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One Sentence Summary: We successfully created a bridge between mammographic density, 

breast cancer pathologic features, and bench-side mechanobiology research experiments by 

performing stiffness measurements on fresh patient tissue and applying a deep learning model to 

determine tissue composition. 

 

Abstract: While essential to our understanding of solid tumor progression, the study of cell and 

tissue mechanics has yet to find traction in the clinic. Determining tissue stiffness, a mechanical 
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property known to promote a malignant phenotype in vitro and in vivo, is not part of the standard 

algorithm for the diagnosis and treatment of breast cancer. Instead, clinicians routinely use 

mammograms to identify malignant lesions and radiographically dense breast tissue is associated 

with an increased risk of developing cancer. Whether breast density is related to tumor tissue 

stiffness, and what cellular and non-cellular components of the tumor contribute the most to its 

stiffness are not well understood. Through training of a deep learning network and mechanical 

measurements of fresh patient tissue, we create a bridge in understanding between clinical and 

mechanical markers. The automatic identification of cellular and extracellular features from 

hematoxylin and eosin (H&E)-stained slides reveals that global and local breast tissue stiffness 

best correlate with the percentage of straight collagen. Global breast tissue mechanics correlate 

weakly with the percentage of blood vessels and fibrotic tissue, and non-significantly with the 

percentage of fat, ducts, tumor cells, and wavy collagen in tissue. Importantly, the percentage of  

dense breast tissue does not directly correlate with tissue stiffness or straight collagen content. 

[Main Text: ] 

Introduction 

A significant disconnect exists between sophisticated biomechanical and biophysical 

experiments “at the bench,”(1) and clinical methods used to determine effective therapeutics for 

patients with solid tumors. Women with breast cancer are typically diagnosed via dedicated 

breast imaging modalities (mammogram, ultrasound, MRI, tomosynthesis). Mammograms are 

radiological images that reveal regions of dense, fibrous, and glandular breast tissue typically 

shown  in white against non-dense, fatty tissue in black.(2) Methods for evaluating breast density 

include visually binning images into categories (fatty, scattered, heterogenous, extremely dense) 

based on the percentage of white versus black features in the breast image, or quantifying the 

exact percentage of dense tissue in white via image analysis (Fig. 1a). 
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Dense breast tissue poses two major risks for patients. The first is an impaired ability to 

detect malignant lesions through imaging.(3) The second is as an independent risk factor for 

breast cancer. Increased breast density is associated with a worse patient prognosis,(4–13) poor 

progression free survival rate,(14, 15) and increased mortality.(16, 17) These denser tissue 

regions are purported to be more fibrous than the surrounding tissue,(18) and have been linked to 

an increase in the amount of collagen and numbers of epithelial and non-epithelial cells.(19)  

While mammography remains the standard for breast cancer screening, other imaging 

methods like elastography have been developed to leverage changes in tissue stiffness.(20–23) 

Breast ultrasound elastography, a method utilizing sonographic imaging, identifies changes in 

elastic moduli to detect lesions in the breast(24, 25) and shows promise as an imaging modality 

alongside traditional ultrasound or mammograms to further characterize masses.(26, 27) After 

using multiple imaging modalities, core needle biopsies are still an essential next step in the 

diagnostic algorithm.(28) 

In the laboratory, the application of cell and tissue mechanics has yielded great insight 

into tumor development and progression.(29–40) Tissue stiffening, widely attributed to an 

increase in collagen deposition and cross-linking,(41–44) has been proposed as a marker of 

tumor biogenesis. Recent studies assessing mechanical tissue stiffness often use previously 

frozen or fixed samples;(44–46) however these preservation processes significantly impact the 

resulting mechanical measurements.(47)  Despite the lack of a direct link, many conflate breast 

tissue density (radiographically defined fibrous and glandular tissue) and breast tissue stiffness 

(the resistance of tissue to deformation;(48) often broadly referring to the elastic modulus). The 

disconnect in terminology, between breast density vs. breast stiffness, and assessed features in 
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the clinic vs. the bench significantly hampers the generation of new and effective 

mechanobiology-inspired cancer therapies.(49–53) 

Here, we relate patient information, medical imaging, treatment history, and histology to 

global and local mechanical measurements through the use of a deep learning, convolutional 

neural network (CNN) that accurately identifies tissue components from hematoxylin and eosin 

(H&E)-stained sections of breast cancer tissues (Fig. 1a).  Patients with luminal A subtype, 

estrogen receptor (ER) and/or progesterone receptor (PR) positive and HER2 negative, have 

dense breasts that have been linked to an increased breast cancer risk.(54) Patients with triple-

negative (TNBC) subtype (ER, PR, HER2 negative) tend to have lower mammographic breast 

density than non-TNBC patients.(55, 56) Herein we utilize 32 tissue samples from nine patients 

with a luminal A subtype and one patient with a triple-negative (ER, PR, HER2 negative) 

subtype. Global stiffness is determined by a compression test, which consists of taking one 

uniaxial measurement per tissue sample to obtain Young’s modulus. Local stiffness, obtained 

through microindentation, reports the elastic modulus from multiple, evenly spaced indentation 

measurements across the same tissue surface. Based on these measurements, we then identify 

correlations between tissue stiffness, tissue composition, and breast density.  

 

Results  

Deep-learning model classifies essential cellular and extracellular matrix features 

Patients received diagnostic breast imaging via mammogram, pathologic examination, and 

characterization, and finally surgery prior to release of tissue samples for mechanical 

measurements, H&E staining, and deep learning analysis (Fig. 1a, See Methods). This study 

presents analysis of ten patients, with stiffness measurements on samples from nine of the ten 

patients (Table 1).  
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 Breast tissue histology is complex and heterogeneous, as many components change in 

content and organization during tumor progression.(57) Deep learning classifiers have been 

successful in identifying normal and cancerous components in histological sections.(58, 59) This 

paper utilizes a CNN-based deep learning pipeline which has previously shown success in 

classification of histological images into pathologically relevant subtypes.(60)  We identified 

seven clinically relevant and computationally identifiable tissue classes consistent across most 

tested breast tissues (Fig. 1b and 1c). The four cell component classes are blood vessels 

(capillaries and venules/arterioles), ducts (excretory, terminal/acini/alveoli), fat, and tumor cells 

(viable, necrotic) (Fig. 1b). The three extracellular matrix (ECM) classes are wavy collagen, 

straight collagen, and fibrotic tissue (Fig. 1c). Second harmonic generation confirmed that the 

wavy and straight ECM classes were fibrillar collagen (Fig. 1d). The wavy and straight stromal 

phenotypes, a distinction which has been noted by others,(61) were identified from a visual 

assessment of the histology sections. Our eighth class, white space, encapsulates all non-tissue 

space on the images (not shown).  

The CNN successfully identified and classified the seven cell and tissue classes stated 

above in 32 patient tissue samples consisting of 13 tumor-adjacent and 19 tumor samples from 

all ten patients (Fig. 2a). The confusion matrix details class accuracy in the testing dataset (Fig. 

2b). Overall testing accuracy was 93.0% (Fig. 2b). All tissue classes were identified with greater 

than 90% sensitivity, except for fat cells at 89.7%. In this case, fat tended to be misclassified as 

white space due to the chosen image window size in the neural net. Histological subtyping 

revealed that a subset of luminal A tumors has ductal morphologies, which could explain why 

ducts and tumor cells were misclassified as each other 2.5% of the time (Fig. 2b). Wavy collagen 

was misclassified as straight collagen 3.2% of the time, however, straight collagen was never 
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mistaken for wavy collagen (Fig. 2b). The successful separation of these ECM phenotypes was 

important for ensuring that we could analyze the contribution of the stroma to global and local 

modulus measurements. Any incorrectly classified straight collagen tended to be attributed to the 

tumor cell class, which was most likely a biological result of short straight fibers amongst tumor 

cells. White space misclassified as other cellular classes may be due to the presence of lumen 

(Fig. 2b). Visual comparison highlights the trained network’s ability to distinguish histological 

features even in complex tissue microenvironments (Fig. 2c and Fig. S1a).  

 

Straight collagen strongly correlates with global stiffness 

Histograms of fully classified whole-tissue slides provided cell and ECM composition for all 

tissue samples (Fig. 3a). Stiffness measurements of tumor-adjacent and tumor tissues revealed 

that both global stiffness and composition were heterogeneous within each patient (Fig. 3a). 

Mechanically soft tissue included the highest percentages of fat and wavy collagen (Fig. 3a). The 

tissues with the highest Young’s moduli contained greater percentages of blood vessels, tumor 

cells, straight collagen, and fibrotic tissue (Fig. 3a).  

Further analysis of the data suggested that the Young’s modulus, the global stiffness 

measurement of each tissue, has a logarithmic relationship with each tissue component.(62, 63) 

Plots of the log stiffness value versus the percent composition of each class yielded a linear line 

of best fit and associated Pearson correlation. Blood vessels had a significant but only 

moderately strong positive correlation with global stiffness (r=0.61, p=0.016), suggesting that 

this relationship was important but did not fully describe the system (Fig. 3b,i). Highlighted by 

the fact that tissue with the greatest tumor cell composition belonged to a tissue with a stiffness 

value of 5.8 kPa, while the lowest composition belonged to a stiffness of 7.2 kPa (r=0.46, 
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p=0.084) (Fig. 3b,ii), tumor stiffness did not always increase with the percentage of tumor cells. 

Combining all matrix (non-cellular) classes into one category revealed that there was no clear 

correlation (r=-0.12, p=0.67) between the total extracellular matrix content and global breast 

tissue stiffness (Fig. 3c). This finding may be a result of the high percentage of wavy collagen, 

an ECM class that did not significantly correlate with stiffness in each tissue sample. While the 

percentage of fibrotic tissue showed a moderately strong correlation (r=0.54, p=0.039) with the 

Young’s modulus of the tissue (Fig. 3d,ii), there was a strong positive correlation (r=0.84, 

p=0.0001) between the percentage of straight collagen and the Young’s modulus (Fig. 3d,i). 

Parsing the extracellular matrix classes demonstrated that the necessity of evaluating ECM 

components separately from the bulk.  

In the clinic, neoadjuvant chemotherapy is known to be a confounding factor in the 

resulting breast tissue composition as it contributes to the generation of fibrotic tissue.(64, 65) In 

two patients who received neoadjuvant chemotherapy, there was a significantly strong positive 

correlation (r=0.95, p=0.0031) between straight collagen and Young’s modulus (Fig. 3e). This 

result suggests that the relationship between straight collagen and global stiffness is independent 

of whether a patient has received neoadjuvant chemotherapy.   

The eight patients in the luminal A, non-neoadjuvant chemotherapy cohort had 

mammographically heterogeneously dense breasts (Table 1). When quantified, this category 

spanned a range of 20-50% dense breast tissue (Fig. 3f, Table 1). Binning of the percent density 

into three categories showed that there was no significant relationship between breast density and 

global tissue stiffness in our study (Fig. 3f). The Spearman correlation between the two 

parameters was effectively zero (Fig. 3f).  
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A general linearized model was used to perform bivariate analysis of tissue composition 

classes in the patients without neoadjuvant chemotherapy (see methods). The stiffness 

measurements were converted into log scale values prior to running the analysis. The correlation 

between Young’s Modulus and any two tissue classes only slightly increases in strength (r=0.87, 

p=0.000026) (Fig. 3g). The effect of straight collagen dominates the top five strongest bivariate 

correlations (Fig. 3h). The percentage of blood vessels in combination with straight collagen 

yielded the highest correlation (Fig. 3g-h). This result is supported by the above univariate 

analysis (Fig. 3b,i and 3d,i).  

 

Straight collagen content correlates with other cellular and extracellular classes 

Given the importance of straight collagen composition in determining breast tissue stiffness, we 

investigated the relationship of straight collagen composition to other cellular and extracellular 

classes (Fig. 3i-j). Tissue stiffness is often discussed and compared based on orders of magnitude 

changes, and frequently visualized on a logarithmic scale.(62, 63) Unlike Young’s modulus, the 

quantitative relationship between various cellular and extracellular classes has not been 

extensively studied. Thus, we cannot assume that the percentage of straight collagen has a linear, 

proportional response with the other tissue components, and have chosen to report the Spearman 

correlation instead of the Pearson correlation.  

There is a significant, moderately strong Spearman correlation (ρs) (ρs=0.69, p=0.0045) 

between the percentage of blood vessels and straight collagen (Fig. 3i). The positive correlation 

means that a higher percentage of blood vessels moderately parallels a higher percentage of 

straight collagen. The best fit line to describe the relationship was logarithmic (Fig. 3j,i). 

Increased vascular density has been linked to poor tumor differentiation and an increase in 
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cancer cell proliferation,(66) which suggests that there may be a trade-off between 

vascularization and an effort by cancer cells to align collagen.  

The percentage of tumor cells has a strongly positive correlation with straight collagen 

(ρs=0.91, p=0.0000024) (Fig. 3i). This relationship suggests a near perfect monotonic 

relationship between these parameters, and agrees with our understanding of tumor biology that 

tumor cells are responsible for restructuring the extracellular matrix to create aligned fibers.(42, 

67, 68) The line of best fit for the data based on the R-squared value is an exponential curve, 

however the root mean squared error (RMSE) is high using this fit (Fig. 3j,ii). This finding is 

distinct from the earlier observation that the percentage of tumor cells does not strongly or 

significantly correlate with tissue stiffness (ρs=0.55, p=0.035; r=0.46, p=0.084) (Fig. 3b,ii). The 

correlations between each combination of the three parameters suggest complex relationships 

between tumor development through changes in tissue composition and mechanical properties 

like tissue stiffness. 

With respect to the other ECM classes, the percentage of straight collagen increased as 

wavy collagen decreased (ρs=-0.55, p=0.034) and fibrotic tissue increased (ρs=0.68, p=0.0054) 

(Fig. 3i). The best fit line for wavy collagen was linear but had a high RMSE (Fig. 3j,iii). The 

degree of collagen curvature, i.e. straight versus curly, was previously related to its location from 

the tumor,(61, 69, 70) and found to be independent of the grade of malignancy.(61) For fibrotic 

tissue, the best fit line was logarithmic (Fig. 3j,iv).  

 

Local stiffness is best described by straight collagen content 

Local measurements reveal the large variations in stiffness values of a fresh patient tissue sample 

(Fig. 4a). Manual registration of the microindentation values on to the CNN-classified histology 
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image allowed for the direct comparison between local elastic moduli and local tissue 

composition (Fig. 4b). Manual registration was necessary since the microindentation images and 

map are performed on whole tissues lacking resolution required to identify tissue components, 

and therefore the section must be aligned to the whole tissue image based on whole tissue shape 

and knowledge of microindentation sampling. Compositions were determined for the region 

directly under the microindenter, i.e. a 500 µm-diameter circle (Fig. 4b,inset). Two tissue 

samples from one patient in the luminal A non-neoadjuvant cohort, not previously used in the 

global stiffness analysis, were chosen for the local stiffness analysis since the processed samples 

could be directly matched to the unprocessed images obtained from microindentation mapping.  

Visualizing the increasing local stiffness demonstrates that the indentations with the 

greatest stiffness values had the highest percentages of straight collagen (Fig. 4c). The greatest 

percentages of tumor cells and fat coincided with some of the lower and middle stiffness values 

(Fig. 4c). As with the global Young’s modulus, we considered the logarithm of the local elastic 

modulus versus the tissue classes. The log of the elastic modulus had a significant, moderately 

strong linear relationship with straight collagen (r=0.57, p=0.000023) (Fig. 4d). This was the 

only cellular or extracellular relationship to the elastic modulus that was significant. Bivariate 

analysis only slightly increased the correlation of the tissue composition classes to the elastic 

modulus (r=0.60, p=0.0000055) (Fig. 4e). Straight collagen again dominated the top five 

correlations (Fig. 4f). The strongest bivariate pair is ducts combined with straight collagen (Fig. 

4e-f). 

 

Breast density does not strongly correlate with tissue classes 
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The concept of breast density is often conflated with breast tissue stiffness. We showed using 

global stiffness measurements that quantified breast density does not have a clear correlation 

with Young’s modulus of the tissue (Fig. 3f). We sought an answer to the question of which 

cellular or extracellular classes relate to quantified breast density. The relationship between 

component and percentage breast density was determined using two methods. The first was 

through a Spearman correlation (ρs), highlighting a monotonic relationship between ranked 

values (Fig. 5a). The second was by binning the percent breast density into three intervals and 

comparing the composition (Fig. 5b-h).  

The percentage of blood vessels and fat alone did not correlate with percent density (Fig. 

5a) and was not significantly different from 20-50% dense breast tissue (Fig. 5b). The percentage 

of ducts had a significant, moderately positive correlation with percent of dense breast tissue 

(Fig. 5a). Furthermore, 40-50% dense breast tissue has significantly greater percentage of ducts 

than 20-30% or 30-40% dense breast tissue (Fig. 5c). While this initial finding is in line with the 

current understanding that dense breast tissue highlights an increase in glandular tissue,(2) future 

work spanning a larger patient population (i.e. wider range of breast densities, more patients with 

lower mammographic breast densities) is necessary to validate this claim. Even though we did 

not find a correlation between tumor cells alone and breast density (ρs = 0.04, p = 0.84) (Fig. 5a), 

there were more tumor cells in tissues with a breast density of 20-30% than 30-40% and 40-50% 

(Fig. 5e). There was no significant correlation between any of the extracellular matrix classes 

and the percent breast density (Fig. 5a), nor was there a significant relationship between breast 

densities within each of the components (Fig 5f-h). Assuming a normal distribution, tumor cells 

and fibrotic tissue combined had a significant and moderately positive correlation with breast 
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density (ρs=0.59, p=0.0018) (Fig. 5i-j). After this first combination, the percentage of ducts 

dominated the bivariate relation (Fig. 5j). 

 

Discussion  

 

Through tissue component identification using a deep learning model, we were able to connect 

mechanical measurements to patient tissue composition. We identified the highest univariate 

correlate of both global and local stiffness to be straight collagen (Fig. 3d,i and Fig. 4d). Our 

findings improve upon and depart from previous work with these key discoveries: straight 

collagen is a biomechanical marker in human tissue; straight collagen has strong monotonic 

relationships with other cellular and extracellular classes; Young’s modulus is dependent on 

tissue composition; the fibrillar phenotype is identifiable using H&E without SHG or additional 

staining; and that straight collagen does not directly relate to breast density. Furthermore, we use 

whole tissue slides in our analysis affording us both the ability to analyze a greater fraction of 

each tumor than tissue microarrays (TMAs), and to utilize the same slides already procured in 

the clinic for diagnostics and treatment. Previously, through the use of TMAs, straightened and 

aligned collagen was linked to poor disease-specific and disease-free survival independent of the 

cancer type, stage of cancer, hormone status, and node status.(71) Aligned collagen 

perpendicular to the tumor acts as a mechanism for local invasion by cancer cells.(68, 72) This 

class was proposed as a predictor for breast cancer survival, i.e. that increased aligned collagen 

suggests poor prognosis.(71, 73) In mice, the elastic modulus of mammary glands was shown to 

increase in tumors due to collagen crosslinking, which then forms more fibrillar and aligned 

collagen.(42) In ex vivo measurements of human breast tissues, the mean Young’s modulus was 

shown to vary based on the tissue and histologic tumor type.(74) In an earlier attempt to relate 
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breast tissue stiffness and breast density, the stiffness was approximated from a theoretical 

calculation of breast volume and area in a mammogram, not through actual mechanical 

measurements of the tissue.(75)  

Treatment of all stroma as a single class would have led to the incorrect conclusion that 

the extracellular matrix does not contribute to mechanical stiffness in patient tissue (Fig. 3c). The 

predominance of the wavy collagen phenotype, which on average accounts for 56.6% of the 

classes identified in each tissue section, causes this misleading result when the ECM is bundled 

into a single category. Our results following separation of wavy and straight fibrillar collagen 

and fibrotic tissue highlights the importance of separating ECM classes into pathologically 

relevant subtypes. Future analysis, through immunohistochemical and immunofluorescent 

staining, could incorporate the identification of immune and stromal cells. 

The relationship between tumor cells, straight collagen, and Young’s Modulus is worth 

briefly discussing as these classes defining stiffer tumor sections are in line with the current 

understanding of tumor biology.(29, 76–79) Tumor cells have a weak correlation with stiffness, 

despite their strong correlation with straight collagen. We think that there is a difference between 

the maximum stiffness achievable by a cell component versus that of an extracellular class. 

Tumor cells can align collagen but are not stiff themselves; therefore, the aligned collagen has a 

greater contribution to tissue stiffness. 

All patients used in the study of breast density had a luminal A subtype and were 

designated as having categorical heterogeneously dense breasts. Within this specific category, 

the quantified breast density ranged between 20-50%. In contrast to previously reported 

literature, we did not find that mammographic density correlated with aligned collagen.(80, 81) 

The different findings could be a result of earlier works identifying low and high mammographic 
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density from a patient cohort with values predominantly below 20% density,(80) or with patients 

across multiple breast density categories.(81)  

Our result urges caution when discussing breast density versus breast stiffness. 

Additionally, this outcome supports the clinically accepted separation between findings from 

palpations and cancer occurrence or prognosis.(82–84) Of note, the tissue samples are from 

regions in or near the excised tumor region and may not fully represent the non-excised regions 

of the breast, whereas the breast density determination is based on the whole breast. We are 

unable to specifically trace back the excised tissue sample to an exact area of high or low 

mammographic density in the mammogram image. Future studies would need to know the exact 

location of the excised tissue to relate the tissue composition findings to regions of breast tissue 

density in mammograms, and utilize a larger patient cohort with a range of categorical and 

quantitative breast density. Furthermore, while we did relate breast density to both the Young’s 

modulus for global tissue stiffness and the elastic modulus for local tissue stiffness, there are 

other types of stiffness measurements that could have distinct relationships with breast density. 

 

Materials and Methods 

 

Patient tissues 

Patients with abnormal screening or diagnostic breast imaging findings require pathologic 

examination (either core needle aspiration or less frequently fine needle aspiration) to 

definitively characterize the abnormal radiographic lesion. If positive for breast cancer, the 

pathologist will determine the histologic subtype, assign a Nottingham histologic grade, and 

perform additional breast biomarker studies (Fig. 1a). The combination of physical examination 

and imaging modalities help to assign the clinical staging regarding the size of the tumor (T), 
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abnormal axillary lymph node (N) and the presence of metastatic disease (M). If the patient 

undergoes surgical resection, lumpectomy or mastectomy, the pathological staging will be 

reported by the size of the mass (T) and any lymph node involvement (N). During the pathologic 

evaluation, the histologic type and Nottingham score are confirmed, and the overall pathology 

cancer stage is assigned as defined by the American Joint Committee of Cancer Staging Manual, 

8th edition(57) (Primary Tumor [T] Status and Regional Lymph Nodes [N] Status) (Fig. 1a).  

All patient tissue samples were obtained with written consent from the patient and 

approved by the Johns Hopkins Medicine Institutional Review Board (IRB). Tumor-adjacent and 

tumor tissue samples received from the patients were kept in 4°C DPBS immediately after 

mastectomy or lumpectomy. Tumor samples were then transferred for mechanical tests within 4 

h of resection. The tumor tissue was then sectioned to expose the regions of interest for 

micromechanical mapping and bulk compression tests.  

Fifteen tissues from six luminal A patients that did not receive neoadjuvant chemotherapy 

were chosen for the global stiffness analysis. Six tissues from two patients, one with luminal A 

subtype and one with TNBC subtype, that received neoadjuvant chemotherapy were used in a 

separate analysis of the relationship between global stiffness and tissue composition to avoid any 

confounding tissue composition distributions associated with neoadjuvant chemotherapy 

previously reported in the literature.(25, 64, 85) Two tissues from one patient with a luminal A 

subtype and no neoadjuvant chemotherapy were used for complementary local stiffness analysis. 

Only luminal A patients who did not receive neoadjuvant chemotherapy were used to analyze 

quantified breast density. Tissue samples from all patients were used to train the neural network. 

 

Microindentation of tissues 
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The tumor section was mounted on a customized stage and DPBS was applied to keep the tissue 

hydrated throughout the measurement. Dynamic indentation by a nanoindenter (Nanomechanics 

Inc.) was used to characterize the tumor elastic modulus.(86) Sneddon’s stiffness equation(87) 

was applied to relate dynamic stiffness of the contact to the elastic storage modulus of the 

samples.(88, 89) 500 μm flat cylindrical probe was used in the indentation experiments. Briefly, 

procedure of indentation is comprised of 3 steps: 1) approaching and finding tissue surface at the 

indenter’s resonant frequency to enhance contact sensitivity and accuracy, 2) pre-compression of 

50 μm to ensure good contact, 3) dynamic measurement at 100Hz oscillation frequency with 

amplitude of 250 nm. The indentation procedure mentioned above was done consecutively on 

multiple regions of a single tissue surface in a grid pattern to obtain elastic moduli map of the 

tumor. Because obtaining a perfectly flat tissue surface was difficult due to tissue heterogeneity, 

individual indentation processes were observed using a microscope camera to determine 

inappropriate contact of the probe to the tissue for inaccurate measurement which were excluded 

from data. Typically, the number of indentation points per tissue mapping was 20-40 with the 

resolution of 2.5 ± 0.5 mm spacing between points depending on the size of tumor sample. The 

duration of stiffness mapping was 30 min on average, not exceeding 40 min. A single 

measurement was obtained for each indentation.  

 

Compression test of tissues 

Tissue samples were sectioned to obtain flat and parallel surfaces on all sides. Once the sample 

was sectioned, it was immediately staged on tensile/compression tester (MTS Criterion) for 

measurement.(90) Top compression plate was lowered until in full contact with tissue sample at 

minimal load. Once in contact, the samples could relax and stabilize for 1 min before actual 
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compression test. Tissue samples were compressed at 0.25 mm/sec deformation rate until 20% 

strain. Young’s modulus calculation was done on the best-fitted slope of the initial linear region 

(~5-10%) of the obtained stress-strain curve. A single measurement was obtained for each tissue.  

 

Patient tissue processing 

After obtaining mechanical measurements, each tissue was fixed in formalin for 24 h. The tissue 

was transferred to PBS prior to embedding in paraffin, sectioning (4 µm), and staining with 

hematoxylin and eosin (H&E). To minimize the batch effects of H&E image staining and 

scanning conditions, all tissues were stained in and scanned by the same laboratory. 

 

Quantifying breast density from mammograms 

Pectoral muscle was removed from mammogram images prior to receipt. Images were then 

cropped to remove any identifiers and keep only the breast image. The image was then converted 

to type 8-bit. Thresholding was performed using MinError(l) in ImageJ and a histogram was 

taken to determine the total breast pixel size. Reverting to the original 8-bit image, thresholding 

using Moments and taking a histogram determined the number of dense breast tissue pixels. A 

breast density percentage was obtained by dividing the number of white pixels from the 

Moments thresholding by the number of white pixels using MinError(l) thresholding and 

multiplying by 100. 

 

Second-harmonic generation 

Mounted tissue slides were imaged using a LD LCI Plan-Apochromat 25x/0.8 Imm objective 

mounted on a Zeiss LSM 710 NLO upright microscope.  Excitation was provided by a 
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Chameleon Vision II mode-locked Ti:Sapphire laser tuned to 880 nm, and the SHG signal was 

captured by an epi-mounted non-descanned detector with a 420-480nm bandpass filter. 

 

Manual annotations 

Manual annotations of tissue slides were performed using Aperio ImageScope [v12.3.3.5048]. 

Briefly, cellular and extracellular components were identified manually in H&E-stained tissue 

slides by outlining the feature using the built-in annotation function. Within each tissue slide, we 

annotated 30 or more instances of a feature type to create the tissue and non-tissue-based classes. 

The annotations were verified by a trained pathologist. 

 

Convolutional neural network architecture 

We used H&E stained slides of breast tumor-adjacent and tumor tissues to train the CNN.(60) 

The slides were scanned at 20x, with a spatial resolution of 0.5μm/pixel, and down-sampled 

using the openslide library(91) to a pixel size of 1μm/pixel. Example regions of different tissue 

classes were manually annotated (30+ annotations per tissue class) in each individual slide. In 

this study, we annotated seven tissue classes including blood vessels, ducts, fat, tumor cells, 

wavy collagen, straight collagen, and fibrotic tissue; and one non-tissue class which we term 

white space. The CNN was trained and validated in MATLAB 2019b with 3600 randomly 

selected non-repeating image tiles per annotation class from all patient slides. Of these 3600 

images per class, 3000 were used for training, and 300 were used for validation and testing.  

Dropout layers and a window size of 103 pixels x 103 pixels x 3 channels were used to facilitate 

the classification of both cellular and extracellular classes in the model.  The training images 

were augmented via positive or negative 90° rotations to increase the training size and prevent 
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overfitting.(92–95) Adam (adaptive moment estimation) optimization was used with an initial 

learning rate of 0.013 to train the model. Training finished when validation accuracy did not 

improve for five epochs. The network architecture of the CNN model contains four 

convolutional layers each followed by a batch normalization and rectified linear unit (ReLu) 

layers. The second convolutional layer is followed by a dropout layer of 0.1. Then there are six 

convolutional layers in parallel, each with a batch and ReLu layer. An additional layer and ReLu 

layer are added before five more convolutional/batch/ReLu layers. There is a max pooling layer, 

convolutional layer, dropout layer of 0.1, batch and ReLu layers. Next, a 

convolutional/batch/ReLu/max pooling set before a fully connected layer with batch 

normalization and ReLu layers. The architecture ends with a fully connected layer, batch 

normalization layer, and softmax output layer.  

 

Computation of tissue composition 

Classified images were imported into ImageJ. Histogram analysis of the whole tissue section 

provided tissue composition values for global stiffness (15 tissue samples, 6 patients). For local 

stiffness composition, the fresh patient tissue image contains the original microindentation map 

overlay. The CNN classified image was scaled and manually registered to match the original 

fresh patient tissue image. Histogram analysis inside of 500 µm (62.5 px) diameter circles on the 

CNN classified image provided the local stiffness composition (3 tissue samples, 2 patients).   

 

Bivariate and univariate analysis  

MATLAB’s built-in function ‘corr’ was used to perform univariate analysis resulting in either a 

Pearson or Spearman correlation and statistical significance. MATLAB’s built-in functions 
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‘glmfit’ and ‘glmval’ were used to perform bivariate analysis resulting in a correlation 

coefficient, fit error, and statistical significance for each pair. The global and local stiffness 

measurements are converted to log base 10 values before analysis. The distribution used was 

‘normal,’ and the link was ‘identity.’ The general form of the equation is: 

 = Xb 

where  is the response with a normal distribution, X is a matrix of predictors, and b is a vector 

of coefficient estimates. 

The number of patient tissue samples and patients for each parameter are as follows: 

global stiffness – 15 tissue samples, 6 patients; local stiffness – 2 tissue samples, 1 patient; breast 

density quantification – 20 tissue samples, 8 patients.  

 

Heatmaps of tissue composition, mechanical measurements, and pathologic features 

Heatmaps of global and local stiffness data were created in RStudio using R version 3.6.3 and 

function superheat. Clustering was performed using Euclidean distance with a complete linkage 

method.  

 

Statistical analysis 

Statistical analysis for univariate and bivariate analysis plots and tables was performed using 

MATLAB’s “corr” function. The line of best fit was plotted using Prism 6 (GraphPad Software, 

Inc.). For the breast density bar chart analysis, ordinary one-way ANOVAs using Turkey’s 

multiple comparison test with a single pooled variance were performed in Prism 6 (GraphPad 

Software, Inc.). All bar chart graphs are reported as mean ± SEM. * p < 0.05, **p < 0.01, *** p< 

0.001, and *** p< 0.0001. 
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Supplementary Materials 

Fig. S1. Comparison of H&E tissue features with CNN classified image. 

Fig. S2. Non-significant relationships between tissue composition and Young’s modulus (global 

stiffness). 
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Figures: 

  

 
 

Fig. 1. Breast tissue acquisition, characterization, and selected classes for deep learning 

composition analysis. A, Schematic detailing the breast tissue acquisition and 

characterization starting with medical imaging via mammogram, diagnosis, treatment, 

mechanical measurements, histology, and machine learning. B, Hematoxylin and eosin 

(H&E)-stained images of cell component classes including (i) blood vessels (capillaries, 

venules/arterioles), (ii) ducts (excretory, terminal/acini/alveoli), (iii) fat, (iv) tumor cells. 
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Scale bars in black are 50 µm. C, Hematoxylin and eosin (H&E)-stained images of 

extracellular matrix component (ECM) classes including (i) wavy collagen, (ii) straight 

collagen, and (iii) fibrotic tissue. Scale bars in black are 50 µm. D, Second harmonic 

generation (SHG) images confirming (i) the wavy ECM class is wavy collagen, (ii) the 

straight ECM class is straight collagen, and (iii) the fibrotic tissue is not collagen 

detectable with SHG. Scale bars in white are 100 µm. 
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Fig. 2. Convolutional Neural Network construction, quantitative and qualitative analysis. (A) 

Schematic showing the division of H&E stained tissue slides (32 tissues, 10 patients) into 
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data tiles for training, validation, and testing. While each dataset is from the same patient 

tissue slides, the testing set was developed from a separate set of annotations than the 

training and validation sets. The training images are augmented by rotation [-90°,90°] 

before use in the convolutional neural network (CNN). The accuracy of the CNN is 

determined against the testing sets. Finally, the whole tissue images are classified 

according to the CNN. (B) Confusion matrix determining quantitative accuracy of the 

CNN for the testing set. Cell component classes include blood vessels, ducts, fat, tumor 

cells, wavy collagen, straight collagen, fibrotic tissue, and white space (blank space). 300 

images were analyzed per class. Overall model accuracy of 93.0%. (C) Qualitative 

analysis of CNN model accuracy showing original histology images side-by-side with the 

CNN classified image. The first set of images highlights the model’s ability to identify 

blood vessels in both fat and wavy collagen (Fig. 2C,i). The second set of images 

recognizes the distinction of ducts, both excretory and terminal, in wavy collagen (Fig. 

2C,ii). The third set of images shows the detection of cancer cells, straight collagen, and 

fibrotic tissue (Fig. 2C,iii). Scale bars in black are 100 µm. Color legend for each 

classified feature is included in the figure. 
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Fig. 3. Young’s modulus (global stiffness) characterization and composition analysis of breast 

tissue. (A) Heatmap including (columns) 15 tissue samples from 6 patients (P#) clustered 
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using Euclidean distance with complete linkage by (rows) related features. Each 

parameter is normalized using a z score. The values within each feature are color coded 

by low to high. The heatmap key on the left denotes the following color-coded 

parameters of each feature: cell component, extracellular matrix (ECM) component, 

pathologic feature, or mechanical measurement. (B) Univariate analysis comparing 

Young’s modulus (global stiffness; kPa) to the percent composition of cell component 

class: (i) blood vessels, (ii) tumor cells; (C) extracellular matrix combined; (D) (i) 

straight collagen and (ii) fibrotic tissue; (E) straight collagen from patients who received 

neoadjuvant chemotherapy; and (F) percent breast density. (G) Highest correlated pair of 

tissue composition classes with Young’s Modulus. The Pearson Correlation (r), p-value, 

r2 value, and error is listed at the top of plots B-E and G. One-way ANOVA was used to 

perform statistics in F. (H) Table of top five correlated tissue composition pairs from 

bivariate analysis using normal distribution and identity link using MATLAB’s glmfit 

and glmval functions. Rank ordered by correlation. The error is the fit-error. (I) Plot of 

Spearman Correlation  (s) versus the p-value for all cellular and extracellular classes 

versus straight collagen. Values below the dashed line where p=0.05 are significant. (J) 

Plots showing the monotonic relationship between straight collagen and (i) blood vessels, 

(ii) tumor cells, (iii) wavy collagen, and (iv) fibrotic tissue. Plots in J show the r2 value 

and root mean squared error (RMSE) at the top of the plot. Plots with square data points 

represent luminal A patients who have not received chemotherapy. Plots with circles 

represent patients who received neoadjuvant chemotherapy. Each data point is color 

coded by patient. The lines denote the best fit trend line.  
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Fig. 4. Microindentation mapping, characterization, and composition analysis of breast tissue. 

(A) Fresh patient tissue with elastic modulus (local stiffness; kPa) map overlay. Scale bar 
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in black is 5000 µm. (B) Corresponding Convolutional Neural Network (CNN) classified 

image of the patient tissue in (A) with the microindentation stiffness (kPa) map overlay. 

Scale bar in black is 5000 µm. B inset, Inset shows the composition of a representative 

microindentation point. Scale bar in black is 500 µm. Bad measurements are listed as NA 

and do not contribute to the analysis. (C) Heatmap clustered using Euclidean distance 

with complete linkage by (row) each cell or extracellular matrix class detailing the 

percent composition (0 to 100%). Each column is a different microindentation point 

organized from the lowest to the highest stiffness (kPa) value (49 measurements, 2 

tissues, 1 patient). (D) Univariate analysis comparing elastic modulus (local stiffness; 

kPa) to the percent composition of straight collagen. (E) Bivariate analysis showcasing 

the tissue composition pair with the highest correlation to local stiffness. The line denotes 

the best fit line. The Pearson Correlation (r), p-value, r2 value, and fit-error is listed at the 

top of the plot. (F) Table highlighting the top five tissue composition pairs correlated 

with the elastic modulus. Rank ordered by correlation. The error is the fit-error. 
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Fig. 5. Breast density does not correlate with tissue composition. (A) Plot of Spearman 

Correlation  (s) versus the p-value for all cellular and extracellular classes versus percent 
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breast density. Values below the dashed line where p=0.05 are significant.  Percent breast 

density versus cell classes (B) blood vessels, (C) ducts, (D) fat, (E) tumor cells; and 

extracellular classes (F) wavy collagen, (G) straight collagen, (H) fibrotic tissue. When 

binned, the quantified breast density is related via bar chart using a one-way ANOVA. (I) 

Bivariate analysis showing the highest pair of features that correlate with the percent 

breast density. The r2 value and fit-error are at the top of the plot. The line denotes the 

best fit line. (J) Table highlighting the top five tissue composition pairs correlated with 

the percent of breast density. Rank ordered by correlation. The error is the fit-error. 
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Table 1. Patient cohort demographic and pathologic information.  
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