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Abstract

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest forms of cancer.
Accumulating evidence indicates the tumor microenvironment is highly associated with
tumorigenesis through regulation of cellular physiology, signaling systems, and gene
expression profiles of cancer cells. Yet the mechanisms by which the microenvironment
evolves from normal pancreas architecture to precursor lesions and invasive cancer is
poorly understood. Obtaining high-content and high-resolution information from a
complex tumor microenvironment in large volumetric landscapes represents a key
challenge in the field of cancer biology. To address this challenge, we established a novel
method to reconstruct three-dimensional (3D) centimeter-scale tissues containing billions
of cells from serially sectioned histological samples, utilizing deep learning approaches
to recognize eight distinct tissue subtypes from hematoxylin and eosin stained sections
at micrometer and single-cell resolution. Using samples from a range of normal,
precancerous, and invasive pancreatic cancer tissue, we map in 3D modes of cancer
invasion in the tumor microenvironment, and emphasize the need for further 3D
guantification of biological systems.
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Introduction

The growth and spread of invasive cancer, and the relationship of invasive cancers to
pre-existing structures such as vessels, nerves, and ducts, is best understood through
accurate three dimensional (3D) representations.(1-3) Pancreatic ductal adenocarcinoma
(PDAC) is one of the deadliest forms of cancer, with a 5-year survival rate of only 9%.(4)
PDAC arises from well-characterized precursor lesions in the pancreatic ducts, is
surrounded by an immunosuppressive desmoplastic stroma, and has a proclivity for
vascular invasion and metastasis to the liver.(5) These biological factors are insufficiently
understood when studied in two dimensions (2D), as it is difficult if not impossible to infer
information such as connectivity and 3D cell density and morphology from 2D media.
Therefore, increased knowledge of the 3D microenvironment of the pancreas and
changes to this microenvironment with progressive tumorigenesis will lead to a better
understanding of the underlying biology of pancreatic cancer. While many surrogates for
studying tumorigenesis in 3D have been developed in vitro and in vivo, (6-10) quantitative
3D study of naturally occurring cancers in human tissues (cancer in situ) is generally
lacking. Data derived from analyses of cancer within large 3D human tissue samples, in
particular, have the potential to significantly increase our knowledge of the human tumor

microenvironment.

Recent advances in tissue clearing techniques have been employed to explore
human diseases in 3D.(11-16) In pancreatic cancer, tissue clearing has been used to
show that sustained epithelial-to-mesenchymal transition is not required for vascular
invasion.(2) However, inconsistent clearing and poor antibody penetration into the dense
desmoplastic stroma that characterizes PDAC, as well as limits on the size of tissues that
can be successfully cleared, hinder the power of tissue clearing techniques when applied
to pancreatic cancer.(13, 16) The reconstruction of serial, hematoxylin and eosin (H&E)
stained sections has also been implemented to study disease in 3D.(17-19) Though time-
consuming manual annotations or costly immunohistochemical (IHC) labeling or mass
spectrometry has been introduced to identify biological components in 3D,(17, 18) the
costs and time associated with labelling cellular and structural bodies in serial sections

largely limits its applicability.
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Here, we demonstrate a novel method for the 3D reconstruction and quantification
of large tissue volumes at single-cell resolution, which we name CODA. CODA digitally
reconstructs 3D tissues from scanned, serially sectioned H&E tissue sections using
image registration techniques. The method incorporates deep learning semantic
segmentation to label eight distinct tissue types of the human pancreas without
incorporation of additional stains. CODA is also capable of single-cell analysis and is
utilized here to quantify in 3D cellular content and spatial distributions amongst different
non-neoplastic and neoplastic tissue types, information that is important in the design of
early detection tests.(20) With CODA, we analyzed normal pancreas tissue and pancreas
tissue containing cancer precursors and PDAC in tissues of cm-dimension and um-

resolution. We derived detailed 3D insight of PDAC development and progression in situ.

Results
CODA: 3D reconstruction and labelling of serial histological sections

To study pancreatic cancer invasion, we identified a human pancreas sample (S04-
PDAC) containing poorly differentiated infiltrating ductal adenocarcinoma immediately
adjacent to a large region of grossly normal pancreas (Supplementary Table 1). The
formalin-fixed paraffin-embedded sample was serially sectioned every 4um. Sections
were stained with H&E and digitized at 20x magnification, providing x and y (lateral)
resolution of 0.5um and z (axial) resolution of 4um (Figure 1A). We developed CODA, a
workflow for the digital reconstruction of these serial tissue images into a high-resolution,
multi-labelled tissue volume amenable to the extraction of high-content cellular and non-

cellular information.

First, the independent serial images were mapped to a common coordinate system
using image registration. Tissue sections were coarsely aligned using whole field affine
registration. However, reconstruction of serial histological sections is complicated by the
malleability of tissue, which unpredictably stretches, folds, and splits to produce

nonuniform deformation between z-planes.(21) Therefore, we further applied an elastic
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Figure 1 | CODA. A Human pancreatic tissue is formalin fixed, paraffin embedded (FFPE), serially-
sectioned, stained, and scanned at high resolution. B Tissue images are registered to create a digital
volume. Correlation of tissue image intensity in the xy dimension of single tissue sections is used as a
reference for registration quality. Correlation of intensity in the z dimension in unregistered image stacks,
and registered image stacks with different z-resolutions show that we maintain 99% registration quality
with a z resolution of 12um. C Cells are identified using the hematoxylin channel of color deconvolved
images. 2D serial cell counts are corrected using the in-situ measured nuclear diameter of cells in different
tissue bodies. D DeeplLab deep learning semantic segmentation is created using manual annotations of
tissue types which are randomly overlaid on large black tiles for training. Tissue images are then labelled
to a resolution of 2um. E 3D reconstruction of >1000 serially sectioned pancreas tissue. 3D renderings
are created at the cm, mm, and um scale at both the tissue and single cell level.
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registration approach to account for local tissue warping. Elastic registration approaches
compute nonlinear transformations and have been successfully used to register
histological images.(17-19, 22) Uniquely, our approach was developed and optimized for
the registration of pancreas tissue sections and incorporates downsampling to increase
its speed. We found the registration process performs similarly between consecutive
tissue sections or tissue sections up to five z-planes apart (Figure 1B, Supplementary
Figure 1), allowing us to improve the throughput of the workflow by processing only one
in three serial images. Overall, the registration workflow serially aligned the S04-PDAC

tissue sample containing 1,499 serial histological sections in 3 h.

We further established an automated cell detection workflow to locate all nuclei in
each histological section based on color deconvolution and a previously established
algorithm described in ref.(23) During validation, automated cell detection performed
similarly (94% consistency) to manual cell annotation (Figure 1C, Supplementary Figure
2A). In situ diameters of each cell type were measured and incorporated to extrapolate

true 3D cell counts from cell counts on serial 2D z-planes (Supplementary Figure 2B).

To visualize and quantify the architecture of the pancreas, labeling distinct tissue
subtypes in the volume is crucial. Deep learning methods have been successfully used
to identify many structures in H&E images, such as inflammation,(24) cancer cells, (25,
26) and extracellular matrix (ECM).(27) We established a deep learning workflow utilizing
DeeplLab semantic segmentation and a pretrained ResNet50 network (Supplementary
Figure 3A) (28) to label eight pancreas tissue subtypes recognizable by trained
pathologists in H&E images without additional molecular probes. A total of eight tissue
subtypes were identified: normal ductal epithelium, precursors (pancreatic intraepithelial
neoplasia [PanIN] or intraductal papillary mucinous neoplasm [IPMN]), PDAC, smooth
muscle & nerves, acini, fat, ECM, and islets of Langerhans (Figure 1D). Importantly, to
increase model accuracy, we create our training dataset by semi-randomly overlaying
extracted annotated regions on a large image, then cutting this large image into many
training and validation images, allowing us to control the heterogeneity of class
appearance in the dataset (Suppelentary Figure 3B). The trained deep learning model
achieved precision and recall of >90% for each class in SO04-PDAC on independent
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testing images (Supplementary Figure 4) and labelled the serial sections at a resolution
of 2um/pixel in 36 h. Registration of the detected cell coordinates and labelled images
allowed us to create cm-scale multi-labelled tissue volumes with um and single cell

resolution which could be easily visualized and analyzed quantitatively.
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Figure 2 | 3D reconstruction of cancerous human pancreas allows quantitation of cancerization of
large duct. A Deep learning training accuracy was assessed using manual annotations of tissue subtypes
and model was iteratively trained until subtype precision and recall of >=90% were obtained. Bulk tissue
subtype volume and cell counts were calculated. B z-projections of classified regions show a normal
pancreatic duct extending from a large cancer mass to an area of acinar atrophy (red arrows). C 3D
reconstruction and sample histology show cancerization of a large duct and a cancer protrusion growing
along a smaller duct. D Quantification of tissues present in 50um surrounding ducts, precancers, and cancer
show ECM surrounds all three tissue subtypes and increases in quantity with progression from normal duct
to precancer to cancer.

3D assessment of pancreatic cancer invasion in situ

The fully labeled reconstructed volume and detected cells allowed us to assess the
dimensions of the sample, composition of tissue subtypes, and number of cells in each
subtype quantitatively (Figure 2A). The S04-PDAC sample had estimated dimensions of

2.7cm x 2.0cm x 0.6cm with a total volume of ~2.2 cm3. The sample contained ~1.1 billion
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cells. Of these, 2.1 million cells (~0.2%) were cancer precursor and ~10.5 million cells

(~1%) were invasive cancer.

We then visualized the landscape of cancer invasion at the leading edge of the
cancer and adjacent normal tissue via z-projections and 3D renderings. The z-projections
of the normal duct and benign spindle shaped cells (vasculature and nerves) showed
well-connected tubular morphology (Figure 2B). The z-projections showed a large mass
of adenocarcinoma located at one side of the tissue sample that had a strong spatial
association with a large normal pancreatic duct. The 3D rendering of PDAC, precursor
lesions, and normal ductal epithelium revealed that this spacial association was in part
because the invasive cancer had infiltrated the ductal epithelium, a process known as
cancerization of the ducts(29) (Figure 2C, Supplementary Video 1). A smaller, non-
neoplastic duct fed into the portion of the duct colonized by the invasive cancer, and this
upstream pancreatic parenchyma was atrophic with acinar drop-out and increased
content of ECM and prominent islets of Langerhans (Figure 2B, red arrows).(30) The
cancer and atrophic region identified using the deep learning 3D reconstruction was
confirmed by manual review of the histology (Figure 2C), validating the 3D reconstruction

and labelling capabilities of CODA.

In addition, we found three small projections of the invasive cancer extending from
the larger tumor into surrounding normal pancreatic tissue, appearing to colocalize
smaller pancreatic ducts. Examination of the 3D rendering revealed that the largest of
these projections surrounded and extended parallel to a pancreatic duct for a distance of
>3mm without invading the epithelial layer (Figure 2C, Supplementary Video 2). This
observation was further confirmed by manual review of the sample histology. Overall, the
visualization of the leading edge of cancer in a large 3D pancreas sample indicates that
invasive cancers can track in the periductal stroma parallel to pre-existing ducts in the

pancreas, as has been hypothesized in 2D.(31, 32)
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Interpatient analysis for exploration of cancer tumorigenesis in 3D

To further investigate 3D patterns in pancreatic cancer tumorigenisis, we characterized
the changes in tissue architecture in four additional tissue samples for a total of five
samples spanning SO01-Normal: normal pancreas; S02-PanIN and S03-IPMN: pancreas
containing precursor lesions PanIN or IPMN; S04-PDAC: pancreas containing invasive
poorly differentiated pancreatic ductal adenocarcinoma with adjacent grossly normal
tissue; and S05-PDAC: pancreas containing invasive poorly-differentiated pancreatic
ductal adenocarcinoma with no adjacent normal tissue (Supplementary Table 1,
Supplementary Videos 3 and 4). Using CODA, we obtained multi-labeled 3D maps of
these tissue samples (Figure 3). Individual deep learning models were trained for each
sample with performance of >90% class precision and recall compared to manual

annotations (Supplementary Figure 4).

Our approaches provide direct 3D visualization of normal pancreas, pancreatic
cancer precursors (PanIN and IPMN), and PDAC at cm-scale with um and single-cell
resolution (Figure 3A). Through quantification of tissue volume and cell count, we were
able to compare overall cell densities between samples. Counterintuitively, we found that
with progression from normal pancreas to cancer precursor to cancer, bulk cell density
(pouk, total number of cells normalized by total tissue volume) decreased. Comparison of
pouik With tissue subtype percentages revealed that tissues containing precursors and
invasive cancers, which had the lowest pwuk, contained the highest percentage of ECM
and lowest percentage of acini (Figure 3B). Markedly, acinar content dropped significantly
from normal (87.0%) in the S04-PDAC case (53.0%), which contains cancer and adjacent
grossly normal tissue, and was nearly absent in both S03-IPMN (1.1%), and S05-PDAC
(0%), as the normal pancreatic parenchyma in these samples was entirely atrophic. ECM
content was highest (87.4%) in the case of extensive infiltrating PDAC (S05-PDAC)
compared to SO1-Normal pancreas (5.7%). Therefore, although growth of precancerous
and invasive cancer cells implies an increase in cellular content, cocurrent acinar atrophy
and the laying down of desmoplasic stroma and connective tissue result in an overall

decrease in bulk in situ cell density with development of pancreatic cancer.
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Figure 3 | Inter-patient pancreas analysis from cm-scale to single cell resolution. A Bulk tissue
volumes, cell counts, and cell densities for samples containing normal pancreas, precancerous lesions,
and pancreatic ductal adenocarcinoma. B Heatmap showing tissue subtype percentages of tissue
samples. C Table showing local tissue subtype cell densities. D Plot of volume per cluster vs. cells per
cluster for independent precursor and cancerous cell clusters across four tissue samples. Lines of best
fit show that precancer and cancer clusters maintain similar cell density independent of cluster volume.
E 3D renderings and sample histology illustrate two 3D phenotypes of PanIN observed. Tubular PanIN
preserve normal pancreatic ductal morphology, while lobular PanIN resemble clusters of acinarlobules.

In addition to bulk cell density, we utilized local cell density (pioca) for deeper
exploration of these structural changes (Figure 3C). We define pioca as the cell density of
a tissue subtype within the detected volume of that subtype — while calculation of bulk cell
density shows the number of cells in the total tissue volume, pioca allows exploration of
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the closeness or sparseness of tissue subtypes at a local level. We found that piocal
decreased in the acini, islets of Langerhans, ECM, normal ductal epithelium, and
precursor subtypes with progression from normal pancreas to PDAC, suggesting that
these cells are larger or more sparse in cancer precursor and cancerous samples than
they are in the normal sample. Indeed, direct visualization of the histologic slides by a
pancreatic pathologist confirmed that normal ductal epithelial cells appeared larger in the
S04-PDAC sample than in the normal and precancerous cases, and that normal acinar
cells packed more tightly than atrophic acinar cells. Though intuitively one might expect
inflammation in precancerous and cancerous tissues to result in higher pioca in the ECM,
importantly, we found the opposite to be the case. While we observed local regions of
dense inflammatory cells near precursor and cancer cells, cocurrent growth of less-
inflammed ECM as extracellular fibrous connective tissue replaced atrophied acini, and
desmoplastic stroma developed around the cancer resulted in a counterintuitive decrease

in ECM cell density with tumorigenesis.

Structural changes in human pancreas precancers with tumorigenesis

In addition to bulk measurements, we utilized CODA for enumeration of architectural
patterns in the samples. Pancreatic intraepithelial neoplasia by definition involves the
complex branching of the pancreatic duct system. In 2D it can be impossible to discern if
one is observing two separate PanIN lesions or one PanlIN that has branched, or whether
a PanIN occupies a small region of a pancreatic duct or extends for many mm within the
ductal architecture. Readily, we found in 3D that precursors present in a range of volumes,
can be architecturally simple or highly branched, and that many spatially distinct
precursors can develop within cm-scale regions. We identified 37 PanIN lesions in sample
S02-PanIN, 38 precursors in SO03-IPMN, and 13 PanIN lesions in S04-PDAC, varying in
size from 0.013-9.7mm?3 and containing a range of 4,000-3,728,000 cells. Surprisingly,
we found precursor piocal to be relatively constant and independent of volume, with mean
precursor cell density of 404,000+1,000 standard error cells/mm? in sample S02-PanIN

(Figure 3D). Similarly, we found cancer pioca to be independent of tumor volume, with
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mean cancer cell density of 189,000+£300 standard error cells/mm?3 in S05-PDAC, for
cancer cell clusters containing a range of 1-1,500,000 cells. This suggests that pancreatic
cancer precursor and cancerous cells occupy the same amount of space whether they

present in-situ as single cells or within very large tumors.

While assessing 3D connectivity of cancer precursors, we identified two 3D
structural phenotypes of PanIN which we term tubular and lobular (Figure 3E,
Supplementary Video 5). Tubular PanIN lesions appeared as elongated, ductal,
branching structures, while lobular PanIN lesions appeared as clumped, “bunches of
grape-like,” near-solid masses. Review of the corresponding H&E sections by a
pancreatic pathologist revealed that tubular PanINs resided within more proximal
pancreatic ducts, while lobular PanIN lesions resided at the terminal junctions between
ducts and acinar lobules. The lobules in these cases representing areas of acinar to ductal
metaplasia. Upon further investigation we found that nearly a third of PanINs exhibited
both phenotypes, with regions of growth within both more proximal pancreatic ducts and
more distally as the ducts merged with acini. Our analysis suggests that the structural
appearance of PanIN mirrors the appearance of the tissue it develops within. Tubular
PanINs resemble the shape of pancreatic ducts, while lobular PanINs take on the
architecture of acinar lobules. While it is known that PanIN can extend from the ductal
epithelium to foci of acinar to ductal metaplasia,(33, 34) our analysis suggests that this

involvement of the acinar tissue affects the 3D organization of the precursor.

These findings emphasize that the dramatic, volumetric changes to the
organization of pancreas tissue brought on by development of precancers and invasive
cancers are large — when analyzing changes with development of pancreatic cancer, we
observed decreases to overall cell density, decreases to piocal fOr many tissue subtypes,
increase in regions of acinar atrophy and ECM deposition, and complex 3D morphological

phenomena occurring on cm-scale.
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Collagen alignment in tissue is a fundamentally 3D concept

The layer of ECM that surrounds normal pancreatic ducts is called the ductal submucosa
and can be clearly observed in 3D renderings of pancreatic ductal structure in the S01-
Normal sample (Figure 4A). Analysis of the tissue composition of the immediate
surroundings (within 50um) of the cancer of sample S04-PDAC showed that 85% of the
surrounding tissue was ECM compared to 75% around PanIN and 65% around normal
ductal epithelium (Figure 2D). This calculation, along with the identification of a 3mm
growth of cancer along the outside of a normal duct (Figure 2C) showed that the

progression and invasion of PDAC is strongly associated with the ECM.
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Figure 4 | 3D rendering of pancreatic ducts emphasizes 3D nature of measured collagen
alignment. A 3D reconstruction of serially sectioned pancreatic ducts allows quantitative analysis of
nuclear momphology and collagen alignment in context of the 3D organ. 18 histological sections which
intersect pancreatic ducts axially or longitudinally were located, consisting of nine axial ducts and nine
longitudinal ducts from three patient samples. Nuclei and collagen fibers were isolated using color
deconvolution. B Axially and longitudinally sectioned ducts were compared to assess collagen
alignment. ECM anisotropy index, representing the alignment of local collagen fibers, was significantly
higher in longitudinal ducts in all three cases, suggesting collagen is measurably straighter in the
longitudinally sectioned ducts. Nuclear aspect ratio was significantly higher in longitudinal ducts in all
three cases, suggesting stromal cells are more elongatedin longitudinally sectioned ducts.
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Previous studies have shown that ECM alignment has a role in mediating PDAC
invasion, and that patients with highly aligned desmoplastic stroma surrounding
pancreatic cancer have a worse prognosis than patients with poorly aligned desmoplastic
stroma.(35-37) Having observed the growth of invasive pancreatic cancer parallel to non-
neoplastic pancreatic ducts, we further examined apparent ECM alignment on histological
sections in the ductal submucosa as a function of the orientation of the pancreatic duct in
3D. Navigating the 3D renderings of the ductal epithelium in three samples (S01-Normal,
S02-PanlIN, and S04-PDAC), we identified coordinates where the ductal submucosa was
cut at two extremes: perpendicular to the long axis of the duct (axially-sectioned), or
parallel to the long axis of the duct (longitudinally-sectioned). We located the identified
3D coordinates on the original, serially-sectioned histology images, collecting samples of

a total of 18 ducts sectioned axially or longitudinally.

As expected, the periductal fibroblasts in ducts sectioned longitudinally were highly
elongated in appearance compared to their round shape in axially-sectioned ducts (Figure
4A). Strikingly, we found that collagen fibers were visibly more aligned and elongated in
longitudinal cross-sections than in axial cross-sections. Quantification of collagen fiber
alignment using a method described in ref,(38) and calculation of nuclear aspect ratio
further confirmed this observation showing significant increase in ECM alignment and
nuclear aspect ratio in longitudinally sectioned ducts (Figure 4B). This finding was
consistent across three tissue samples. Together, these results show that the ductal
submucosa is highly aligned, like layers of an onion, along the duct’s axial direction.
Additionally, the results offer an explanation for the observed pattern of cancer growing
parallel to pancreatic ducts which fits the accepted model of PDAC growing along regions
of aligned collagen.(32) These results highlight the importance of 3D analysis as previous
studies performed in 2D have suggested there is insignificant collagen alignment around
normal pancreatic ducts.(32, 36)


https://doi.org/10.1101/2020.12.08.416909

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.08.416909; this version posted December 9, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

3D relationship between pancreatic cancer and blood vessels

Cancer intravasation is a known critical step in metastasis. The classical structural view
of cancer intravasation is that cancer invades through the basement membrane and ECM
into the vasculature.(39) However, models of the mechanism and extent of pancreatic
cancer intravasation are hindered by their lack of quantification of large, 3D, in situ
environments. CODA presents a direct way to visualize and quantify cancer intravasation

at the cm and single-cell scale in situ.

We examined how PDAC is associated with vasculature in two large samples
comprising the leading edge of poorly differentiated pancreatic cancer (S04-PDAC) and
the bulk tumor region of poorly differentiated pancreatic cancer (S05-PDAC) in situ
(Figure 5A). In S04-PDAC, we detected no clear patterns of cancer involvement with the
vasculature, instead observing a large cancer mass with small blood vessels running
throughout it (Figure 5B). We could observe no sign of cancer intravisation, and, due to
the cancer’s high density in the area around the blood vessels, could not observe
apparent correlations between cancer growth and blood vessel orientation. Conversely,
in SO5-PDAC sample, review of 2D sections by an expert pancreatic pathologist revealed
an area of venous invasion (Figure 5C, Supplementary Video 6). Reconstruction of this
region in 3D shows that the PDAC both surrounded and fully occluded the vein for a
length of over 1.5 mm, extending out of view off both z-boundaries of the tissue sample.
We quantified the density of cancer cells as a function of distance from the center of the
vein, and found that cancer pouk Within the lumen of the vessel is 6.5x the average global
cancer cell density. High-resolution H&E images showed small clusters of PDAC cells
distributed homogeneously within the tunica media of the vessel. Interestingly, we found
eight separate instances of PDAC breaching the wall of the vein (Figure 5D), suggesting

that intravasation and extravasation are not single-instance events.

Further, we counted 35,000 cancer cells growing within the 1.5mm long region of
the vein (Figure 5E). We found that while cancer pouik inside the vein is much higher than
cancer pouk averaged over the entire tissue, cancer cell pioca remains constant — here,

cell density is number of cancer cells normalized by total tissue volume; cancer piocal IS
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Figure 5 | Analysis of relation of cancer to blood vessels reveals inter-patient heterogeneity. The
relationship between PDAC and smooth muscle was compared between the S04-PDAC and S05-PDAC
samples. A Z-projections and 3D reconstruction overlays of cancer and smooth muscle were created.
Analysis of blood vessels in the S04-PDAC sample showed little spatial association with cancer, while a
large region of venous invasion was found in S05-PDAC. B Small blood vessels were observed within
the cancerous region of S04-PDAC, but no obvious alignment or invasion was observed. C Venous
invasion in sample S05-PDAC was isolated, 3D reconstructed, and quantified. Cancer bulk cell density
was high inside the lumen of the vein and steeply dropped off at the vessel wall and within the tissue
outside the vessel. D Cancer detected to be breaching the vein was detected in the volume and verified
at nine instances on histological sections. E Bulk and local cancer cell density were quantified within the
vein and within the entire tissue. Bulk cell density is cancer cell count normalized by the entire volume of
the vein lumen, while local cell density is cancer cell count normalized by cancer cell volume within the
lumen. Bulk cell density was found to be 6.5x greater inside the vessel than the global tissue, while local
cell densities inside and outside the vessel were similar, suggesting cancer cells are in closer proximity
to one anotherinside the vessel, but that they occupy a similar volume inside and outside the vessel.

number of cancer cells normalized by cancer cell volume. Therefore, even though cancer
cells are in closer proximity to each other inside the the vein than they are in the bulk of
the tissue (cell density), the cells individually take up the same amount of volume both
inside and outside the vein (cell pica), i.€. the higher density of cancer cells inside the
blood vessel does not force them to pack more tightly than they would outside the blood
vessel. This finding stresses the importance of investigating vascular invasion in 3D, as
only by comparing bulk cancer cell density to local cancer cell densityover large volumes

were we able to note changes to cancer cell organization in the tissue region.
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Discussion

In this work, we show multi-labeled 3D reconstructions of human pancreas samples that
provide highly-detailed structural insight of pancreatic cancer tumorogenesis within five
large patient samples. CODA allows well-quantified study of in situ cancer progression at
cm-scale with um and single-cell resolution. We showed that many disconnected PDAC
precursor lesions can develop within cm-scale regions of a tissue sample, and that
neoplastic piocal is independent of precursor volume or 3D structural phenotype. In a single
sample at the leading edge of PDAC, we found that the cancer extended furthest from
the central tumor along existing, well-aligned ECM structures such as those surrounding
pancreatic ducts. We emphasized the need for 3D insight in digital pathology research
through quantification of collagen alignment in pancreatic ducts cut at different angles.
Overall, we demonstrate that CODA provides a powerful alternative to tissue clearing for

study of 3D tissue microarchitecture.

Tissue clearing is a popular approach for the study of 3D tissues, wherein intact
samples are rendered semi-transparent, stained, and imaged using confocal or light-
sheet microscopy.(11-16, 40) Tissue clearing techniques have been used to conduct
landmark scientific research such as the imaging of all cells in a whole mouse brain(11,
12) and to assess tumor and tumor-associated macrophage heterogeneity in samples
containing lung carcinoma.(41) Clearing techniques are suitable for analyses requiring
few labels, as imaging of cleared tissues is often constrained to 1-5 markers per sample,
with more markers feasible in pum-scale samples and fewer markers feasible in mm-scale
or whole organ samples;(16, 42) and for experiments where qualitative analyses are
sufficient, as inconsistent clearing and antibody penetration (especially in stiff, stromal
tissues such as cancer samples, or in samples of mm or cm scale) makes quantification
of imaged tissues difficult.(16, 42) For these reasons pm-scale samples and qualitative

analyses are most common.(42)

Current serial sectioning methods bypass some of the shortcomings of tissue
clearing methods, albeit through introduction of new challenges. Serial sectioning

methods overcome the size limitations and inconsistent staining of tissue clearing by
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cutting tissue samples into thin (4-5um) slices that are individually stained and scanned
— there is potentially no limit to the size of tissue that can be reconstructed, and we show
success here in reconstructing tissues of >2cm3. However, the act of cutting tissue into
many thin sections introduces discontinuity to the samples, as sections can warp and fold
in unpredictable ways, requiring introduction of sophisticated image registration
techniques. Additionally, many serial sectioning methods rely on additional techniques for
tissue labelling, including IHC staining, mass spectrometry, and manual annotation.(17,
18, 21) While these techniques contribute to the complexity and expense of serial
sectioning methods, they also highlight one of its advantages: that quantification of
tissues and single cells from histological sections is a popular and successful field of study
in the scientific community.(24, 27, 43, 44) While groups conducting tissue clearing
research often must invent new methods of analyzing complex 3D images, serial
sectioning quantification can take advantage of previously developed 2D computational
approaches, as serial histological samples can be quantified at the single section level
and the results extrapolated to the registered digital tissue volume. Thus, while
guantification of stains is simpler in current serial sectioning methods than it is in tissue
clearing methods, the acquiring of tissue labels through expensive labelling methods and
the necessity of sophisticated image registration techniques have hindered the general

adoption of serial sectioning methods for the study of 3D tissue microarcitecture.

CODA incorporates nonlinear image registration and deep learning techniques to
create multi-labelled tissue volumes using H&E images alone, avoiding the need for
additional stains for tissue labelling. Here we show successful detection of eight
pancreatic tissue subtypes using H&E images. By making our registered tissue dataset
publically available, we leave open the possibility that future methods capable of
distinguishing additional subtypes (such as immune cells or fibroblasts) from H&E
sections might add additional labels to the samples analyzed here. This knowledge
transfer is not possible in cleared tissue samples where unlabelled tissues cannot be
visualized. Finally, our results demonstrate the ability of CODA to derive quality 3D
reconstructions while skipping at least two intervening sections. Therefore, future addition
of IHC labeling, gene mutation, and gene expression imaging to the intervening sections

can increase the number of labels beyond what is currently discernable in H&E — the
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number of tissue and molecular phenotypes that CODA can label is a feat that is currently
unachievable through tissue clearing or current serial sectioning approaches. A true

“‘multi-omic” 3D map is now possible.

Overall, our analysis of cm-scale pancreas samples emphasizes the potential for
3D assessment to improve our understanding of tumorogenesis. We showed that CODA
outperforms tissue clearing methods in its ability to create easily quantifiable tissue
volumes, allowing quantification of deceptively simple concepts such as 3D cell count and
density, vascular connectivity, tumor branching and morphology, and cm-scale tissue
heterogeneity. While analogous metrics are routinely used for quantification of cell
density, spatial correlation, and tumor infiltration in 2D, we show that not only are these
measures different when measured in 3D, but argue that often 2D correlates are
fundamentally flawed. For instance, it is impossible to accurately assess the connectivity
of branching ductal structures such as PanIN and IPMN (which are distinguished by size
in 2D), as we have shown that complex glandular lumina can present as distinct objects
separated by centimeters of tissue on single histological sections. Indeed, the
heterogeneity of the pancreatic cancer environment dictates that it is impossible for single
histological sections to accurately represent the complex milieu of cancer cell growth and
corresponding cell death, desmoplastic tissue development, and immune cell invasion
within tumor regions. CODA is a powerful complement to previous tissue clearing
methods and an upgrade to current serial sectioning 3D reconstruction methods as it

designed with ease-of-quantifiability of these 3D concepts in mind.
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Materials and Methods

Tissue acquisition and scanning

Formalin-fixed, paraffin-embedded samples were sectioned every 4um. Every third tissue
section was staine using hematoxylin and eosin (H&E), with two sections every three held
out. All tissues of a single sample were scanned for validation that skipping two sections
maintained registration and reconstruction accuracy. Tissues were scanned at x20 using

a Hammamatsu Nanozoomer.
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Image registration

Cases contained series of tissue images scanned at 20x, corresponding to approximately
0.5um/pixel. Openslide software was used to save reduced size copies of each image,
corresponding to 8um/pixel using nearest neighbor interpolation.(45) For each sample,
the center image was identified as the point of reference (imagen), and global and elastic

registration was calculated for all other images in the sample.

We performed registration on greyscale, Gaussian-filtered, down sampled
(80um/pixel resolution) versions of the high-resolution histological sections. Global
registration transformations for a pair of preprocessed tissue images was found through
iterative calculation of registration angle and translation via maximization of cross-
correlation. Radon transforms of the images taken at discrete angles between 0 and 359
degrees were calculated. The maximum of the cross correlation of radon transforms of
the images yielded registration angle, and the maximum of the cross correlation of the
rotated tissue images yields translation. Elastic registration was obtained by calculating
rigid registration of cropped image tiles at 1.5-mm intervals across the globally registered
images at 8um/pixel resolution. The resulting local, rigid registration fields were

interpolated and smoothed to produce a nonlinear, elastic registration transformation.

Rigid global registration was performed to sequentially register each imagen+.-m to
the three next closest images to center, imagen+.-(m+1) imagen+-m+2), and imagen+.-m+3).
Quality of each of the three global registrations was assessed by comparing pixel-to-pixel
correlation between the moving and each reference image. The registration with the best
result was kept and the other two discarded. Following global registration, elastic
registration was employed between the moving image and chosen reference image to
create a nonlinear displacement map. This process was repeated for all images in a
sample such that all images were elastically registered to the coordinate system of the

center imagen.
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Identification of cells in histological samples

First, the hemotoxylin channel of all H&E images was extracted using color deconvolution.
Openslide software was used to save reduced size copies of all tissue images,
corresponding to 2um/pixel using nearest neighbor interpolation. For each image, the
tissue region of the image was identified by finding regions of the image with low green
channel intensity and high red-green-blue (rgb) standard deviation. Next, rgb channels
were converted to optical density. Using kmeans clustering analysis, 100 clusters were
identified to represent the optical densities of the image. The most common blue-favored
optical density was chosen to represent the hemotoxylin channel, and the most common
red-favored optical density was chosen to represent the eosin channel. The background
optical density was fixed as the inverse of the average of the hemotoxylin and eosin
optical densities. These three optical densities were used to deconvolve the rgb image in
to hemotoxylin, eosin, and background channel images. Using methods described in
ref,(23) the hemotoxylin channel images were smoothed, and 2D intensity minima of a
designated size and distance from each other were identified as nuclei.

A total of 3 2mmx2mm regions were extracted from each case for validation. For
each region, cells were manually located using an annotation function built in MATLAB
2020b. A manually identified cell was considered to be equivalent to an automatically
detected cell if the coordinates were within 4um of each other (corresponding to 3 pixels
in the 2um/pixel downsampled images used for cell detection). This validation showed a

94% consistency between manually and automatically detected cell coordinates.

Deep learning tissue multi-labelling

A deep learning model was created for each case using manual tissue annotations of that
sample. Openslide software was used to save reduced size copies of all tissue images,
corresponding to 2um/pixel using nearest neighbor interpolation. Seven tissue images
equally spaced within each sample were extracted. For each of the seven images, we
manually annotated 50 examples of each identified tissue subtype using Aperio
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ImageScope, creating .xml files of annotation coordinates. Annotation coordinates were
loaded into MATLAB 2020a using publicly available software and were downsampled to

correctly overlay on the 2um/pixel tissue images.(46)

In order to reduce the heterogeneity of the H&E images, the H&E stain of all tissue
images in each case were normalized. Using the hemotoxylin and eosin channel images
created for the cell counting analysis and the optical density calculated for a reference
H&E image from the same case, we reconstructed rgh images of each tissue type to the
same optical density. Incorporation of image color normalization allowed us to avoid
catastrophic failure of the semantic segmentation on unannotated images with drastically

different staining patterns.

Bounding boxes of all annotations were identified and each annotated rgb image
region was extracted and saved as a separate image file. A matrix was used to keep track
of which bounding box images contained with annotation tissue types. Training images
were built through creation of a 9000x9000x3, zero-value rgb image tile. Annotation
bounding boxes containing the least represented deep learning class were randomly
overlaid on the blank image tile until the tile was >65% full of annotations and such that
the number of pixels of each deep learning class was approximately even. Annotation
bounding boxes were randomly augmented via rotation, scaling by a random factor
between 0.8-1.2, and hue augmentation by a factor of 0.8-1.2 in each rgb color channel.
The 9000x9000x3 image tile was then cut into 324 500x500x3 images. 20 such large
images were built, half with augmentation, to create 6480 training images, and 5
additional images were built to create 1620 validation images. 324 testing images were

created using manual annotations from an image not used for training or validation.

Following dataset creation, a resnet50 network was adapted for DeepLab v3+
semantic segmentation (28) and trained to a validation patience of 5. If 90% tissue
subtype precision and recall was not obtained, additional manual annotations were added
to the training images and the process was repeated until desired accuracy was reached.

Once a satisfactory deep learning model was trained, all tissue images in the sample
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were semantically segmented to create labelled tissue images with a pixel resolution of

2um/pixel.

3D reconstruction of samples

Multi-labelled images created by the DeeplLab portion of the CODA pipeline were
consolidated into a 3D matrix using the H&E image registration results. Similarly, cellular
coordinates counted on the unregistered histological sections were consolidated into a
3D cell matrix using the H&E image registration results. 3D renderings of the labelled
tissue regions were visualized using the patch and isosurface commands in MATLAB
2020b and using a color scheme with a unique rgb triplet for each tissue subtype.
Dimensions of rendered tissues were calculated in xy using the pixel resolution of the
original x20 scanned histological sections (approximately 0.5um/pixel) and using the
tissue section spacing (4um) in z. The resolution of the 3D renderings was 2um/pixel in
Xy, the resolution used for image semantic segmentation, and 12um/pixel in z, as only
one in three tissue sections were used in the analysis. Single cells were visualized within
the 3D renderings using the scatter3 command in MATLAB 2020b. For all calculations
performed on the 3D labelled matrices of the tissues, the 3D matrix was subsampled
using nearest neighbor interpolation from original voxel dimensions of 2x2x12um3/voxel

to an isotropic 12x12x12ums3/voxel.

Construction of z-projections

The 3D labelled matrices of each patient case were used to construct z-projections of
each tissue subtype. For each tissue subtype, the pixels of the 3D matrix corresponding
to that subtype were summed in the z-dimension, creating a projection of the volume on
the xy axis. The projections were normalized by their maximum and visualized using the
imagesc command in MATLAB 2020b using the same color scheme created for

visualization of the 3D tissue.
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Calculation of tissue spatial associations

Spatial associations of different tissue subtypes were calculated using these 3D matrices.
First, a 3D matrix containing the tissue subtype of interest was isolated. Next, the regions
containing that tissue subtype were dilated to a distance of 48um. Spatial association of
that tissue subtype to other tissues in the case were calculated as the percentage of each
tissue subtype present in the dilated region divided by the total volume of the dilated
region (not including any portion of the dilation that extended outside the tissue volume).

Calculation of tissue content, bulk cell density, and local cell density

Tissue content was calculated by counting the total number of voxels in the isotropic 3D
matrix corresponding to each tissue subtype and dividing those numbers by the total
number of voxels in the tissue region of the 3D matrix. Cell density of each tissue subtype
was calculated by combining the tissue subtype data in the multi labelled 3D matrix with
cell coordinate data in the cell 3D matrix. Cells at each voxel in the cell 3D matrix
corresponded to the tissue subtype label in the multi labelled 3D matrix (for example, a
cellis labelled an epithelial cell if the nuclear coordinate was identified in a region labelled
as epithelium by the deep learning pipeline). Measurements of nuclear diameter were
used to estimate true 3D cell counts from the 2D cell coordinates. Using Aperio
ImageScope, 100 nuclei of each tissue subtype were measured for each case. The
estimated 3D cell count (Csp) of cells counted on serial histological sections analyzed

every 3 sectionswas calculated using the formula:

3T
C3p = Cimage T+D
images subtypes + subtype

where Cimage IS the cell count for a given tissue image, T is the thickness of the histological
section, and Dsuntype iS the measured diameter of a nucleas for a tissue subtype. For each
tissue subtype, bulk 3D cell density was calculated by dividing the 3D extrapolated cell
count of a particular subtype divided by the total volume of the tissue. Local 3D cell density
was calculated by dividing the 3D extrapolated cell count of a particular subtype divided

by the volume of that particular tissue subtype.
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Determination of tissue connectivity and of spatially distinct precursor lesions

The 3D multi labelled matrices were used to determine tissue connectivity. Following
classification, all objects labelled as pancreatic precancers lesions or pancreatic cancer
were visually verified to be precancers by inspection of the histology. Independent
precursors were identified in the 3D multi labelled matrix using the bwlabeln command in
MATLAB 2020b. bwlabeln identifies and labels spatially distinct objects in matrices. We
calculated connectivity using bwlabeln on both the precancers alone and the precancers
plus the normal ductal epithelium. Distinct precancers and cancers identified using
bwlabeln could then be quantitatively analyzed or 3D rendered independently from other

precancers.

Calculation of collagen fiber alignment and fibroblast aspect ratio

Using the 3D renderings of the pancreatic ductal epithelium, we identified six regions
comprising three axially and three longitudinally sectioned regions of the ducts in three
cases. We located the 2D histological sections using 3D coordinates of the identified
regions and cropped the region of interest from the corresponding 20x H&E images. We
applied the color deconvolution method described above to the cropped 20x H&E image
to separate the hematoxylin and eosin channels. We measured the alignment index of
the eosin channel to compare the degree of collagen alignment in axially and
longitudinally sectioned regions of the ducts. Alignment index is measured using the
method described in ref.(38) An alignment index of one represents completely aligned
matrix of fibers and an alignment index of zero represents an isotropic matrix of fibers.
We measured the alignment index at 10 locations of each cropped image. We found each
location contained an average of approximately eight cells. We manually measured the
length of major and minor axis of nuclei in the ductal submucosa to calculate aspect ratios
using ImagelJ. In total, we measured 1546 nuclei. Violin plots were constructed from data

using code available in ref. (47)
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Calculation of 3D radial density

3D radial density of tissue subtypes and cells was calculated using the multi labelled and
cell coordinate 3D matrices. First, a region of interest was identified in the 3D multi
labelled matrix. A logical 3D matrix was created containing only this region. Next, dilations
of a predefined step size (such as 12um) were performed. For each dilation, the number
of cells and percent of each tissue subtype present in the dilation were calculated and
normalized by the total volume of the dilation. A scatter plot was created with normalized
tissue subtype or cell density on the y axis and distance from the region of interest on the

X axis.
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Supplementary Tables

# sections
Age at

Case (1/3 analyzed) Sex Surgery  Race Location Size (cm)  Final Diagnosis of Patient
S01-Normal 1383 F 40 Caucasian Tail 1.5  Serous cystagenoma
S02-PanIN 1239 M 67  Caucasian Tall 2.5 Intermediate grade IPMN
S03-IPMN 1491 M 77  Caucasian Head 1 Moderately differentiated adenocarcinoma
S04-PDAC 5196 M 60 Caucasian Head 3.5 Poorly differentiated adenocarcinoma
S05-PDAC 381 F 68 Caucasian Head 3.4 Poorly differentiated adenocarcinoma

Supplementary Table 1 | Patient Case information. Information about pancreas tissue samples
analyzed. Tissues analyzed were adjacent normal, precancerous, or cancerous regions of human
pancreas excised for clinical diagnosis.
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Supplementary Figures

Global registration poirt Filtered fixed image Radon transform 2D cross correlation
of reference [0.260]
C pixels
-60 B
I i
140 (g
+ Local registration interpolated horizontal and Grid representation overlay Past local-registration overlay

points of reference vettical displacement fields of elastic registration results

Supplementary Figure 1 | Histological image registration sample workflow. Sample images to
illustrate image registration methodology. A Tissue cases registered with reference at center z-height
of sample. Example fixed and reference image shown and overlaid. B Global registration performed
with rotational reference at center of fixed image. Fixed and reference images smoothed by
conversion to greyscale, removal of non-tissue objects in image, intensity complementing, and
Gaussian filtering to reduce pixel-level noise in images. Radon transforms calculated filtered fixed and
moving for discrete degrees 0-360. Maximum of 2D cross correlation of radon transforms yields
registration angle. Maximum of 2D cross correlation of filtered images yields registration translation.
Example global registered overlay. C Local registration performed at discrete intervals across fixed
image. For each reference point, tiles are cropped from fixed and moving images and coarse
registration is performed on tiles. Results from all tiles are interpolated on 2D grids to create nonlinear
whole-image displacement fields. Overlay of fixed image and displacement grid exemplifies nonlinear
registration results. Example local registered overlay.
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Supplementary Figure 2 | Validation of cell count and 2D to 3D cell count extrapolation. A
Sample histological section and corresponding color deconvolved outputs representing hematoxylin
and eosin channels of image. For 4mm? tiles, cells were manually and automatically counted for
validation of cell counting algorithm. 94% overlap was achieved between manual and automatic 2D
cell counts B Cell diameters of each tissue subtype were measured using Aperio ImageScope. 2D cell
counts were extrapolated to 3D using the formula listed. It was assumed that cells could be detected by
the algorithm if any part of the nucleus touched the tissue section. Therefore, effective tissue section
thickness equals true tissue section thickness plus the diameter of the cell. 3D cell counts were
estimated by multiplying 2D cell counts by the true thickness of the tissue section, multiplied by three
because two sections were skipped during scanning, divided by the effective thickness of the section.
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Supplementary Figure 3 | Overview of semantic segm entation workflow and training data design.
A For each case, a minimum of seven images were extracted from for manual annotation. For each
extracted image, minimum 50 examples of each tissue type were annotated, and the annotations
cropped from the larger image. B To construct training and validation sets, cropped annotations were
overlayed on a large image until the image was >65% full and such that the number of annotations of
each type was roughly equal. C These large tiles were cut into smaller tiles for training and validation.
Additional tiles were created for the testing set where the annotation was not cropped from the image.
Testing accuracy was assessed as the percentage of the annotated area of the tile classified correctly.
Following model training, the serial images were croppedinto tiles and semantically segmented.
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