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One Sentence Summary: We successfully created a bridge between mammographic density,
breast cancer pathologic features, and bench-side mechanobiology research experiments by
performing stiffness measurements on fresh patient tissue and applying a deep learning model to

determine tissue composition.

Abstract: While essential to our understanding of solid tumor progression, the study of cell and

tissue mechanics has yet to find traction in the clinic. Determining tissue stiffness, a mechanical
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property known to promote a malignant phenotype in vitro and in vivo, is not part of the standard
algorithm for the diagnosis and treatment of breast cancer. Instead, clinicians routinely use
mammograms to identify malignant lesions and radiographically dense breast tissue is associated
with an increased risk of developing cancer. Whether breast density is related to tumor tissue
stiffness, and what cellular and non-cellular components of the tumor contribute the most to its
stiffness are not well understood. Through training of a deep learning network and mechanical
measurements of fresh patient tissue, we create a bridge in understanding between clinical and
mechanical markers. The automatic identification of cellular and extracellular features from
hematoxylin and eosin (H&E)-stained slides reveals that global and local breast tissue stiffness
best correlate with the percentage of straight collagen. Global breast tissue mechanics correlate
weakly with the percentage of blood vessels and fibrotic tissue, and non-significantly with the
percentage of fat, ducts, tumor cells, and wavy collagen in tissue. Importantly, the percentage of

dense breast tissue does not directly correlate with tissue stiffness or straight collagen content.

[Main Text: ]

Introduction
A significant disconnect exists between sophisticated biomechanical and biophysical

experiments “at the bench,”(1) and clinical methods used to determine effective therapeutics for
patients with solid tumors. Women with breast cancer are typically diagnosed via dedicated
breast imaging modalities (mammogram, ultrasound, MRI, tomosynthesis). Mammograms are
radiological images that reveal regions of dense, fibrous, and glandular breast tissue typically
shown in white against non-dense, fatty tissue in black.(2) Methods for evaluating breast density
include visually binning images into categories (fatty, scattered, heterogenous, extremely dense)
based on the percentage of white versus black features in the breast image, or quantifying the

exact percentage of dense tissue in white via image analysis (Fig. 1a).
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Dense breast tissue poses two major risks for patients. The first is an impaired ability to
detect malignant lesions through imaging.(3) The second is as an independent risk factor for
breast cancer. Increased breast density is associated with a worse patient prognosis, (4-13) poor
progression free survival rate,(14, 15) and increased mortality.(16, 17) These denser tissue
regions are purported to be more fibrous than the surrounding tissue,(18) and have been linked to
an increase in the amount of collagen and numbers of epithelial and non-epithelial cells.(19)

While mammography remains the standard for breast cancer screening, other imaging
methods like elastography have been developed to leverage changes in tissue stiffness.(20-23)
Breast ultrasound elastography, a method utilizing sonographic imaging, identifies changes in
elastic moduli to detect lesions in the breast(24, 25) and shows promise as an imaging modality
alongside traditional ultrasound or mammograms to further characterize masses.(26, 27) After
using multiple imaging modalities, core needle biopsies are still an essential next step in the
diagnostic algorithm.(28)

In the laboratory, the application of cell and tissue mechanics has yielded great insight
into tumor development and progression.(29-40) Tissue stiffening, widely attributed to an
increase in collagen deposition and cross-linking,(41-44) has been proposed as a marker of
tumor biogenesis. Recent studies assessing mechanical tissue stiffness often use previously
frozen or fixed samples;(44-46) however these preservation processes significantly impact the
resulting mechanical measurements.(47) Despite the lack of a direct link, many conflate breast
tissue density (radiographically defined fibrous and glandular tissue) and breast tissue stiffness
(the resistance of tissue to deformation;(48) often broadly referring to the elastic modulus). The

disconnect in terminology, between breast density vs. breast stiffness, and assessed features in
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the clinic vs. the bench significantly hampers the generation of new and effective
mechanobiology-inspired cancer therapies.(49-53)

Here, we relate patient information, medical imaging, treatment history, and histology to
global and local mechanical measurements through the use of a deep learning, convolutional
neural network (CNN) that accurately identifies tissue components from hematoxylin and eosin
(H&E)-stained sections of breast cancer tissues (Fig. 1a). Patients with luminal A subtype,
estrogen receptor (ER) and/or progesterone receptor (PR) positive and HER2 negative, have
dense breasts that have been linked to an increased breast cancer risk.(54) Patients with triple-
negative (TNBC) subtype (ER, PR, HER2 negative) tend to have lower mammographic breast
density than non-TNBC patients.(55, 56) Herein we utilize 32 tissue samples from nine patients
with a luminal A subtype and one patient with a triple-negative (ER, PR, HER2 negative)
subtype. Global stiffness is determined by a compression test, which consists of taking one
uniaxial measurement per tissue sample to obtain Young’s modulus. Local stiffness, obtained
through microindentation, reports the elastic modulus from multiple, evenly spaced indentation
measurements across the same tissue surface. Based on these measurements, we then identify

correlations between tissue stiffness, tissue composition, and breast density.

Results

Deep-learning model classifies essential cellular and extracellular matrix features

Patients received diagnostic breast imaging via mammogram, pathologic examination, and
characterization, and finally surgery prior to release of tissue samples for mechanical
measurements, H&E staining, and deep learning analysis (Fig. 1la, See Methods). This study
presents analysis of ten patients, with stiffness measurements on samples from nine of the ten

patients (Table 1).
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Breast tissue histology is complex and heterogeneous, as many components change in
content and organization during tumor progression.(57) Deep learning classifiers have been
successful in identifying normal and cancerous components in histological sections.(58, 59) This
paper utilizes a CNN-based deep learning pipeline which has previously shown success in
classification of histological images into pathologically relevant subtypes.(60) We identified
seven clinically relevant and computationally identifiable tissue classes consistent across most
tested breast tissues (Fig. 1b and 1c). The four cell component classes are blood vessels
(capillaries and venules/arterioles), ducts (excretory, terminal/acini/alveoli), fat, and tumor cells
(viable, necrotic) (Fig. 1b). The three extracellular matrix (ECM) classes are wavy collagen,
straight collagen, and fibrotic tissue (Fig. 1c). Second harmonic generation confirmed that the
wavy and straight ECM classes were fibrillar collagen (Fig. 1d). The wavy and straight stromal
phenotypes, a distinction which has been noted by others,(61) were identified from a visual
assessment of the histology sections. Our eighth class, white space, encapsulates all non-tissue
space on the images (not shown).

The CNN successfully identified and classified the seven cell and tissue classes stated
above in 32 patient tissue samples consisting of 13 tumor-adjacent and 19 tumor samples from
all ten patients (Fig. 2a). The confusion matrix details class accuracy in the testing dataset (Fig.
2b). Overall testing accuracy was 93.0% (Fig. 2b). All tissue classes were identified with greater
than 90% sensitivity, except for fat cells at 89.7%. In this case, fat tended to be misclassified as
white space due to the chosen image window size in the neural net. Histological subtyping
revealed that a subset of luminal A tumors has ductal morphologies, which could explain why
ducts and tumor cells were misclassified as each other 2.5% of the time (Fig. 2b). Wavy collagen

was misclassified as straight collagen 3.2% of the time, however, straight collagen was never
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mistaken for wavy collagen (Fig. 2b). The successful separation of these ECM phenotypes was
important for ensuring that we could analyze the contribution of the stroma to global and local
modulus measurements. Any incorrectly classified straight collagen tended to be attributed to the
tumor cell class, which was most likely a biological result of short straight fibers amongst tumor
cells. White space misclassified as other cellular classes may be due to the presence of lumen
(Fig. 2b). Visual comparison highlights the trained network’s ability to distinguish histological

features even in complex tissue microenvironments (Fig. 2c and Fig. S1a).

Straight collagen strongly correlates with global stiffness

Histograms of fully classified whole-tissue slides provided cell and ECM composition for all
tissue samples (Fig. 3a). Stiffness measurements of tumor-adjacent and tumor tissues revealed
that both global stiffness and composition were heterogeneous within each patient (Fig. 3a).
Mechanically soft tissue included the highest percentages of fat and wavy collagen (Fig. 3a). The
tissues with the highest Young’s moduli contained greater percentages of blood vessels, tumor
cells, straight collagen, and fibrotic tissue (Fig. 3a).

Further analysis of the data suggested that the Young’s modulus, the global stiffness
measurement of each tissue, has a logarithmic relationship with each tissue component.(62, 63)
Plots of the log stiffness value versus the percent composition of each class yielded a linear line
of best fit and associated Pearson correlation. Blood vessels had a significant but only
moderately strong positive correlation with global stiffness (r=0.61, p=0.016), suggesting that
this relationship was important but did not fully describe the system (Fig. 3b,i). Highlighted by
the fact that tissue with the greatest tumor cell composition belonged to a tissue with a stiffness

value of 5.8 kPa, while the lowest composition belonged to a stiffness of 7.2 kPa (r=0.46,
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p=0.084) (Fig. 3b,ii), tumor stiffness did not always increase with the percentage of tumor cells.
Combining all matrix (non-cellular) classes into one category revealed that there was no clear
correlation (r=-0.12, p=0.67) between the total extracellular matrix content and global breast
tissue stiffness (Fig. 3c). This finding may be a result of the high percentage of wavy collagen,
an ECM class that did not significantly correlate with stiffness in each tissue sample. While the
percentage of fibrotic tissue showed a moderately strong correlation (r=0.54, p=0.039) with the
Young’s modulus of the tissue (Fig. 3d,ii), there was a strong positive correlation (r=0.84,
p=0.0001) between the percentage of straight collagen and the Young’s modulus (Fig. 3d,i).
Parsing the extracellular matrix classes demonstrated that the necessity of evaluating ECM
components separately from the bulk.

In the clinic, neoadjuvant chemotherapy is known to be a confounding factor in the
resulting breast tissue composition as it contributes to the generation of fibrotic tissue.(64, 65) In
two patients who received neoadjuvant chemotherapy, there was a significantly strong positive
correlation (r=0.95, p=0.0031) between straight collagen and Young’s modulus (Fig. 3e). This
result suggests that the relationship between straight collagen and global stiffness is independent
of whether a patient has received neoadjuvant chemotherapy.

The eight patients in the luminal A, non-neoadjuvant chemotherapy cohort had
mammographically heterogeneously dense breasts (Table 1). When quantified, this category
spanned a range of 20-50% dense breast tissue (Fig. 3f, Table 1). Binning of the percent density
into three categories showed that there was no significant relationship between breast density and
global tissue stiffness in our study (Fig. 3f). The Spearman correlation between the two

parameters was effectively zero (Fig. 3f).
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A general linearized model was used to perform bivariate analysis of tissue composition
classes in the patients without neoadjuvant chemotherapy (see methods). The stiffness
measurements were converted into log scale values prior to running the analysis. The correlation
between Young’s Modulus and any two tissue classes only slightly increases in strength (r=0.87,
p=0.000026) (Fig. 3g). The effect of straight collagen dominates the top five strongest bivariate
correlations (Fig. 3h). The percentage of blood vessels in combination with straight collagen
yielded the highest correlation (Fig. 3g-h). This result is supported by the above univariate

analysis (Fig. 3b,i and 3d,i).

Straight collagen content correlates with other cellular and extracellular classes

Given the importance of straight collagen composition in determining breast tissue stiffness, we
investigated the relationship of straight collagen composition to other cellular and extracellular
classes (Fig. 3i-j). Tissue stiffness is often discussed and compared based on orders of magnitude
changes, and frequently visualized on a logarithmic scale.(62, 63) Unlike Young’s modulus, the
quantitative relationship between various cellular and extracellular classes has not been
extensively studied. Thus, we cannot assume that the percentage of straight collagen has a linear,
proportional response with the other tissue components, and have chosen to report the Spearman
correlation instead of the Pearson correlation.

There is a significant, moderately strong Spearman correlation (ps) (ps=0.69, p=0.0045)
between the percentage of blood vessels and straight collagen (Fig. 3i). The positive correlation
means that a higher percentage of blood vessels moderately parallels a higher percentage of
straight collagen. The best fit line to describe the relationship was logarithmic (Fig. 3j,i).

Increased vascular density has been linked to poor tumor differentiation and an increase in
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cancer cell proliferation,(66) which suggests that there may be a trade-off between
vascularization and an effort by cancer cells to align collagen.

The percentage of tumor cells has a strongly positive correlation with straight collagen
(ps=0.91, p=0.0000024) (Fig. 3i). This relationship suggests a near perfect monotonic
relationship between these parameters, and agrees with our understanding of tumor biology that
tumor cells are responsible for restructuring the extracellular matrix to create aligned fibers.(42,
67, 68) The line of best fit for the data based on the R-squared value is an exponential curve,
however the root mean squared error (RMSE) is high using this fit (Fig. 3j,ii). This finding is
distinct from the earlier observation that the percentage of tumor cells does not strongly or
significantly correlate with tissue stiffness (ps=0.55, p=0.035; r=0.46, p=0.084) (Fig. 3b,ii). The
correlations between each combination of the three parameters suggest complex relationships
between tumor development through changes in tissue composition and mechanical properties
like tissue stiffness.

With respect to the other ECM classes, the percentage of straight collagen increased as
wavy collagen decreased (ps=-0.55, p=0.034) and fibrotic tissue increased (ps=0.68, p=0.0054)
(Fig. 3i). The best fit line for wavy collagen was linear but had a high RMSE (Fig. 3j,iii). The
degree of collagen curvature, i.e. straight versus curly, was previously related to its location from
the tumor,(61, 69, 70) and found to be independent of the grade of malignancy.(61) For fibrotic

tissue, the best fit line was logarithmic (Fig. 3j,iv).

Local stiffness is best described by straight collagen content
Local measurements reveal the large variations in stiffness values of a fresh patient tissue sample

(Fig. 4a). Manual registration of the microindentation values on to the CNN-classified histology
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image allowed for the direct comparison between local elastic moduli and local tissue
composition (Fig. 4b). Manual registration was necessary since the microindentation images and
map are performed on whole tissues lacking resolution required to identify tissue components,
and therefore the section must be aligned to the whole tissue image based on whole tissue shape
and knowledge of microindentation sampling. Compositions were determined for the region
directly under the microindenter, i.e. a 500 pm-diameter circle (Fig. 4b,inset). Two tissue
samples from one patient in the luminal A non-neoadjuvant cohort, not previously used in the
global stiffness analysis, were chosen for the local stiffness analysis since the processed samples
could be directly matched to the unprocessed images obtained from microindentation mapping.
Visualizing the increasing local stiffness demonstrates that the indentations with the
greatest stiffness values had the highest percentages of straight collagen (Fig. 4c). The greatest
percentages of tumor cells and fat coincided with some of the lower and middle stiffness values
(Fig. 4c). As with the global Young’s modulus, we considered the logarithm of the local elastic
modulus versus the tissue classes. The log of the elastic modulus had a significant, moderately
strong linear relationship with straight collagen (r=0.57, p=0.000023) (Fig. 4d). This was the
only cellular or extracellular relationship to the elastic modulus that was significant. Bivariate
analysis only slightly increased the correlation of the tissue composition classes to the elastic
modulus (r=0.60, p=0.0000055) (Fig. 4e). Straight collagen again dominated the top five
correlations (Fig. 4f). The strongest bivariate pair is ducts combined with straight collagen (Fig.

4e-f).

Breast density does not strongly correlate with tissue classes
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The concept of breast density is often conflated with breast tissue stiffness. We showed using
global stiffness measurements that quantified breast density does not have a clear correlation
with Young’s modulus of the tissue (Fig. 3f). We sought an answer to the question of which
cellular or extracellular classes relate to quantified breast density. The relationship between
component and percentage breast density was determined using two methods. The first was
through a Spearman correlation (ps), highlighting a monotonic relationship between ranked
values (Fig. 5a). The second was by binning the percent breast density into three intervals and

comparing the composition (Fig. 5b-h).

The percentage of blood vessels and fat alone did not correlate with percent density (Fig.
5a) and was not significantly different from 20-50% dense breast tissue (Fig. 5b). The percentage
of ducts had a significant, moderately positive correlation with percent of dense breast tissue
(Fig. 5a). Furthermore, 40-50% dense breast tissue has significantly greater percentage of ducts
than 20-30% or 30-40% dense breast tissue (Fig. 5¢). While this initial finding is in line with the
current understanding that dense breast tissue highlights an increase in glandular tissue,(2) future
work spanning a larger patient population (i.e. wider range of breast densities, more patients with
lower mammographic breast densities) is necessary to validate this claim. Even though we did
not find a correlation between tumor cells alone and breast density (ps = 0.04, p = 0.84) (Fig. 5a),
there were more tumor cells in tissues with a breast density of 20-30% than 30-40% and 40-50%
(Fig. 5e). There was no significant correlation between any of the extracellular matrix classes
and the percent breast density (Fig. 5a), nor was there a significant relationship between breast
densities within each of the components (Fig 5f-h). Assuming a normal distribution, tumor cells

and fibrotic tissue combined had a significant and moderately positive correlation with breast
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density (ps=0.59, p=0.0018) (Fig. 5i-j). After this first combination, the percentage of ducts

dominated the bivariate relation (Fig. 5j).

Discussion

Through tissue component identification using a deep learning model, we were able to connect
mechanical measurements to patient tissue composition. We identified the highest univariate
correlate of both global and local stiffness to be straight collagen (Fig. 3d,i and Fig. 4d). Our
findings improve upon and depart from previous work with these key discoveries: straight
collagen is a biomechanical marker in human tissue; straight collagen has strong monotonic
relationships with other cellular and extracellular classes; Young’s modulus is dependent on
tissue composition; the fibrillar phenotype is identifiable using H&E without SHG or additional
staining; and that straight collagen does not directly relate to breast density. Furthermore, we use
whole tissue slides in our analysis affording us both the ability to analyze a greater fraction of
each tumor than tissue microarrays (TMAS), and to utilize the same slides already procured in
the clinic for diagnostics and treatment. Previously, through the use of TMAs, straightened and
aligned collagen was linked to poor disease-specific and disease-free survival independent of the
cancer type, stage of cancer, hormone status, and node status.(71) Aligned collagen
perpendicular to the tumor acts as a mechanism for local invasion by cancer cells.(68, 72) This
class was proposed as a predictor for breast cancer survival, i.e. that increased aligned collagen
suggests poor prognosis.(71, 73) In mice, the elastic modulus of mammary glands was shown to
increase in tumors due to collagen crosslinking, which then forms more fibrillar and aligned
collagen.(42) In ex vivo measurements of human breast tissues, the mean Young’s modulus was

shown to vary based on the tissue and histologic tumor type.(74) In an earlier attempt to relate
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breast tissue stiffness and breast density, the stiffness was approximated from a theoretical
calculation of breast volume and area in a mammogram, not through actual mechanical
measurements of the tissue.(75)

Treatment of all stroma as a single class would have led to the incorrect conclusion that
the extracellular matrix does not contribute to mechanical stiffness in patient tissue (Fig. 3c). The
predominance of the wavy collagen phenotype, which on average accounts for 56.6% of the
classes identified in each tissue section, causes this misleading result when the ECM is bundled
into a single category. Our results following separation of wavy and straight fibrillar collagen
and fibrotic tissue highlights the importance of separating ECM classes into pathologically
relevant subtypes. Future analysis, through immunohistochemical and immunofluorescent
staining, could incorporate the identification of immune and stromal cells.

The relationship between tumor cells, straight collagen, and Young’s Modulus is worth
briefly discussing as these classes defining stiffer tumor sections are in line with the current
understanding of tumor biology.(29, 76—79) Tumor cells have a weak correlation with stiffness,
despite their strong correlation with straight collagen. We think that there is a difference between
the maximum stiffness achievable by a cell component versus that of an extracellular class.
Tumor cells can align collagen but are not stiff themselves; therefore, the aligned collagen has a
greater contribution to tissue stiffness.

All patients used in the study of breast density had a luminal A subtype and were
designated as having categorical heterogeneously dense breasts. Within this specific category,
the quantified breast density ranged between 20-50%. In contrast to previously reported
literature, we did not find that mammographic density correlated with aligned collagen.(80, 81)

The different findings could be a result of earlier works identifying low and high mammographic
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density from a patient cohort with values predominantly below 20% density,(80) or with patients

across multiple breast density categories.(81)

Our result urges caution when discussing breast density versus breast stiffness.
Additionally, this outcome supports the clinically accepted separation between findings from
palpations and cancer occurrence or prognosis.(82-84) Of note, the tissue samples are from
regions in or near the excised tumor region and may not fully represent the non-excised regions
of the breast, whereas the breast density determination is based on the whole breast. We are
unable to specifically trace back the excised tissue sample to an exact area of high or low
mammographic density in the mammogram image. Future studies would need to know the exact
location of the excised tissue to relate the tissue composition findings to regions of breast tissue
density in mammograms, and utilize a larger patient cohort with a range of categorical and
quantitative breast density. Furthermore, while we did relate breast density to both the Young’s
modulus for global tissue stiffness and the elastic modulus for local tissue stiffness, there are

other types of stiffness measurements that could have distinct relationships with breast density.

Materials and Methods

Patient tissues

Patients with abnormal screening or diagnostic breast imaging findings require pathologic
examination (either core needle aspiration or less frequently fine needle aspiration) to
definitively characterize the abnormal radiographic lesion. If positive for breast cancer, the
pathologist will determine the histologic subtype, assign a Nottingham histologic grade, and
perform additional breast biomarker studies (Fig. 1a). The combination of physical examination

and imaging modalities help to assign the clinical staging regarding the size of the tumor (T),
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abnormal axillary lymph node (N) and the presence of metastatic disease (M). If the patient
undergoes surgical resection, lumpectomy or mastectomy, the pathological staging will be
reported by the size of the mass (T) and any lymph node involvement (N). During the pathologic
evaluation, the histologic type and Nottingham score are confirmed, and the overall pathology
cancer stage is assigned as defined by the American Joint Committee of Cancer Staging Manual,
8 edition(57) (Primary Tumor [T] Status and Regional Lymph Nodes [N] Status) (Fig. 1a).

All patient tissue samples were obtained with written consent from the patient and
approved by the Johns Hopkins Medicine Institutional Review Board (IRB). Tumor-adjacent and
tumor tissue samples received from the patients were kept in 4°C DPBS immediately after
mastectomy or lumpectomy. Tumor samples were then transferred for mechanical tests within 4
h of resection. The tumor tissue was then sectioned to expose the regions of interest for
micromechanical mapping and bulk compression tests.

Fifteen tissues from six luminal A patients that did not receive neoadjuvant chemotherapy
were chosen for the global stiffness analysis. Six tissues from two patients, one with luminal A
subtype and one with TNBC subtype, that received neoadjuvant chemotherapy were used in a
separate analysis of the relationship between global stiffness and tissue composition to avoid any
confounding tissue composition distributions associated with neoadjuvant chemotherapy
previously reported in the literature.(25, 64, 85) Two tissues from one patient with a luminal A
subtype and no neoadjuvant chemotherapy were used for complementary local stiffness analysis.
Only luminal A patients who did not receive neoadjuvant chemotherapy were used to analyze

quantified breast density. Tissue samples from all patients were used to train the neural network.

Microindentation of tissues
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The tumor section was mounted on a customized stage and DPBS was applied to keep the tissue

hydrated throughout the measurement. Dynamic indentation by a nanoindenter (Nanomechanics

Inc.) was used to characterize the tumor elastic modulus.(86) Sneddon’s stiffness equation(87)
was applied to relate dynamic stiffness of the contact to the elastic storage modulus of the
samples.(88, 89) 500 um flat cylindrical probe was used in the indentation experiments. Briefly,
procedure of indentation is comprised of 3 steps: 1) approaching and finding tissue surface at the
indenter’s resonant frequency to enhance contact sensitivity and accuracy, 2) pre-compression of
50 um to ensure good contact, 3) dynamic measurement at 100Hz oscillation frequency with
amplitude of 250 nm. The indentation procedure mentioned above was done consecutively on
multiple regions of a single tissue surface in a grid pattern to obtain elastic moduli map of the
tumor. Because obtaining a perfectly flat tissue surface was difficult due to tissue heterogeneity,
individual indentation processes were observed using a microscope camera to determine
inappropriate contact of the probe to the tissue for inaccurate measurement which were excluded
from data. Typically, the number of indentation points per tissue mapping was 20-40 with the
resolution of 2.5 + 0.5 mm spacing between points depending on the size of tumor sample. The
duration of stiffness mapping was 30 min on average, not exceeding 40 min. A single

measurement was obtained for each indentation.

Compression test of tissues

Tissue samples were sectioned to obtain flat and parallel surfaces on all sides. Once the sample
was sectioned, it was immediately staged on tensile/compression tester (MTS Criterion) for
measurement.(90) Top compression plate was lowered until in full contact with tissue sample at

minimal load. Once in contact, the samples could relax and stabilize for 1 min before actual
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compression test. Tissue samples were compressed at 0.25 mm/sec deformation rate until 20%
strain. Young’s modulus calculation was done on the best-fitted slope of the initial linear region

(~5-10%) of the obtained stress-strain curve. A single measurement was obtained for each tissue.

Patient tissue processing

After obtaining mechanical measurements, each tissue was fixed in formalin for 24 h. The tissue
was transferred to PBS prior to embedding in paraffin, sectioning (4 um), and staining with
hematoxylin and eosin (H&E). To minimize the batch effects of H&E image staining and

scanning conditions, all tissues were stained in and scanned by the same laboratory.

Quantifying breast density from mammograms

Pectoral muscle was removed from mammogram images prior to receipt. Images were then
cropped to remove any identifiers and keep only the breast image. The image was then converted
to type 8-bit. Thresholding was performed using MinError(l) in ImageJ and a histogram was
taken to determine the total breast pixel size. Reverting to the original 8-bit image, thresholding
using Moments and taking a histogram determined the number of dense breast tissue pixels. A
breast density percentage was obtained by dividing the number of white pixels from the
Moments thresholding by the number of white pixels using MinError(l) thresholding and

multiplying by 100.

Second-harmonic generation
Mounted tissue slides were imaged using a LD LCI Plan-Apochromat 25x/0.8 Imm objective

mounted on a Zeiss LSM 710 NLO upright microscope. Excitation was provided by a
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Chameleon Vision 1l mode-locked Ti:Sapphire laser tuned to 880 nm, and the SHG signal was

captured by an epi-mounted non-descanned detector with a 420-480nm bandpass filter.

Manual annotations

Manual annotations of tissue slides were performed using Aperio ImageScope [v12.3.3.5048].
Briefly, cellular and extracellular components were identified manually in H&E-stained tissue
slides by outlining the feature using the built-in annotation function. Within each tissue slide, we
annotated 30 or more instances of a feature type to create the tissue and non-tissue-based classes.

The annotations were verified by a trained pathologist.

Convolutional neural network architecture

We used H&E stained slides of breast tumor-adjacent and tumor tissues to train the CNN.(60)
The slides were scanned at 20x, with a spatial resolution of 0.5um/pixel, and down-sampled
using the openslide library(91) to a pixel size of 1pum/pixel. Example regions of different tissue
classes were manually annotated (30+ annotations per tissue class) in each individual slide. In
this study, we annotated seven tissue classes including blood vessels, ducts, fat, tumor cells,
wavy collagen, straight collagen, and fibrotic tissue; and one non-tissue class which we term
white space. The CNN was trained and validated in MATLAB 2019b with 3600 randomly
selected non-repeating image tiles per annotation class from all patient slides. Of these 3600
images per class, 3000 were used for training, and 300 were used for validation and testing.
Dropout layers and a window size of 103 pixels x 103 pixels x 3 channels were used to facilitate
the classification of both cellular and extracellular classes in the model. The training images

were augmented via positive or negative 90° rotations to increase the training size and prevent
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overfitting.(92-95) Adam (adaptive moment estimation) optimization was used with an initial
learning rate of 0.013 to train the model. Training finished when validation accuracy did not
improve for five epochs. The network architecture of the CNN model contains four
convolutional layers each followed by a batch normalization and rectified linear unit (RelLu)
layers. The second convolutional layer is followed by a dropout layer of 0.1. Then there are six
convolutional layers in parallel, each with a batch and ReLu layer. An additional layer and ReLu
layer are added before five more convolutional/batch/ReLu layers. There is a max pooling layer,
convolutional layer, dropout layer of 0.1, batch and ReLu layers. Next, a
convolutional/batch/ReLu/max pooling set before a fully connected layer with batch
normalization and RelLu layers. The architecture ends with a fully connected layer, batch

normalization layer, and softmax output layer.

Computation of tissue composition

Classified images were imported into ImageJ. Histogram analysis of the whole tissue section
provided tissue composition values for global stiffness (15 tissue samples, 6 patients). For local
stiffness composition, the fresh patient tissue image contains the original microindentation map
overlay. The CNN classified image was scaled and manually registered to match the original
fresh patient tissue image. Histogram analysis inside of 500 um (62.5 px) diameter circles on the

CNN classified image provided the local stiffness composition (3 tissue samples, 2 patients).

Bivariate and univariate analysis
MATLARB?’s built-in function ‘corr’ was used to perform univariate analysis resulting in either a

Pearson or Spearman correlation and statistical significance. MATLAB’s built-in functions
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‘glmfit’ and ‘glmval’ were used to perform bivariate analysis resulting in a correlation
coefficient, fit error, and statistical significance for each pair. The global and local stiffness
measurements are converted to log base 10 values before analysis. The distribution used was
‘normal,” and the link was ‘identity.” The general form of the equation is:
u=Xb

where p is the response with a normal distribution, X is a matrix of predictors, and b is a vector
of coefficient estimates.

The number of patient tissue samples and patients for each parameter are as follows:
global stiffness — 15 tissue samples, 6 patients; local stiffness — 2 tissue samples, 1 patient; breast

density quantification — 20 tissue samples, 8 patients.

Heatmaps of tissue composition, mechanical measurements, and pathologic features
Heatmaps of global and local stiffness data were created in RStudio using R version 3.6.3 and
function superheat. Clustering was performed using Euclidean distance with a complete linkage

method.

Statistical analysis

Statistical analysis for univariate and bivariate analysis plots and tables was performed using
MATLAB’s “corr” function. The line of best fit was plotted using Prism 6 (GraphPad Software,
Inc.). For the breast density bar chart analysis, ordinary one-way ANOVAs using Turkey’s
multiple comparison test with a single pooled variance were performed in Prism 6 (GraphPad
Software, Inc.). All bar chart graphs are reported as mean £ SEM. * p <0.05, **p < 0.01, *** p<

0.001, and *** p< 0.0001.
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Supplementary Materials
Fig. S1. Comparison of H&E tissue features with CNN classified image.

Fig. S2. Non-significant relationships between tissue composition and Young’s modulus (global
stiffness).
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Fig. 1. Breast tissue acquisition, characterization, and selected classes for deep learning
composition analysis. A, Schematic detailing the breast tissue acquisition and
characterization starting with medical imaging via mammogram, diagnosis, treatment,
mechanical measurements, histology, and machine learning. B, Hematoxylin and eosin
(H&E)-stained images of cell component classes including (i) blood vessels (capillaries,

venules/arterioles), (ii) ducts (excretory, terminal/acini/alveoli), (iii) fat, (iv) tumor cells.
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Scale bars in black are 50 um. C, Hematoxylin and eosin (H&E)-stained images of
extracellular matrix component (ECM) classes including (i) wavy collagen, (ii) straight
collagen, and (iii) fibrotic tissue. Scale bars in black are 50 um. D, Second harmonic
generation (SHG) images confirming (i) the wavy ECM class is wavy collagen, (ii) the
straight ECM class is straight collagen, and (iii) the fibrotic tissue is not collagen

detectable with SHG. Scale bars in white are 100 pm.
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Fig. 2. Convolutional Neural Network construction, quantitative and qualitative analysis. (A)

Schematic showing the division of H&E stained tissue slides (32 tissues, 10 patients) into
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data tiles for training, validation, and testing. While each dataset is from the same patient
tissue slides, the testing set was developed from a separate set of annotations than the
training and validation sets. The training images are augmented by rotation [-90°,90°]
before use in the convolutional neural network (CNN). The accuracy of the CNN is
determined against the testing sets. Finally, the whole tissue images are classified
according to the CNN. (B) Confusion matrix determining quantitative accuracy of the
CNN for the testing set. Cell component classes include blood vessels, ducts, fat, tumor
cells, wavy collagen, straight collagen, fibrotic tissue, and white space (blank space). 300
images were analyzed per class. Overall model accuracy of 93.0%. (C) Qualitative
analysis of CNN model accuracy showing original histology images side-by-side with the
CNN classified image. The first set of images highlights the model’s ability to identify
blood vessels in both fat and wavy collagen (Fig. 2C,i). The second set of images
recognizes the distinction of ducts, both excretory and terminal, in wavy collagen (Fig.
2C,ii). The third set of images shows the detection of cancer cells, straight collagen, and
fibrotic tissue (Fig. 2C,iii). Scale bars in black are 100 um. Color legend for each

classified feature is included in the figure.


https://doi.org/10.1101/2020.12.17.423077

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.17.423077; this version posted December 17, 2020. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

a Pi P2 P3 P4 P5 PG P4 P6 P6 P2 P6 P3 P4 P4 PS5 bi r=061,p=16E-02
159 =037, e=2.2kPa
Straight Collagen
@
°
Young's Modulus 0 ' »
§ 10 . P
Blood Vessels P2
T § E 54 - = P3
J— umor Cells m . Pa
ES
Fibrotic Tissue 'y B = P5
04— = P6
Breast Density - Quantified 1 10 100
Ducts ii Young's Modulus (kPa)
r=048, p = 8.4E-02
Histologic Type B0912=021, e=24kPa
T Status o 04
& " P
Wavy Collagen ‘s
o 404 P2
| Race E - = P3
= P4
204
E Progesterone Receptor ® = = P5
Previous Treatment o.. —— ——————— - e
1 10 100
Age Young's Modulus (kPa)
Fat c r=-012 p=6.7E-01
1004 L P=0015 e=25kPa
—1 Overall Nottingham Grade x
3 804 -
N Status = '-—-—-._:._______
3 604y = P
Stage of Cancer El . P2
§
- = P3
. Cell Companent .F‘atho\ugic Feature _ high £ 20 P4
w204
. ECM Component .Mechanical Measurement = = P5
[} S
1 10 100
. Young's Modulus (kPa)
di n e MNeoadjuvant Chemotherapy f
Patients
r=0.84,p=10E-04 r=0.54, p = 3.9E-02 r=095 p=3.1E-03 p, =004, p=88E-01
25412=0.70, £=18kPa 204r2=0.29, £=23kPa 25912=001, £= 1.4 kPa _1oo —_—
o
[ c . o
= -3 : :
E = P12 P1 g 2 = Pt
£ P2 2 P2 E E P2
£ L P3 § » " P
B o
H P4 :.E P4 & . P7 § P4
B = PS P5 =® . pg 2 = P5
= P8 P& 1 = P6
10 100 1 10 100 1 10 100 20-30% 30-40% 40-50%
Young's Modulus (kPa) Young's Modulus (kPa) Young's Modulus (kPa) % Breast Density
g ¢ =087, p = 2.6E-05 h ! 0.20 o
1002 =0.95, e=1.7kPa © Blood Vessels
‘s E Young's (kPa) © Ducts
5= Pearson 015 + Fat
= Parameter 1 Parameter 2 Correlation (r) Error (kPaj Significance o
§é Blood Vessels ‘Straight Collagen 087 7 26E-05 2 010 ©  Tumor Celis
£3 4 Ducts Straight Collagen 085 19 55605 z ¥ Wavy Collagen
o= Fibrotic Tissue Straight Collagen 084 18 7.7E-05 % _ Fibrotic Tissue
8w Tumor Cells. Straight Collagen 084 18 BAE-05 = =eemeee dmm =005 - mmm e
g ‘5' Wavy Collagen Straight Collagen 084 18 87E-05 v
>
@ ] 5
1 -1.0 0.5 0.0 0.5 1.0
1 10 100 Spearman Correlation
Young's Modulus (kPa) (Relative to Straight Collagen)
joi ii iii iv
2= =1.29 = = = = = =
154" 041,e=12% 0 =068, £=236% 100 r°=034, £=208% 20 r=040, £=12%
e o
3 2 60 g % 315
2 1] = 3 Ei 8
3 = P1 O = P1 S 60 L] = P1 E = P1
> P2 5 a0 p2 © [ P2 £ 10 P2
g s /—'—" = P3 E R = P3 s 40 = P3 E . P3
o 7 = P4 2 20 Psa 2 P4 = 5l /0 - P4
= 4 . = PS5 = ps ® X =5 ® = PS
o.L,—.—,—.—. = P8 " P6 0 " P8 0 " P8
L] 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
% Straight Collagen % Straight Collagen % Straight Collagen % Straight Collagen

Fig. 3. Young’s modulus (global stiffness) characterization and composition analysis of breast

tissue. (A) Heatmap including (columns) 15 tissue samples from 6 patients (P#) clustered
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using Euclidean distance with complete linkage by (rows) related features. Each
parameter is normalized using a z score. The values within each feature are color coded
by low to high. The heatmap key on the left denotes the following color-coded
parameters of each feature: cell component, extracellular matrix (ECM) component,
pathologic feature, or mechanical measurement. (B) Univariate analysis comparing
Young’s modulus (global stiffness; kPa) to the percent composition of cell component
class: (i) blood vessels, (ii) tumor cells; (C) extracellular matrix combined; (D) (i)
straight collagen and (ii) fibrotic tissue; (E) straight collagen from patients who received
neoadjuvant chemotherapy; and (F) percent breast density. (G) Highest correlated pair of
tissue composition classes with Young’s Modulus. The Pearson Correlation (r), p-value,
r? value, and error is listed at the top of plots B-E and G. One-way ANOVA was used to
perform statistics in F. (H) Table of top five correlated tissue composition pairs from
bivariate analysis using normal distribution and identity link using MATLAB’s glmfit
and glmval functions. Rank ordered by correlation. The error is the fit-error. (I) Plot of
Spearman Correlation (ps) versus the p-value for all cellular and extracellular classes
versus straight collagen. Values below the dashed line where p=0.05 are significant. (J)
Plots showing the monotonic relationship between straight collagen and (i) blood vessels,
(i) tumor cells, (iii) wavy collagen, and (iv) fibrotic tissue. Plots in J show the r? value
and root mean squared error (RMSE) at the top of the plot. Plots with square data points
represent luminal A patients who have not received chemotherapy. Plots with circles
represent patients who received neoadjuvant chemotherapy. Each data point is color

coded by patient. The lines denote the best fit trend line.
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Fig. 4. Microindentation mapping, characterization, and composition analysis of breast tissue.

(A) Fresh patient tissue with elastic modulus (local stiffness; kPa) map overlay. Scale bar
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in black is 5000 um. (B) Corresponding Convolutional Neural Network (CNN) classified
image of the patient tissue in (A) with the microindentation stiffness (kPa) map overlay.
Scale bar in black is 5000 pm. B inset, Inset shows the composition of a representative
microindentation point. Scale bar in black is 500 um. Bad measurements are listed as NA
and do not contribute to the analysis. (C) Heatmap clustered using Euclidean distance
with complete linkage by (row) each cell or extracellular matrix class detailing the
percent composition (0 to 100%). Each column is a different microindentation point
organized from the lowest to the highest stiffness (kPa) value (49 measurements, 2
tissues, 1 patient). (D) Univariate analysis comparing elastic modulus (local stiffness;
kPa) to the percent composition of straight collagen. (E) Bivariate analysis showcasing
the tissue composition pair with the highest correlation to local stiffness. The line denotes
the best fit line. The Pearson Correlation (r), p-value, r? value, and fit-error is listed at the
top of the plot. (F) Table highlighting the top five tissue composition pairs correlated

with the elastic modulus. Rank ordered by correlation. The error is the fit-error.
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Fig. 5. Breast density does not correlate with tissue composition. (A) Plot of Spearman

Correlation (ps) versus the p-value for all cellular and extracellular classes versus percent
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breast density. Values below the dashed line where p=0.05 are significant. Percent breast
density versus cell classes (B) blood vessels, (C) ducts, (D) fat, (E) tumor cells; and
extracellular classes (F) wavy collagen, (G) straight collagen, (H) fibrotic tissue. When
binned, the quantified breast density is related via bar chart using a one-way ANOVA. (1)
Bivariate analysis showing the highest pair of features that correlate with the percent
breast density. The r? value and fit-error are at the top of the plot. The line denotes the
best fit line. (J) Table highlighting the top five tissue composition pairs correlated with

the percent of breast density. Rank ordered by correlation. The error is the fit-error.
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Analysis Catogory
Overall Breast Global Breast
Neoadjuvant  Previous T N " Stage of Nottingham Breast Density Density Global Stiffness - Local Density

Patient # Age Race Histologic Type Chemather: Treatment ER PR HER2 status status status Cancer Scofe Categories Quantification_Stiffness Necadjuvant Stiffness. Quantification

1 43 Asian Invasive and in stu mucinous  None. Nane B Focal& - P12 pN0 M A 1 Heterogeneously  46.4% Y ¥
carcinoma Variable Dense

2 68 Black Infiltrating ductal carcinoma, None: None + - - pT2 [0 M e 3 Heterogeneously 20.8% Y Y
poorly differentiated Dense

3 47 White  Infitrating Mammary Carcinoma None Precperaive + + - pT2  pNI M [:] 2 Helerogeneously 36.1% ¥ ¥
with ductal and lobular features Tamovifen Dense

4 45 ‘White Invasive and in situ ductal Neone None * + - pTie  pNimi MO B 3 Heterogeneously 44.2% Y Y
carcinoma Dense

5 &3 White  Iwasive Ductal Carcinoma  None Preoperative + . - pTic  pN0 M A 1 Heterogeneously 38.8% Y ¥

Letrazole Dense

[] 55 ‘White Intermediate grade invasive None: Preaperative + + - pTa [ M B 2 Heterogeneously 37 8% Y Y
lobular cancer Letrozale Dense

7 58 White  Foorly differentiated invasive and Yes Yes - - - pT3  phNza M1 B 3 Unknawn 4% v
in situ ductal carcinoma

8 3 Arabic  nfitrating ductal carcinoma Yes Nane . - - pT2  pN3a M u - Extremely Dense - Y
poorly differentiated

9 7 White  kwasive Micinous Carcinoma,  None Nore . . ) pTie pNO MDA ] Heterogeneously 41 8% Y
micropapiliary variant Dense

10 4@ Latino  Infitrating mammary carcinoma, None Nane + - - pTZ  pNic M A 3 Scattered Density 36.3% Y ¥

with ductal and lobular features.

Table 1. Patient cohort demographic and pathologic information.
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