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Cell morphology encodes essential information on many underlying biological processes. It is commonly used by clinicians
and researchers in the study, diagnosis, prognosis, and treatment of human diseases. Quantification of cell morphology
has seen tremendous advances in recent years. However, effectively defining morphological shapes and evaluating the
extent of morphological heterogeneity within cell populations remain challenging. Here we present a protocol and
software for the analysis of cell and nuclear morphology from fluorescence or bright-field images using the VAMPIRE
algorithm (https://github.com/kukionfr/VAMPIRE_open). This algorithm enables the profiling and classification of cells
into shape modes based on equidistant points along cell and nuclear contours. Examining the distributions of cell
morphologies across automatically identified shape modes provides an effective visualization scheme that relates cell
shapes to cellular subtypes based on endogenous and exogenous cellular conditions. In addition, these shape mode
distributions offer a direct and quantitative way to measure the extent of morphological heterogeneity within cell
populations. This protocol is highly automated and fast, with the ability to quantify the morphologies from 2D projections
of cells seeded both on 2D substrates or embedded within 3D microenvironments, such as hydrogels and tissues. The
complete analysis pipeline can be completed within 60 minutes for a dataset of ~20,000 cells/2,400 images.

Introduction

Cell morphology is commonly employed by clinicians and researchers in the study, diagnosis,
prognosis, and treatment of human diseases. Fundamentally, cellular morphology represents the
ensemble imprints of highly interactive molecular networks, which include metabolic, proteomic,
epigenomic, and genomic components' °. The coordinated orchestration of these interdependent
cellular programs is critical to properly govern cellular behavior* and ultimately determines cellular
responses to perturbations and stressors, mainly microenvironmental cues”®, biomechanical sti-
muli®'’, and pharmacological treatments'' ™. Advances in high-content imaging®'*'”, image pro-
cessing'®"’, and machine learning'®™*' have greatly improved the throughput and accuracy of cell-
morphological measurements and have bolstered the utility of digital pathology”*™*°, biomarker
identification"*°, and phenotypic screens'>"~*.

Cell morphology is traditionally quantified using a handful of geometric parameters'**’, deli-
neating the size (e.g., area, perimeter) and shape (e.g., shape factor, aspect ratio) of cells and their
corresponding nuclei. These measures are often complemented by fluorescence readouts of protein
expressions, together with intensity patterns and localization within cells. Measuring cell and nuclear
sizes can be readily achieved using open-source software platforms, such as CellProfiler’"”* and
Image]/Fiji’>**. However, defining and quantifying cellular shapes is more complicated.

Classically, shape descriptors, such as shape factor (4mA/P?, where A is the area of the object and
P is the perimeter), aspect ratio (long axis length/short axis length) and eccentricity (see Box 1 for a
glossary of geometric and statistical descriptors), all measure the deviation of the shape of a cell from
that of a circle. While these geometric parameters are geared towards biological simplicity and
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Box 1 | Glossary of geometric and statistical descriptors

Eigenshape vectors—mathematical descriptors used to describe cell shapes based on the principal component
analysis (PCA) of cellular shape features. Once determined, a linear combination of Eigenshape vectors are used
to reconstruct the original shape of each cell.

Shape modes—mathematical descriptors of cell and nuclear shapes based on clustering analysis of user-
generated eigenshape vectors. Once these shape modes are identified, the abundance of cells within each shape
mode is assessed and the entropy to determine the extent of heterogeneity can be computed.

Shannon entropy—a mathematical description used to quantify the degree of diversity within a population of
cells based on the number of shape modes and the abundance of cells within each shape mode. It is given by the
general equation:

S=—=Y pin(p)

S is the Shannon entropy and p; is the occurrence of cells in each shape mode.
Cellular heterogeneity—a property that describes the extent of cell-to-cell variations within a cell population.

Eccentricity—a measure of how similar a cell shape is to a circle or an ellipse, calculated as the ratio of the
distance between the foci of the ellipse and its major axis length.

Solidity—ratio of cell area to convex hull area of the cell (convex hull area is the area of the smallest convex
polygon that encloses the region).

Curvature—defined as the degree of deviation from a straight line. It is calculated as the reciprocal of the radius
of a circle fitted at each boundary point*°.

Roughness—defined as the variance in the length of a vector that is centered at the geometric centroid of an
enclosed object as it rotates along with each boundary point.

Area—the number of pixels comprising the enclosed region. Since the size of each pixel is known, the area of
cells and/or nuclei can be converted into various scales, including square microns (um?).

Distance from cluster center—the Euclidean distance between the morphology parameters of a cell and the
centroid of the cluster it belongs to. The morphology parameters of the cell are represented from the reduced
number of the principal components from PCA.

Principal component analysis—abbreviated as PCA, is a mathematical technigue for reducing the dimensionality
of large datasets, increasing interpretability but at the same time minimizing information loss by finding new
uncorrelated variables, principal components, from possibly correlated variables.

Heritable morphological variations—cell-to-cell variations that are persistent along many cell generations.

provide the ability to quickly and directly detect differences among tested cellular conditions, they
tend to insufficiently capture the true complexities of cell shapes'. To illustrate this, we describe here
the morphologies of fluorescently labeled mouse embryonic fibroblasts (MEFs) using conventional
shape features, including shape factor, aspect ratio, and solidity (see Box 1). From this analysis, we
observe that taking a subset of cells having highly similar values of these parameters still results in a
high degree of morphological variability among individual cells (Fig. 1). This example underscores the
notion that conventional cell morphology parameters may be insufficient to capture cellular differ-
ences. Furthermore, mesenchymal cells on flat substrates or cells embedded within physiologically
relevant 3D collagen gels, which often feature extensive dendritic protrusions and nuclear blebs®*,
are similarly difficult to distinguish using these traditional parameters.

A popular approach to address this shortcoming consists of defining additional geometric and
statistical descriptors of cells, some of which are based on the curvature and roughness of the cell and
nuclear contours' ****’. This has led to an expansion of morphological descriptors (see Box 1), with
the premise that these additional descriptors would help to better define and differentiate cellular
subtypes. While increasing the number of shape descriptors allows users to capture more complex cell
morphologies, visualizing differences in cell morphology, and assigning biological meaning for these
additional morphology descriptors is challenging.

To address this challenge, we recently developed cell morphology analysis software that provides
improved visualization and quantitative analysis of complex shape morphologies">*°. The software,
which we named Visually Aided Morpho-Phenotyping Image Recognition (VAMPIRE), is highly
automated and allows users to rapidly process large datasets of post-segmented images of cells and/or
their corresponding nuclei.

NATURE PROTOCOLS | www.nature.com/nprot


www.nature.com/nprot

NATURE PROTOCOLS PROTOCOL

Aupios

Aspect ratio
1.5+1%
Shape factor
0.5 +1%
Solidity

0.75 +1%

Fig. 1| Cells confined to narrow ranges of traditional morphological parameters still exhibit highly variable shapes.
Scatter plot showing the distributions of 37,750 mouse embryonic fibroblast cells confined to a 3D axis of aspect
ratio, shape factor, and solidity. The subset of 10 cells highlighted in red display substantial morphological
heterogeneity, despite highly similar values of aspect ratio, circularity, and solidity.

Development of the protocol

VAMPIRE analysis was initially developed to better interpret morphological data that we acquired for
a set of 11 fluorescently labeled pancreatic cancer cell lines using a custom high-throughput
microscopy imaging system'. Our goal was to identify a potential morphological signature of
metastasis in pancreatic ductal adenocarcinoma (PDAC). Among the samples used, five were col-
lected from patient-derived primary tumors, four were obtained from liver metastases, and two were
non-neoplastic pancreatic epithelial cell lines. For direct visual assessment of cell and nuclear shapes,
we randomly selected subsets of individual cell contours (after alignment) and found no overt
morphological differences between primary tumor cells and liver-metastasis cells. This was most
likely to be due to the irregularities of cell shapes.

To quantify cell shapes, we used commonly defined morphological features, such as cell area,
shape factor, and aspect ratio. However, these features could not reflect the observed extent of cell
shape variations, since even a small subset of cells displaying an extremely narrow range of values of
these conventional shape descriptors appeared radically different from each other.

To address this problem, we established and validated VAMPIRE analysis, which provides mor-
phological information beyond classically defined geometric parameters"**°. VAMPIRE analysis is a
visual aid that compares cell morphologies by first identifying representative shape modes (see Box 1)
among all cell shapes present within a cell population. Then, using these shape modes, VAMPIRE
determines the abundance of cells classified within each shape mode per condition. VAMPIRE
comprises four essential computational stages: (i) the determination and registration of the coordi-
nates of equally-spaced points along cell and nuclear contours to define morphological descriptors;
(ii) the reduction of the number of morphological descriptors using principal component analysis
(PCA); (iii) the identification of shape modes through unsupervised K-means clustering analysis, and
(iv) the determination of abundances and distributions of cells within each shape mode for all tested
cell samples and conditions (Fig. 2).

Following segmentation of the fluorescence or bright-field images, the coordinates for points along
the contour of each cell and its corresponding nuclei are aligned, scaled, and shifted to unify the sizes
and reduce shape variations due to rotational variations and mirror effects. Briefly, the alignment of
cell and nuclear shapes is done based on Procrustes analysis’>*"**. To represent the highly complex
shapes of cells and nuclei, a sufficient number of equally-spaced points along each contour (typically
50 points) (Fig. 2a) is used to define high-dimensional “features”. Then, these coordinates along the
boundaries of each cell and/or nucleus are subtracted by their mean value to shift the center of each
cell and/or nucleus to the location (0,0). To normalize each contour and reduce the contributions
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Fig. 2 | Overview of VAMPIRE analysis, from the extraction of contour coordinates to the automatic generation of
shape modes. a, The contour of a single cell described by 50 equidistant points along its contour. b, Unaligned (left)
shapes of a set of cells are pooled, normalized by size, and aligned (right). ¢, Eigenshape vectors (i.e., principal
components or PCs) are obtained from a principal component analysis (PCA) of the contour coordinates of aligned
cells. d, Reconstructed cell shape from a reduced number of eigenshape vectors. The reduced number of eigenshape
vectors was defaulted to the number of vectors that comprise 95% of the shape variations among all assessed cells.

e, Representative cellular shape modes are obtained by applying a K-means clustering method to a set of cell
morphology data described by the reduced number of eigenshape vectors.

from the cell and nuclear sizes, a characteristic length scale is determined for each cell and/or
nucleus, based on the following equation:

R= /350, (450

where R is the characteristic length scale, and x and y are the coordinates along the shape
boundary/contour.

Using the value of R calculated for each cell and/or nucleus, shape are then normalized by dividing
the contour coordinates for each shape by the corresponding R. To reduce shape variations that could
arise due to rotational variations or mirror effects, each shape is aligned along its major axis length by
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applying a rotation matrix. Since cell and nuclear shapes are enclosed objects, each of the 50 points
along the boundaries are iteratively assessed in both the clockwise and counterclockwise directions to
ensure the most stable and comparable rotational conformation among shapes’ (Fig. 2b).

Next, using the 50 points along the contours of each normalized shape as high-dimensional
features, principal component analysis (PCA) is then used to determine the eigenshape vectors (see
Box 1). The eigenshape vector that accounts for 95% of the total variance is then used as a reduced set
of descriptors for all cell and/or nuclear shapes*~*® (Fig. 2c). To empirically determine the repre-
sentative shape modes for a given cell population, K-means clustering is performed using the reduced
shape descriptors determined from the PCA*” (Fig. 2d). Among several classification methods tested,
such as DBscan®, OPTICS", Meanshift, and K-means, the K-means clustering algorithm was chosen
for its fast calculation, robustness, and simplicity in setting the parameters.

Each cell and/or nucleus is then classified and sorted into each cluster, which determines the
distribution of shape modes per condition. To identify the representative shape for each shape mode
for visualization purposes, the centroid locations of each cluster within the PCA-reduced features are
then used to reconstruct the average morphology for each shape mode (Fig. 2e). Lastly, using these
representative shapes, together with the abundance of cells and/or nuclei within each shape mode,
this analysis provides both a quantitative and visual handle for biological inferences on morphological
data per condition. In addition, these shape mode distributions are used to compute the degree of
morphological heterogeneity per condition based on the Shannon entropy (see Box 1).

In our previous study of pancreatic cancer cells' (see above), VAMPIRE analysis showed that
metastasized cells present significantly lower heterogeneity than primary tumor cells based on the
Shannon entropy. A lower heterogeneity was also found in a cohort of ten breast cancer cell lines
comparing metastatic to nonmetastatic cancer cells'. Furthermore, deciphering the relative con-
tributions to this heterogeneity, we identified potential sources stemming from the cell cycle, cell-cell
contacts, and heritable morphological variations (see Box 1).

In a separate study, we further demonstrated the utility of the VAMPIRE analysis by investigating
how the morphologies of single-cell clones derived from a metastatic breast cancer cell line were
associated with metastatic potential’. We found that cell morphology is an emergent property of
cancer cells, encoding information related to molecular determinants, and allowing the robust pre-
diction of metastasis. Lastly, we have used this approach to evaluate the morphological signature of
healthy aging from skin dermal fibroblast cells*®. We found that cellular age could be used to classify
individuals based on the cell morphology using a cohort of 32 samples of primary dermal fibroblasts
collected from individuals between 2 and 96 years of age (see ‘Anticipated results’ for a subset of this
re-analyzed data).

In all the studies mentioned"**°, the core algorithms of VAMPIRE analysis remain unchanged.
However, for this protocol, we have translated the original MATLAB code to Python, providing an
open-source platform that is more amendable for distribution and implementation among various
laboratories. In addition, we have optimized the performance and speed, and integrated the software
into an easy-to-use graphical user interface (GUI), allowing users to input post-segmented images to
generate a comprehensive panel of results that include plots, tables, and readouts of population
heterogeneity (https://github.com/kukionfr/VAMPIRE_open).

Overview of the procedure

The overall procedure is performed using four main stages: image segmentation from fluorescence/
bright-field images of cells and nuclei (Step 1), formatting segmentation data before importing
into the VAMPIRE GUI (Steps 2-3), generating a VAMPIRE model from a training set of
images (Steps 4-10), and applying the VAMPIRE model to the training set or a new image set
(Steps 11-13) (Fig. 3).

The procedure starts with the segmentation of fluorescence or bright-field images of cells to
generate binary images of segmented cells (Step 1). This segmentation is executed outside
of the VAMPIRE software using a segmentation tool of the user’s choice (see ‘Experimental design’
for more detail).

To import segmented cells into VAMPIRE, the segmented images need to be organized in a
designated format for use in the VAMPIRE GUI (Step 2). The segmented images must be grayscale
images, with nonzero integer values representing the detected cell areas, and zero integer values for
the background (non-cell areas). For instance, within an image, object 1 has pixel values of 1, object 2
has pixel values of 2, etc. This required format is a standard output in most segmentation software.
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Fig. 3 | Overview of VAMPIRE implementation with the VAMPIRE GUI. a, The VAMPIRE Graphical User Interface (GUI). b, Flow diagram illustrating
key steps in the implementation of VAMPIRE analysis with VAMPIRE GUI. Images of cells are first segmented into binary images that highlight the
cellular region and/or nuclear region. The VAMPIRE GUI top section (highlighted in red) allows users to specify analysis parameters and the location
of segmented images to be used to create a VAMPIRE analysis model. Once the VAMPIRE analysis model is established, the user can specify the sets
of segmented images to be analyzed using the previously established model (highlighted in blue).

Once segmented images are properly imported into the VAMPIRE GUI, it reads the images to obtain
the coordinates along the curvilinear boundaries of the cell and/or nuclear contours. In addition, a
few classic morphological parameters are computed for each object, including surface area, perimeter,
major and minor axis length, circularity, and aspect ratio (see VAMPIRE datasheet cl.csv in
Supplementary Data 1 for list of parameters generated).

Selecting image sets in building and applying the model

Once the dataset is segmented and properly organized, the user decides the set of images to be used to
train a VAMPIRE model by specifying the image folder locations in a comma-separated values (CSV)
file (Step 3). Hereafter, we refer to these specified images as the “training set”. An example CSV file of
this list, “segmented image sets to build model.csv”, can be found in Supplementary Data 1. The
resulting VAMPIRE model that is built, based on the specified training set, will be saved within a
designated local folder. (Steps 4-10). Following this training step, the model can then be applied to
either the same image set used to train the model or to a new image set by specifying the location in a
new CSV file (Steps 11-13). Ideally, users will apply the model to the same image set that was used for
training. However, there are instances when it is appropriate to apply the VAMPIRE model to an
entirely new dataset. For instance, (i) if the datasets are unbalanced between experimental replicates
or conditions, the user can balance the dataset by selecting a subset of datasets from certain replicates
or conditions in building the model; (ii) if the datasets grow to a point that it takes too long to build a
new model with every run, a user can save time in building a new model by selecting a subset of
datasets; (iii) if a user wants to validate the model or directly compare different conditions using the
same shape modes. In so doing, the user can build a model on one experimental replicate, or similar
cell types/conditions and apply it to another data set. Beyond these three examples, we intend to offer
more flexible applications by allowing users to select specific datasets in building and applying
the model.

It is important to note that these cases are valid only if the dataset used for training is expansive
and similar enough (e.g., in cell type, dimensionality (2D/3D) or magnification) to represent the
newly acquired data, as this influences the appropriate classification of cells within each shape mode.
To quantify this, users should use the ‘distance from cluster center’ values, to determine how well cells
are classified within each shape mode (see ‘Limitations of VAMPIRE’ below).

The output of the VAMPIRE model includes a plot showing the frequency distribution of each
shape mode per condition, and the CSV files that contain the shape mode for each cell and/or
nucleus. (Step 13). Specifically, data for each cell includes the “xy” coordinates of cell centroid within
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the image, the area, circularity, aspect ratio, and assigned shape mode index (IDX), as well as the
goodness of the shape mode classification for each cell that we refer to as “distance from cluster
center” (see Box 1). This datasheet can be directly linked to the morphological features generated by
CellProfiler, which makes VAMPIRE and CellProfiler analyses complementary in this regard. This
seamless integration allows users to further compare shape modes with other morphological features,
and associate them with other cell features such as cell-cycle state, protein expression, etc. Example
datasheets showing the results from the analysis using both platforms are provided in Supplementary
Data 1, labeled “CellProfiler datasheet cl.csv” and “VAMPIRE datasheet cl.csv”. See the directory of
Supplementary Data 1 in the Supplementary Fig. 1 to locate example CSV files.

Applications of VAMPIRE

We have previously demonstrated the utility of VAMPIRE in three key studies, (i) the morphological
changes displayed by human pancreatic cancer cells as they spread from the primary tumor to the
liver, (ii) the ability of single-cell morphologies to encode metastatic potential in breast cancer’, and
(iii) the morphological changes of dermal fibroblasts derived from healthy individuals during aging™.

In general, VAMPIRE can be applied to any set of segmented images of cells or nuclei to detect
and analyze changes in their morphology across multiple conditions and cell-culture systems. For
instance, VAMPIRE can be applied to study cell morphologies in response to a wide range of
physiochemical changes, i.e. molecular characteristics™**" (e.g., cell cycle state, genetic and epi-
genetic status), microenvironmental and biomechanical perturbations™ " or disease states"**°.
VAMPIRE analysis is also suitable for applications in phenotypic or drug screening'"'>'*. Changes in
cell morphology are often used in high-throughput biochemical discovery screens’”. However, the
large volume of data that is typically generated in such screens makes it difficult to visually inspect cell
responses. Here, VAMPIRE provides users with the ability to rapidly classify phenotypically distinct
cellular conditions in large amounts of data to identify drug-induced changes in the abundance and
distributions of shape modes.

VAMPIRE analysis can also be applied to the cellular images obtained beyond standard 2D cell
culture models. We have recently demonstrated the utility of VAMPIRE analysis for cells embedded
in 3D collagen matrices'. In that study, we obtained the 2D contours of cells from the z-projected
images. VAMPIRE analysis showed that shape modes for cells in 3D cultures were distinctly more
protrusive than the same cells in more traditional 2D cultures'. In addition to cell-culture systems in
3D matrices, VAMPIRE analysis is applicable to study changes in cell and nuclear shapes in cells
embedded within tissue sections (see ‘Anticipated results’). A growing number of studies have shown
that nuclear shape can encode prognostic information for patients with different types of cancer”>>*.
Segmented nuclei within tissue sections can be imported directly into the VAMPIRE workflow to
assess, for instance, changes in nuclear morphology that are associated with tumor progression, drug
responses, and patient outcomes.

Limitations of VAMPIRE

A key assumption of VAMPIRE analysis is that the shapes of segmented cells and nuclei faithfully
represent the original cell and nuclear shapes. The accuracy of this segmentation, using, for instance,
CellProfiler, relies on the user properly optimizing the image processing pipeline, choosing appro-
priate noise-reduction filters, and using suitable thresholding parameters. If the segmentation is not
accurate, the shape modes generated using VAMPIRE will not be representative of the actual shapes
of cells and nuclei. To address this potential issue, the user should evaluate the accuracy of seg-
mentation before running VAMPIRE. This can be done by visual inspection by overlaying segmented
cell contours onto the original image to gauge deviations. If the deviation between the segmented
contours and the original images is substantial, the results from VAMPIRE analysis will not be
reliable. Furthermore, VAMPIRE in its current version is designed to work on 2D projections of cells
(x,y) and is not amendable to the analysis of 3D image stacks (x,y,2).

A challenge for any cell-morphological tool is the analysis and classification of highly complex cell
shapes, such as cells with highly protrusive morphologies. Although VAMPIRE can compute a vast
number of features from the coordinates of points along the shape boundaries to examine the
complexity of cell shapes, the use of a reduced number of coordinates (i.e., 50 points) together with
the dimensional reduction from the PCA can lead to shape modes with limited spatial resolution. In
this case, users can either (i) increase the number of coordinate points (which will also increase
computing time) or (ii) use more suitable morphological analyses that directly quantify cell
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protrusions’ or take better account of cell protrusions™. Since users have the option to perform
VAMPIRE analysis on cells and/or their corresponding nuclei to generate results for both, VAMPIRE
analysis needs to be run separately on cell contours and nuclear contours. This allows users to specify
different parameters (i.e., number of shape modes) to accurately describe both cell and nuclear
shapes, since cell shapes tend to be more complex than nuclear shapes.

To allow users to evaluate the goodness of the shape mode classification, we have provided the
ability to gauge the distance between the computationally assigned shape modes and the actual cell
shapes within the given data set. This metric is called ‘distance from cluster center’ (see Box 1). It is
provided as part of the standard output data provided in “VAMPIRE datasheet cl.csv” under
Supplementary Data 1. If this distance is large, the VAMPIRE model has failed, and the model should
be re-assessed. In addition, this depends on the parameters used in the VAMPIRE model, which can
be improved by increasing the number of shape modes, or by eliminating ‘outlier’ cells (see
‘Experimental design’).

Another limitation is that the shape modes determined by VAMPIRE are only as good as the
dataset with which the model is trained. This means that, to obtain the best results, the training set
should be expansive enough and include cell types and conditions of interest. As VAMPIRE uses a
data-driven approach to identify dominant cell and/or nuclear shapes, rare shape populations may
not be well classified, especially if the training data set is small. However, to gain insights into rare or
less frequent shapes, the number of shape modes can be increased and optimized to suit. Lastly, if the
new dataset includes a subpopulation of cell shapes that is nonexistent in the dataset used for training,
this would also result in misclassification of cells, and a large distance-from-cluster-center error for
cells classified within each predefined shape mode.

Comparison with other methods

In this section, we briefly describe and compare other methods used to characterize the morphology
of cells. The most common approach to quantify cell/nuclear shape morphology is to use scalar
descriptors such as shape factor, curvature, and roughness'**>*’. This type of analysis is based on
discriminative methods that try to capture just enough information to distinguish and investigate
biological states'”. Two commonly used tools for these types of cell shape analysis are CellProfiler’!
and MorpholibJ*® (a plugin for Image]™”). These tools extract an extensive list of features, such as
shape factor, eccentricity, and Zernike polynomials. For instance, CellProfiler provides a set of ~1,500
morphological features to describe the morphology of cells, including features that describe size,
shape, intensity, and texture'*. While the pure magnitude of the features assessed increases the
likelihood of identifying differences among cell populations, this large number of descriptive features
could limit the interpretation, visualization and integrative view of shape changes.

In many cases, methods to reduce the dimensions of cell shapes can be applied directly to binary
images. Furthermore, these data-driven approaches and deterministic decomposition methods, such
as Zernike polynomials and Fourier descriptors, are available to decompose the binary images of
shapes and represent shapes with fewer dimensions. However, both methods are less effective in
representing the cell shapes in lower dimension forms than PCA™.

Discriminative methods of using scalar shape features are limited in their ability to describe cell
shapes. Alternatively, methods that reduce the dimensionality of cell shapes can be used to recon-
struct the cell shapes in a lower dimension for further clustering analysis. Particularly, principal
component analysis (PCA) has been used to qualitatively and quantitatively identify novel insights in
the relationship between cell morphology and physiology*’. One key step of VAMPIRE is the
reconstruction of cell shapes based on a lower-dimensional representation of cell shapes. This step
involves the use of PCA on the aligned outlines of cell shapes, thereby retaining most of the cell shape
information and variation within a given dataset. In VAMPIRE, the PCA step identifies the linear
combination of shape vectors to regenerate the original cell shapes®®”’. Nonlinear methods such as
shape component analysis (SCA)”® are also used in the field. SCA aims to preserve the distance (i.e.,
Euclidean) metrics between different shapes in a lower-dimensional shape space, to avoid potential
distortion using non-Euclidean distances. However, in recent studies, SCA did not show significant
improvement in reconstructing the cell shapes over PCA"”.

Recent advances in image modeling with neural networks have provided a way to derive lower-
dimensional representations of cell shapes. Unsupervised learning approaches such autoencoder™
and generative adversarial networks®” have been extended to analyze the morphology of cells®"**. A
recent study examining the performance of various autoencoder algorithms found that while
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outlined-based autoencoder methods perform similar to PCA in terms of shape representation
accuracy at a lower dimension (d = 7), they underperform at a higher dimension (d = 100)*.
Expectedly, the autoencoder methods take a lot more computational time to process compared to
PCA. However, since the field of deep learning evolves rapidly, there is a strong potential for
enhanced approaches representing cell shapes based on neural network methodologies.

Cell shapes are highly heterogeneous, even for cells within the same population. In VAMPIRE
analysis, we utilize an unsupervised machine-learning clustering method in the reduced shape space
from PCA to obtain subtypes of cells (shape modes). K-means clustering is an effective solution that
works for various geometries of datasets with a simple input parameter (the number of clusters).
However, K-means clustering could perform poorly on elongated clusters or irregular shapes of
clusters®. Other clustering methods such as DBscan*® and OPTICS*’ generate clusters based on the
density of the data and better handle complex geometry. However, the clustering results from these
methods could be sensitive to clustering parameters.

To summarize, each user should decide the appropriate software solution for their morphology
quantification based on the questions at hand.

Experimental design

Example image datasets

To help users explore the software and all its functionalities, we provide two small image datasets in
the “Example images” folder of Supplementary Data 1. Note that users can also download Supple-
mentary Data 1 from the GitHub repository (https://github.com/kukionfr/VAMPIRE_open/releases/
download/v1.0/Supplementary.Data.zip). See the directory of Supplementary Data 1 in Supplemen-
tary Fig. 1 to locate example images and workflow. Results from the VAMPIRE analysis using
provided image datasets are also included in Supplementary Fig. 2 and Supplementary Data 1 under
“Example output”. Before applying VAMPIRE analysis to new image datasets, we recommend that
users first perform VAMPIRE analysis using the image datasets provided and follow the detailed
procedure in the Procedure. In ‘Anticipated Results’, we also illustrate the utility of VAMPIRE
analysis by analyzing the morphology of (i) mouse embryonic fibroblasts (MEFs) confined to
adhesive micropatterns (akin to spatial restriction of cells in tissue) in the presence and absence of
nuclear protein Lamin A/C, (ii) dermal fibroblasts derived from healthy individuals with increasing
age, and (iii) for cells embedded within tissue sections.

Sample preparation and imaging

One of the most common ways to image the morphology of cells and nuclei is through fluorescent
labeling of nuclear and cellular regions of cells using typical fixed and stain methods"**. For 2D
culture, the cell samples to be imaged should be first placed on an optical-compatible substrate such
as a glass bottomed or transparent plastic dish or plates. Once desired experimental conditions of cell
sample are achieved, cells should be fixed to preserve their structures. In general, we use paraf-
ormaldehyde (PFA) as a fixative to fix cell samples. However, alternative fixatives should be con-
sidered if subsequent dyes or stains to be used are not compatible with PFA. After fixation, the sample
often needs a membrane permeabilization step, such as treatment with Triton X-100, to allow
fluorescent probes to pass through the cell and nucleus membrane. We typically label the cell nuclei
with H33342 and label F-actin with phalloidin to image cell cytoplasm. Other types of nuclear or
cytosolic stain can also be used as long as they can provide clearly labeled nuclei or cell images. If
there are cellular structures or molecular targets of interest, their corresponding fluorescent probes
can be used together with cell or nuclei stain as long as these do not interfere with the signal
of the nuclear or cellular stain. Imaging for VAMPIRE analysis is compatible with multicolor
fluorescent images.

After cell samples are stained, a fluorescent microscopy system that can perform filter-based
sequential multicolor imaging should be used to image the samples. We typically aim to acquire
~1,000 cells per condition replicate to ensure the subtype analysis in VAMPIRE can provide more
statistically meaningful results. Hence, it is recommended to use a motorized stage system on a
microscope to allow for a more rigid and effective acquiring of images of samples at multiple points.
Our typical acquisition routine is performed with a 10x objective lens scanning a 9 by 9 continuous
field of view that covers approximately 6 mm by 6 mm regions. To acquire the fluorescent images, we
maximize the power of excitation light and then minimize the exposure time to a level that produces a
substantial but nonsaturated intensity signal relative to background intensity to improve the
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Fig. 4 | Determinants of cluster coherence in the shape mode distributions. a, Schematic illustrating the concept of
inertia in K-means clustering. The inertia is measured by total squared distances of all data points to the centroids of
their corresponding subtype. A lower inertia value indicates better segregation of clusters indicating more inter-
cluster coherence. b, The inertia in principle decays with an increasing number of clusters. The corresponding cluster
number at the elbow point where the inertia decay rate starts to drop is the suggested cluster number to use in
VAMPIRE for K-means clustering. The example inertia profile is calculated based on 17,093 MEF cells. The inertia
value is calculated on ten separate runs of VAMPIRE analysis at each cluster number parameter value. In each run,
the K-means clustering is by default repeated five times with different centroid seeds to find the initial seed that
results in the lowest inertia value. The coefficient of variation of inertia between ten separate runs of VAMPIRE is
less than 0.05% for this inertia profile, thus an error bar is not shown.

throughput of image acquisition. In our workflow, the cell sample to be imaged typically has a density
of ~30 cell/mm® If imaging a sample with higher cell density, fewer scanning points may be con-
sidered to improve throughput while obtaining sufficient cell counts. A higher magnification objective
lens can also be used (i.e., 20x or higher) for deriving better spatially resolved cell images. In this case,
the number of scanning points may need to be increased to obtain sufficient cell numbers for
VAMPIRE analysis.

For cells in a 3D culture system, such as cells embedded in collagen gel, a similar process to that
described above can be applied to obtain the images for VAMPIRE analysis. Special consideration
should be given to the diffusion of staining dyes and molecules within the 3D gel. Therefore, the
duration of incubation steps will be lengthened, see published literature® . Also, in image acqui-
sition, since cells are randomly distributed within the 3D space, single focal plane acquisition, as
typically performed on 2D samples, is likely to capture images containing substantial cells that are not
in focus. Thus, it is better to acquire multi-focal planes (i.e., multi z-steps) for each field of view. The
z-projected images can produce cell images with more boundary resolved detail. For tissue section,
samples are prepared based on standard fluorescence or immunohistochemistry(IHC) staining
protocols for tissue sections®®*”

Segmentation of cells and nuclei

We note that VAMPIRE GUI does not provide a segmentation tool; it analyzes cell and/or nuclear
shapes that are already detected and segmented. The segmentation can be performed using software
platforms such as ImageJ/Fiji’’ or CellProfiler’’, with easy integration of the segmentation results into
VAMPIRE GUI. For simplicity, we have chosen to demonstrate how to perform VAMPIRE analysis
using cell and nuclear segmentations generated using CellProfiler (Step 1). However, note the
additional steps may be needed if other segmentation software platforms are used.

Selection of parameters for VAMPIRE analysis
Within the VAMPIRE interface, a key input parameter for establishing the model is the number
of shape modes. We encourage the user to tune this parameter to obtain optimal results. Here,
we briefly present the underlying basis for the selection of the number of shape modes. During the
dimensional reduction steps, we implement K-means clustering to relate individual cells to
the centroid of each cluster (shape mode), where the distance from the cluster centroid is stored as the
“distance from centroid” (see Box 1). This K-means clustering classifies cells on the principle of
minimizing a parameter known as the inertia. This inertia is calculated as the sum of the squared
distance between the cluster centroid and each data point within the cluster (Fig. 4a). Inertia can be
thought of as the metric that defines how internally-coherent clusters are, with the optimal inertia
value being zero.

Fundamentally, increasing the number of clusters reduces the inertia and improves cluster
coherence. To illustrate the effect of the number of clusters on the inertia, we plotted the number of
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clusters as a function of the inertia for cells cultured on adhesive micropatterns (Fig. 4b). We
observed an elbow-shaped decay function, at which point there was only a minimal benefit to
increasing the number of clusters.

Control experiments

Examining cells of pre-defined shapes is the most straightforward way to validate VAMPIRE analysis.
Using adhesive micropatterning techniques’’, users can evaluate the morphologies of cells confined to
pre-defined adhesive shapes (see ‘Anticipated results’). As a result, cells cultured on circular and
triangular adhesive micropatterns should exhibit shape modes that are predominantly circular and
triangular, respectively.

Materials
Equipment
* A computer with at least 8 GB of RAM running Microsoft Windows 10 (64 bit)
Software
¢ VAMPIRE executable software (https://github.com/kukionfr/VAMPIRE_open/releases/download/v1.
0/vampire.exe).
* CSV editor (e.g., Microsoft Excel, Numbers)
e Choice of a standard segmentation tool: CellProfiler 3.1.9 software (https://cellprofiler.org/releases/),
Image]/FIJI (https://imagej.net/Fiji/Downloads), or MATLAB (https://www.mathworks.com/downloads)
e Example dataset: Micropattern Data: https://github.com/kukionfr/Micropattern_ MEF_LMNA_Image;
Aging Data: https://github.com/kukionfr/Aging human_dermal fibroblast_nucleus. For a smaller
example dataset, see Supplementary Data 1.
Procedure

A CRITICAL To demonstrate the VAMPIRE analysis procedure, we provide sample images of
fluorescently tagged cells in Supplementary Data 1 under the “Example images” folder and the
corresponding results from the VAMPIRE analysis procedure. Two sample sets—MEF_LMNA-- and
MEF_wild type stained with Alexa Fluor 488 Phalloidin (Thermo Fisher Scientific)—are provided and
correspond to mouse embryonic fibroblast cells having wild-type expression of Lamin A or Lamin A
knockout, respectively (Fig. 5a). Throughout this Procedure, refer to the directory of Supplementary
Data 1 in Supplementary Fig. 1 to locate example data and results.

Segment images of cells or nuclei ® Timing 10-60 min

A CRITICAL The segmentation procedure described in Steps 1 and 2 is designed specifically for

CellProfiler (see https://cellprofiler.org/tutorials for more information). Alternatively, cells can also be

segmented using Image] (https://imagej.net/Segmentation) or MATLAB (https://www.mathworks.com/

help/images/detecting-a-cell-using-image-segmentation.html).

1 Segment the fluorescence or bright-field images to identify the boundaries of cells and/or nuclei.
The VAMPIRE GUI does not segment cells. Navigate to the CellProfiler website (https://
cellprofiler.org/) to download the installer of version 3.1.9. After installing and launching the
CellProfiler, the user should create and customize the pipeline for image segmentation following the
instructions (https://cellprofiler.org/tutorials) that are best suited for their images. The pipeline that
is customized for the provided example data is provided in Supplementary Data 1 (CellProfiler
segmentation pipeline.cppipe). To use the provided pipeline, load the CellProfiler segmentation
pipeline.cppipe in CellProfiler software under menu bar>File>Import>Pipeline from File. The
provided pipeline consists of nine modules. Once the pipeline file is loaded, the pipeline will appear
on the left panel of the CellProfiler main window. The user can use this pipeline to process the
provided example fluorescence images, starting with loading the downloaded images by dragging
and dropping to the “image module”. Once the pipeline (i.e. set of modules) is set up successfully,
click the “Analyze image” button in the CellProfiler software to obtain segmented image of cells.
A CRITICAL STEP The current pipeline only supports a single channel of fluorescence. For multi-
channel images see (https://cellprofiler.org/tutorials) for more information. We provide segmented
example images using CellProfiler (Fig. 5a), as well as a sample CellProfiler segmentation pipeline
in Supplementary Data 1. Note that the example workflow is designed using CellProfiler version
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Fig. 5 | VAMPIRE analysis of LMNA** and LMNA™'~ mouse embryonic fibroblasts. a, Images of phalloidin-stained
(top) wild-type (LMNA™* left) and lamin-deficient (LMNA ™", right) mouse embryonic fibroblasts. Segmentation
is obtained using CellProfiler. Scale bar, 100 pm. b, Bar plots showing the distribution of cell shape modes
from the VAMPIRE analysis of the MEFs. Numbers above the bars represent the abundances (%) of cells in each
shape mode.

3.1.9, and may need to be adapted for compatibility with later versions of CellProfiler. The user
modified pipeline file can be saved by navigating to File>Export>Pipeline from the menu bar.

? TROUBLESHOOTING

Convert the segmented image data to the required format that is compatible with VAMPIRE
analysis, if needed. To prepare images for VAMPIRE analysis, images should be stored as binary
TIFF files, where the area of each cell must have a nonzero integer value. Segmented images for the
same condition or those having multiple fluorescence channels should be placed in the same folder.
To properly store images, the segmented images must have filenames that distinguish objects by
channel (i.e., xy00Icl.tif and xy001c2.tif).

A CRITICAL STEP A sample format of segmented images is provided in Supplementary Data 1 for
reference.

Build shape-analysis VAMPIRE model (model training) @ Timing 3—10 min

3

Generate a CSV file to specify the location of the segmented image sets for use in constructing a

VAMPIRE model. In this CSV file, the first row contains column headings specifying the

information to be entered. Each column specifies information about the specific segmented images.

From the second row, each column should be filled with information of a specific segmented image

set with the following order:

e “set ID”: row index number. “set ID” and “condition name” will be part of the VAMPIRE output
filename (i.e. Shape mode distribution_1_wildtype.png).

¢ “condition name”: description of an image set.

e “set location”: the location/path of the folder containing segmented images
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e “tag”: a string of text. Only segmented images in the set location with filenames containing the tag
will be identified and analyzed. For example, if “tag” is set as “cl1”, for an image set location
containing segmented images from multiple channels (i.e. xy00Icl.tif, xy001c2.tif, xy002cl.tif,
xy002c2.tif) only image filenames containing “c1” (i.e. xy001cl.tif and xy002c1.tif) will be analyzed.

e “note”: any information about the image sets needed for the user’s record. This information is not
used in the VAMPIRE analysis.

For more explanation in selecting the image sets for model training and application in Steps 3

and 11, please refer to Selecting image sets in building and applying the model section in ‘Overview
of the procedure’.
A CRITICAL STEP An example CSV file named “Segmented image sets to build model.csy” can be
found in Supplementary Data 1. Users can download and directly modify the example CSV files
using Excel or other CSV editors. To use the example segmented images provided in the
Supplementary Data 1 for the following analysis, the user needs to update the set location column
in the example CSV file with the actual location of the example segmented images.

Download VAMPIRE stand-alone software named “vampire.exe” from GitHub (https://github.

com/kukionfr/VAMPIRE_open/releases/download/v1.0/vampire.exe). Launch VAMPIRE Graphi-

cal User Interface (GUI) by opening the VAMPIRE.exe file.

A CRITICAL STEP The current version of VAMPIRE GUI is only available for Windows 10 users.

Source codes are available on GitHub (https://github.com/kukionfr/VAMPIRE open) and PyPI

(https://pypi.org/project/vampireanalysis). These repositories will be continuously updated

and maintained.

? TROUBLESHOOTING

Locate the CSV file generated in Step 3 to build a VAMPIRE model in the “Build Model” section of

the VAMPIRE GUL Click “Load CSV”. This will open a popup window for the user to select

the CSV file.

Specify the number of coordinates to extract from the cell contours in the Build Model section of

VAMPIRE GUI under the “number of coordinates” box. The default value is 50. A higher number

of coordinates will better represent the object boundary at the expense of analysis speed. A lower

number of coordinates may not capture the details of the object boundary and the result of analysis
may under-represent the actual cell morphology.

Determine the number of shape modes in the “Build Model” section of the VAMPIRE

GUI under the “number of shape modes” box. The default value is 10. To optimize

this number, refer to the ‘Selection of parameters for VAMPIRE analysis’ section in the

‘Experimental design’.

Specify where the output model should be saved. This information can be entered in the “Build

Model” section of VAMPIRE GUI under the “Model output folder” box.

Name the model in the “Build Model” section of the VAMPIRE GUI under the “Model name” box.

This name will be used to generate a pickle file that contains model parameters.

Click “Build Model” in the VAMPIRE GUI to generate a VAMPIRE model based on the specified

parameter values provided in Steps 6 and 7. Once the model is generated, it will be saved in the

output folder specified in Step 8. Within this new folder, the VAMPIRE model data will be saved
into a subfolder “[model name]” that contains:

¢ A VAMPIRE model file that is named “[model name].pickle”.

e A subfolder named “[model name] figures” that contains:

e The overlay of 20 randomly selected raw shapes classified into each shape mode named “registered
objects.png”.

e The dendrogram showing the level of correlation between shape modes named “shape mode
dendrogram.png”.

A CRITICAL STEP Example output files of this step are provided in Supplementary Data 1, under
“Example output”. These files are generated from the example segmented images provided in
Step 2, using the default values of parameters from Steps 6 and 7.

? TROUBLESHOOTING

Analyze cell shapes with VAMPIRE model (model application) @ Timing 1-10 min

11

Repeat Step 3 to specify the sets of segmented images to apply the VAMPIRE model to. If you need
to prepare new sets of segmented images, repeat Steps 1 and 2. The format of the CSV file remains
the same. Once the user generates the CSV file, go back to the VAMPIRE GUI In the “Apply
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Fig. 6 | VAMPIRE analysis of mouse embryonic fibroblasts seeded on adhesive micro-patterned surfaces. a, Fluorescence microscopy images of
wild-type (LMNA™*) and lamin-deficient (LMNA™~) mouse embryonic fibroblasts cultured on circular (top row) and triangular (middle row)
adhesive fibronectin-coated micropatterns’2 Control cells (bottom row) are placed on the fibronectin-coated glass. Cells were fixed and stained for F-
actin using Alexa Fluor 488 Phalloidin (red) and nuclear DNA using DAPI (blue). Segmented fluorescence images (right). On the left are the raw
images of cells and their nuclei with the segmented contours highlighted in yellow; on the right are the same cells color coded according to the shape
mode to which they belong. Scale bar, 100 pm. Inserts are magnified views of cells; scale bar, 50 pm. The identified shape modes are located on the
right of the panel. b, The table on the left shows the frequency of cells classified within each shape mode for LMNA™* and LMNA ™/~ cells cultured
on circular or triangular micropatterns (top and middle rows) and unpatterned surfaces (bottom row). The table on the right displays the values for
traditional morphological parameters, including average area, shape factor (SF), and aspect ratio (AR) of cells, as well as the number of cells analyzed
(#), lamin A/C status and the Shannon entropy of the cells. These results indicate that traditional morphological parameters insufficiently discriminate
between the nuclear morphological responses of LMNAY* and LMNA ™~ on different adhesive micropatterns (right table). By contrast, the
differential morphological response of these cells is readily revealed when measured by shape mode distributions (left color-coded table). The
reported values for each condition are the average abundance of cells based on two replicates of the same condition.

Model” section of the VAMPIRE GUI, click “load CSV”. This will open a popup window for the
user to select the CSV file.

12 Specify the previously built model to analyze the segmented images. Click the “load model”
button to choose the pickle file generated in Step 10. Refer to Supplementary Fig. 1 to locate
the pickle file.

13 Perform VAMPIRE analysis on the specified images by clicking the “Apply Model” in the
VAMPIRE GUI When this process is finished, a new folder will be created named “Result based on
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Fig. 7 | VAMPIRE analysis of human dermal fibroblasts from donors of different ages. a, Distributions of nuclear
shape modes for dermal fibroblasts from age 3 to 96. Each row shows the distribution of shape modes for each
donor. The number of nuclei assessed are: # = 643, 420, 407, 531, 373, 575, 637, respectively. The sample numbers
of nuclei for each cell line are from two distinct replicates. Cells from younger donors populate the rounder shape
modes (modes 1 and 2), while cells from older donors have nuclei classified that populate the irregular shape modes
(modes 3, 4, and 7). b, Table showing Pearson's correlation (R), shape factor (SF), and aspect ratio (AR) of each
nuclear shape mode. R is the age correlation based on the abundance of nuclei in a specific shape mode. SF and AR
are calculated as the mean of all nuclei classified in each shape mode across all ages.

[model name]” within the VAMPIRE model folder. This new folder contains a collection of
distributions showing the fractional abundance for cells within each shape mode, with the
percentage of cells within each shape mode denoted on the top of each bar (Figs. 5b, 6b, 7a). Each
distribution is saved with the naming convention: “Shape mode distribution_[condition].png”.
Clicking the “Apply Model” button also generates a VAMPIRE datasheet CSV file in each
segmented image set folder. Each datasheet CSV contains:

e Filename: name of the segmented image file that contains the object

e ImageID: ID number of the segmented image file

e ObjectID: ID number of the object within the segmented image file

e X and Y: location of the object’s center of mass within the segmented image

e Area: area of the object

e Perimeter: length of object’s circumference

e Lengths of the major and minor axes

o Circularity: shape factor calculated by
circle is 1.

e Aspect ratio: is calculated as the major axis length divided by the minor axis length.

eShape mode ID number: a number that represents the shape mode where each cell
belongs to.

e Distance from cluster center: a metric to determine the goodness of the classification
into shape modes defined as the distance between the cluster centroid and the selected
object centroid.

A CRITICAL STEP Example output files for this step are provided in Supplementary Data 1,
under “Example output”. These files are generated using the VAMPIRE model provided
in Supplementary Data 1 under the same folder “Example output”. See the directory
of Supplementary Data 1 in Supplementary Fig. 1 to locate the output files. A compiled
example of shape parameters of the VAMPIRE datasheet is shown in ‘Anticipated
results’ (Fig. 6b).

4mA

5. Its value varies from 0 to 1. The circularity of a perfect
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Troubleshooting

Troubleshooting advicecan be found in Table 1.

Table 1 | Troubleshooting table

Step Problem Possible reason Solution
1 Cannot run the segmentation pipeline: the The user did not load any images in the Drag and drop images into the
pipeline did not identify any image sets “Images” module “Images” module of CellProfiler
Subfolder under CellProfiler output folder is The metadata extraction rule is incorrect Modify the extraction rule under the
named “None” “Metadata” module in CellProfiler
4 A warning is given that the The executable file of VAMPIRE is created Ignore this message since VAMPIRE
MATPLOTLIBDATA environment variable is using software that uses a variable that is not affected by this warning
deprecated in Matplotlib 3.1 and will be will be removed in the future
removed in 3.3
10 The following warning appears: “IndexError: Segmented images do not contain any cell Check if segmented images have a
arrays used as indices must be an integer” or nucleus correct format as specified in Step 2
and that they have at least one cell or
nucleus
The following warning appears: The number of objects is less than the Provide images with a greater
“RuntimeWarning: Mean of empty slice” number of clusters number of cells than the number of
clusters
The following warning appears: “Permission CSV file is open while the analysis is Close all open CSV files and repeat
denied” running Step 10
Timing

Anticipated results

The timing information below is estimated based on the analysis of 10,000 cells using an i7-8700k
Intel CPU with 5.0 GHz clock speed on Windows 10 pro OS. This time corresponds to the time it
takes an experienced VAMPIRE user to perform analysis. More time may be required when using
VAMPIRE for the first time.

Steps 1 and 2, segment images of cells or nuclei, 10-60 min

Steps 3-10, build shape-analysis VAMPIRE model, 3-10 min

Steps 11-13, analyze cell shapes with VAMPIRE model, 1-10 min

Total (Steps 1-13), complete VAMPIRE analysis, 14-80 min
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To demonstrate the utility of VAMPIRE, we examined the shapes of mouse embryonic fibroblasts
(MEFs) in response to different surface topographies. These cells are either wild-type (MEF
LMNA ") or deficient in lamin A/C (MEF LMNA 7). Cells were seeded onto three different 2D
substrates: 1. circular or 2. triangular shaped fibronectin-coated islands, surrounded by polyethylene
glycol passivated regions, and 3. Uniform fibronectin-coated surfaces. Cells were incubated overnight
on each substrate then fixed and stained with DAPI and Alexa Fluor 488 Phalloidin, highlighting
nuclear DNA and F-actin fibers respectively. Cells and their corresponding nuclei were segmented
using CellProfiler, then the contours were analyzed using VAMPIRE with 10 shape modes and
50 contour points (Fig. 6a).

We quantified the shape mode distribution for each of the probed conditions and examined
whether cells on patterns exhibited associations with particular shape modes that resembled circles
and triangles (Fig. 6b). As expected, results showed that both LMNA*"" and LMNA " cells seeded
on unpatterned surfaces exhibited mixed shape profiles i.e., similar abundance in all identified cellular
shape modes, as opposed to the cells seeded on the patterned substrates. Cells seeded on circular
patterns exhibited enrichment in the circular shape mode (mode 4) with an average abundance of 55
and 52% of the total cell populations for LMNA™* and LMNA ", compared to 8.1 and 21% of
those seeded on an unpatterned substrate. Cells seeded on triangular patterns were primarily
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Fig. 8 | Analysis of nuclear shape in H&E stained tissue sections with VAMPIRE. a, Images of a skin tissue section
stained with hematoxylin and eosin (H&E) and obtained from the cancer genome atlas (TCGA case ID: TCGA-EE-
A201). Nuclei in the epidermis and the reticular dermis regions were segmented and analyzed with VAMPIRE. b, Bar
graphs show the distribution of nuclei shape modes, comparing epidermal cells (N = 1,579) and dermal cells (N =
498) using VAMPIRE analysis. Numbers above the bars represent the abundances (%) of nuclei in each shape
mode. Results also show a lower Shannon entropy in cells derived from the reticular dermis (S = 2.1) relative to cells
from the epidermis (S = 2.25), indicating lower heterogeneity in the reticular dermis.

classified into two triangular shape modes, the “sharp” (mode 1) and “blunted” vertex (mode 2)
triangles, with decreased abundance in the remaining shape modes (modes 6-9) (Fig. 6b).

Interestingly, LMNA '~ cells seeded on triangular patterns were classified as “blunt” (mode 2)
three times more (abundance of 34%) than “shape” (mode 1) (abundance of 12%). We did not
observe such a difference between the two shape modes in LMNA ™" cells. This bias suggests that the
deficiency in lamin A/C limits the ability of these cells to form acute angle vertices, potentially
through defective nucleo-cytoskeletal connections’””'. Our results show that cells can respond
morphologically differently to the same shape constrains and VAMPIRE analysis can visualize and
quantify the subtle differences.

We computed the Shannon entropy for the cell populations and observed no significant differ-
ences between LMNA ™" and LMNA '~ within the same micropattern (Fig. 6b). However, looking
across conditions, we observed a significant decrease in the population heterogeneity for both
LMNA ™" and LMNA '~ seeded on circular patterns, relative to cells seeded on unpatterned surfaces
and triangular patterns. The aspect ratio of LMNA™* cells increased from 1.66 (no pattern) to 2.20
(triangle pattern), suggesting a more elongated shape for these cells. However, evaluating the shape
factor in the same cells showed an increase from 0.34 (no pattern) to 0.51 (triangle pattern), sug-
gesting rounder cell shapes on circular patterns. These seemingly contradictory results, measured by

NATURE PROTOCOLS | www.nature.com/nprot 17


www.nature.com/nprot

PROTOCOL NATURE PROTOCOLS

References

shape factor and aspect ratio, suggest that, compared with classical morphology parameters, VAM-
PIRE analysis can provide direct visual insight to better monitor the transition of cell morphology.

Using VAMPIRE analysis”® we also examined the association between cellular morphology and
chronological ages of dermal fibroblasts derived from seven healthy individuals. While the mor-
phology of mouse embryonic fibroblast was emphasized by artificial micropatterns, this example
illustrates the sensitivity of VAMPIRE to classify subtle, biologically meaningful morphology changes.
Previously, we demonstrated that cell and nuclear morphologies of dermal fibroblasts encode key
information about the biological age for healthy individuals*®. Using ten shape modes, VAMPIRE
analysis shows a decrease in the frequency of cells having rounded shape modes with rounded
morphologies, and an increase in cells having irregular nuclear morphologies with increasing age.
This is measured by negative age correlations for shape modes 1 and 2 having rounded shapes, and
positive age correlations for irregular nuclear shape modes 3, 4, and 7 (Fig. 7a). Correlation coeffi-
cients denote Pearson’s correlation. We also note that computing standard shape parameters,
including shape factor and aspect ratio, yielded very similar values for the cells in different shape
modes, (SF: 0.77-0.83, and AR: 1.51-1.64), even for shape modes having opposite trends in age
correlations (R: -0.6 and 4-0.6), i.e. shape modes 1 and 3. Furthermore, circular shape modes 1 and 2
have very similar shape parameters (SF and AR) to ellipsoidal shape modes 9 and 10 (Fig. 7b). Again,
this demonstrates the utility of VAMPIRE analysis to visually and quantitatively identify morpho-
logical changes that would otherwise go unnoticed using traditional morphological parameters.

Lastly, applying the utility of VAMPIRE analysis beyond cultured cells, we have successfully
implemented VAMPIRE analysis for the analysis of tissue sections. Here, we compare the
morphologies of cells derived from the human epidermis and reticular dermis based on hematoxylin
and eosin (H&E) stained tissue sections (Fig. 8a). Note that we segmented nuclei within the tissue
sections using a custom image analysis algorithm. To compare the morphology of cells in the
epidermis and reticular dermis region, we built a VAMPIRE model using nuclei segmented from the
scanned image of an H&E stained skin tissue biopsy from a 79 year old donor. We observed that
shape modes 1-3 were more elongated (i.e., less circular) relative to modes 4-10 (Fig. 8b). As
expected, VAMPIRE analysis was able to decipher differences between the two regions of the tissue
section, with nearly 50% of dermal cells being classified as modes 1-3, compared to only 6.4% for
epidermal cells (Fig. 8b).

Reporting Summary
Further information on research design is available in the Nature Research Reporting Summary
linked to this article.

Data availability

The datasets generated and/or analyzed during the current study are available from GitHub:
Micropattern Data (https://github.com/kukionfr/Micropattern_ MEF_LMNA_Image) and Aging
Data (https://github.com/kukionfr/Aging human_dermal_fibroblast_nucleus). A smaller example
dataset is provided as Supplementary Data 1 and is also deposited on GitHub: https://github.com/
kukionfr/VAMPIRE_open/releases/download/v1.0/Supplementary.Data.zip.

Code availability
The VAMPIRE source code is available on GitHub: https://github.com/kukionfr/VAMPIRE_open.
The code can be accessed and used by readers without restriction.
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We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

The datasets generated and/or analyzed during the current study are available from GitHub. Micropattern data (https://github.com/kukionfr/
Micropattern_MEF_LMNA_Image) & Aging data (https://github.com/kukionfr/Aging_human_dermal_fibroblast_nucleus). A smaller example dataset is provided as
Supplementary Data and is also deposited on GitHub (https://github.com/kukionfr/VAMPIRE_open/releases/download/v1.0/Supplementary.Data.zip)
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Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences D Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size of cells was directly derived from the a set of fluorescent cell images acquired from standard in-house microscopy procedure. For
each sample, a total field of view of ~ 8mm by 8mm was imaged.
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Data exclusions  No data was excluded
Replication Each cell samples were measured at least in two distinctively prepared samples.
Randomization  No randomization was used in the study due to small number of sample.

Blinding Blinding is not relevant and not used in this study

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
|:| Antibodies IZI |:| ChiIP-seq

X] Eukaryotic cell lines XI|[] Flow cytometry
|:| Palaeontology IZ |:| MRI-based neuroimaging
[ ] Animals and other organisms

Human research participants

MNXXXOX s

[] clinical data

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) Dermal fibroblast are directly purchased from Coriell Institute. Mouse embryonic fibroblasts cells are gift from Colin Stewart
at Institute of Medical Biology, Singapore

Authentication None of the cell lines are authenticated.

Mycoplasma contamination None of the cell lines are tested for mycoplasma contamination

Commonly misidentified lines  none.
(See ICLAC register)
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