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CODA: quantitative 3D reconstruction of 
large tissues at cellular resolution

Ashley L. Kiemen1,11, Alicia M. Braxton    11, Mia P. Grahn    1, Kyu Sang Han1, 
Jaanvi Mahesh Babu11, Rebecca Reichel11, Ann C. Jiang2, Bridgette Kim3, 
Jocelyn Hsu1, Falone Amoa11, Sashank Reddy4, Seung-Mo Hong5, 
Toby C. Cornish    6, Elizabeth D. Thompson11, Peng Huang7,8, Laura D. Wood8,11, 
Ralph H. Hruban    8,11, Denis Wirtz    1,8,9,10,11   and Pei-Hsun Wu    1,10 

A central challenge in biology is obtaining high-content, high-resolution 
information while analyzing tissue samples at volumes relevant to disease 
progression. We address this here with CODA, a method to reconstruct 
exceptionally large (up to multicentimeter cubed) tissues at subcellular 
resolution using serially sectioned hematoxylin and eosin-stained 
tissue sections. Here we demonstrate CODA’s ability to reconstruct 
three-dimensional (3D) distinct microanatomical structures in pancreas, 
skin, lung and liver tissues. CODA allows creation of readily quantifiable 
tissue volumes amenable to biological research. As a testbed, we assess 
the microanatomy of the human pancreas during tumorigenesis within 
the branching pancreatic ductal system, labeling ten distinct structures to 
examine heterogeneity and structural transformation during neoplastic 
progression. We show that pancreatic precancerous lesions develop into 
distinct 3D morphological phenotypes and that pancreatic cancer tends 
to spread far from the bulk tumor along collagen fibers that are highly 
aligned to the 3D curves of ductal, lobular, vascular and neural structures. 
Thus, CODA establishes a means to transform broadly the structural 
study of human diseases through exploration of exhaustively labeled 3D 
microarchitecture.

The growth of invasive cancer and its spread into microenvironments 
containing complex vascular, neural, stromal and ductal structures is 
best understood through accurate three-dimensional (3D) representa-
tions1–3. Pancreatic ductal adenocarcinoma (PDAC) is one of the dead-
liest forms of cancer, with a 5-year survival rate of only 10% (refs. 4,5). 

PDAC arises from well-characterized precursor lesions in the pancreatic 
ducts and has a propensity for metastasis to the liver, lymph nodes and 
retroperitoneum, often facilitated by vascular and neural invasion6–8. 
These phenomena are classically studied in two dimensions via tissue 
sectioning and histological staining, where 3D information such as 
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This method serially aligned the 101 serial histological sections in P0 
in 30 minutes (Extended Data Fig. 1, detailed processing time esti-
mates in Supplementary Table 2). To limit accumulation of error due 
to imperfect tissue sectioning, our algorithm is designed to discard 
registration to badly deformed tissues (containing large regions of 
splitting or folding).

Next, we established a high throughput H&E cell detection work-
flow based on color deconvolution and normalization and a previously 
established algorithm for particle tracking36. The method begins with 
color deconvolution of the H&E images into H&E channels. Using the 
hematoxylin channel image, local two-dimensional (2D) intensity 
maxima are identified as nuclear coordinates. By quantifying nuclear 
coordinates instead of nuclear boundaries, our technique is capable 
of rapid cell detection in large serially sectioned samples without 
the need for training or manual annotations. CODA cell detection  
delivers a processing time of approximately 90 seconds per whole 
slide image (Fig. 1c).

We then established a deep learning workflow for semantic seg-
mentation of histological features and used it to identify nine pancre-
atic cell and tissue components in H&E: normal ductal epithelium, 
pancreatic cancer precursors, PDAC, smooth muscle, acini, fat, col-
lagen, islets of Langerhans and lymph nodes (Fig. 1d and Extended 
Data Fig. 2). The pipeline used DeepLab semantic segmentation and 
a pretrained ResNet50 network37, achieved class precision and recall 
of >90% per sample (Extended Data Fig. 3a), and labeled images to 
a resolution of 2 µm per pixel in under 3 minutes each (computer 
specifications in Supplementary Table 2). Our workflow allows seg-
mentation of more pancreas tissues than previously developed 3D 
methods2,21,32,38 and is amenable to rapid (roughly 1 day) generation 
of functional models. As sample collection was staggered, individual 
deep learning models were created for each sample. To demonstrate 
the ability of CODA to label additional structures in samples after 
creation of the first model, a second model was trained on all 13 sam-
ples to identify nerves in the pancreas, with precision and recall >90%  
(Extended Data Fig. 3b).

Altogether, CODA facilitates 3D reconstruction of labeled tissues 
at both tissue and cellular resolution (Fig. 1e).

Validation of CODA methodology
We compared our registration approach to seven other methods 
using data in a previously published comparative analysis of tissue 
registration algorithms35 and found that CODA registration outper-
forms the other techniques, particularly in two metrics: limiting the 
accumulation of error across large samples (accumulated target 
registration error, ATRE) and maintaining higher pixel correlation 
between images (root mean squared error (r.m.s.e.)) (Fig. 2a and  
Supplementary Methods).

To validate cell detection accuracy and compare to pre-existing 
techniques, five randomly selected 1.5 mm2 image tiles were man-
ually annotated by two researchers. Manual annotations were 
compared to CODA cell detection as well as two commonly used 
approaches29,30 CODA cell detection achieved the highest overall 
accuracy of the three techniques assessed with >90% precision and 
recall (Extended Data Fig. 4a), and for assessment of samples con-
taining many serial samples, CODA cell detection was on average 
threefold faster than the other techniques (Extended Data Fig. 4a). 
In situ diameters of each cell type were measured and incorporated 
to extrapolate 3D cell counts from cell counts on serial 2D images  
(Extended Data Fig. 4b).

We additionally assessed the effect of reducing the z resolution of 
the samples by registering a subset of serial images. We found 95% simi-
larity in registration performed with between consecutive sections or 
sections up to five axial planes apart (Fig. 2b). Further, we found that we 
maintained 96% accuracy in estimation of cell count and tissue content 
by interpolating 3D cell count and deep learning labels from sections 

connectivity, morphology and spatial relationships are lost. While many 
surrogates for studying tumorigenesis have been developed in vitro 
and in vivo9–13, quantitative 3D study of naturally occurring cancers in 
human tissues, or cancer in situ, is generally lacking.

Recent advances in tissue clearing techniques have been used 
to explore human diseases in 3D (refs. 14–20). For example, clearing of 
human pancreatic samples has been used to study the expression of a 
limited number of proteins in cancer cells as they invade blood vessels2 
and to enumerate the density of islets of Langerhans to determine the 
onset of diabetes21. However, poor antibody penetration into dense 
tissues such as PDAC’s desmoplastic stroma, long processing times 
of days to weeks, trade-offs between reconstruction of large volumes 
and number of structures labeled and longstanding challenges in 
quantifying complex 3D images hinder the power of tissue clearing 
techniques16,19,22. Reconstruction of serial hematoxylin and eosin (H&E) 
stained sections using image registration approaches has also been 
used to study disease in 3D (refs. 23–28). While use of thinly stained sec-
tions avoids the issue of poor antibody penetration seen in study of 
intact tissues, time-consuming manual annotations and costly immu-
nohistochemical (IHC) labeling and mass spectrometry have been 
required to identify components in serially sectioned specimens24,25.

Here, we introduce CODA: a method for effective 3D reconstruc-
tion of large tissues from serially sectioned H&E images. To demon-
strate CODA’s use in microanatomical research, we explore 3D modes 
of pancreas tumorigenesis. We analyzed 4,114 H&E sections to recon-
struct 13 samples of up to 3.5 cm3 comprising normal, precancerous 
and cancerous human pancreas at subcellular resolution. With deep 
learning semantic segmentation, we label ten distinct cell and tissue 
types without incorporation of additional stains. The power of CODA 
is use through visualization of complex pancreatic ductal morphology; 
characterization of the extent, 3D structure and cellularity of pancre-
atic precursors; quantification of fiber alignment in a 3D landscape 
and exploration of structures used by pancreatic cancer to invade far 
from the bulk tumor.

We present a fully integrated pipeline for labeled, 3D reconstruc-
tion of serial tissue images at single cell resolution with detailed com-
parison to existing methodologies. While previous techniques exist 
for registration26,27, cell detection29,30 and tissue multilabeling in H&E 
images31,32, we show that our integrated approach allows rapid, consist-
ent reconstruction of serial samples from organs such as pancreas, 
skin, lung and liver.

Results
CODA: 3D reconstruction of serial histological sections
To develop CODA, a method for the 3D reconstruction of serially sec-
tioned tissue, we identified 14 human pancreas samples (designated 
samples P0–P13) containing normal pancreatic parenchyma, pancre-
atic parenchyma with precancerous lesions and untreated invasive 
pancreatic cancer, as detailed in Supplementary Table 1. Sample P0 
contains 101 serial images sampled 4 µm apart and was used only to opti-
mize the workflow. Thick formalin-fixed paraffin-embedded samples 
were sectioned, stained with H&E and digitized at ×20 magnification, 
providing x and y (lateral) resolution of 0.5 µm and z (axial) resolution 
of 4 µm (Fig. 1a).

First, the independent serial images were mapped to a common 
coordinate system using a new image registration approach (Fig. 1b). 
Images were coarsely aligned using whole field rigid-body registration, 
followed by an elastic registration approach to account for local tissue 
warping, similar to previously developed workflows24–26,33–35. Briefly, 
for a pair of images, radon transforms were calculated at discrete 
angles. The maximum of the cross-correlation of radon transforms 
of the images yielded registration angle, and the maximum of the 
cross-correlation of the rotated tissue images yielded translation. 
Elastic registration was obtained by interpolating a grid of rigid regis-
trations calculated at intervals across the globally registered images. 
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up to three axial planes apart (Fig. 2c,d). This allowed us to improve 
workflow throughput by processing only one in three serial images 
in samples P1–P13 for an axial resolution of 12 µm. We next confirmed 
the quality of 3D renderings by creating visualizations of a region of 
the pancreatic ductal architecture from sample P0 at z resolutions of 
4, 12, 48 and 96 µm (Fig. 2e).

Finally, to demonstrate the ability of CODA to reconstruct non-
pancreatic structures, we assessed samples of human scalp (Fig. 3a), 
murine lung (Fig. 3b) and murine liver (Fig. 3c). CODA was used to label 
six structures in skin: hair follicles, sweat glands, oil glands, epidermis, 
vasculature and collagen; five structures in lung: bronchioles, alveoli, 
vasculature, cancer metastases and collagen; and four structures in 
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Fig. 1 | CODA. a, Human pancreatic tissue was serially sectioned, stained and 
scanned. b, Images were registered using a nonlinear approach to create a 
digital volume. c, Cells were identified using the hematoxylin channel of the H&E 
images. d, Deep learning semantic segmentation models were trained using 

randomly overlaid annotations of tissue types. Images are labeled to a resolution 
of 2 µm. e, 3D reconstruction of >1,000 serially sectioned pancreas sections. 
3D renderings are created at the cm, mm and µm scale at tissue and single cell 
resolution.
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liver: bile duct, hepatocytes, vasculature and collagen, and to create 
detailed renderings of a range of tissue microanatomy. Our tissue image 
registration, cell detection and deep learning tissue labeling algorithms 
were applicable to the tissues with no changes to the method design. 
In validation, we found that our tissue labeling algorithm performed 
with >90% precision and recall for the skin, lung and liver tissues. 
Therefore, we show that CODA is a tissue agnostic and robust pipeline 
for 3D reconstruction and quantification of microanatomy.

Exploration of pancreas tumorigenesis in 3D
To demonstrate the use of CODA for biological research, we created 
multilabeled 3D maps of 13 resected pancreas tissue samples of vol-
umes up to 3.5 cm3 and containing up to 1.6 billion cells (Fig. 4a). 
Eight of the samples assessed contained regions of grossly normal 
pancreatic parenchyma (samples P1–P4, P6–P9), nine contained 
pancreatic precursor lesions (samples P2–P10) and eight contained 
regions of invasive pancreatic cancer (samples P6–P13). We created 
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Fig. 2 | Validation of CODA registration and ability to skip z sections.  
a, Sample validation image (from an online dataset first published in ref. 34) with 
overlayed fiducial points. Inset shows close up view of a pair of fiducial markers 
on adjacent sections. Normalized performance metrics: TRE, ATRE, r.m.s.e., 
Jaccard Index ( J) and pre-/postregistration change in area (dA). b, Quantification 
of loss in quality due to reducing the z resolution of serial samples. Calculation 
of pixel correlation across the z axis (left) shows that >95% correlation is 

maintained postregistration when skipping up to four serial sections, or 20 µm, 
between each H&E collected. c,d, Calculation of the percentage change in cell 
count (c) and tissue composition (d, right) reveals <5% error in 3D cell count and 
tissue composition extrapolation when skipping up to two serial sections, or 
12 µm, between each H&E collected. e, Validation of 3D rendering quality due 
to reducing the z resolution of serial samples. Tissues in this study are modeled 
using a spacing of 12 µm between sections (top right rendering).



Nature Methods

Article https://doi.org/10.1038/s41592-022-01650-9

Hair follicle
Sweat gland
Oil gland
Epidermis
Collagen
Vasculature
Fat

a

b

c

Bronchioles
Alveoli
Vasculature
Metastases
Collagen

Bile duct
Vasculature
Hepatocytes
Collagen

Scale
= 0.5 cm

= 25 mm

Scale
= 0.5 cm

Scale
= 0.5 cm

Fig. 3 | CODA processing of additional organs. a, 3D reconstruction of 
human scalp tissue. Sample H&E and semantically segmented image (far left), 
visualization of the H&E volume (top left), epidermis, sweat glands and oil glands 
(top right), external (bottom left) and internal (bottom right) views of epidermis, 
hair follicles and oil glands, and visualization of single cell resolution (far right). 
b, 3D reconstruction of mouse lung tissue. Z projections of all components 

together and individually (left) and 3D renderings of bronchioles (right top) and 
vasculature and metastases (right bottom). c, 3D reconstruction of mouse liver 
tissue. Sample H&E and semantically segmented image (far left), z projection of 
vasculature and bile duct (middle top) and hepatocytes (middle bottom) and 3D 
rendering of vasculature (far right).
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multiscale renderings that demonstrate the complex, curved archi-
tecture of the normal pancreatic ducts and periductal collagen, the 
surrounding acinar lobules, islets of Langerhans, fat and blood vessels  
(Supplementary Videos 1–6).

Through quantification of tissue volume and cell count, we 
investigated the compositional changes to the pancreas during tum-
origenesis. We compared the volume and cell composition of tissue 
components in the samples (Supplementary Table 3). Our results 
revealed an average 2.3-fold decrease in cell density between healthy 
regions and invasive cancer regions in the pancreas with a P < 10−4 using 
the Wilcoxon rank sum test (Fig. 4b). At the extreme end, we found zero 
acinar tissue and an astonishing 87% collagen composition in sample 
P11, a 14-fold increase from normal pancreas architecture, emphasizing 
the scale of atrophy, dense desmoplastic stroma and tissue reorganiza-
tion brought with pancreatic cancer.

Microarchitectural properties of pancreatic precancers
Following bulk assessment of the samples, we used CODA to enumerate 
architectural patterns of pancreatic precursor lesions in 3D. Of the 13 
samples analyzed, eight contained pancreatic intraepithelial neoplasia 
(PanIN) and one contained intraductal papillary mucinous neoplasms 
(IPMNs). PanIN are clinically defined as mucin-producing epithelial 
neoplasms residing in ducts <0.5 cm, with larger neoplasms typically 
denoted as IPMNs and both involve the complex tubular branches of 
the pancreatic ducts and ‘bunches of grape-like’ acinar lobules39. It is 
currently not possible to noninvasively detect the smallest of these 
lesions in the clinic40–42.

We found that precursors occupy a range of volumes, can be simple 
or highly branched and may be densely packed yet unconnected in 3D. 
Using the 3D reconstruction of the ductal system of sample P2, we iden-
tified 43 spatially independent precancers in a 2.3 cm3 sample (Fig. 5a  
and Supplementary Video 7). In one section, a large precursor was 
identified in multiple ducts separated by nearly 1 cm and surrounded 

by multiple, smaller precursors exemplifying how connectivity is 
difficult to interpret from 2D alone. In the nine samples containing 
precursors (samples P2–P10), we compared the number of distinct 
precursors per section with and without considering 3D connectivity 
and found that 2D lesion number over-counted the true 3D tumor num-
ber per section by as much as a factor of 40, exemplifying the complex 
3D connectivity of pancreatic precancers (Fig. 5b). This measurement 
yielded an average 12.3-fold overcounting in 2D versus 3D with a P value 
of <10−5 using a Wilcoxon rank sum test (Fig. 5b).

While assessing 3D connectivity of the precursors, we identified 
three distinct 3D structural phenotypes that we term tubular, lobular 
and dilated (Fig. 5c and Supplementary Video 8). Tubular precancers 
appeared as ductal, branching structures, dilated precancers appeared 
as large ballooning of the duct connected to ducts of much smaller 
diameters and lobular precancers appeared as ‘bunches of grapes’-like 
connected locules forming a nodule. Review of the corresponding 
H&E sections by pancreatic pathologists revealed that tubular PanINs 
resided within pancreatic ducts, dilated PanINs resided within regions 
of dilated pancreatic ducts and lobular PanINs resided at the terminal 
junctions of ducts and acinar lobules, involving areas of acinar to ductal 
metaplasia43,44. These phenotypes appear similar to pancreatic precan-
cer phenotypes identified in mice45. Notably, 174 of the 265 identified 
precursors (66%) contained both ductal and lobular morphology, 
suggesting that extension of precursors between dilated/nondilated 
pancreatic ducts and acinar lobules is a relatively common occurrence 
(Extended Data Fig. 2d).

The role of fiber alignment in pancreatic cancer invasion
Next, we investigated the morphology of invasive pancreatic cancer and 
the tumor microenvironment in eight large samples. We first focused 
on the morphology of PDAC at the interface of invasive cancer and 
adjacent normal tissue in sample P7 to identify patterns of invasion, 
then enumerated the occurrence of these patterns in all tissues.
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The mass consisted of a region of invasive carcinoma with three 
prominent protrusions extending into surrounding normal pancre-
atic tissue (Fig. 6a). The first of these protrusions was invasive cancer 
extending within the lumen of a vein for at least 4 mm. The second of 
the protrusions was a >3 mm region of cancer extension along peri-
ductal stroma. The third protrusion was a >1 mm focus of perineural 
invasion. We quantified the occurrence of these phenomena in all eight 
samples, revealing that all samples (100%) contained regions of venous 
invasion, seven (87%) contained perineural or neural invasion and five 
(63%) contained invasion along periductal, perivascular or perilobular 
stroma. As CODA allows confirmation of 3D findings in high-resolution 
H&E images, all foci of invasion were further validated via examination 
of the histology (Extended Data Figs. 5–7).

Finally, we investigated 3D stromal properties at the pancreatic 
vasculature, ducts and nerves. The alignment of collagen fibers in his-
tological samples of PDAC has been negatively correlated with progno-
sis46–48. However, in previous work using 2D samples of many patients, 
collagen alignment in the ductal submucosa of normal pancreatic ducts 
was reported to be low47,49. We sought to repeat this measurement to 
account for the angle of sectioning of the ducts.

Using our 3D renderings, we identified coordinates where the 
ducts, blood vessels and nerves were cut at two extremes: perpendicu-
lar to the long axis of the structure (axially sectioned) and parallel to 
the long axis of the structure (longitudinally sectioned) and isolated 
these regions in H&E (Fig. 6b) to quantify collagen fiber alignment. 
Our measurements of fiber alignment therefore account for the vary-
ing appearance of fibers relative to their orientation to the sectioning 
blade, allowing more accurate calculation than can be computed from 
the random plane in a 2D histological section alone. As validation of 
our fiber alignment measure, we compare our results to measures of 
alignment of nerve fibers, which are known to be highly aligned in the 
longitudinal direction50–52.

Quantification53 revealed significantly higher (using the Wil-
coxon rank sum test) collagen and nerve fiber alignment and nuclear 

aspect ratio in longitudinally compared to axially sectioned structures  
(Fig. 6c). For nuclear aspect ratio, two independent researchers meas-
ure a 2.1-, 2.3- and 2.5-fold change between longitudinally and axially 
sectioned images for periductal, perivascular and perineural colla-
gen, respectively (all P values <10,−5 researchers’ measurements are 
compared in Extended Data Fig. 2e). For fiber alignment, we measure 
a 2.5-, 2.4-, 2.2- and 2.2-fold change between longitudinally and axially 
sectioned images for periductal collagen, perivascular collagen, peri-
neural collagen and nerve fibers, respectively (all P < 10−5). Contrary 
to previous studies in 2D, these results indicate that collagen fibers 
are highly aligned along the longitudinal direction of structures they 
surround, including ducts, blood vessels and nerves. This is the same 
direction of alignment as that of the observed cancer protrusions. 
CODA enables quantification of metrics such as 3D fibrillar alignment 
that are imprecise when measured from isolated 2D sections.

Discussion
Here we show that CODA is a powerful complement to tissue clearing 
and current serial sectioning techniques used to study 3D tissue micro-
architecture. Tissue clearing is the most popular current approach to 
study 3D tissues, wherein intact samples are rendered semitransparent, 
labeled and imaged using confocal or light-sheet microscopy and have 
been used to conduct landmark scientific research14–19,54–56. However, 
long wait times of days to weeks between protocol steps, inconsistent 
antibody penetration, limits on the size of tissues that can be cleared, 
the number of labels that can be used and longstanding complications 
in quantification of the rendered 3D datasets represent key challenges 
in clearing research22. Current serial sectioning methods bypass some 
of the shortcomings of tissue clearing, albeit through introduction 
of new challenges. The sectioning of tissue causes unpredictable 
warping, requiring sophisticated registration techniques. Addition-
ally, many serial sectioning methods rely on expensive techniques 
for labeling including IHC labeling, mass spectrometry and manual 
annotation24,25,34. Although expensive, these 2D labels are easier to 
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quantify than 3D data generated by clearing techniques, as they can 
take advantage of a plethora of previously developed 2D computational 
approaches57–59.

CODA is a powerful tool that has potential to integrate many cur-
rent tissue imaging techniques. It incorporates nonlinear image reg-
istration and deep learning techniques to create multilabeled tissue 
volumes using H&E images, which is a relatively inexpensive histo-
logical technique. As our results demonstrate that CODA can derive 
quality 3D reconstructions while skipping at least two intervening sec-
tions, future addition of IHC labeling, spatial ‘omics’ and gene expres-
sion imaging to the intervening sections will increase the number of 
labels beyond what is currently achievable. The number of tissue and 

molecular phenotypes that CODA can label in the pancreas, skin, liver 
and lungs has the potential to unlock previously unknown insights into 
human tissue, health and disease.

In our analysis of pancreatic tumor progression, we identify several 
findings that are both new and only possible through 3D analysis. We 
find that many anatomically separate precursor lesions can develop 
in small or large ducts, and that individual precursors are commonly 
present both in the pancreatic ducts and in foci of acinar to ductal 
metaplasia in the acinar lobules. We find invasive cancer cells extending 
from the central tumor along existing structures such as veins, nerves 
and peri- ductal, vascular, lobular and neural collagen. Together with 
previous work, which found highly aligned collagen to be a negative 
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prognostic factor in PDAC48, our identification of cancer cells protrud-
ing along aligned fibers suggests that pancreatic cancer cells in situ 
may invade more easily in regions of aligned collagen and nerve fibers. 
Overall, there is a need in cancer research for 3D reconstruction tech-
niques that enable the collection of large, quantifiable tissue datasets. 
We demonstrate that CODA is one such powerful technique.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-022-01650-9.
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Methods
Tissue acquisition and scanning
Formalin-fixed, paraffin-embedded samples were sectioned every 
4 µm. Every third tissue section was stained using H&E, with two sec-
tions every three held out. All tissues of sample P0 were scanned for 
validation that skipping two sections maintained registration and 
reconstruction accuracy. Tissues were scanned at ×20 using a Hamma-
matsu Nanozoomer. These studies were approved by the Institutional 
Review Board of The Johns Hopkins Hospital.

Image registration
Cases contained series of tissue images scanned at ×20, corresponding 
to approximately 0.5 µm per pixel. Openslide software was used to save 
reduced size copies of each image, corresponding to 8 µm per pixel 
using nearest neighbor interpolation60. For each sample, the center 
image was identified as the point of reference (imagen) and global and 
elastic registration was calculated for all other images in the sample.

We performed registration on greyscale, Gaussian-filtered, down-
sampled (80 µm per pixel resolution) versions of the high-resolution 
histological sections. Global registration transformations for a pair 
of preprocessed tissue images were found through iterative cal-
culation of registration angle and translation via maximization of 
cross-correlation. Radon transforms of the images taken at discrete 
angles between 0 and 359° were calculated. The maximum of the 
cross-correlation of radon transforms of the images yielded registra-
tion angle, and the maximum of the cross-correlation of the rotated 
tissue images yielded translation. Elastic registration was obtained by 
calculating rigid registration of cropped image tiles at 1.5-mm intervals 
across the globally registered images at 8 µm per pixel resolution. 
The resulting local, rigid registration fields were interpolated to the 
size of the 8 µm per pixel resolution images. Finally, the registration 
fields were smoothed using a Gaussian filter with standard deviation 
of 2 pixels to produce a nonlinear, elastic registration transformation.

To account for images with large regions of tissue splitting or fold-
ing, rigid global registration was performed to sequentially register 
each imagen±m to the three next closest images to center, imagen±(m+1) 
imagen±(m+2) and imagen±(m+3). Quality of each of the three global registra-
tions was assessed by comparing pixel-to-pixel correlation between the 
moving and each reference image. The registration with the best result 
was kept and the other two discarded. Thus, if imagen±(m+1) contained 
large defects such as tissue splitting or folding, then imagen±(m+2) would 
be used as the reference for rigid registration to avoid compound 
errors. Following global registration, elastic registration was used 
between the moving image and chosen reference image to create a 
nonlinear displacement map. This process was repeated for all images 
in a sample such that all images were elastically registered to the coor-
dinate system of the center imagen.

Assessment of image registration quality
Quality of image registration within the pancreas image datasets was 
calculated using pixel-wise Spearman correlation. ‘True’ biological 
pixel variation was calculated by correlating pixel intensity along the 
x and y dimensions of single images (longitudinal correlation). It was 
assumed that ‘perfect’ registration would result in a similar z direction 
(down the image stack) correlation to the xy correlation, as the xy cor-
relation represents the variation in pixel intensity in intact tissue. Axial 
pixel correlation was calculated by correlating pixel intensity along the 
z dimension of serial images. Unregistered z correlation was compared 
to postglobal registration correlation and postelastic registration cor-
relation to determine improvements to intensity continuity following 
registration, and postelastic registration was compared to longitudinal 
correlation to determine how closely our registration results could 
emulate the true intensity variation between connected tissue.

For each correlation calculation (along the xy direction, unregis-
tered z dimension, global registered z dimension and elastic registered 

z dimension) Spearman correlation was calculated for pixels at 4 µm 
intervals starting at 0 µm apart. Correlation of pixels 0 µm apart is 
correlation of each pixel to itself (equal to 1). Correlation of pixels 
4 µm corresponds to two pixels 4 µm apart in a single image (for the 
xy calculation) or one image apart (for the z calculation). This process 
was repeated for distances up to 0.3 mm. Additionally, this process was 
repeated for registration of all images in sample P0, and registration 
of one in two, one in three, one in four and one in five images in P0 to 
prove that we maintain >95% correlation when sampling one in every 
three images per tissue sample.

Comparison of image registration to existing techniques
CODA registration was applied to a publicly available serial histological 
sample of 260 mouse prostate images, which was part of a previously 
published paper comparing the performance of seven registration 
techniques35. The image dataset contained manual annotation of two 
cells per image each from two different researchers. Performance met-
rics included pairwise target registration error (TRE), average distance 
between pairs of fiducial markers; ATRE, estimation of accumulated 
distortion throughout the stack; r.m.s.e., pairwise comparison of pixel 
intensities across the stack; Jaccard Index (J), pairwise area overlap of 
consecutive images and dA, change in area of the tissue slides pre- and 
postregistration. CODA performed similarly to competing techniques 
in TRE, J and dA. CODA outperformed all other techniques in ATRE and 
r.m.s.e., suggesting CODA registration of this sample resulted in less 
accumulated error than other techniques.

Raw performance metrics are listed in the source data file for  
Fig. 2a. As the magnitude of various performance metrics varied widely, 
normalized performance metrics were calculated such that a single 
graph could concisely express a wide variety of performance param-
eters. Mean performance metrics were normalized using the following 
formulas such that they lay within the range of 0–1 and such that higher 
numbers indicate better performance:

TRENormalized = 1 − TREmean/max (TREmean)

ATRENormalized = 1 − ATREmean/max (ATREmean)

r.m.s.e.Normalized = 1 − r.m.s.e.mean/max (r.m.s.e.mean)

r.m.s.e.Normalized = 1 − r.m.s.e.mean/max (r.m.s.e.mean)

Jnormalized = Jmean/min (Jmean) − 1

dANormalized = 1 − ||dAmean|| /max (|dAmean|)

(where |x| denotes absolute valueof x)

Identification of cells in histological samples
First, the hematoxylin channel of all H&E images was extracted using 
color deconvolution. Openslide software was used to save reduced 
size copies of all tissue images, corresponding to 2 µm per pixel using 
nearest neighbor interpolation60. For each image, the tissue region of 
the image was identified by finding regions of the image with low green 
channel intensity and high red-green-blue (RGB) standard deviation. 
Next, RGB channels were converted to optical density. Using kmeans 
clustering analysis, 100 clusters were identified to represent the opti-
cal densities of the image. The most common, blue-favored optical 
density was chosen to represent the hematoxylin channel and the 
most common, red-favored optical density was chosen to represent 
the eosin channel. The background optical density was fixed as the 
inverse of the average of the H&E optical densities. These three optical 
densities were used to deconvolve the RGB image into hematoxylin, 
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eosin and background channel images. Using methods described in 
ref. 36 the hematoxylin channel images were smoothed, and 2D inten-
sity minima of a designated size and distance from each other were 
identified as nuclei.

Validation of cell detection algorithm and comparison to 
existing techniques
A total of five 1.5 mm2 regions were randomly extracted from the serial 
images for validation. For each region, two researchers manually 
annotated cells using an annotation function built in MATLAB 2021b. 
Next, CODA cell detection and two popular cell detection algorithms 
(Hovernet and QuPath)29,30 were applied to the validation images to 
automatically generate nuclear coordinates. Automatically gener-
ated coordinates were termed true positives if they were within 2 µm 
of a manually generated coordinate (that was not already paired with 
another automatically generated coordinate). Then 2 µm was selected 
as the radius as this was determined to be the average radius of nuclei 
in the images. Automatically generated coordinates were termed 
false positives if they were not within 2 µm of a manually generated 
coordinate (that was not already paired with another automatically 
generated coordinate). Finally, manually annotated coordinates with 
no corresponding automatically generated coordinate were termed 
false negatives. From the true positives, false positives and false nega-
tives, precision and recall were calculated to compare each of the three 
techniques to both sets of manual annotations.

Deep learning tissue multilabeling
A deep learning model was created for each case using manual tis-
sue annotations of that sample. Openslide software was used to save 
reduced size copies of all tissue images, corresponding to 2 µm per 
pixel using nearest neighbor interpolation60. Seven tissue images 
equally spaced within each sample were extracted. For each of the seven 
images, we manually annotated 50 examples of each identified tissue 
subtype using Aperio ImageScope, creating .xml files of annotation 
coordinates. Annotation coordinates were loaded into MATLAB 2021b 
using publicly available software and were downsampled to correctly 
overlay on the 2 µm per pixel tissue images61.

To reduce the heterogeneity of the H&E images, the H&E stains of 
all tissue images in each case were normalized. Using the H&E channel 
images created for the cell counting analysis and the optical density 
calculated for a reference H&E image from the same case, we recon-
structed RGB images of each tissue type to a chosen optical density. 
Incorporation of image color normalization allowed us to avoid cata-
strophic failure of the semantic segmentation on unannotated images 
with drastically different staining patterns.

Bounding boxes of all annotations were identified and each anno-
tated RGB image region was extracted and saved as a separate image 
file. A matrix was used to keep track of which bounding box images 
contained which annotation tissue types. Training images were built 
through creation of a 9,000 × 9,000 × 3, zero-value RGB image tile. 
Annotation bounding boxes containing the least represented deep 
learning class were randomly overlaid on the blank image tile until the 
tile was >65% full of annotations and such that the number of pixels of 
each deep learning class was approximately equal. Annotation bound-
ing boxes were randomly augmented via rotation, scaling by a random 
factor between 0.8–1.2 and hue augmentation by a factor of 0.8–1.2 
in each RGB color channel. The 9,000 × 9,000 × 3 image tile was then 
cut into 324,500 × 500 × 3 images. In total, 20 such large images were 
built, half with augmentation, to create 6,480 training images and five 
additional images were built to create 1,620 validation images. Then 
324 testing images were created using manual annotations from an 
image not used for training or validation. This data generation pipeline 
including the size of the image tile, size of the training tiles and levels of 
data augmentation was chosen as it gave highest performance during 
pilot classification of sample P0.

Following dataset creation, a resnet50 network was adapted 
for DeepLab v.3+ semantic segmentation35 and trained to a valida-
tion patience of 5. If 90% tissue subtype precision and recall was not 
obtained, additional manual annotations were added to the training 
and testing images and the process was repeated until desired accuracy 
was reached. We determined that >90% precision and recall resulted in 
classified models that generally matched pathological annotation of 
diseased tissues. Once a satisfactory deep learning model was trained, 
all tissue images in the sample were semantically segmented to create 
labeled tissue images with a pixel resolution of 2 µm per pixel.

Addition of nerve labels to previously deep learning-labeled 
tissue images
The model design explained above was used to add nerves to the previ-
ously labeled pancreas histological images. First, 50 nerve annotations 
per image were collected on the images used for training of the previ-
ous deep learning model. Next, collagen, blood vessel and whitespace 
annotations from all previous annotation datasets were pooled. All 
other tissue components (islets, normal ductal epithelium, acini, pre-
cancers, cancer and lymph node) were pooled to a fifth class termed 
‘other tissue’. Collagen and blood vessel annotations were kept as 
separate classes as the eosin-rich staining on these structures closely 
resembles the staining pattern on nerves. It was found through training 
of a tri-class model (nerves, whitespace, other tissue only) that nerves 
would often be confused with collagen and vascular structures. The five 
annotation classes were pooled into training tiles as is described above 
and a semantic segmentation network with >90% precision and recall 
per class was trained across all 13 pancreas samples. It was calculated 
that >97% of pixels replaced by the nerve label were previously classi-
fied (using the semantic segmentation network that did not contain 
nerves as a label) as either collagen or vasculature. As this network 
classified both nerves and ‘other tissue components’, the nerve clas-
sification in this trained model was assumed to supersede the previous 
classification (thus all pixels labeled as nerves replaced the label for 
that pixel generated by the previous, ten-class model).

3D reconstruction of samples
Multilabeled images created by the deep learning portion of the CODA 
pipeline were consolidated into a 3D matrix using the H&E image regis-
tration results. Similarly, cellular coordinates counted on the unregis-
tered histological sections were consolidated into a 3D cell matrix using 
the H&E image registration results. 3D renderings of the labeled tissue 
regions were visualized using the ‘patch’ and ‘isosurface’ commands in 
MATLAB 2021b and using a color scheme with a unique RGB triplet for 
each tissue subtype. Dimensions of rendered tissues were calculated 
in xy using the pixel resolution of the original ×20 scanned histological 
sections (approximately 0.5 µm per pixel) and using the tissue section 
spacing (4 µm) in z. The resolution of the 3D renderings was 2 µm per 
pixel in xy, the resolution used for image semantic segmentation and 
12 µm per pixel in z, as only one in three tissue sections were used in the 
analysis. Single cells were visualized within the 3D renderings using the 
‘scatter3’ command in MATLAB 2021b. For all calculations performed 
on the 3D labeled matrices of the tissues, the 3D matrix was subsampled 
using nearest neighbor interpolation from original voxel dimensions 
of 2 × 2 × 12 µm3 per voxel to an isotropic 12 × 12 × 12 µm3 per voxel.

Calculation of tissue content, bulk cell density and local cell 
density
Tissue composition was calculated by counting the total number of 
voxels in the isotropic 3D matrix corresponding to each tissue subtype 
and dividing those numbers by the total number of voxels in the tissue 
region of the 3D matrix. These tissue compositions were formatted into 
a matrix in MATLAB 2021b and visualized as a heatmap.

Cell density of each tissue subtype was calculated by combin-
ing the tissue subtype data in the multilabeled 3D matrix with cell 
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coordinate data in the cell 3D matrix. Cells at each voxel in the cell 3D 
matrix corresponded to the tissue subtype label in the multilabeled 
3D matrix (for example, a cell is labeled an epithelial cell if the nuclear 
coordinate was identified in a region labeled as epithelium by the 
deep learning pipeline). Measurements of nuclear diameter were used 
to estimate true 3D cell counts from the 2D cell coordinates. Using 
Aperio ImageScope, 100 nuclei of each tissue subtype were measured 
for each case. The estimated 3D cell count (C3D) of cells counted on 
serial sections analyzed every three sections was calculated using  
the formula:

C3D = ∑images∑subtypes Cimage
3T

T + Dsubtype

where Cimage is the cell count for a given tissue image, T is the thickness 
of the histological section and Dsubtype is the measured diameter of 
a nucleus for a tissue subtype. For each tissue subtype, bulk 3D cell 
density was calculated by dividing the 3D extrapolated cell count of 
a particular subtype divided by the total volume of the tissue. Local 
3D cell density was calculated by dividing the 3D extrapolated cell 
count of a particular subtype divided by the volume of that particular  
tissue subtype.

Determination of spatially distinct precursor lesions
The 3D multilabeled matrices were used to determine tissue con-
nectivity. Following classification, all objects labeled as pancreatic 
precancers lesions were visually verified to be precancers through 
creation of bounding box serial sections. Independent precursors 
were identified in the 3D multilabeled matrix using the ‘bwlabeln’ 
command in MATLAB 2021b. Bwlabeln identifies and labels spatially 
distinct objects in matrices. We calculated connectivity on both the 
precancers alone and the precancers plus the normal ductal epithe-
lium. Distinct precancers and cancers identified using bwlabeln could 
then be quantitatively analyzed or 3D rendered independently from  
other precancers.

Independent precursor coordinates were used to automatically 
annotate connected lesions on H&E images of 2 µm per pixel resolu-
tion. First, each precursor was assigned a distinct RGB color. Next, 
for each registered H&E image in the serial sections, the number of 
distinct precursors appearing on that section was determined. For each 
independent precursor on the section, voxels defining the precursor in 
the volume matrix were located. The pixels were dilated and only the 
outline kept, then rescaled to match the 2 µm per pixel H&E images 
such that the annotated precursor mask was reformatted to appear as 
a thick outline overlayed on the precursor region of the H&E section. 
The outline was overlayed on H&E and the pixels in the H&E image cor-
responding to the outline were recolored to match the color defining 
that independent precancer. This was repeated for all precancers in the 
sample. The same coloring scheme for each precancer was then used in 
a 3D reconstruction of the sample, allowing users to match precancer 
histology to the correct 3D reconstructed precancer.

To create the graph in Fig. 5b, the number of precursors present 
in each sample was calculated. First, we determined the number of 
lesions present on each 2D section (not considering 3D connectivity). 
Next, we determined the true number of precursors present on each 
section when considering 3D connectivity. For each section in which at 
least one precursor was present, the number of (distinct in 2D space) 
precursor-classified objects was normalized by the number of (distinct 
in 3D space) precursor-classified objects that were present on the sec-
tion. The average and standard deviation of this ratio for each sample 
was calculated and plotted.

Finally, metrics were performed on each independent precancer 
to determine 3D morphology. Using the 3D reconstructions and serial 
bounding boxes of each precancer, we determined 3D phenotype by 
assessing 3D presentation as well as the location of the precancer in 

the pancreatic ducts or pancreatic acinar lobules. Next, cell count was 
determined by counting the number of cells located in the same voxel 
coordinates as each defined precursor lesions and corrected using 
the 3D cell conversion equation listed above. Precursor volume was 
calculated by summing the number of voxels desfining each precancer 
and converting from voxel to mm3 units (1 voxel = 12 × 12 × 12 × 10−9 
mm3). Precursor cell density was calculated by dividing cell number 
per precursor by precursor volume. Precursor primary axis length 
was determined using the function ‘regionprops3’ in MATLAB 2021b.

Calculation of collagen and nerve fiber alignment and nuclear 
aspect ratio
Using the 3D renderings, we identified three coordinates of axial sec-
tioning and three coordinates of longitudinal sectioning around pan-
creatic ductal epithelium, blood vessels, and nerves for seven samples 
containing large regions of normal pancreatic parenchyma (for 42 
total images of ducts, nerves and blood vessels each). We located 
the 2D histological sections using 3D coordinates of the identified 
regions and cropped the region of interest from the corresponding ×20 
H&E images. We applied the color deconvolution method described 
above to the cropped ×20 H&E image to separate the H&E channels. 
We calculated fiber alignment within selected 2,500 µm2 windows in 
the eosin channel images using a previously developed method53. By 
measuring fiber alignment within collagen or nerve regions in images 
of axial or longitudinal sectioning, we can compare the degree of col-
lagen and nerve fiber alignment in axially and longitudinally sectioned 
regions of the ducts, blood vessels and nerves. An alignment index of 
one represents completely aligned matrix of fibers and an alignment 
index of zero represents an isotropic matrix of fibers. We measured the 
alignment index at two locations of each cropped image.

We next manually measured nuclear aspect ratio of cells within 
the peri- ductal/vascular/neural space using a script written in MATLAB 
v.2021b. To confirm the accuracy of the measurements, two scientists 
measured five randomly selected cells in each image, for a total of 1,260 
cells measured. The nuclear aspect ratio measurements between the 
two researchers were compared in Extended Data Fig. 2e and the dif-
ferences were shown to be statistically insignificant. Violin plots were 
constructed from data using code available in the provided reference62.

Construction of z projections
The 3D labeled matrices of each sample were used to construct z pro-
jections of each tissue subtype. For each subtype, the pixels of the 3D 
matrix corresponding to that subtype were summed in the z dimension, 
creating a projection of the volume on a plane perpendicular to the xy 
axes. The projections were normalized by their maximum and visual-
ized using the imagesc command in MATLAB 2021b using the same 
color scheme created for visualization of the 3D tissues.

Analysis of normal and atrophic pancreatic lobules
For sample P7, the 3D model revealed a large region of acinar atrophy. 
Using an annotation pipeline written in MATLAB 2021b, registered, 
serial H&E images were rapidly displayed and manually annotated. In 
each image, the boundaries of the atrophic lobule and a nearby normal 
lobule were segmented. These regions were 3D reconstructed and tis-
sue compositions were calculated using the methods described above.

Confusion matrices
Quality of the deep learning models was visualized using construc-
tion of confusion matrices. For each datapoint in the testing data-
set, the ‘true’ label (as manually annotated in H&E) was determined 
and matched with the ‘determined’ label (as classified by the deep 
learning model). A table was constructed to display the number of 
datapoints corresponding to each true label and their corresponding 
determined labels, as well as per-class precision and recall and overall 
model accuracy.



Nature Methods

Article https://doi.org/10.1038/s41592-022-01650-9

Statistics and reproducibility
No statistical method was used to predetermine sample size. No data 
were excluded from the analyses. All statistical analyses were per-
formed using the Wilcoxon rank sum test. All results may be duplicated 
from the available source data files or the 3D datasets.

Ethics statement
This retrospective study was approved by the Johns Hopkins School of 
Medicine institutional review board.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
Due to the extremely large size of the digital files described, data are 
available upon request from the corresponding author. Source data 
are provided with this paper.

Code availability
Code is available on the following GitHub page: https://github.com/
ashleylk/CODA.
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Extended Data Fig. 1 | Histological image registration sample workflow. 
Tissue cases registered with reference at center z-height of sample. Example 
fixed and moving images shown. Global registration performed with rotational 
reference at center of fixed image. Fixed and moving images smoothed by 
conversion to greyscale, removal of non-tissue objects in image, intensity 
complementing, and Gaussian filtering to reduce pixel-level noise in images. 
Radon transforms calculated filtered fixed and moving for discrete degrees 

0–360. Maximum of 2D cross correlation of radon transforms yields registration 
angle. Maximum of 2D cross correlation of filtered images yields registration 
translation. Local registration performed at discrete intervals across fixed image. 
For each reference point, tiles are cropped from fixed and moving images and 
coarse registration is performed on tiles. Results from all tiles are interpolated on 
2D grids to create nonlinear whole-image displacement fields. Sample overlays of 
pre and postregistration.
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Extended Data Fig. 2 | Overview of semantic segmentation workflow and 
training data design. (a) For each case, a minimum of seven images were 
extracted from for manual annotation. For each extracted image, minimum 
50 examples of each tissue type were annotated, and the annotations cropped 
from the larger image. (b) To construct training and validation sets, cropped 
annotations were overlayed on a large image until the image was >65% full and 

such that the number of annotations of each type was roughly equal. (c) These 
large tiles were cut into smaller tiles for training and validation. Additional tiles 
were created for the testing set where the annotation was not cropped from the 
image. Testing accuracy was assessed as the percentage of the annotated area 
of the tile classified correctly. Following model training, the serial images were 
cropped into tiles and semantically segmented.
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Extended Data Fig. 3 | Additional methodological supplement. (a) Sample 
predicted vs. true outcomes for deep learning models for sample P1 (left) and 
P8 (right). (b) Workflow for creation of multi-patient semantic segmentation of 
nerves. Nerve annotations collected from thirteen pancreas samples. Original 
tissue annotations reformatted to: 1. smooth muscle, 2. collagen, 3. other tissue 
(islets, normal ducts, acini, precursor, lymph, PDAC), 4. white (whitespace, fat). 
Nerve annotations combined with original annotations to create a dataset for 

nerve recognition in H&E images. (c) Sample P7 average and per class testing 
accuracy as a function of percent of training annotations used. (d) Incidence of 
pancreatic phenotypes in eight samples. (e) Comparison of nuclear aspect ratio 
measurements performed by person 1 and person 2 (N = 150 nuclei per person 
per condition) show nonsignificant differences between measurements using 
the Wilcoxon rank sum test.



Nature Methods

Article https://doi.org/10.1038/s41592-022-01650-9

Extended Data Fig. 4 | Validation of cell count and 2D to 3D cell count 
extrapolation. (a) Sample histological section and corresponding color 
deconvolved hematoxylin channel of image. All cells in five validation images 
were manually annotated by two persons. Annotations were compared to 
CODA outputs and outputs from two existing cell counting methods27,28. (b) Cell 
diameters of each tissue subtype were measured using Aperio ImageScope. 2D 
cell counts were extrapolated to 3D using the formula listed. It was assumed that 

cells could be detected by the algorithm if any part of the nucleus touched the 
tissue section. Therefore, effective tissue section thickness equals true tissue 
section thickness plus the diameter of the cell. 3D cell counts were estimated by 
multiplying 2D cell counts by the true thickness of the tissue section, multiplied 
by three because two sections were skipped during scanning, divided by the 
effective thickness of the section.
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Extended Data Fig. 5 | Sample histology of venous invasions identified in samples. Thirteen distinct venous invasions were identified in eight of the thirteen 
samples. For each, an H&E image was reviewed to confirm the venous invasion.
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Extended Data Fig. 6 | Sample histology of perineural / neural invasions identified in samples. Ten distinct neural invasions were identified in seven of the thirteen 
samples, many containing regions of perineural invasion. For each, an H&E image was reviewed to confirm the structure.



Nature Methods

Article https://doi.org/10.1038/s41592-022-01650-9

Extended Data Fig. 7 | Sample histology of invasion along regions of aligned collagen. Nine distinct regions of invasion along aligned collagen were identified in 
five of the thirteen samples, including invasion along periductal collagen, invasion along perivascular collagen, and invasion along interlobular collagen. For each,  
an H&E image was reviewed to confirm the structure.
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