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ARTICLE INFO ABSTRACT

Keywords: While essential to our understanding of solid tumor progression, the study of cell and tissue mechanics has yet to

Breast cancer find traction in the clinic. Determining tissue stiffness, a mechanical property known to promote a malignant

ISVI'ef;hanobmlogy phenotype in vitro and in vivo, is not part of the standard algorithm for the diagnosis and treatment of breast
tiffness

cancer. Instead, clinicians routinely use mammograms to identify malignant lesions and radiographically dense
breast tissue is associated with an increased risk of developing cancer. Whether breast density is related to tumor
tissue stiffness, and what cellular and non-cellular components of the tumor contribute the most to its stiffness
are not well understood. Through training of a deep learning network and mechanical measurements of fresh
patient tissue, we create a bridge in understanding between clinical and mechanical markers. The automatic
identification of cellular and extracellular features from hematoxylin and eosin (H&E)-stained slides reveals that
global and local breast tissue stiffness best correlate with the percentage of straight collagen. Importantly, the

Deep learning
Breast density

percentage of dense breast tissue does not directly correlate with tissue stiffness or straight collagen content.

1. Introduction

A significant disconnect exists between sophisticated biomechanical
and biophysical experiments “at the bench” [1], and clinical methods
used to determine effective therapeutics for patients with solid tumors.
Women with breast cancer are typically diagnosed via dedicated breast
imaging modalities (mammogram, ultrasound, MRI, tomosynthesis).
Mammograms are radiological images that reveal regions of dense,
fibrous, and glandular breast tissue typically shown in white against
non-dense, fatty tissue in black [2]. Methods for evaluating breast
density include visually binning images into categories (fatty, scattered,
heterogenous, extremely dense) based on the percentage of white versus
black features in the breast image, or quantifying the exact percentage of
dense tissue in white via image analysis (Fig. 1a).

Dense breast tissue poses two major risks for patients. The first is an
impaired ability to detect malignant lesions through imaging [3]. The

second is as an independent risk factor for breast cancer. Increased
breast density is associated with a worse patient prognosis [4-13], poor
progression free survival rate [14,15], and increased mortality [16,17].
These denser tissue regions are purported to be more fibrous than the
surrounding tissue [18], and have been linked to an increase in the
amount of collagen and numbers of epithelial and non-epithelial cells
[19].

While mammography remains the standard for breast cancer
screening, other imaging methods like elastography have been devel-
oped to leverage changes in tissue stiffness [20-23]. Breast ultrasound
elastography, a method utilizing sonographic imaging, identifies
changes in elastic moduli to detect lesions in the breast [24,25] and
shows promise as an imaging modality alongside traditional ultrasound
or mammograms to further characterize masses [26,27]. After using
multiple imaging modalities, core needle biopsies are still an essential
next step in the diagnostic algorithm [28].
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In the laboratory, the application of cell and tissue mechanics has
yielded great insight into tumor development and progression [29-40].
Tissue stiffening, widely attributed to an increase in collagen deposition
and cross-linking [41-44], has been proposed as a marker of tumor
biogenesis. Recent studies assessing mechanical tissue stiffness often use
previously frozen or fixed samples [44-46]; however these preservation
processes significantly impact the resulting mechanical measurements
[47]. Despite the lack of a direct link, many conflate breast tissue density
(radiographically defined fibrous and glandular tissue) and breast tissue
stiffness (the resistance of tissue to deformation [48]; often broadly
referring to the elastic modulus). The disconnect in terminology, be-
tween breast density vs. breast stiffness, and assessed features in the
clinic vs. the bench significantly hampers the generation of new and
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effective mechanobiology-inspired cancer therapies [49-53].

Here, we relate medical imaging, treatment history, and histology to
global and local mechanical measurements using a deep learning, con-
volutional neural network (CNN) that accurately identifies tissue com-
ponents from hematoxylin and eosin (H&E)-stained sections of breast
cancer tissues (Fig. 1a). Our goal was to relate microanatomical features
of breast cancer histology to global and local breast stiffness and breast
density. Patients with luminal A subtype (estrogen receptor (ER) and/or
progesterone receptor (PR) positive and HER2 negative) have dense
breasts that have been linked to an increased breast cancer risk [54].
Patients with triple-negative (TNBC) subtype (ER, PR, HER2 negative)
tend to have lower mammographic breast density than non-TNBC pa-
tients, yet, for complex reasons including the inability to use anti-HER2
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Fig. 1. Breast tissue acquisition, characterization, and selected classes for deep learning composition analysis. a, Schematic detailing the breast tissue acquisition and
characterization starting with medical imaging via mammogram, diagnosis, treatment, mechanical measurements, histology, and machine learning. b, Hematoxylin
and eosin (H&E)-stained images of cell component classes including (i) blood vessels (capillaries, venules/arterioles), (ii) ducts (excretory, terminal/acini/alveoli),
(iii) fat, (iv) tumor cells. Scale bars in black are 50 pm. ¢, Hematoxylin and eosin (H&E)-stained images of extracellular matrix component (ECM) classes including (i)
wavy collagen, (ii) straight collagen, and (iii) fibrotic tissue. Scale bars in black are 50 pm. d, Second harmonic generation (SHG) images confirming (i) the wavy
ECM class is wavy collagen, (ii) the straight ECM class is straight collagen, and (iii) the fibrotic tissue is not collagen detectable with SHG. Scale bars in white are

100 pm.
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drugs and an increased risk of recurrence, TNBC has a lower overall
survival rate (76.9%) than other breast cancers (90.3%) [55-57]. Here
we utilize 32 tissue samples from nine patients with a luminal A subtype
and one patient with a triple negative (ER, PR, HER2 negative) subtype.
For each patient, we analyze tumor tissue, and, as a control, grossly
normal tumor-adjacent breast tissue from the same patient.

Global stiffness is determined by a compression test, which consists
of taking one uniaxial measurement per tissue sample to obtain Young’s
modulus. Local stiffness, obtained through microindentation, reports the
elastic modulus from multiple, evenly spaced indentation measurements
across the same tissue surface. Based on these measurements, we then
identify correlations between tissue stiffness, microanatomical tissue
composition, and breast density.

2. Materials and methods
2.1. Patient tissues

Patients with abnormal screening or diagnostic breast imaging
findings require pathologic examination (either core needle aspiration
or less frequently fine needle aspiration) to definitively characterize the
abnormal radiographic lesion. If positive for breast cancer, the pathol-
ogist will determine the histologic subtype, assign a Nottingham histo-
logic grade, and perform additional breast biomarker studies (Fig. 1a).
The combination of physical examination and imaging modalities helps
to assign the clinical staging regarding the size of the tumor (T),
abnormal axillary lymph node (N) and the presence of metastatic disease
(M). If the patient undergoes surgical resection, lumpectomy or mas-
tectomy, the pathological staging will be reported by the size of the mass
(T) and any lymph node involvement (N). During the pathologic eval-
uation, the histologic type and Nottingham score are confirmed, and the
overall pathology cancer stage is assigned as defined by the American
Joint Committee of Cancer Staging Manual, 8th edition [58] (Primary
Tumor [T] Status and Regional Lymph Nodes [N] Status) (Fig. 1a).

All patient tissue samples were obtained with written consent from
the patient and approved by the Johns Hopkins Medicine Institutional
Review Board (IRB). Tumor-adjacent and tumor tissue samples received
from the patients were kept in 4 °C DPBS immediately after mastectomy
or lumpectomy. Tumor samples were then transferred for mechanical
tests within 4 h of resection. The tumor tissue was then sectioned to
expose the regions of interest for micromechanical mapping and bulk
compression tests.

Fifteen tissues from six luminal A patients that did not receive neo-
adjuvant chemotherapy were chosen for the global stiffness analysis. Six
tissues from two patients, one with luminal A subtype and one with
TNBC subtype, that received neoadjuvant chemotherapy were used in a
separate analysis of the relationship between global stiffness and tissue
composition to avoid any confounding tissue composition distributions
associated with neoadjuvant chemotherapy previously reported in the
literature [25,59,60]. Two tissues from one patient with a luminal A
subtype and no neoadjuvant chemotherapy were used for complemen-
tary local stiffness analysis. Only luminal A patients who did not receive
neoadjuvant chemotherapy were used to analyze quantified breast
density. Tissue samples from all patients were used to train the neural
network.

2.1. Microindentation of tissues

The tumor section was mounted on a customized stage and DPBS was
applied to keep the tissue hydrated throughout the measurement. Dy-
namic indentation by a nanoindenter (Nanomechanics Inc.) was used to
characterize the tumor elastic modulus [61]. Sneddon’s stiffness equa-
tion [62] was applied to relate dynamic stiffness of the contact to the
elastic storage modulus of the samples [63,64]. 500 pm flat cylindrical
probe was used in the indentation experiments. Briefly, procedure of
indentation is comprised of 3 steps: 1) approaching and finding tissue
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surface at the indenter’s resonant frequency to enhance contact sensi-
tivity and accuracy, 2) pre-compression of 50 pm to ensure good contact,
3) dynamic measurement at 100 Hz oscillation frequency with ampli-
tude of 250 nm. The indentation procedure mentioned above was done
consecutively on multiple regions of a single tissue surface in a grid
pattern to obtain elastic moduli map of the tumor. Because obtaining a
perfectly flat tissue surface was difficult due to tissue heterogeneity,
individual indentation processes were observed using a microscope
camera to determine inappropriate contact of the probe to the tissue for
inaccurate measurement which were excluded from data. Typically, the
number of indentation points per tissue mapping was 20-40 with the
resolution of 1-3 mm spacing between points depending on the size of
tumor sample. The duration of stiffness mapping was 30 min on average.
A single measurement was obtained for each indentation.

2.2. Compression test of tissues

Tissue samples were sectioned to obtain flat and parallel surfaces on
all sides. Once the sample was sectioned, it was immediately staged on
tensile/compression tester (MTS Criterion) for measurement [65]. Top
compression plate was lowered until in full contact with tissue sample at
minimal load. Once in contact, the samples could relax and stabilize for
1 min before actual compression test. Tissue samples were compressed
at 0.25 mm/s deformation rate until 20% strain. Young’s modulus
calculation was done on the best-fitted slope of the initial linear region
(~5-10%) of the obtained stress-strain curve. A single measurement was
obtained for each tissue.

2.3. Patient tissue processing

After obtaining mechanical measurements, each tissue was fixed in
formalin for 24 h. The tissue was transferred to PBS prior to embedding
in paraffin, sectioning (4 ym), and staining with hematoxylin and eosin
(H&E). To minimize the batch effects of H&E image staining and scan-
ning conditions, all tissues were stained in and scanned by the same
laboratory.

2.4. Quantifying breast density from mammograms

Pectoral muscle was removed from mammogram images prior to
receipt. Images were then cropped to remove any identifiers and keep
only the breast image. The image was then converted to type 8-bit.
Thresholding was performed using MinError(l) in ImageJ and a histo-
gram was taken to determine the total breast pixel size. Reverting to the
original 8-bit image, thresholding using Moments and taking a histo-
gram determined the number of dense breast tissue pixels. A breast
density percentage was obtained by dividing the number of white pixels
from the Moments thresholding by the number of white pixels using
MinError(l) thresholding and multiplying by 100.

2.5. Second-harmonic generation

Mounted tissue slides were imaged using a LD LCI Plan-Apochromat
25x%/0.8 Imm objective mounted on a Zeiss LSM 710 NLO upright mi-
croscope. Excitation was provided by a Chameleon Vision II mode-
locked Ti:Sapphire laser tuned to 880 nm, and the SHG signal was
captured by an epi-mounted non-descanned detector with a 420-480 nm
bandpass filter.

2.6. Manual annotations

Manual annotations of tissue slides were performed using Aperio
ImageScope [v12.3.3.5048]. Briefly, cellular and extracellular compo-
nents were identified manually in H&E-stained tissue slides by outlining
the feature using the built-in annotation function. Within each tissue
slide, we annotated 30 or more instances of a feature type to create the
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tissue and non-tissue-based classes. The annotations were verified by a
trained pathologist.

2.7. Convolutional neural network architecture

We used H&E stained slides of breast tumor-adjacent and tumor
tissues to train the CNN [66]. The slides were scanned at 20x, with a
spatial resolution of 0.5pm/pixel, and down-sampled using the open-
slide library [67] to a pixel size of 1pm/pixel. Example regions of
different tissue classes were manually annotated (30+ annotations per
tissue class) in each individual slide. In this study, we annotated seven
tissue classes including blood vessels, ducts, fat, tumor cells, wavy
collagen, straight collagen, and fibrotic tissue; and one non-tissue class
which we term white space. The CNN was trained and validated in
MATLAB 2019b with 3600 randomly selected non-repeating image tiles
per annotation class from all patient slides. Of these 3600 images per
class, 3000 were used for training, and 300 were used for validation and
testing. Dropout layers and a window size of 103 pixels x 103 pixels x 3
channels were used to facilitate the classification of both cellular and
extracellular classes in the model. We utilized data augmentation ap-
proaches similar to previous augmentation techniques in order to in-
crease our training data size and help prevent overfitting [68,69]. The
training images were augmented via positive or negative 90° rotations to
increase the training size and prevent overfitting [70-73]. Adam
(adaptive moment estimation) optimization was used with an initial
learning rate of 0.013 to train the model. Training finished when vali-
dation accuracy did not improve for five epochs. The network archi-
tecture of the CNN model contains four convolutional layers each
followed by a batch normalization and rectified linear unit (ReLu)
layers. The second convolutional layer is followed by a dropout layer of
0.1. Then there are six convolutional layers in parallel, each with a batch
and ReLu layer. An additional layer and ReLu layer are added before five
more convolutional/batch/ReLu layers. There is a max pooling layer,
convolutional layer, dropout layer of 0.1, batch and ReLu layers. Next, a
convolutional/batch/ReLu/max pooling set before a fully connected
layer with batch normalization and ReLu layers. The architecture ends
with a fully connected layer, batch normalization layer, and softmax
output layer. By utilizing distinct training, validation, and testing sets,
we were able to assess our model for signs of overfitting. As our training
and validation sets came from manual annotations of the same images,
the validation data assessed CNN performance on unseen combinations
of annotations from the same images as the training set. As our testing
set came from annotations of images not included in the training set, the
testing data assessed the CNN’s ability to classify wholly unseen exam-
ples of our tissue and cellular features. Our model testing accuracy
(93.0%) was similar to our training accuracy (94.2%) and our validation
accuracy (93.7%), suggesting that our model was not overfit to our
training data.

2.8. Computation of tissue composition

Classified images were imported into ImageJ. Histogram analysis of
the whole tissue section provided tissue composition values for global
stiffness (15 tissue samples, 6 patients). For local stiffness composition,
the fresh patient tissue image contains the original microindentation
map overlay. The CNN classified image was scaled and manually
registered to match the original fresh patient tissue image. Histogram
analysis inside of 500 pm (62.5 px) diameter circles on the CNN classi-
fied image provided the local stiffness composition (3 tissue samples, 2
patients).
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2.9. Bivariate and univariate analysis

MATLAB’s built-in function ‘corr’ was used to perform univariate
analysis resulting in either a Pearson or Spearman correlation and sta-
tistical significance. MATLAB’s built-in functions ‘glmfit’ and ‘glmval’
were used to perform bivariate analysis resulting in a correlation coef-
ficient, fit error, and statistical significance for each pair. The global and
local stiffness measurements are converted to log base 10 values before
analysis. The distribution used was ‘normal,” and the link was ‘identity.’
The general form of the equation is:

p=Xb

where p is the response with a normal distribution, X is a matrix of
predictors, and b is a vector of coefficient estimates.

The number of patient tissue samples and patients for each param-
eter are as follows: global stiffness — 15 tissue samples, 6 patients; local
stiffness — 2 tissue samples, 1 patient; breast density quantification — 20
tissue samples, 8 patients.

2.10. Heatmaps of tissue composition, mechanical measurements, and
pathologic features

Heatmaps of global and local stiffness data were created in RStudio
using R version 3.6.3 and function superheat. Clustering was performed
using Euclidean distance with a complete linkage method.

2.11. Statistical analysis

Statistical analysis for univariate and bivariate analysis plots and
tables was performed using MATLAB’s “corr” function. The line of best
fit was plotted using Prism 6 (GraphPad Software, Inc.). For the breast
density bar chart analysis, ordinary one-way ANOVAs using Turkey’s
multiple comparison test with a single pooled variance were performed
in Prism 6 (GraphPad Software, Inc.). All bar chart graphs are reported
as mean + SEM. *p < 0.05, **p < 0.01, ***p < 0.001, and ***p <
0.0001.

3. Results

3.1. Deep-learning model classifies essential cellular and extracellular
matrix features

Patients received diagnostic breast imaging via mammogram, path-
ologic examination, and characterization, and finally surgery prior to
release of tissue samples for mechanical measurements, H&E staining,
and deep learning analysis (Fig. 1a, See Methods). This study presents
analysis of ten patients, with stiffness measurements on samples from
nine of the ten patients (Table 1).

Breast tissue histology is complex and heterogeneous, as many
components change in content and organization during tumor progres-
sion [58]. Whole slide tissue images regularly contain hundreds of
thousands to millions of cells within semi-organized stroma. As such,
exhaustive manual annotation of all cellular and fibrous features within
histological images is so time intensive as to be infeasible.
Semi-automatic computational techniques such as deep learning clas-
sifiers address this problem, and have been successful in identifying
normal and cancerous components in histological sections [74,75]. This
paper utilizes a CNN-based deep learning pipeline which has previously
shown success in classification of histological images into pathologically
relevant subtypes [66]. We identified seven clinically relevant and
computationally identifiable tissue classes consistent across most tested



Table 1

Patient cohort demographic and pathologic information.

Patient Age Race Histologic Type  Neoadjuvant Previous ER PR HER2 T N M Stage  Overall Breast Density Breast Density Analysis Category
Chemotherapy Treatment status status status tCJi o IS\I:ot:Lngham Categories Quantification Global  Global Breast Density
Stiffness  Stiffness Quantification
(neoadjuvant)
1 43 Asian Invasive and in None None + Focal pT2  pNO MO 1A 1 Heterogeneously  46.4% Y Y
situ mucinous & Dense
carcinoma Varia.
2 69 Black Poorly None None + - pT2  pN1 MO 1B 3 Heterogeneously  20.9% Y Y
differentiated Dense
infiltrating ductal
carcinoma
3 47  White Infiltrating None Preoperative + + pT2  pN1 MO 1B 2 Heterogeneously  36.1% Y Y
mammary Tamoxifen Dense
carcinoma with
ductal & lobular
features
4 45 White Invasive and in None None + + pTlc pNlmi MO 1B 3 Heterogeneously  44.2% Y Y
situ ductal Dense
carcinoma
5 63 White Invasive ductal None Preoperative + + pTlc pNO MO 1A 1 Heterogeneously  38.8% Y Y
carcinoma Letrozole Dense
6 55 White Intermediate None Preoperative + + pT3  pNO MO 1B 2 Heterogeneously  37.8% Y Y
grade invasive Letrozole Dense
lobular cancer
7 58 White Poorly Yes Yes - - pT3 pN2a Ml 1B 3 Dense Unknown  34.9% Y
differentiated
invasive and in
situ ductal
carcinoma
8 31 Arabic Poorly Yes None + - pT3 pN3a MO 11 Extremely Dense Y
differentiated
infiltrating ductal
carcinoma
9 71  White Invasive None None + + pTlc pNO MO 1A 2 Heterogeneously  41.6% Y
mucinous Dense
carcinoma,
micropapillary
variant
10 41 Latino Infiltrating None None + - PT2 pNlc MO 1A 3 Scattered Density 36.3% Y
mammary

carcinoma with
ductal & lobular
features

D 32 J2p1aus Yy
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breast tissues (Fig. 1b and c). The four cell component classes are blood
vessels (capillaries and venules/arterioles), ducts (excretory, termi-
nal/acini/alveoli), fat, and tumor cells (viable, necrotic) (Fig. 1b). The
three extracellular matrix (ECM) classes are wavy collagen, straight
collagen, and fibrotic tissue (Fig. 1c). Second harmonic generation
confirmed that the wavy and straight ECM classes were fibrillar collagen
(Fig. 1d). The wavy and straight stromal phenotypes, a distinction which
has been noted by others [76], were identified from a visual assessment
of the histology sections. Our eighth class, white space, encapsulates all
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non-tissue space on the images (not shown).

The CNN successfully identified and classified the seven cell and
tissue classes stated above in 32 patient tissue samples consisting of 13
tumor-adjacent and 19 tumor samples from all ten patients (Fig. 2a). The
confusion matrix details class accuracy in the testing dataset (Fig. 2b).
Overall testing accuracy was 93.0% (Fig. 2b). All tissue classes were
identified with greater than 90% sensitivity, except for fat cells at
89.7%. In this case, fat tended to be misclassified as white space due to
the chosen image window size in the neural net. Histological subtyping
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Fig. 2. Convolutional Neural Network construction, quantitative and qualitative analysis. a, Schematic showing the division of H&E stained tissue slides (32 tissues,
10 patients) into data tiles for training, validation, and testing. While each dataset is from the same patient tissue slides, the testing set was developed from a separate
set of annotations than the training and validation sets. The training images are augmented by rotation [-90°,90°] before use in the convolutional neural network
(CNN). The accuracy of the CNN is determined against the testing sets. Finally, the whole tissue images are classified according to the CNN. b, Confusion matrix
determining quantitative accuracy of the CNN for the testing set. Cell component classes include blood vessels, ducts, fat, tumor cells, wavy collagen, straight
collagen, fibrotic tissue, and white space (blank space). 300 images were analyzed per class. Overall model accuracy of 93.0%. ¢, Qualitative analysis of CNN model
accuracy showing original histology images side-by-side with the CNN classified image. The first set of images highlights the model’s ability to identify blood vessels
in both fat and wavy collagen (Fig. 2¢,i). The second set of images recognizes the distinction of ducts, both excretory and terminal, in wavy collagen (Fig. 2¢,ii). The
third set of images shows the detection of cancer cells, straight collagen, and fibrotic tissue (Fig. 2¢,iii). Scale bars in black are 100 pm. Color legend for each classified
feature is included in the figure. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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revealed that a subset of luminal A tumors has ductal morphologies,
which could explain why ducts and tumor cells were misclassified as
each other 2.5% of the time (Fig. 2b). Wavy collagen was misclassified as
straight collagen 3.2% of the time, however, straight collagen was never
mistaken for wavy collagen (Fig. 2b). The successful separation of these
ECM phenotypes was important for ensuring that we could analyze the
contribution of the stroma to global and local modulus measurements.
Any incorrectly classified straight collagen tended to be attributed to the
tumor cell class, which was most likely a biological result of short
straight fibers amongst tumor cells. White space misclassified as other
cellular classes may be due to the presence of lumen (Fig. 2b). Visual
comparison highlights the trained network’s ability to distinguish his-
tological features even in complex tissue microenvironments (Fig. 2c
and Supplementary Fig. 1a).

3.2. Straight collagen strongly correlates with global stiffness

Histograms of fully classified whole-tissue slides provided cell and
ECM composition for all tissue samples which can be visualized by order
of global stiffness, breast density, and patient information (Fig. 3a).
Stiffness measurements of tumor tissues and tumor-adjacent tissues
(which served as controls) revealed that both global stiffness and
composition were heterogeneous within each patient between tumor
tissue sections and tumor-adjacent sections (Fig. 3a). Mechanically soft
tissue included the highest percentages of fat and wavy collagen
(Fig. 3a). The tissues with the highest Young’s moduli contained greater
percentages of blood vessels, tumor cells, straight collagen, and fibrotic
tissue (Fig. 3a).

Further analysis of the data suggested that the Young’s modulus, the
global stiffness measurement of each tissue, has a logarithmic relation-
ship with each tissue component [77,78]. Plots of the log stiffness value
versus the percent composition of each class yielded a linear line of best
fit and associated Pearson correlation. Blood vessels had a significant
but only moderately strong positive correlation with global stiffness
(r=0.61, p =0.016), suggesting that this relationship was important but
did not fully describe the system (Fig. 3b,i). Highlighted by the fact that
tissue with the greatest tumor cell composition belonged to a tissue with
a stiffness value of 5.8 kPa, while the lowest composition belonged to a
stiffness of 7.2 kPa (r = 0.46, p = 0.084) (Fig. 3b,ii), tumor stiffness did
not always increase with the percentage of tumor cells. Neither the
percentage of fat nor ducts correlated significantly with global stiffness
(Supplementary Fig. 2a and b). Combining all matrix (non-cellular)
classes into one category revealed that there was no clear correlation
(r=-0.12, p = 0.67) between the total extracellular matrix content and
global breast tissue stiffness (Fig. 3c). This finding may be a result of
the high percentage of wavy collagen, an ECM class that did
not significantly correlate with stiffness in each tissue sample
(Supplementary Fig. 2c). While the percentage of fibrotic tissue showed
a moderately strong correlation (r = 0.54, p = 0.039) with the Young’s
modulus of the tissue (Fig. 3d,ii), there was a strong positive correlation
(r =0.84, p = 0.0001) between the percentage of straight collagen and
the Young’s modulus (Fig. 3d,i). Parsing the extracellular matrix classes
demonstrated that the necessity of evaluating ECM components
separately from the bulk.

In the clinic, neoadjuvant chemotherapy is known to be a con-
founding factor in the resulting breast tissue composition as it contrib-
utes to the generation of fibrotic tissue [59,79]. In two patients who
received neoadjuvant chemotherapy, there was a significantly strong
positive correlation (r = 0.95, p = 0.0031) between straight collagen and
Young’s modulus (Fig. 3e). This result suggests that the relationship
between straight collagen and global stiffness is independent of whether
a patient has received neoadjuvant chemotherapy.

The eight patients in the luminal A, non-neoadjuvant chemotherapy
cohort had mammographically heterogeneously dense breasts (Table 1).
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When quantified, this category spanned a range of 20-50% dense breast
tissue (Fig. 3f, Table 1). Binning of the percent density into three cate-
gories showed that there was no significant relationship between breast
density and global tissue stiffness in our study (Fig. 3f). The Spearman
correlation between the two parameters was effectively zero (Fig. 3f).

A general linearized model was used to perform bivariate analysis of
tissue composition classes in the patients without neoadjuvant chemo-
therapy (see methods). The stiffness measurements were converted into
log scale values prior to running the analysis. The correlation between
Young’s Modulus and any two tissue classes only slightly increases in
strength (r = 0.87, p = 0.000026) (Fig. 3g). The effect of straight
collagen dominates the top five strongest bivariate correlations
(Fig. 3h), suggesting that straight collagen, and not cellular components,
is the main determiner of Young’s modulus. The percentage of blood
vessels in combination with straight collagen yielded the highest cor-
relation (Fig. 3g and h). This result is supported by the above univariate
analysis (Fig. 3b,i and 3d,i).

3.3. Straight collagen content correlates with other cellular and
extracellular classes

Given the importance of straight collagen composition in deter-
mining breast tissue stiffness, we investigated the relationship of straight
collagen composition to other cellular and extracellular classes (Fig. 3i
and j). Tissue stiffness is often discussed and compared based on orders
of magnitude changes, and frequently visualized on a logarithmic scale
[77,78]. Unlike Young’s modulus, the quantitative relationship between
various cellular and extracellular classes has not been extensively
studied. Thus, we cannot assume that the percentage of straight collagen
has a linear, proportional response with the other tissue components,
and have chosen to report the Spearman correlation instead of the
Pearson correlation.

There is a significant, moderately strong Spearman correlation (ps)
(ps = 0.69, p = 0.0045) between the percentage of blood vessels and
straight collagen (Fig. 3i). The positive correlation means that a higher
percentage of blood vessels moderately parallels a higher percentage of
straight collagen. The best fit line to describe the relationship was log-
arithmic (Fig. 3j,i). Increased vascular density has been linked to poor
tumor differentiation and an increase in cancer cell proliferation [80],
which suggests that there may be a trade-off between vascularization
and an effort by cancer cells to align collagen.

The percentage of tumor cells has a strongly positive correlation with
straight collagen (ps = 0.91, p = 0.0000024) (Fig. 3i). This relationship
suggests a near perfect monotonic relationship between these parame-
ters, and agrees with our understanding of tumor biology that tumor
cells are responsible for restructuring the extracellular matrix to create
aligned fibers [42,81,82]. The line of best fit for the data based on the
R-squared value is an exponential curve, however the root mean squared
error (RMSE) is high using this fit (Fig. 3j,ii). This finding is distinct from
the earlier observation that the percentage of tumor cells does not
strongly or significantly correlate with tissue stiffness (ps = 0.55, p =
0.035; r = 0.46, p = 0.084) (Fig. 3b,ii). The correlations between each
combination of the three parameters suggest complex relationships be-
tween tumor development through changes in tissue composition and
mechanical properties like tissue stiffness.

With respect to the other ECM classes, the percentage of straight
collagen increased as wavy collagen decreased (ps = —0.55, p = 0.034)
and fibrotic tissue increased (ps = 0.68, p = 0.0054) (Fig. 3i). The best fit
line for wavy collagen was linear but had a high RMSE (Fig. 3j,iii). The
degree of collagen curvature, i.e. straight versus curly, was previously
related to its location from the tumor [76,83,84], and found to be in-
dependent of the grade of malignancy [76]. For fibrotic tissue, the best
fit line was logarithmic (Fig. 3j,iv).
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Fig. 3. Young’s modulus (global stiffness) characterization and composition analysis of breast tissue. a, Heatmap including (columns) 15 tissue samples from 6
patients (P#) clustered using Euclidean distance with complete linkage by (rows) related features. Each parameter is normalized using a z score. The values within
each feature are color coded by low to high. The heatmap key on the left denotes the following color-coded parameters of each feature: cell component, extracellular
matrix (ECM) component, pathologic feature, or mechanical measurement. b, Univariate analysis comparing Young’s modulus (global stiffness; kPa) to the percent
composition of cell component class: (i) blood vessels, (ii) tumor cells; ¢, extracellular matrix combined; d, (i) straight collagen and (ii) fibrotic tissue; e, straight
collagen from patients who received neoadjuvant chemotherapy; and f, percent breast density. g, Highest correlated pair of tissue composition classes with Young’s
Modulus. The Pearson Correlation (r), p-value, r* value, and error is listed at the top of plots b-e and g. One-way ANOVA was used to perform statistics in f. h,
Table of top five correlated tissue composition pairs from bivariate analysis using normal distribution and identity link using MATLAB’s glmfit and glmval functions.
Rank ordered by correlation. The error is the fit-error. i, Plot of Spearman Correlation (ps) versus the p-value for all cellular and extracellular classes versus straight
collagen. Values below the dashed line where p = 0.05 are significant. j, Plots showing the monotonic relationship between straight collagen and (i) blood vessels, (ii)
tumor cells, (iii) wavy collagen, and (iv) fibrotic tissue. Plots in j show the r? value and root mean squared error (RMSE) at the top of the plot. Plots with square data
points represent luminal A patients who have not received chemotherapy. Plots with circles represent patients who received neoadjuvant chemotherapy. Each data
point is color coded by patient. The lines denote the best fit trend line. (For interpretation of the references to color in this figure legend, the reader is referred to the
!Veb version of this article.)
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Fig. 4. Microindentation mapping, characterization, and composition analysis of breast tissue. a, Fresh patient tissue with elastic modulus (local stiffness; kPa) map
overlay. Scale bar in black is 5000 pm. b, Corresponding Convolutional Neural Network (CNN) classified image of the patient tissue in a with the microindentation
stiffness (kPa) map overlay. Scale bar in black is 5000 pm. b inset, Inset shows the composition of a representative microindentation point. Scale bar in black is 500
pm. Bad measurements are listed as NA and do not contribute to the analysis. ¢, Heatmap clustered using Euclidean distance with complete linkage by (row) each cell
or extracellular matrix class detailing the percent composition (0-100%). Each column is a different microindentation point organized from the lowest to the highest
stiffness (kPa) value (49 measurements, 2 tissues, 1 patient). d, Univariate analysis comparing elastic modulus (local stiffness; kPa) to the percent composition of
straight collagen. e, Bivariate analysis showcasing the tissue composition pair with the highest correlation to local stiffness. The line denotes the best fit line. The
Pearson Correlation (r), p-value, 12 value, and fit-error is listed at the top of the plot. f, Table highlighting the top five tissue composition pairs correlated with the
elastic modulus. Rank ordered by correlation. The error is the fit-error.
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3.4. Local stiffness is best described by straight collagen content

Local measurements reveal the large variations in stiffness values of a
fresh patient tissue sample (Fig. 4a). Manual registration of the micro-
indentation values on to the CNN-classified histology image allowed for
the direct comparison between local elastic moduli and local tissue
composition (Fig. 4b). Manual registration was necessary since the
microindentation images and map are performed on whole tissues
lacking resolution required to identify tissue components, and therefore
the section must be aligned to the whole tissue image based on whole
tissue shape and knowledge of microindentation sampling. Composi-
tions were determined for the region directly under the microindenter, i.
e. a 500 pm-diameter circle (Fig. 4b, inset). Two tissue samples from one
patient in the luminal A non-neoadjuvant cohort, not previously used in
the global stiffness analysis, were chosen for the local stiffness analysis
since the processed samples could be directly matched to the unpro-
cessed images obtained from microindentation mapping.

Visualizing the increasing local stiffness demonstrates that the in-
dentations with the greatest stiffness values had the highest percentages
of straight collagen (Fig. 4c). The greatest percentages of tumor cells and
fat coincided with some of the lower and middle stiffness values
(Fig. 4c). As with the global Young’s modulus, we considered the loga-
rithm of the local elastic modulus versus the tissue classes. The log of the
elastic modulus had a significant, moderately strong linear relationship
with straight collagen (r = 0.57, p = 0.000023) (Fig. 4d). This was the
only cellular or extracellular relationship to the elastic modulus that was
significant. Bivariate analysis only slightly increased the correlation of
the tissue composition classes to the elastic modulus (r = 0.60, p =
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0.0000055) (Fig. 4e). Straight collagen again dominated the top five
correlations (Fig. 4f), suggesting that straight collagen, and not cellular
components dominates the elastic modulus within the local regions
measured. The strongest bivariate pair is ducts combined with straight
collagen (Fig. 4e and f).

3.5. Breast density does not strongly correlate with tissue classes

The concept of breast density is often conflated with breast tissue
stiffness. We showed using global stiffness measurements that quantified
breast density does not have a clear correlation with Young’s modulus of
the tissue (Fig. 3f). We sought an answer to the question of which
cellular or extracellular classes relate to quantified breast density. The
relationship between component and percentage breast density was
determined using two methods. The first was through a Spearman cor-
relation (ps), highlighting a monotonic relationship between ranked
values (Fig. 5a). The second was by binning the percent breast density
into three intervals and comparing the composition (Fig. 5b-h).

The percentage of blood vessels and fat alone did not correlate with
percent density (Fig. 5a) and was not significantly different from 20 to
50% dense breast tissue (Fig. 5b). The percentage of ducts had a sig-
nificant, moderately positive correlation with percent of dense breast
tissue (Fig. 5a). Furthermore, 40-50% dense breast tissue has signifi-
cantly greater percentage of ducts than 20-30% or 30-40% dense breast
tissue (Fig. 5¢). While this initial finding is in line with the current un-
derstanding that dense breast tissue highlights an increase in glandular
tissue [2], future work spanning a larger patient population (i.e. wider
range of breast densities, more patients with lower mammographic
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Fig. 5. Breast density does not correlate with tissue composition. a, Plot of Spearman Correlation (ps) versus the p-value for all cellular and extracellular classes
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breast densities) is necessary to validate this claim. Even though we did
not find a correlation between tumor cells alone and breast density (ps =
0.04, p = 0.84) (Fig. 5a), there were more tumor cells in tissues with a
breast density of 20-30% than 30-40% and 40-50% (Fig. 5e). There was
no significant correlation between any of the extracellular matrix classes
and the percent breast density (Fig. 5a), nor was there a significant
relationship between breast densities within each of the components
(Fig. 5f-h). Assuming a normal distribution, tumor cells and fibrotic
tissue combined had a significant and moderately positive correlation
with breast density (ps = 0.59, p = 0.0018) (Fig. 5i and j). After this first
combination, the percentage of ducts dominated the bivariate relation
(Fig. 5)).

4. Discussion

Through tissue component identification using a deep learning
model, we were able to connect mechanical measurements to patient
tissue composition. We identified the highest univariate correlate of
both global and local stiffness to be straight collagen (Fig. 3d,i and
Fig. 4d). Our findings improve upon and depart from previous work with
these key discoveries: straight collagen is a biomechanical marker in
human tissue; straight collagen has strong monotonic relationships with
other cellular and extracellular classes; Young’s modulus is dependent
on tissue composition; the fibrillar phenotype is identifiable using H&E
without SHG or additional staining; and that straight collagen does not
directly relate to breast density. Furthermore, we use whole tissue slides
in our analysis affording us both the ability to analyze a greater fraction
of each tumor than tissue microarrays (TMAs), and to utilize the same
slides already procured in the clinic for diagnostics and treatment.

Our results strongly correlating straight collagen to global breast
stiffness are supported by current knowledge in the field. Previously,
through the use of TMAs, straightened and aligned collagen was linked
to poor disease-specific and disease-free survival independent of the
cancer type, stage of cancer, hormone status, and node status [85].
Aligned collagen perpendicular to the tumor acts as a mechanism for
local invasion by cancer cells [82,86]. This class was proposed as a
predictor for breast cancer survival, i.e. that increased aligned collagen
suggests poor prognosis [85,87]. In mice, the elastic modulus of mam-
mary glands was shown to increase in tumors due to collagen cross-
linking, which then forms more fibrillar and aligned collagen [42].
Further, in vitro models have been used to show that collagen alignment
has a positive correlation to matrix stiffness and that stiffness measures
differ from a macro to a micro scale [88,89]. In ex vivo measurements of
human breast tissues, the mean Young’s modulus was shown to vary
based on the tissue and histologic tumor type [90]. In an earlier attempt
to relate breast tissue stiffness and breast density, the stiffness was
approximated from a theoretical calculation of breast volume and area
in a mammogram, not through actual mechanical measurements of the
tissue [91]. Our results and the above studies show clear links between
(1) collagen alignment and patient outcome and (2) collagen alignment
and tissue stiffness. Extrapolating these results to clinical observations,
these findings provide a possible explanation for the clinical link be-
tween tissue stiffness and patient outcome.

Treatment of all stroma as a single class would have led to the
incorrect conclusion that the extracellular matrix does not contribute to
mechanical stiffness in patient tissue (Fig. 3c). The predominance of the
wavy collagen phenotype, which on average accounts for 56.6% of the
classes identified in each tissue section, causes this misleading result
when the ECM is bundled into a single category. Our results following
separation of wavy and straight fibrillar collagen and fibrotic tissue
highlights the importance of separating ECM classes into pathologically
relevant subtypes. Future analysis, through immunohistochemical and
immunofluorescent staining, could incorporate the identification of
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immune and stromal cells.

The relationship between tumor cells, straight collagen, and Young’s
Modulus is worth briefly discussing as these classes defining stiffer
tumor sections are in line with the current understanding of tumor
biology [29,92-95]. Tumor cells have a weak correlation with tissue
stiffness, despite their strong correlation with straight collagen. We
think that there is a difference between the maximum stiffness achiev-
able by a cell component versus that of an extracellular class. Tumor
cells can align collagen but are not stiff themselves; therefore, the
aligned collagen has a greater contribution to tissue stiffness.

All patients used in the study of breast density had a luminal A
subtype and were designated as having categorical heterogeneously
dense breasts. Within this specific category, the quantified breast density
ranged between 20 and 50%. In contrast to previously reported litera-
ture, we did not find that mammographic density correlated with
aligned collagen [96,97]. The different findings could be a result of
earlier works identifying low and high mammographic density from a
patient cohort with values predominantly below 20% density [96], or
with patients across multiple breast density categories [97].

Our result urges caution when discussing breast density versus breast
stiffness. Additionally, this outcome supports the clinically accepted
separation between findings from palpations and cancer occurrence or
prognosis [98-100]. Of note, the tissue samples are from regions in or
near the excised tumor region and may not fully represent the
non-excised regions of the breast, whereas the breast density determi-
nation is based on the whole breast. We are unable to specifically trace
back the excised tissue sample to an exact area of high or low
mammographic density in the mammogram image. Future studies
would need to know the exact location of the excised tissue to relate the
tissue composition findings to regions of breast tissue density in mam-
mograms, and utilize a larger patient cohort with a range of categorical
and quantitative breast density. Furthermore, while we did relate breast
density to both the Young’s modulus for global tissue stiffness and the
elastic modulus for local tissue stiffness, there are other types of stiffness
measurements that could have distinct relationships with breast density.

5. Conclusion

In conclusion, we are able to identify the unique correlations be-
tween stiffness, mammographic breast density, and cellular and extra-
cellular matrix features by utilizing a convolutional neural network. We
propose that straight collagen best correlates with global and local tissue
stiffness. We find that there is no readily identifiable connection be-
tween tissue stiffness and breast density.
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