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CODA: quantitative 3D reconstruction of
large tissues at cellular resolution
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A central challenge in biology is obtaining high-content, high-resolution
information while analyzing tissue samples at volumes relevant to disease
progression. We address this here with CODA, a method to reconstruct
exceptionally large (up to multicentimeter cubed) tissues at subcellular
resolution using serially sectioned hematoxylin and eosin-stained

tissue sections. Here we demonstrate CODA’s ability to reconstruct
three-dimensional (3D) distinct microanatomical structures in pancreas,
skin, lung and liver tissues. CODA allows creation of readily quantifiable
tissue volumes amenable to biological research. As a testbed, we assess
the microanatomy of the human pancreas during tumorigenesis within
the branching pancreatic ductal system, labeling ten distinct structures to
examine heterogeneity and structural transformation during neoplastic
progression. We show that pancreatic precancerous lesions develop into
distinct 3D morphological phenotypes and that pancreatic cancer tends
to spread far from the bulk tumor along collagen fibers that are highly
aligned to the 3D curves of ductal, lobular, vascular and neural structures.
Thus, CODA establishes a means to transform broadly the structural
study of human diseases through exploration of exhaustively labeled 3D
microarchitecture.

The growth ofinvasive cancer and its spread into microenvironments  PDAC arises from well-characterized precursor lesionsinthe pancreatic
containing complex vascular, neural, stromal and ductal structuresis  ductsand hasapropensity for metastasisto the liver,l[ymphnodes and
bestunderstood throughaccurate three-dimensional (3D) representa-  retroperitoneum, often facilitated by vascular and neural invasion® s,
tions'. Pancreatic ductaladenocarcinoma (PDAC) isone of thedead-  These phenomena are classically studied intwo dimensions via tissue
liest forms of cancer, with a 5-year survival rate of only 10% (refs. “°).  sectioning and histological staining, where 3D information such as
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connectivity, morphology and spatial relationships are lost. While many
surrogates for studying tumorigenesis have been developed in vitro
andinvivo’ ", quantitative 3D study of naturally occurring cancersin
human tissues, or cancer insitu, is generally lacking.

Recent advances in tissue clearing techniques have been used
to explore human diseases in 3D (refs. *2°). For example, clearing of
human pancreatic samples has been used to study the expression of a
limited number of proteinsin cancer cells as they invade blood vessels®
and to enumerate the density of islets of Langerhans to determine the
onset of diabetes?. However, poor antibody penetration into dense
tissues such as PDAC’s desmoplastic stroma, long processing times
of days to weeks, trade-offs between reconstruction of large volumes
and number of structures labeled and longstanding challenges in
quantifying complex 3D images hinder the power of tissue clearing
techniques'®*?, Reconstruction of serial hematoxylin and eosin (H&E)
stained sections using image registration approaches has also been
used to study disease in 3D (refs. >*%). While use of thinly stained sec-
tions avoids the issue of poor antibody penetration seen in study of
intact tissues, time-consuming manual annotations and costly immu-
nohistochemical (IHC) labeling and mass spectrometry have been
required to identify components in serially sectioned specimens*%.

Here, we introduce CODA: a method for effective 3D reconstruc-
tion of large tissues from serially sectioned H&E images. To demon-
strate CODA’s use in microanatomical research, we explore 3D modes
of pancreas tumorigenesis. We analyzed 4,114 H&E sections to recon-
struct 13 samples of up to 3.5 cm® comprising normal, precancerous
and cancerous human pancreas at subcellular resolution. With deep
learning semantic segmentation, we label ten distinct cell and tissue
types without incorporation of additional stains. The power of CODA
isuse through visualization of complex pancreatic ductal morphology;
characterization of the extent, 3D structure and cellularity of pancre-
atic precursors; quantification of fiber alignment in a 3D landscape
and exploration of structures used by pancreatic cancer to invade far
from the bulk tumor.

We present afully integrated pipeline for labeled, 3D reconstruc-
tion of serial tissue images at single cell resolution with detailed com-
parison to existing methodologies. While previous techniques exist
for registration®®?, cell detection®*° and tissue multilabeling in H&E
images®"*?, we show that our integrated approach allows rapid, consist-
ent reconstruction of serial samples from organs such as pancreas,
skin, lungand liver.

Results

CODA: 3D reconstruction of serial histological sections

To develop CODA, a method for the 3D reconstruction of serially sec-
tioned tissue, we identified 14 human pancreas samples (designated
samples PO-P13) containing normal pancreatic parenchyma, pancre-
atic parenchyma with precancerous lesions and untreated invasive
pancreatic cancer, as detailed in Supplementary Table 1. Sample PO
contains101serialimages sampled 4 pmapart and was used only to opti-
mize the workflow. Thick formalin-fixed paraffin-embedded samples
were sectioned, stained with H&E and digitized at x20 magnification,
providingxandy (lateral) resolution of 0.5 pmand z (axial) resolution
of 4 pm (Fig. 1a).

First, the independent serial images were mapped to acommon
coordinate system using a new image registration approach (Fig. 1b).
Images were coarsely aligned using whole field rigid-body registration,
followed by an elastic registration approach to account for local tissue
warping, similar to previously developed workflows*2%%7% Briefly,
for a pair of images, radon transforms were calculated at discrete
angles. The maximum of the cross-correlation of radon transforms
of the images yielded registration angle, and the maximum of the
cross-correlation of the rotated tissue images yielded translation.
Elastic registration was obtained by interpolating a grid of rigid regis-
trations calculated at intervals across the globally registered images.

This method serially aligned the 101 serial histological sections in PO
in 30 minutes (Extended Data Fig. 1, detailed processing time esti-
mates in Supplementary Table 2). To limit accumulation of error due
to imperfect tissue sectioning, our algorithm is designed to discard
registration to badly deformed tissues (containing large regions of
splitting or folding).

Next, we established a high throughput H&E cell detection work-
flow based on color deconvolution and normalization and a previously
established algorithm for particle tracking®. The method begins with
color deconvolution of the H&E images into H&E channels. Using the
hematoxylin channel image, local two-dimensional (2D) intensity
maxima are identified as nuclear coordinates. By quantifying nuclear
coordinates instead of nuclear boundaries, our technique is capable
of rapid cell detection in large serially sectioned samples without
the need for training or manual annotations. CODA cell detection
delivers a processing time of approximately 90 seconds per whole
slideimage (Fig.1c).

We then established a deep learning workflow for semantic seg-
mentation of histological features and used it to identify nine pancre-
atic cell and tissue components in H&E: normal ductal epithelium,
pancreatic cancer precursors, PDAC, smooth muscle, acini, fat, col-
lagen, islets of Langerhans and lymph nodes (Fig. 1d and Extended
Data Fig. 2). The pipeline used DeepLab semantic segmentation and
a pretrained ResNet50 network™, achieved class precision and recall
of >90% per sample (Extended Data Fig. 3a), and labeled images to
aresolution of 2 pm per pixel in under 3 minutes each (computer
specifications in Supplementary Table 2). Our workflow allows seg-
mentation of more pancreas tissues than previously developed 3D
methods***>* and is amenable to rapid (roughly 1 day) generation
of functional models. As sample collection was staggered, individual
deep learning models were created for each sample. To demonstrate
the ability of CODA to label additional structures in samples after
creation of the first model, a second model was trained on all 13 sam-
plestoidentify nervesin the pancreas, with precision and recall >90%
(Extended Data Fig. 3b).

Altogether, CODA facilitates 3D reconstruction of labeled tissues
atboth tissue and cellular resolution (Fig. 1e).

Validation of CODA methodology

We compared our registration approach to seven other methods
using datain a previously published comparative analysis of tissue
registration algorithms® and found that CODA registration outper-
forms the other techniques, particularly in two metrics: limiting the
accumulation of error across large samples (accumulated target
registration error, ATRE) and maintaining higher pixel correlation
between images (root mean squared error (r.m.s.e.)) (Fig. 2a and
Supplementary Methods).

To validate cell detection accuracy and compare to pre-existing
techniques, five randomly selected 1.5 mm? image tiles were man-
ually annotated by two researchers. Manual annotations were
compared to CODA cell detection as well as two commonly used
approaches?**° CODA cell detection achieved the highest overall
accuracy of the three techniques assessed with >90% precision and
recall (Extended Data Fig. 4a), and for assessment of samples con-
taining many serial samples, CODA cell detection was on average
threefold faster than the other techniques (Extended Data Fig. 4a).
In situ diameters of each cell type were measured and incorporated
to extrapolate 3D cell counts from cell counts on serial 2D images
(Extended DataFig. 4b).

We additionally assessed the effect of reducing the zresolution of
the samples by registering a subset of serialimages. We found 95% simi-
larity inregistration performed with between consecutive sections or
sections up to five axial planes apart (Fig. 2b). Further, we found that we
maintained 96% accuracy in estimation of cell count and tissue content
by interpolating 3D cell count and deep learning labels from sections
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Fig.1| CODA. a, Human pancreatic tissue was serially sectioned, stained and
scanned. b, Images were registered using a nonlinear approach to create a
digital volume. ¢, Cells were identified using the hematoxylin channel of the H&E
images. d, Deep learning semantic segmentation models were trained using
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randomly overlaid annotations of tissue types. Images are labeled to a resolution
of 2 pm. e, 3D reconstruction of >1,000 serially sectioned pancreas sections.
3Drenderings are created at the cm, mm and pum scale at tissue and single cell
resolution.

up to three axial planes apart (Fig. 2¢,d). This allowed us to improve
workflow throughput by processing only one in three serial images
insamples P1-P13 for an axial resolution of 12 um. We next confirmed
the quality of 3D renderings by creating visualizations of a region of
the pancreatic ductal architecture from sample PO at zresolutions of
4,12,48 and 96 pm (Fig. 2e).

Finally, to demonstrate the ability of CODA to reconstruct non-
pancreatic structures, we assessed samples of human scalp (Fig. 3a),
murine lung (Fig. 3b) and murine liver (Fig. 3c). CODA was used to label
sixstructuresin skin: hair follicles, sweat glands, oil glands, epidermis,
vasculature and collagen; five structures in lung: bronchioles, alveoli,
vasculature, cancer metastases and collagen; and four structures in
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Fig.2|Validation of CODA registration and ability to skip z sections.

a, Sample validation image (from an online dataset first published in ref. >*) with
overlayed fiducial points. Inset shows close up view of a pair of fiducial markers
onadjacent sections. Normalized performance metrics: TRE, ATRE, r.m.s.e.,
Jaccard Index (J) and pre-/postregistration change in area (dA). b, Quantification
ofloss in quality due to reducing the zresolution of serial samples. Calculation
of pixel correlation across the z axis (left) shows that >95% correlation is
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maintained postregistration when skipping up to four serial sections, or 20 um,
between each H&E collected. c,d, Calculation of the percentage change in cell
count (c) and tissue composition (d, right) reveals <5% error in 3D cell count and
tissue composition extrapolation when skipping up to two serial sections, or

12 pm, between each H&E collected. e, Validation of 3D rendering quality due
toreducing the zresolution of serial samples. Tissues in this study are modeled
using aspacing of 12 um between sections (top right rendering).

liver: bile duct, hepatocytes, vasculature and collagen, and to create
detailed renderings of arange of tissue microanatomy. Our tissue image
registration, cell detection and deep learning tissue labeling algorithms
were applicable to the tissues with no changes to the method design.
In validation, we found that our tissue labeling algorithm performed
with >90% precision and recall for the skin, lung and liver tissues.
Therefore, we show that CODA is a tissue agnostic and robust pipeline
for 3D reconstruction and quantification of microanatomy.

Exploration of pancreas tumorigenesisin 3D

To demonstrate the use of CODA for biological research, we created
multilabeled 3D maps of 13 resected pancreas tissue samples of vol-
umes up to 3.5 cm® and containing up to 1.6 billion cells (Fig. 4a).
Eight of the samples assessed contained regions of grossly normal
pancreatic parenchyma (samples P1-P4, P6-P9), nine contained
pancreatic precursor lesions (samples P2-P10) and eight contained
regions of invasive pancreatic cancer (samples P6-P13). We created
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Fig.3| CODA processing of additional organs. a, 3D reconstruction of together and individually (left) and 3D renderings of bronchioles (right top) and
human scalp tissue. Sample H&E and semantically segmented image (far left), vasculature and metastases (right bottom). ¢, 3D reconstruction of mouse liver
visualization of the H&E volume (top left), epidermis, sweat glands and oil glands tissue. Sample H&E and semantically segmented image (far left), z projection of
(top right), external (bottom left) and internal (bottom right) views of epidermis, vasculature and bile duct (middle top) and hepatocytes (middle bottom) and 3D
hair follicles and oil glands, and visualization of single cell resolution (far right). rendering of vasculature (far right).

b, 3D reconstruction of mouse lung tissue. Z projections of all components
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Fig. 4 |Interpatient pancreas analysis from cmscale to single cell resolution.
a, Thirteen samples of up to multi-cm scale containing normal, precancerous and
cancerous human pancreas were reconstructed. Tissue volumes, cell counts and
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cell densities were calculated. b, Bulk cell density decreases more than threefold
in N=7 cancerous human pancreasrelative to N = 8 grossly normal human
pancreas. ***indicates a P < 0.0001 using the Wilcoxon rank sum test.

multiscale renderings that demonstrate the complex, curved archi-
tecture of the normal pancreatic ducts and periductal collagen, the
surroundingacinarlobules, islets of Langerhans, fatand blood vessels
(Supplementary Videos 1-6).

Through quantification of tissue volume and cell count, we
investigated the compositional changes to the pancreas during tum-
origenesis. We compared the volume and cell composition of tissue
components in the samples (Supplementary Table 3). Our results
revealed an average 2.3-fold decrease in cell density between healthy
regionsand invasive cancer regions in the pancreas withaP <10 using
the Wilcoxonranksumtest (Fig. 4b). At the extreme end, we found zero
acinar tissue and an astonishing 87% collagen composition in sample
P11,a14-foldincrease from normal pancreas architecture, emphasizing
thescale of atrophy, dense desmoplastic stromaand tissue reorganiza-
tion brought with pancreatic cancer.

Microarchitectural properties of pancreatic precancers
Following bulk assessment of the samples, we used CODA to enumerate
architectural patterns of pancreatic precursor lesions in 3D. Of the 13
samplesanalyzed, eight contained pancreatic intraepithelial neoplasia
(PanIN) and one contained intraductal papillary mucinous neoplasms
(IPMNs). PanIN are clinically defined as mucin-producing epithelial
neoplasmsresiding in ducts <0.5 cm, with larger neoplasms typically
denoted as IPMNs and both involve the complex tubular branches of
the pancreatic ducts and ‘bunches of grape-like’ acinar lobules®. It is
currently not possible to noninvasively detect the smallest of these
lesions in the clinic*®™*,

Wefoundthat precursors occupy arange of volumes, canbe simple
or highly branched and may be densely packed yet unconnectedin 3D.
Using the 3D reconstruction of the ductal system of sample P2, weiden-
tified 43 spatially independent precancersina 2.3 cm?sample (Fig. 5a
and Supplementary Video 7). In one section, a large precursor was
identified in multiple ducts separated by nearly 1 cm and surrounded

by multiple, smaller precursors exemplifying how connectivity is
difficult to interpret from 2D alone. In the nine samples containing
precursors (samples P2-P10), we compared the number of distinct
precursors per section with and without considering 3D connectivity
andfoundthat2D lesion number over-counted the true 3D tumor num-
ber per section by as muchasafactor of 40, exemplifying the complex
3D connectivity of pancreatic precancers (Fig. 5b). This measurement
yielded an average 12.3-fold overcountingin 2D versus 3D withaPvalue
of <10 using a Wilcoxon rank sum test (Fig. 5b).

While assessing 3D connectivity of the precursors, we identified
three distinct 3D structural phenotypes that we term tubular, lobular
and dilated (Fig. 5c and Supplementary Video 8). Tubular precancers
appeared as ductal, branching structures, dilated precancers appeared
as large ballooning of the duct connected to ducts of much smaller
diameters and lobular precancers appeared as ‘bunches of grapes’-like
connected locules forming a nodule. Review of the corresponding
H&E sections by pancreatic pathologists revealed that tubular PanINs
resided within pancreatic ducts, dilated PanINs resided within regions
of dilated pancreatic ducts and lobular PanINs resided at the terminal
junctions of ducts and acinar lobules, involving areas of acinar to ductal
metaplasia****, These phenotypes appear similar to pancreatic precan-
cer phenotypesidentified in mice®. Notably, 174 of the 265 identified
precursors (66%) contained both ductal and lobular morphology,
suggesting that extension of precursors between dilated/nondilated
pancreaticductsand acinar lobulesis arelatively common occurrence
(Extended Data Fig. 2d).

Therole of fiber alignment in pancreatic cancer invasion

Next, we investigated the morphology of invasive pancreatic cancer and
the tumor microenvironmentin eight large samples. We first focused
on the morphology of PDAC at the interface of invasive cancer and
adjacent normal tissue in sample P7 to identify patterns of invasion,
then enumerated the occurrence of these patterns in all tissues.
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Fig. 5| Microarchitectural patterns in pancreatic precancers. a, 43 Spatially
independent precancersin sample P2 were color coded and labeled on H&E
serial sections (upper panel) and a 3D reconstruction (lower panel). b, Number
of precancers per 2D section normalized by true 3D precancer number was
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calculated for samples containing precancers. ¢, 3D renderings and sample
histology illustrate three 3D phenotypes of PanIN observed. Tubular PanIN
preserve normal pancreatic ductal morphology, lobular PanIN resemble acinar
lobules and dilated PanIN reside in dilated ducts or lobules.

The mass consisted of a region of invasive carcinoma with three
prominent protrusions extending into surrounding normal pancre-
atic tissue (Fig. 6a). The first of these protrusions was invasive cancer
extending within the lumen of a vein for at least 4 mm. The second of
the protrusions was a >3 mm region of cancer extension along peri-
ductal stroma. The third protrusion was a >1 mm focus of perineural
invasion. We quantified the occurrence of these phenomenain all eight
samples, revealing that all samples (100%) contained regions of venous
invasion, seven (87%) contained perineural or neuralinvasion and five
(63%) contained invasionalong periductal, perivascular or perilobular
stroma. As CODA allows confirmation of 3D findings in high-resolution
H&Eimages, all foci of invasion were further validated viaexamination
ofthe histology (Extended Data Figs. 5-7).

Finally, we investigated 3D stromal properties at the pancreatic
vasculature, ducts and nerves. The alignment of collagen fibersin his-
tological samples of PDAC has been negatively correlated with progno-
sis**"*8_ However, in previous work using 2D samples of many patients,
collagenalignment in the ductal submucosaof normal pancreatic ducts
was reported to be low*’*’. We sought to repeat this measurement to
account for the angle of sectioning of the ducts.

Using our 3D renderings, we identified coordinates where the
ducts, blood vessels and nerves were cut at two extremes: perpendicu-
lar to the long axis of the structure (axially sectioned) and parallel to
the long axis of the structure (longitudinally sectioned) and isolated
these regions in H&E (Fig. 6b) to quantify collagen fiber alignment.
Our measurements of fiber alignment therefore account for the vary-
ing appearance of fibersrelative to their orientation to the sectioning
blade, allowing more accurate calculation than can be computed from
the random plane in a 2D histological section alone. As validation of
our fiber alignment measure, we compare our results to measures of
alignment of nerve fibers, which are known to be highly aligned in the
longitudinal direction®*,

Quantification® revealed significantly higher (using the Wil-
coxon rank sum test) collagen and nerve fiber alignment and nuclear

aspectratioinlongitudinally compared to axially sectioned structures
(Fig. 6¢). For nuclear aspect ratio, two independent researchers meas-
ure a2.1-,2.3- and 2.5-fold change between longitudinally and axially
sectioned images for periductal, perivascular and perineural colla-
gen, respectively (all Pvalues <10, researchers’ measurements are
compared in Extended Data Fig. 2e). For fiber alignment, we measure
a2.5-,2.4-,2.2-and 2.2-fold change between longitudinally and axially
sectioned images for periductal collagen, perivascular collagen, peri-
neural collagen and nerve fibers, respectively (all P<107). Contrary
to previous studies in 2D, these results indicate that collagen fibers
are highly aligned along the longitudinal direction of structures they
surround, including ducts, blood vessels and nerves. This is the same
direction of alignment as that of the observed cancer protrusions.
CODA enables quantification of metrics such as 3D fibrillar alignment
that are imprecise when measured fromisolated 2D sections.

Discussion

Here we show that CODA is a powerful complement to tissue clearing
and current serial sectioning techniques used to study 3D tissue micro-
architecture. Tissue clearing is the most popular current approach to
study 3D tissues, whereinintact samples are rendered semitransparent,
labeled and imaged using confocal or light-sheet microscopy and have
been used to conduct landmark scientific research'*'>**>¢, However,
long wait times of days to weeks between protocol steps, inconsistent
antibody penetration, limits onthe size of tissues that can be cleared,
the number of labels that can be used and longstanding complications
inquantification of the rendered 3D datasets represent key challenges
in clearing research®. Current serial sectioning methods bypass some
of the shortcomings of tissue clearing, albeit through introduction
of new challenges. The sectioning of tissue causes unpredictable
warping, requiring sophisticated registration techniques. Addition-
ally, many serial sectioning methods rely on expensive techniques
for labeling including IHC labeling, mass spectrometry and manual
annotation**?*, Although expensive, these 2D labels are easier to
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quantify than 3D data generated by clearing techniques, as they can
take advantage of a plethora of previously developed 2D computational
approaches® ™,

CODA is apowerful tool that has potential to integrate many cur-
rent tissue imaging techniques. It incorporates nonlinear image reg-
istration and deep learning techniques to create multilabeled tissue
volumes using H&E images, which is a relatively inexpensive histo-
logical technique. As our results demonstrate that CODA can derive
quality 3D reconstructions while skipping at least two intervening sec-
tions, future addition of IHC labeling, spatial ‘omics’ and gene expres-
sion imaging to the intervening sections will increase the number of
labels beyond what is currently achievable. The number of tissue and

molecular phenotypes that CODA canlabelin the pancreas, skin, liver
and lungs has the potential to unlock previously unknowninsights into
humantissue, health and disease.

Inour analysis of pancreatic tumor progression, we identify several
findings that are both new and only possible through 3D analysis. We
find that many anatomically separate precursor lesions can develop
in small or large ducts, and that individual precursors are commonly
present both in the pancreatic ducts and in foci of acinar to ductal
metaplasiaintheacinarlobules. We find invasive cancer cells extending
fromthe central tumor along existing structures such as veins, nerves
and peri- ductal, vascular, lobular and neural collagen. Together with
previous work, which found highly aligned collagen to be a negative
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prognostic factorin PDAC*®, our identification of cancer cells protrud-
ing along aligned fibers suggests that pancreatic cancer cells in situ
may invade more easily inregions of aligned collagen and nerve fibers.
Overall, thereis aneed in cancer research for 3D reconstruction tech-
niques thatenable the collection of large, quantifiable tissue datasets.
We demonstrate that CODA is one such powerful technique.

Online content

Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butionsand competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41592-022-01650-9.
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Methods

Tissue acquisition and scanning

Formalin-fixed, paraffin-embedded samples were sectioned every
4 pm. Every third tissue section was stained using H&E, with two sec-
tions every three held out. All tissues of sample PO were scanned for
validation that skipping two sections maintained registration and
reconstruction accuracy. Tissues were scanned at x20 usingaHamma-
matsu Nanozoomer. These studies were approved by the Institutional
Review Board of The Johns Hopkins Hospital.

Image registration
Cases contained series of tissue images scanned at x20, corresponding
toapproximately 0.5 um per pixel. Openslide software was used to save
reduced size copies of each image, corresponding to 8 pum per pixel
using nearest neighbor interpolation®. For each sample, the center
image was identified as the point of reference (image,) and global and
elastic registration was calculated for all other images in the sample.
We performed registration on greyscale, Gaussian-filtered, down-
sampled (80 pm per pixel resolution) versions of the high-resolution
histological sections. Global registration transformations for a pair
of preprocessed tissue images were found through iterative cal-
culation of registration angle and translation via maximization of
cross-correlation. Radon transforms of the images taken at discrete
angles between 0 and 359° were calculated. The maximum of the
cross-correlation of radon transforms of the images yielded registra-
tion angle, and the maximum of the cross-correlation of the rotated
tissue images yielded translation. Elastic registration was obtained by
calculatingrigid registration of cropped imagetiles at 1.5>-mmintervals
across the globally registered images at 8 pm per pixel resolution.
The resulting local, rigid registration fields were interpolated to the
size of the 8 pm per pixel resolution images. Finally, the registration
fields were smoothed using a Gaussian filter with standard deviation
of 2 pixels to produce anonlinear, elastic registration transformation.
Toaccount forimages with large regions of tissue splitting or fold-
ing, rigid global registration was performed to sequentially register
each image,.,, to the three next closest images to center, image ..,
image,,. .+, and image,, .3 Quality of each of the three global registra-
tions was assessed by comparing pixel-to-pixel correlation betweenthe
moving and each referenceimage. Theregistration with the best result
was kept and the other two discarded. Thus, if image,.(,.,; contained
large defects such astissue splitting or folding, thenimage,,.(,.,, would
be used as the reference for rigid registration to avoid compound
errors. Following global registration, elastic registration was used
between the moving image and chosen reference image to create a
nonlinear displacement map. This process was repeated for allimages
inasample such that allimages were elastically registered to the coor-
dinate system of the center image,,.

Assessment of image registration quality
Quality of image registration within the pancreas image datasets was
calculated using pixel-wise Spearman correlation. ‘True’ biological
pixel variation was calculated by correlating pixel intensity along the
xand y dimensions of single images (longitudinal correlation). It was
assumed that ‘perfect’ registration would result inasimilar zdirection
(downtheimage stack) correlation to the xy correlation, as the xy cor-
relation representsthe variationin pixelintensity inintact tissue. Axial
pixel correlation was calculated by correlating pixel intensity along the
zdimension of serialimages. Unregistered zcorrelation was compared
to postglobal registration correlation and postelastic registration cor-
relation to determine improvements to intensity continuity following
registration, and postelastic registration was compared to longitudinal
correlation to determine how closely our registration results could
emulate the true intensity variation between connected tissue.

For each correlation calculation (along the xy direction, unregis-
tered zdimension, global registered zdimension and elastic registered

zdimension) Spearman correlation was calculated for pixels at 4 pm
intervals starting at O pm apart. Correlation of pixels O pm apart is
correlation of each pixel to itself (equal to 1). Correlation of pixels
4 um corresponds to two pixels 4 pm apart in a single image (for the
xycalculation) or oneimage apart (for the zcalculation). This process
was repeated for distances up to 0.3 mm. Additionally, this process was
repeated for registration of all images in sample PO, and registration
of oneintwo, onein three, one in four and one in five images in PO to
prove that we maintain >95% correlation when sampling one in every
threeimages per tissue sample.

Comparison ofimage registration to existing techniques
CODA registration was applied to a publicly available serial histological
sample of 260 mouse prostate images, which was part of a previously
published paper comparing the performance of seven registration
techniques®. The image dataset contained manual annotation of two
cells perimage each from two different researchers. Performance met-
ricsincluded pairwise target registration error (TRE), average distance
between pairs of fiducial markers; ATRE, estimation of accumulated
distortion throughout the stack; r.m.s.e., pairwise comparison of pixel
intensities across the stack;Jaccard Index (/), pairwise area overlap of
consecutiveimages and dA, changein area of the tissue slides pre-and
postregistration. CODA performed similarly to competing techniques
inTRE,/and dA. CODA outperformed all other techniquesin ATRE and
r.m.s.e., suggesting CODA registration of this sample resulted in less
accumulated error than other techniques.

Raw performance metrics are listed in the source data file for
Fig.2a. Asthe magnitude of various performance metrics varied widely,
normalized performance metrics were calculated such that a single
graph could concisely express a wide variety of performance param-
eters. Mean performance metrics were normalized using the following
formulas such that they lay within the range of 0-1and such that higher
numbersindicate better performance:

TRENormaIized =1- TREmean/maX (TREmean)
ATRENormalized =1- A-I-REmean/rr“']X (ATREmean)
I.M.S.€.Normalized = 1 — I-M.S.€.mean/MaxX (r-.M.S.€.nean)

I.M.S.€.Normalized = 1 — IM.S.€.mean/MaX (I.M.S.€.mean)

jnormalized =jmean/min Umean) -1

dANormalized =1- |dAmean| /max (|dAmean|)

(where |x| denotes absolute value of x)

Identification of cells in histological samples

First, the hematoxylin channel of all H&E images was extracted using
color deconvolution. Openslide software was used to save reduced
size copies of all tissue images, corresponding to 2 um per pixel using
nearest neighbor interpolation®. For eachimage, the tissue region of
theimage wasidentified by finding regions of theimage with low green
channel intensity and high red-green-blue (RGB) standard deviation.
Next, RGB channels were converted to optical density. Using kmeans
clustering analysis, 100 clusters were identified to represent the opti-
cal densities of the image. The most common, blue-favored optical
density was chosen to represent the hematoxylin channel and the
most common, red-favored optical density was chosen to represent
the eosin channel. The background optical density was fixed as the
inverse of the average of the H&E optical densities. These three optical
densities were used to deconvolve the RGB image into hematoxylin,
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eosin and background channel images. Using methods described in
ref.*® the hematoxylin channel images were smoothed, and 2D inten-
sity minima of a designated size and distance from each other were
identified as nuclei.

Validation of cell detection algorithm and comparison to
existing techniques

Atotal of five 1.5 mm? regions were randomly extracted from the serial
images for validation. For each region, two researchers manually
annotated cells using an annotation function built in MATLAB 2021b.
Next, CODA cell detection and two popular cell detection algorithms
(Hovernet and QuPath)*~° were applied to the validation images to
automatically generate nuclear coordinates. Automatically gener-
ated coordinates were termed true positives if they were within 2 pm
of amanually generated coordinate (that was not already paired with
another automatically generated coordinate). Then 2 pm was selected
astheradius as this was determined to be the average radius of nuclei
in the images. Automatically generated coordinates were termed
false positives if they were not within 2 um of a manually generated
coordinate (that was not already paired with another automatically
generated coordinate). Finally, manually annotated coordinates with
no corresponding automatically generated coordinate were termed
false negatives. Fromthe true positives, false positives and false nega-
tives, precisionand recall were calculated tocompare each of the three
techniques to both sets of manual annotations.

Deep learning tissue multilabeling

A deep learning model was created for each case using manual tis-
sue annotations of that sample. Openslide software was used to save
reduced size copies of all tissue images, corresponding to 2 um per
pixel using nearest neighbor interpolation®. Seven tissue images
equally spaced withineach sample were extracted. For each of the seven
images, we manually annotated 50 examples of each identified tissue
subtype using Aperio ImageScope, creating .xml files of annotation
coordinates. Annotation coordinates were loaded into MATLAB 2021b
using publicly available software and were downsampled to correctly
overlay onthe 2 pm per pixel tissue images®".

Toreducethe heterogeneity of the H&E images, the H&E stains of
alltissueimages in each case were normalized. Using the H&E channel
images created for the cell counting analysis and the optical density
calculated for a reference H&E image from the same case, we recon-
structed RGB images of each tissue type to a chosen optical density.
Incorporation of image color normalization allowed us to avoid cata-
strophic failure of the semantic segmentation on unannotated images
with drastically different staining patterns.

Boundingboxes of allannotations were identified and each anno-
tated RGB image region was extracted and saved as a separate image
file. A matrix was used to keep track of which bounding box images
contained which annotation tissue types. Training images were built
through creation of a 9,000 x 9,000 x 3, zero-value RGB image tile.
Annotation bounding boxes containing the least represented deep
learning class wererandomly overlaid on the blank image tile until the
tile was >65% full of annotations and such that the number of pixels of
eachdeep learning class was approximately equal. Annotation bound-
ing boxes were randomly augmented viarotation, scaling by arandom
factor between 0.8-1.2 and hue augmentation by a factor of 0.8-1.2
in each RGB color channel. The 9,000 x 9,000 x 3 image tile was then
cutinto 324,500 x 500 x 3 images. In total, 20 such large images were
built, halfwith augmentation, to create 6,480 training images and five
additional images were built to create 1,620 validation images. Then
324 testing images were created using manual annotations from an
image not used for training or validation. This data generation pipeline
including the size of theimagetile, size of the training tiles and levels of
dataaugmentation was chosen as it gave highest performance during
pilot classification of sample PO.

Following dataset creation, a resnet50 network was adapted
for DeepLab v.3+ semantic segmentation® and trained to a valida-
tion patience of 5. If 90% tissue subtype precision and recall was not
obtained, additional manual annotations were added to the training
and testingimages and the process was repeated until desired accuracy
wasreached. We determined that>90% precision and recall resulted in
classified models that generally matched pathological annotation of
diseased tissues. Once asatisfactory deep learning model was trained,
alltissue images in the sample were semantically segmented to create
labeled tissue images with a pixel resolution of 2 um per pixel.

Addition of nervelabels to previously deep learning-labeled
tissueimages

The model design explained above was used to add nerves to the previ-
ouslylabeled pancreas histological images. First, 50 nerve annotations
perimage were collected on the images used for training of the previ-
ous deep learning model. Next, collagen, blood vessel and whitespace
annotations from all previous annotation datasets were pooled. All
other tissue components (islets, normal ductal epithelium, acini, pre-
cancers, cancer and lymph node) were pooled to a fifth class termed
‘other tissue’. Collagen and blood vessel annotations were kept as
separate classes as the eosin-rich staining on these structures closely
resembles the staining pattern on nerves. It was found through training
ofatri-class model (nerves, whitespace, other tissue only) that nerves
would often be confused with collagen and vascular structures. The five
annotation classes were pooledinto training tiles asis described above
and asemantic segmentation network with >90% precisionand recall
per class was trained across all 13 pancreas samples. It was calculated
that >97% of pixels replaced by the nerve label were previously classi-
fied (using the semantic segmentation network that did not contain
nerves as a label) as either collagen or vasculature. As this network
classified both nerves and ‘other tissue components’, the nerve clas-
sificationinthis trained model was assumed to supersede the previous
classification (thus all pixels labeled as nerves replaced the label for
that pixel generated by the previous, ten-class model).

3D reconstruction of samples

Multilabeled images created by the deep learning portion of the CODA
pipeline were consolidated into a3D matrix using the H&E image regis-
tration results. Similarly, cellular coordinates counted on the unregis-
tered histological sections were consolidated into a 3D cell matrix using
the H&E image registration results. 3D renderings of the labeled tissue
regions were visualized using the ‘patch’ and ‘isosurface’ commandsin
MATLAB2021b and using acolor scheme with aunique RGB triplet for
each tissue subtype. Dimensions of rendered tissues were calculated
inxyusing the pixel resolution of the original x20 scanned histological
sections (approximately 0.5 pm per pixel) and using the tissue section
spacing (4 um) in z. The resolution of the 3D renderings was 2 um per
pixelinxy, the resolution used for image semantic segmentation and
12 pymper pixelinz, as only one inthree tissue sections were used in the
analysis. Single cells were visualized within the 3D renderings using the
‘scatter3’ command in MATLAB 2021b. For all calculations performed
onthe3D labeled matrices of the tissues, the 3D matrix was subsampled
using nearest neighbor interpolation from original voxel dimensions
of 2 x 2 x12 um? per voxel to an isotropic 12 x 12 x 12 um? per voxel.

Calculation of tissue content, bulk cell density and local cell
density
Tissue composition was calculated by counting the total number of
voxelsintheisotropic 3D matrix corresponding to each tissue subtype
and dividing those numbers by the total number of voxels in the tissue
region of the 3D matrix. These tissue compositions were formatted into
amatrixin MATLAB 2021b and visualized as a heatmap.

Cell density of each tissue subtype was calculated by combin-
ing the tissue subtype data in the multilabeled 3D matrix with cell

Nature Methods



Article

https://doi.org/10.1038/s41592-022-01650-9

coordinate datain the cell 3D matrix. Cells at each voxel in the cell 3D
matrix corresponded to the tissue subtype label in the multilabeled
3D matrix (forexample, acellis labeled an epithelial cell if the nuclear
coordinate was identified in a region labeled as epithelium by the
deeplearning pipeline). Measurements of nuclear diameter were used
to estimate true 3D cell counts from the 2D cell coordinates. Using
AperiolmageScope, 100 nuclei of each tissue subtype were measured
for each case. The estimated 3D cell count (C;p) of cells counted on
serial sections analyzed every three sections was calculated using
the formula:

3T
Gp=), Cimage ————
3D anages Z:subtypes image T Dsubtype

where G, is the cell count foragiven tissue image, Tis the thickness
of the histological section and Dy, is the measured diameter of
anucleus for a tissue subtype. For each tissue subtype, bulk 3D cell
density was calculated by dividing the 3D extrapolated cell count of
a particular subtype divided by the total volume of the tissue. Local
3D cell density was calculated by dividing the 3D extrapolated cell
countofa particular subtype divided by the volume of that particular
tissue subtype.

Determination of spatially distinct precursor lesions

The 3D multilabeled matrices were used to determine tissue con-
nectivity. Following classification, all objects labeled as pancreatic
precancers lesions were visually verified to be precancers through
creation of bounding box serial sections. Independent precursors
were identified in the 3D multilabeled matrix using the ‘bwlabeln’
command in MATLAB 2021b. Bwlabeln identifies and labels spatially
distinct objects in matrices. We calculated connectivity on both the
precancers alone and the precancers plus the normal ductal epithe-
lium. Distinct precancers and cancersidentified using bwlabeln could
then be quantitatively analyzed or 3D rendered independently from
other precancers.

Independent precursor coordinates were used to automatically
annotate connected lesions on H&E images of 2 um per pixel resolu-
tion. First, each precursor was assigned a distinct RGB color. Next,
for each registered H&E image in the serial sections, the number of
distinct precursors appearing on that section was determined. Foreach
independent precursor onthesection, voxels defining the precursorin
the volume matrix were located. The pixels were dilated and only the
outline kept, then rescaled to match the 2 um per pixel H&E images
such that the annotated precursor mask was reformatted to appear as
athick outline overlayed on the precursor region of the H&E section.
The outline was overlayed on H&E and the pixels in the H&E image cor-
responding to the outline were recolored to match the color defining
thatindependent precancer. This was repeated for all precancersinthe
sample. The same coloring scheme for each precancer was thenusedin
a3Dreconstruction of the sample, allowing users to match precancer
histology to the correct 3D reconstructed precancer.

To create the graph in Fig. 5b, the number of precursors present
in each sample was calculated. First, we determined the number of
lesions present on each 2D section (not considering 3D connectivity).
Next, we determined the true number of precursors present on each
sectionwhen considering 3D connectivity. For each sectionin which at
least one precursor was present, the number of (distinct in 2D space)
precursor-classified objects was normalized by the number of (distinct
in3D space) precursor-classified objects that were present on the sec-
tion. The average and standard deviation of this ratio for each sample
was calculated and plotted.

Finally, metrics were performed on eachindependent precancer
to determine 3D morphology. Using the 3D reconstructions and serial
bounding boxes of each precancer, we determined 3D phenotype by
assessing 3D presentation as well as the location of the precancer in

the pancreatic ducts or pancreatic acinar lobules. Next, cell count was
determined by counting the number of cells located in the same voxel
coordinates as each defined precursor lesions and corrected using
the 3D cell conversion equation listed above. Precursor volume was
calculated by summing the number of voxels desfining each precancer
and converting from voxel to mm? units (1 voxel =12 x12x12 x107°
mm?®). Precursor cell density was calculated by dividing cell number
per precursor by precursor volume. Precursor primary axis length
was determined using the function ‘regionprops3’in MATLAB 2021b.

Calculation of collagen and nerve fiber alignment and nuclear
aspectratio

Using the 3D renderings, we identified three coordinates of axial sec-
tioning and three coordinates of longitudinal sectioning around pan-
creatic ductal epithelium, blood vessels, and nerves for seven samples
containing large regions of normal pancreatic parenchyma (for 42
total images of ducts, nerves and blood vessels each). We located
the 2D histological sections using 3D coordinates of the identified
regions and cropped theregion ofinterest fromthe corresponding x20
H&E images. We applied the color deconvolution method described
above to the cropped x20 H&E image to separate the H&E channels.
We calculated fiber alignment within selected 2,500 pm? windows in
the eosin channel images using a previously developed method**. By
measuring fiber alignment within collagen or nerve regionsinimages
of axial or longitudinal sectioning, we can compare the degree of col-
lagen and nerve fiber alignment in axially and longitudinally sectioned
regions of the ducts, blood vessels and nerves. An alignment index of
one represents completely aligned matrix of fibers and an alignment
index of zero represents anisotropic matrix of fibers. We measured the
alignmentindex at two locations of each cropped image.

We next manually measured nuclear aspect ratio of cells within
the peri- ductal/vascular/neural space using ascript writtenin MATLAB
v.2021b. To confirm the accuracy of the measurements, two scientists
measured fiverandomly selected cellsineachimage, for atotal of 1,260
cells measured. The nuclear aspect ratio measurements between the
two researchers were compared in Extended Data Fig. 2e and the dif-
ferences were shown to be statistically insignificant. Violin plots were
constructed from data using code available in the provided reference®.

Construction of z projections

The 3D labeled matrices of each sample were used to construct z pro-
jections of each tissue subtype. For each subtype, the pixels of the 3D
matrix corresponding to that subtype were summed inthe zdimension,
creating a projection of the volume ona plane perpendicular to the xy
axes. The projections were normalized by their maximum and visual-
ized using the imagesc command in MATLAB 2021b using the same
color scheme created for visualization of the 3D tissues.

Analysis of normal and atrophic pancreatic lobules

Forsample P7,the3D model revealed alarge region of acinar atrophy.
Using an annotation pipeline written in MATLAB 2021b, registered,
serial H&E images were rapidly displayed and manually annotated. In
eachimage, the boundaries of the atrophiclobule and anearby normal
lobule were segmented. These regions were 3D reconstructed and tis-
sue compositions were calculated using the methods described above.

Confusion matrices

Quality of the deep learning models was visualized using construc-
tion of confusion matrices. For each datapoint in the testing data-
set, the ‘true’ label (as manually annotated in H&E) was determined
and matched with the ‘determined’ label (as classified by the deep
learning model). A table was constructed to display the number of
datapoints corresponding to each true label and their corresponding
determined labels, as well as per-class precisionand recall and overall
modelaccuracy.
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Statistics and reproducibility

No statistical method was used to predetermine sample size. No data
were excluded from the analyses. All statistical analyses were per-
formed using the Wilcoxon rank sumtest. All results may be duplicated
from the available source datafiles or the 3D datasets.

Ethics statement
This retrospective study was approved by the Johns Hopkins School of
Medicine institutional review board.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Due to the extremely large size of the digital files described, data are
available upon request from the corresponding author. Source data
are provided with this paper.

Code availability
Code is available on the following GitHub page: https://github.com/
ashleylk/CODA.
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Extended Data Fig. 2| Overview of semantic segmentation workflow and
training data design. (a) For each case, aminimum of seven images were
extracted from for manual annotation. For each extracted image, minimum
50 examples of each tissue type were annotated, and the annotations cropped
from the larger image. (b) To construct training and validation sets, cropped
annotations were overlayed on a large image until the image was >65% full and
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Following model training, whole slide images cut into
tiles for semantic segmentation

such that the number of annotations of each type was roughly equal. (¢) These
large tiles were cutinto smaller tiles for training and validation. Additional tiles
were created for the testing set where the annotation was not cropped from the
image. Testing accuracy was assessed as the percentage of the annotated area
ofthetile classified correctly. Following model training, the serialimages were
cropped intotiles and semantically segmented.
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Extended DataFig. 3| Additional methodological supplement. (a) Sample
predicted vs. true outcomes for deep learning models for sample P1 (left) and
P8 (right). (b) Workflow for creation of multi-patient semantic segmentation of
nerves. Nerve annotations collected from thirteen pancreas samples. Original
tissue annotations reformatted to: 1. smooth muscle, 2. collagen, 3. other tissue
(islets, normal ducts, acini, precursor, lymph, PDAC), 4. white (whitespace, fat).
Nerve annotations combined with original annotations to create a dataset for

nerve recognition in H&E images. (c) Sample P7 average and per class testing
accuracy as a function of percent of training annotations used. (d) Incidence of
pancreatic phenotypesin eight samples. (e) Comparison of nuclear aspect ratio
measurements performed by person1and person 2 (N =150 nuclei per person
per condition) show nonsignificant differences between measurements using
the Wilcoxon rank sum test.
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CODA outputs and outputs from two existing cell counting methods”*. (b) Cell
diameters of each tissue subtype were measured using Aperio ImageScope. 2D
cell counts were extrapolated to 3D using the formula listed. It was assumed that
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cells could be detected by the algorithmif any part of the nucleus touched the
tissue section. Therefore, effective tissue section thickness equals true tissue
section thickness plus the diameter of the cell. 3D cell counts were estimated by
multiplying 2D cell counts by the true thickness of the tissue section, multiplied
by three because two sections were skipped during scanning, divided by the
effective thickness of the section.
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Extended DataFig. 5| Sample histology of venous invasions identified in samples. Thirteen distinct venous invasions were identified in eight of the thirteen
samples. For each, an H&E image was reviewed to confirm the venous invasion.
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Extended Data Fig. 6 | Sample histology of perineural / neural invasions identified in samples. Ten distinct neural invasions were identified in seven of the thirteen
samples, many containing regions of perineural invasion. For each, an H&E image was reviewed to confirm the structure.
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Extended Data Fig. 7| Sample histology of invasion along regions of aligned collagen. Nine distinct regions of invasion along aligned collagen were identified in
five of the thirteen samples, including invasion along periductal collagen, invasion along perivascular collagen, and invasion along interlobular collagen. For each,
an H&E image was reviewed to confirm the structure.
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