN] or intraductal papillary mucinous neoplasm [IPMN]), PDAC, smooth 

muscle & nerves, acini, fat, ECM, and islets of Langerhans (Figure 1D). Importantly, to 

increase model accuracy, we create our training dataset by semi-randomly overlaying 

extracted annotated regions on a large image, then cutting this large image into many 

training and validation images, allowing us to control the heterogeneity of class 

appearance in the dataset (Suppelentary Figure 3B). The trained deep learning model 

achieved precision and recall of >90% for each class in S04-PDAC on independent 
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testing images (Supplementary Figure 4) and labelled the serial sections at a resolution 

of 2µm/pixel in 36 h. Registration of the detected cell coordinates and labelled images 

allowed us to create cm-scale multi-labelled tissue volumes with m and single cell 

resolution which could be easily visualized and analyzed quantitatively. 

 

3D assessment of pancreatic cancer invasion in situ 

The fully labeled reconstructed volume and detected cells allowed us to assess the 

dimensions of the sample, composition of tissue subtypes, and number of cells in each 

subtype quantitatively (Figure 2A). The S04-PDAC sample had estimated dimensions of 

2.7cm x 2.0cm x 0.6cm with a total volume of ~2.2 cm3. The sample contained ~1.1 billion 

Figure 2 | 3D reconstruction of cancerous human pancreas allows quantitation of cancerization of 

large duct. A Deep learning training accuracy was assessed using manual annotations of tissue subtypes 

and model was iteratively trained until subtype precision and recall of >=90% were obtained.  Bulk tissue 

subtype volume and cell counts were calculated.  B z-projections of classified regions show a normal 

pancreatic duct extending from a large cancer mass to an area of acinar atrophy (red arrows).  C 3D 

reconstruction and sample histology show cancerization of a large duct and a cancer protrusion growing 

along a smaller duct.  D Quantification of tissues present in 50µm surrounding ducts, precancers, and cancer 

show ECM surrounds all three tissue subtypes and increases in quantity with progression from normal duct 

to precancer to cancer. 
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cells. Of these,  2.1 million cells (~0.2%) were cancer precursor and ~10.5  million cells 

(~1%) were invasive cancer.  

We then visualized the landscape of cancer invasion at the leading edge of the 

cancer and adjacent normal tissue via z-projections and 3D renderings. The z-projections 

of the normal duct and benign spindle shaped cells (vasculature and nerves) showed 

well-connected tubular morphology (Figure 2B). The z-projections showed a large mass 

of adenocarcinoma located at one side of the tissue sample that had a strong spatial 

association with a large normal pancreatic duct. The 3D rendering of PDAC, precursor 

lesions, and normal ductal epithelium revealed that this spacial association was in part 

because the invasive cancer had infiltrated the ductal epithelium, a process known as 

cancerization of the ducts(29) (Figure 2C, Supplementary Video 1). A smaller, non-

neoplastic duct fed into the portion of the duct colonized by the invasive cancer, and this 

upstream pancreatic parenchyma was atrophic with acinar drop-out and increased 

content of ECM and prominent islets of Langerhans (Figure 2B, red arrows).(30) The 

cancer and atrophic region identified using the deep learning 3D reconstruction was 

confirmed by manual review of the histology (Figure 2C), validating the 3D reconstruction 

and labelling capabilities of CODA.  

In addition, we found three small projections of the invasive cancer extending from 

the larger tumor into surrounding normal pancreatic tissue, appearing to colocalize 

smaller pancreatic ducts. Examination of the 3D rendering revealed that the largest of 

these projections surrounded and extended parallel to a pancreatic duct for a distance of 

>3mm without invading the epithelial layer (Figure 2C, Supplementary Video 2). This 

observation was further confirmed by manual review of the sample histology. Overall, the 

visualization of the leading edge of cancer in a large 3D pancreas sample indicates that 

invasive cancers can track in the periductal stroma parallel to pre-existing ducts in the 

pancreas, as has been hypothesized in 2D.(31, 32) 
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Interpatient analysis for exploration of cancer tumorigenesis in 3D 

To further investigate 3D patterns in pancreatic cancer tumorigenisis, we characterized 

the changes in tissue architecture in four additional tissue samples for a total of five 

samples spanning S01-Normal: normal pancreas; S02-PanIN and S03-IPMN: pancreas 

containing precursor lesions PanIN or IPMN; S04-PDAC: pancreas containing invasive 

poorly differentiated pancreatic ductal adenocarcinoma with adjacent grossly normal 

tissue; and S05-PDAC: pancreas containing invasive poorly-differentiated pancreatic 

ductal adenocarcinoma with no adjacent normal tissue (Supplementary Table 1, 

Supplementary Videos 3 and 4). Using CODA, we obtained multi-labeled 3D maps of 

these tissue samples (Figure 3). Individual deep learning models were trained for each 

sample with performance of >90% class precision and recall compared to manual 

annotations (Supplementary Figure 4).   

Our approaches provide direct 3D visualization of normal pancreas, pancreatic 

cancer precursors (PanIN and IPMN), and PDAC at cm-scale with m and single-cell 

resolution (Figure 3A). Through quantification of tissue volume and cell count, we were 

able to compare overall cell densities between samples. Counterintuitively, we found that 

with progression from normal pancreas to cancer precursor to cancer, bulk cell density 

(ρbulk, total number of cells normalized by total tissue volume) decreased. Comparison of 

ρbulk with tissue subtype percentages revealed that tissues containing precursors and 

invasive cancers, which had the lowest ρbulk, contained the highest percentage of ECM 

and lowest percentage of acini (Figure 3B). Markedly, acinar content dropped significantly 

from normal (87.0%) in the S04-PDAC case (53.0%), which contains cancer and adjacent 

grossly normal tissue, and was nearly absent in both S03-IPMN (1.1%), and S05-PDAC 

(0%), as the normal pancreatic parenchyma in these samples was entirely atrophic. ECM 

content was highest (87.4%) in the case of extensive infiltrating PDAC (S05-PDAC) 

compared to S01-Normal pancreas (5.7%). Therefore, although growth of precancerous 

and invasive cancer cells implies an increase in cellular content, cocurrent acinar atrophy 

and the laying down of desmoplasic stroma and connective tissue result in an overall 

decrease in bulk in situ cell density with development of pancreatic cancer.  
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In addition to bulk cell density, we utilized local cell density (ρlocal) for deeper 

exploration of these structural changes (Figure 3C). We define ρlocal as the cell density of 

a tissue subtype within the detected volume of that subtype – while calculation of bulk cell 

density shows the number of cells in the total tissue volume, ρlocal allows exploration of 
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the closeness or sparseness of tissue subtypes at a local level. We found that ρlocal 

decreased in the acini, islets of Langerhans, ECM, normal ductal epithelium, and 

precursor subtypes with progression from normal pancreas to PDAC, suggesting that 

these cells are larger or more sparse in cancer precursor and cancerous samples than 

they are in the normal sample. Indeed, direct visualization of the histologic slides by a 

pancreatic pathologist confirmed that normal ductal epithelial cells appeared larger in the 

S04-PDAC sample than in the normal and precancerous cases, and that normal acinar 

cells packed more tightly than atrophic acinar cells. Though intuitively one might expect 

inflammation in precancerous and cancerous tissues to result in higher ρlocal in the ECM, 

importantly, we found the opposite to be the case. While we observed local regions of 

dense inflammatory cells near precursor and cancer cells, cocurrent growth of less-

inflammed ECM as extracellular fibrous connective tissue replaced atrophied acini, and 

desmoplastic stroma developed around the cancer resulted in a counterintuitive decrease 

in ECM cell density with tumorigenesis.   

 

Structural changes in human pancreas precancers with tumorigenesis 

In addition to bulk measurements, we utilized CODA for enumeration of architectural 

patterns in the samples. Pancreatic intraepithelial neoplasia by definition involves the 

complex branching of the pancreatic duct system. In 2D it can be impossible to discern if 

one is observing two separate PanIN lesions or one PanIN that has branched, or whether 

a PanIN occupies a small region of a pancreatic duct or extends for many mm within the 

ductal architecture. Readily, we found in 3D that precursors present in a range of volumes, 

can be architecturally simple or highly branched, and that many spatially distinct 

precursors can develop within cm-scale regions. We identified 37 PanIN lesions in sample 

S02-PanIN, 38 precursors in S03-IPMN, and 13 PanIN lesions in S04-PDAC, varying in 

size from 0.013-9.7mm3 and containing a range of 4,000-3,728,000 cells. Surprisingly, 

we found precursor ρlocal to be relatively constant and independent of volume, with mean 

precursor cell density of 404,000±1,000 standard error cells/mm3 in sample S02-PanIN 

(Figure 3D). Similarly, we found cancer ρlocal to be independent of tumor volume, with 
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mean cancer cell density of 189,000±300 standard error cells/mm3 in S05-PDAC, for 

cancer cell clusters containing a range of 1-1,500,000 cells. This suggests that pancreatic 

cancer precursor and cancerous cells occupy the same amount of space whether they 

present in-situ as single cells or within very large tumors.  

While assessing 3D connectivity of cancer precursors, we identified two 3D 

structural phenotypes of PanIN which we term tubular and lobular (Figure 3E, 

Supplementary Video 5). Tubular PanIN lesions appeared as elongated, ductal, 

branching structures, while lobular PanIN lesions appeared as clumped, “bunches of 

grape-like,” near-solid masses. Review of the corresponding H&E sections by a 

pancreatic pathologist revealed that tubular PanINs resided within more proximal 

pancreatic ducts, while lobular PanIN lesions resided at the terminal junctions between 

ducts and acinar lobules. The lobules in these cases representing areas of acinar to ductal 

metaplasia. Upon further investigation we found that nearly a third of PanINs exhibited 

both phenotypes, with regions of growth within both more proximal pancreatic ducts and 

more distally as the ducts merged with acini. Our analysis suggests that the structural 

appearance of PanIN mirrors the appearance of the tissue it develops within. Tubular  

PanINs resemble the shape of pancreatic ducts, while lobular PanINs take on the 

architecture of acinar lobules. While it is known that PanIN can extend from the ductal 

epithelium to foci of acinar to ductal metaplasia,(33, 34) our analysis suggests that this 

involvement of the acinar tissue affects the 3D organization of the precursor.  

These findings emphasize that the dramatic, volumetric changes to the 

organization of pancreas tissue brought on by development of precancers and invasive 

cancers are large – when analyzing changes with development of pancreatic cancer, we 

observed decreases to overall cell density, decreases to ρlocal for many tissue subtypes, 

increase in regions of acinar atrophy and ECM deposition, and complex 3D morphological 

phenomena occurring on cm-scale.   
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Collagen alignment in tissue is a fundamentally 3D concept  

The layer of ECM that surrounds normal pancreatic ducts is called the ductal submucosa 

and can be clearly observed in 3D renderings of pancreatic ductal structure in the S01-

Normal sample (Figure 4A). Analysis of the tissue composition of the immediate 

surroundings (within 50m) of the cancer of sample S04-PDAC showed that  85% of the 

surrounding tissue was ECM compared to 75% around PanIN and 65% around normal 

ductal epithelium (Figure 2D). This calculation, along with the identification of a 3mm 

growth of cancer along the outside of a normal duct (Figure 2C) showed that the 

progression and invasion of PDAC is strongly associated with the ECM. 
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Previous studies have shown that ECM alignment has a role in mediating PDAC 

invasion, and that patients with highly aligned desmoplastic stroma surrounding 

pancreatic cancer have a worse prognosis than patients with poorly aligned desmoplastic 

stroma.(35-37) Having observed the growth of invasive pancreatic cancer parallel to non-

neoplastic pancreatic ducts, we further examined apparent ECM alignment on histological 

sections in the ductal submucosa as a function of the orientation of the pancreatic duct in 

3D. Navigating the 3D renderings of the ductal epithelium in three samples (S01-Normal, 

S02-PanIN, and S04-PDAC), we identified coordinates where the ductal submucosa was 

cut at two extremes: perpendicular to the long axis of the duct (axially-sectioned), or 

parallel to the long axis of the duct (longitudinally-sectioned). We located the identified 

3D coordinates on the original, serially-sectioned histology images, collecting samples of 

a total of 18 ducts sectioned axially or longitudinally. 

As expected, the periductal fibroblasts in ducts sectioned longitudinally were highly 

elongated in appearance compared to their round shape in axially-sectioned ducts (Figure 

4A). Strikingly, we found that collagen fibers were visibly more aligned and elongated in 

longitudinal cross-sections than in axial cross-sections. Quantification of collagen fiber 

alignment using a method described in ref,(38) and calculation of nuclear aspect ratio 

further confirmed this observation showing significant increase in ECM alignment and 

nuclear aspect ratio in longitudinally sectioned ducts (Figure 4B). This finding was 

consistent across three tissue samples. Together, these results show that the ductal 

submucosa is highly aligned, like layers of an onion, along the duct’s axial direction. 

Additionally, the results offer an explanation for the observed pattern of cancer growing 

parallel to pancreatic ducts which fits the accepted model of PDAC growing along regions 

of aligned collagen.(32) These results highlight the importance of 3D analysis as previous 

studies performed in 2D have suggested there is insignificant collagen alignment around 

normal pancreatic ducts.(32, 36) 
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3D relationship between pancreatic cancer and blood vessels  

Cancer intravasation is a known critical step in metastasis. The classical structural view 

of cancer intravasation is that cancer invades through the basement membrane and ECM 

into the vasculature.(39) However, models of the mechanism and extent of pancreatic 

cancer intravasation are hindered by their lack of quantification of large, 3D, in situ 

environments.  CODA presents a direct way to visualize and quantify cancer intravasation 

at the cm and single-cell scale in situ.   

We examined how PDAC is associated with vasculature in two large samples 

comprising the leading edge of poorly differentiated pancreatic cancer (S04-PDAC) and 

the bulk tumor region of poorly differentiated pancreatic cancer (S05-PDAC) in situ 

(Figure 5A). In S04-PDAC, we detected no clear patterns of cancer involvement with the 

vasculature, instead observing a large cancer mass with small blood vessels running 

throughout it (Figure 5B). We could observe no sign of cancer intravisation, and, due to 

the cancer’s high density in the area around the blood vessels, could not observe 

apparent correlations between cancer growth and blood vessel orientation. Conversely, 

in S05-PDAC sample, review of 2D sections by an expert pancreatic pathologist revealed 

an area of venous invasion (Figure 5C, Supplementary Video 6). Reconstruction of this 

region in 3D shows that the PDAC both surrounded and fully occluded the vein for a 

length of over 1.5 mm, extending out of view off both z-boundaries of the tissue sample. 

We quantified the density of cancer cells as a function of distance from the center of the 

vein, and found that cancer ρbulk within the lumen of the vessel is 6.5x the average global 

cancer cell density. High-resolution H&E images showed small clusters of PDAC cells 

distributed homogeneously within the tunica media of the vessel. Interestingly, we found 

eight separate instances of PDAC breaching the wall of the vein (Figure 5D), suggesting 

that intravasation and extravasation are not single-instance events. 

Further, we counted 35,000 cancer cells growing within the 1.5mm long region of 

the vein (Figure 5E). We found that while cancer ρbulk inside the vein is much higher than 

cancer ρbulk averaged over the entire tissue, cancer cell ρlocal remains constant – here, 

cell density is number of cancer cells normalized by total tissue volume; cancer ρlocal  is  
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number of cancer cells normalized by cancer cell volume. Therefore, even though cancer 

cells are in closer proximity to each other inside the the vein than they are in the bulk of 

the tissue (cell density), the cells individually take up the same amount of volume both 

inside and outside the vein (cell ρlocal), i.e. the higher density of cancer cells inside the 

blood vessel does not force them to pack more tightly than they would outside the blood 

vessel. This finding stresses the importance of investigating vascular invasion in 3D, as 

only by comparing bulk cancer cell density to local cancer cell densityover large volumes 

were we able to note changes to cancer cell organization in the tissue region. 
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Discussion 

In this work, we show multi-labeled 3D reconstructions of human pancreas samples that 

provide highly-detailed structural insight of pancreatic cancer tumorogenesis within five 

large patient samples. CODA allows well-quantified study of in situ cancer progression at 

cm-scale with m and single-cell resolution. We showed that many disconnected PDAC 

precursor lesions can develop within cm-scale regions of a tissue sample, and that 

neoplastic ρlocal is independent of precursor volume or 3D structural phenotype. In a single 

sample at the leading edge of PDAC, we found that the cancer extended furthest from 

the central tumor along existing, well-aligned ECM structures such as those surrounding 

pancreatic ducts. We emphasized the need for 3D insight in digital pathology research 

through quantification of collagen alignment in pancreatic ducts cut at different angles. 

Overall, we demonstrate that CODA provides a powerful alternative to tissue clearing for 

study of 3D tissue microarchitecture.   

Tissue clearing is a popular approach for the study of 3D tissues, wherein intact 

samples are rendered semi-transparent, stained, and imaged using confocal or light-

sheet microscopy.(11-16, 40) Tissue clearing techniques have been used to conduct 

landmark scientific research such as the imaging of all cells in a whole mouse brain(11, 

12) and to assess tumor and tumor-associated macrophage heterogeneity in samples 

containing lung carcinoma.(41) Clearing techniques are suitable for analyses requiring 

few labels, as imaging of cleared tissues is often constrained to 1-5 markers per sample, 

with more markers feasible in µm-scale samples and fewer markers feasible in mm-scale 

or whole organ samples;(16, 42) and for experiments where qualitative analyses are 

sufficient, as inconsistent clearing and antibody penetration (especially in stiff, stromal 

tissues such as cancer samples, or in samples of mm or cm scale) makes quantification 

of imaged tissues difficult.(16, 42) For these reasons µm-scale samples and qualitative 

analyses are most common.(42) 

Current serial sectioning methods bypass some of the shortcomings of tissue 

clearing methods, albeit through introduction of new challenges. Serial sectioning 

methods overcome the size limitations and inconsistent staining of tissue clearing by 
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cutting tissue samples into thin (4-5µm) slices that are individually stained and scanned 

– there is potentially no limit to the size of tissue that can be reconstructed, and we show 

success here in reconstructing tissues of >2cm3. However, the act of cutting tissue into 

many thin sections introduces discontinuity to the samples, as sections can warp and fold 

in unpredictable ways, requiring introduction of sophisticated image registration 

techniques. Additionally, many serial sectioning methods rely on additional techniques for 

tissue labelling, including IHC staining, mass spectrometry, and manual annotation.(17, 

18, 21) While these techniques contribute to the complexity and expense of serial 

sectioning methods, they also highlight one of its advantages: that quantification of 

tissues and single cells from histological sections is a popular and successful field of study 

in the scientific community.(24, 27, 43, 44) While groups conducting tissue clearing 

research often must invent new methods of analyzing complex 3D images, serial 

sectioning quantification can take advantage of previously developed 2D computational 

approaches, as serial histological samples can be quantified at the single section level 

and the results extrapolated to the registered digital tissue volume. Thus, while 

quantification of stains is simpler in current serial sectioning methods than it is in tissue 

clearing methods, the acquiring of tissue labels through expensive labelling methods and 

the necessity of sophisticated image registration techniques have hindered the general 

adoption of serial sectioning methods for the study of 3D tissue microarcitecture. 

CODA incorporates nonlinear image registration and deep learning techniques to 

create multi-labelled tissue volumes using H&E images alone, avoiding the need for 

additional stains for tissue labelling. Here we show successful detection of eight 

pancreatic tissue subtypes using H&E images. By making our registered tissue dataset 

publically available, we leave open the possibility that future methods capable of 

distinguishing additional subtypes (such as immune cells or fibroblasts) from H&E 

sections might add additional labels to the samples analyzed here. This knowledge 

transfer is not possible in cleared tissue samples where unlabelled tissues cannot be 

visualized.   Finally, our results demonstrate the ability of CODA to derive quality 3D 

reconstructions while skipping at least two intervening sections. Therefore, future addition 

of IHC labeling, gene mutation, and gene expression imaging to the intervening sections 

can increase the number of labels beyond what is currently discernable in H&E – the 
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number of tissue and molecular phenotypes that CODA can label is a feat that is currently 

unachievable through tissue clearing or current serial sectioning approaches. A true 

“multi-omic” 3D map is now possible. 

Overall, our analysis of cm-scale pancreas samples emphasizes the potential for 

3D assessment to improve our understanding of tumorogenesis. We showed that CODA 

outperforms tissue clearing methods in its ability to create easily quantifiable tissue 

volumes, allowing quantification of deceptively simple concepts such as 3D cell count and 

density, vascular connectivity, tumor branching and morphology, and cm-scale tissue 

heterogeneity. While analogous metrics are routinely used for quantification of cell 

density, spatial correlation, and tumor infiltration in 2D, we show that not only are these 

measures different when measured in 3D, but argue that often 2D correlates are 

fundamentally flawed. For instance, it is impossible to accurately assess the connectivity 

of branching ductal structures such as PanIN and IPMN (which are distinguished by size 

in 2D), as we have shown that complex glandular lumina can present as distinct objects 

separated by centimeters of tissue on single histological sections.  Indeed, the 

heterogeneity of the pancreatic cancer environment dictates that it is impossible for single 

histological sections to accurately represent the complex milieu of cancer cell growth and 

corresponding cell death, desmoplastic tissue development, and immune cell invasion 

within tumor regions. CODA is a powerful complement to previous tissue clearing 

methods and an upgrade to current serial sectioning 3D reconstruction methods as it 

designed with ease-of-quantifiability of these 3D concepts in mind. 
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Materials and Methods 

Tissue acquisition and scanning 

Formalin-fixed, paraffin-embedded samples were sectioned every 4m. Every third tissue 

section was staine using hematoxylin and eosin (H&E), with two sections every three held 

out. All tissues of a single sample were scanned for validation that skipping two sections 

maintained registration and reconstruction accuracy. Tissues were scanned at x20 using 

a Hammamatsu Nanozoomer. 
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Image registration 

Cases contained series of tissue images scanned at 20x, corresponding to approximately 

0.5m/pixel. Openslide software was used to save reduced size copies of each image, 

corresponding to 8m/pixel using nearest neighbor interpolation.(45) For each sample, 

the center image was identified as the point of reference (imagen), and global and elastic 

registration was calculated for all other images in the sample. 

We performed registration on greyscale, Gaussian-filtered, down sampled 

(80m/pixel resolution) versions of the high-resolution histological sections. Global 

registration transformations for a pair of preprocessed tissue images was found through 

iterative calculation of registration angle and translation via maximization of cross-

correlation. Radon transforms of the images taken at discrete angles between 0 and 359 

degrees were calculated. The maximum of the cross correlation of radon transforms of 

the images yielded registration angle, and the maximum of the cross correlation of the 

rotated tissue images yields translation. Elastic registration was obtained by calculating 

rigid registration of cropped image tiles at 1.5-mm intervals across the globally registered 

images at 8m/pixel resolution. The resulting local, rigid registration fields were 

interpolated and smoothed to produce a nonlinear, elastic registration transformation.   

Rigid global registration was performed to sequentially register each imagen+/-m to 

the three next closest images to center, imagen+/-(m+1) imagen+/-(m+2), and imagen+/-(m+3). 

Quality of each of the three global registrations was assessed by comparing pixel-to-pixel 

correlation between the moving and each reference image. The registration with the best 

result was kept and the other two discarded. Following global registration, elastic 

registration was employed between the moving image and chosen reference image to 

create a nonlinear displacement map. This process was repeated for all images in a 

sample such that all images were elastically registered to the coordinate system of the 

center imagen. 
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Identification of cells in histological samples 

First, the hemotoxylin channel of all H&E images was extracted using color deconvolution. 

Openslide software was used to save reduced size copies of all tissue images, 

corresponding to 2m/pixel using nearest neighbor interpolation. For each image, the 

tissue region of the image was identified by finding regions of the image with low green 

channel intensity and high red-green-blue (rgb) standard deviation. Next, rgb channels 

were converted to optical density.  Using kmeans clustering analysis, 100 clusters were 

identified to represent the optical densities of the image. The most common blue-favored 

optical density  was chosen to represent the hemotoxylin channel, and the most common 

red-favored optical density  was chosen to represent the eosin channel. The background 

optical density was fixed as the inverse of the average of the hemotoxylin and eosin 

optical densities. These three optical densities were used to deconvolve the rgb image in 

to hemotoxylin, eosin, and background channel images. Using methods described in 

ref,(23) the hemotoxylin channel images were smoothed, and 2D intensity minima of a 

designated size and distance from each other were identified as nuclei.   

A total of 3 2mmx2mm regions were extracted from each case for validation. For 

each region, cells were manually located using an annotation function built in MATLAB 

2020b. A manually identified cell was considered to be equivalent to an automatically 

detected cell if the coordinates were within 4m of each other (corresponding to 3 pixels 

in the 2m/pixel downsampled images used for cell detection). This validation showed a 

94% consistency between manually and automatically detected cell coordinates. 

 

Deep learning tissue multi-labelling 

A deep learning model was created for each case using manual tissue annotations of that 

sample. Openslide software was used to save reduced size copies of all tissue images, 

corresponding to 2m/pixel using nearest neighbor interpolation. Seven tissue images 

equally spaced within each sample were extracted.  For each of the seven images, we 

manually annotated 50 examples of each identified tissue subtype using Aperio 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 9, 2020. ; https://doi.org/10.1101/2020.12.08.416909doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.08.416909


ImageScope, creating .xml files of annotation coordinates. Annotation coordinates were 

loaded into MATLAB 2020a using publicly available software and were downsampled to 

correctly overlay on the 2m/pixel tissue images.(46) 

In order to reduce the heterogeneity of the H&E images, the H&E stain of all tissue 

images in each case were normalized.  Using the hemotoxylin and eosin channel images 

created for the cell counting analysis and the optical density calculated for a reference 

H&E image from the same case, we reconstructed rgb images of each tissue type to the 

same optical density. Incorporation of image color normalization allowed us to avoid 

catastrophic failure of the semantic segmentation on unannotated images with drastically 

different staining patterns. 

Bounding boxes of all annotations were identified and each annotated rgb image 

region was extracted and saved as a separate image file. A matrix was used to keep track 

of which bounding box images contained with annotation tissue types. Training images 

were built through creation of a 9000x9000x3, zero-value rgb image tile. Annotation 

bounding boxes containing the least represented deep learning class were randomly 

overlaid on the blank image tile until the tile was >65% full of annotations and such that 

the number of pixels of each deep learning class was approximately even. Annotation 

bounding boxes were randomly augmented via rotation, scaling by a random factor 

between 0.8-1.2, and hue augmentation by a factor of 0.8-1.2 in each rgb color channel. 

The 9000x9000x3 image tile was then cut into 324 500x500x3 images. 20 such large 

images were built, half with augmentation, to create 6480 training images, and 5 

additional images were built to create 1620 validation images. 324 testing images were 

created using manual annotations from an image not used for training or validation. 

Following dataset creation, a resnet50 network was adapted for DeepLab v3+ 

semantic segmentation (28) and trained to a validation patience of 5. If 90% tissue 

subtype precision and recall was not obtained, additional manual annotations were added 

to the training images and the process was repeated until desired accuracy was reached. 

Once a satisfactory deep learning model was trained, all tissue images in the sample 
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were semantically segmented to create labelled tissue images with a pixel resolution of 

2m/pixel. 

 

3D reconstruction of samples 

Multi-labelled images created by the DeepLab portion of the CODA pipeline were 

consolidated into a 3D matrix using the H&E image registration results. Similarly, cellular 

coordinates counted on the unregistered histological sections were consolidated into a 

3D cell matrix using the H&E image registration results. 3D renderings of the labelled 

tissue regions were visualized using the patch and isosurface commands in MATLAB 

2020b and using a color scheme with a unique rgb triplet for each tissue subtype. 

Dimensions of rendered tissues were calculated in xy using the pixel resolution of the 

original x20 scanned histological sections (approximately 0.5m/pixel) and using the 

tissue section spacing (4m) in z. The resolution of the 3D renderings was 2m/pixel in 

xy, the resolution used  for image semantic segmentation, and 12m/pixel in z, as only 

one in three tissue sections were used in the analysis. Single cells were visualized within 

the 3D renderings using the scatter3 command in MATLAB 2020b. For all calculations 

performed on the 3D labelled matrices of the tissues, the 3D matrix was subsampled 

using nearest neighbor interpolation from original voxel dimensions of 2x2x12m3/voxel 

to an isotropic 12x12x12m3/voxel.   

 

Construction of z-projections 

The 3D labelled matrices of each patient case were used to construct z-projections of 

each tissue subtype. For each tissue subtype, the pixels of the 3D matrix corresponding 

to that subtype were summed in the z-dimension, creating a projection of the volume on 

the xy axis. The projections were normalized by their maximum and visualized using the 

imagesc command in MATLAB 2020b using the same color scheme created for 

visualization of the 3D tissue. 
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Calculation of tissue spatial associations 

Spatial associations of different tissue subtypes were calculated using these 3D matrices.  

First, a 3D matrix containing the tissue subtype of interest was isolated. Next, the regions 

containing that tissue subtype were dilated to a distance of 48m. Spatial association of 

that tissue subtype to other tissues in the case were calculated as the percentage of each 

tissue subtype present in the dilated region divided by the total volume of the dilated 

region (not including any portion of the dilation that extended outside the tissue volume). 

Calculation of tissue content, bulk cell density, and local cell density  

Tissue content was calculated by counting the total number of voxels in the isotropic 3D 

matrix corresponding to each tissue subtype and dividing those numbers by the total 

number of voxels in the tissue region of the 3D matrix. Cell density of each tissue subtype 

was calculated by combining the tissue subtype data in the multi labelled 3D matrix with 

cell coordinate data in the cell 3D matrix. Cells at each voxel in the cell 3D matrix 

corresponded to the tissue subtype label in the multi labelled 3D matrix (for example, a 

cell is labelled an epithelial cell if the nuclear coordinate was identified in a region labelled 

as epithelium by the deep learning pipeline). Measurements of nuclear diameter were 

used to estimate true 3D cell counts from the 2D cell coordinates. Using Aperio 

ImageScope, 100 nuclei of each tissue subtype were measured for each case. The 

estimated 3D cell count (C3D)  of cells counted on serial histological sections analyzed 

every 3 sectionswas calculated using the formula: 

𝐶3𝐷 =∑ ∑ 𝐶𝑖𝑚𝑎𝑔𝑒
3𝑇

𝑇 + 𝐷𝑠𝑢𝑏𝑡𝑦𝑝𝑒𝑠𝑢𝑏𝑡𝑦𝑝𝑒𝑠𝑖𝑚𝑎𝑔𝑒𝑠
 

where Cimage is the cell count for a given tissue image, T is the thickness of the histological 

section, and Dsubtype is the measured diameter of a nucleas for a tissue subtype. For each 

tissue subtype, bulk 3D cell density was calculated by dividing the 3D extrapolated cell 

count of a particular subtype divided by the total volume of the tissue. Local 3D cell density 

was calculated by dividing the 3D extrapolated cell count of a particular subtype divided 

by the volume of that particular tissue subtype.   
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Determination of tissue connectivity and of spatially distinct precursor lesions  

The 3D multi labelled matrices were used to determine tissue connectivity. Following 

classification, all objects labelled as pancreatic precancers lesions or pancreatic cancer 

were visually verified to be precancers by inspection of the histology. Independent 

precursors were identified in the 3D multi labelled matrix using the bwlabeln command in 

MATLAB 2020b. bwlabeln identifies and labels spatially distinct objects in matrices. We 

calculated connectivity using bwlabeln on both the precancers alone and the precancers 

plus the normal ductal epithelium. Distinct precancers and cancers identified using 

bwlabeln could then be quantitatively analyzed or 3D rendered independently from other 

precancers. 

 

Calculation of collagen fiber alignment and fibroblast aspect ratio  

Using the 3D renderings of the pancreatic ductal epithelium, we identified six regions 

comprising three axially and three longitudinally sectioned regions of the ducts in three 

cases. We located the 2D histological sections using 3D coordinates of the identified 

regions and cropped the region of interest from the corresponding 20x H&E images. We 

applied the color deconvolution method described above to the cropped 20x H&E image 

to separate the hematoxylin and eosin channels. We measured the alignment index of 

the eosin channel to compare the degree of collagen alignment in axially and 

longitudinally sectioned regions of the ducts. Alignment index is measured using the 

method described in ref.(38) An alignment index of one represents completely aligned 

matrix of fibers and an alignment index of zero represents an isotropic matrix of fibers. 

We measured the alignment index at 10 locations of each cropped image. We found each 

location contained an average of approximately eight cells. We manually measured the 

length of major and minor axis of nuclei in the ductal submucosa to calculate aspect ratios 

using ImageJ. In total, we measured 1546 nuclei. Violin plots were constructed from data 

using code available in ref. (47) 
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Calculation of 3D radial density  

3D radial density of tissue subtypes and cells was calculated using the multi labelled and 

cell coordinate 3D matrices. First, a region of interest was identified in the 3D multi 

labelled matrix. A logical 3D matrix was created containing only this region. Next, dilations 

of a predefined step size (such as 12m) were performed. For each dilation, the number 

of cells and percent of each tissue subtype present in the dilation were calculated and 

normalized by the total volume of the dilation. A scatter plot was created with normalized 

tissue subtype or cell density on the y axis and distance from the region of interest on the 

x axis. 
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Supplementary Tables 

Case 

# sections  

(1/3 analyzed) Sex 
Age at 
Surgery Race Location Size (cm) Final Diagnosis of Patient 

S01-Normal 1383 F 40 Caucasian Tail 1.5 Serous cystagenoma 

S02-PanIN 1239 M 67 Caucasian Tail 2.5 Intermediate grade IPMN 

S03-IPMN 1491 M 77 Caucasian Head 1 Moderately differentiated adenocarcinoma 

S04-PDAC 5196 M 60 Caucasian Head 3.5 Poorly differentiated adenocarcinoma 

S05-PDAC 381 F 68 Caucasian Head 3.4 Poorly differentiated adenocarcinoma 

 

  

Supplementary Table 1 | Patient Case information. Information about pancreas tissue samples 

analyzed.  Tissues analyzed were adjacent normal, precancerous, or cancerous regions of human 

pancreas excised for clinical diagnosis. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 9, 2020. ; https://doi.org/10.1101/2020.12.08.416909doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.08.416909


Supplementary Figures 
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