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SUMMARY

Recent advances in spatial transcriptomics (STs) enable gene expression measurements from a tissue sam-
ple while retaining its spatial context. This technology enables unprecedented in situ resolution of the regu-
latory pathways that underlie the heterogeneity in the tumor as well as the tumor microenvironment (TME).
The direct characterization of cellular co-localization with spatial technologies facilities quantification of
the molecular changes resulting from direct cell-cell interaction, as it occurs in tumor-immune interactions.
We present SpaceMarkers, a bioinformatics algorithm to infer molecular changes from cell-cell interactions
from latent space analysis of ST data. We apply this approach to infer the molecular changes from tumor-im-
mune interactions in Visium spatial transcriptomics data of metastasis, invasive and precursor lesions, and
immunotherapy treatment. Further transfer learning in matched scRNA-seq data enabled further quantifica-
tion of the specific cell types in which SpaceMarkers are enriched. Altogether, SpaceMarkers can identify the
location and context-specific molecular interactions within the TME from ST data.

INTRODUCTION Advances in single-cell technologies have led to the develop-
ment of spatially resolved transcriptomics (STs) that captures the

The tumor microenvironment (TME) is the tissue region created  transcriptome in situ'® and thus allows us to study the spatial

and controlled by a tumor in its surroundings and plays a key
role in tumorigenesis and therapeutic response in cancer.'™
The TME contains tumor cells, stroma, blood vessels, and im-
mune cells as well as cells from the resident tissue.* A thorough
understanding of the molecular profile of individual cells and the
impact of intercellular interactions in the TME is crucial for distin-
guishing the determinants of tumor progression®’ and precision
medicine strategies.®®""

Gheck for
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relationship between the various cell populations within the
TME and their relationship with the tumor cells. For example,
the 10X Visium spatial transcriptomic technology allows us to
resolve tissue heterogeneity at a near single-cell resolution
(from one to tens of cells per spot). The technique has been
applied to characterize the cellular and molecular compositions
of tumors.'®~'° Robust analysis pipelines for cell-based analysis
and cellular deconvolution have been proposed to model the
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cellular composition of spatial-transcriptomics data'®?° and

cellular phenotypes within each spot.?’ Although spot deconvo-
lution methods can infer linear combinations of molecular
markers that are reflective of cellular co-localization, new
computational methods are needed to characterize the molecu-
lar changes resulting from cell-cell interactions at a genome-
wide scale.

Many analysis pipelines for Visium ST rely on the latent space
methods for cellular deconvolution to overcome the mixture of
cells at each spot. In this paper, we present the SpaceMarkers
algorithm that leverages spatially interacting latent features to
infer molecular changes resulting from interactions between
cell types or biological processes represented by the features.
SpaceMarkers uses a kernel-based smoothing approach to
model the influence of a highly expressed feature in a spot ex-
tending to its neighboring spots as well. Using latent features in-
ferred from CoGAPS,*”> we demonstrate the broad utility of
SpaceMarkers to infer molecular changes resulting from cell-
cell interactions in Visium samples from invasion to lymph
node, pancreatic premalignant lesions, breast primary tumor,
and immunotherapy-treated cancer. We selected CoGAPS, a
Bayesian nonnegative matrix factorization approach, based on
its robustness for single-cell RNA-seq data.”*** We also show
the compatibility of SpaceMarkers with other latent space
methods, using STdeconvolve'” as an example. Further exten-
sion of this approach to integrate Visium data with single-cell
data through transfer learning also enables the identification of
the precise cell subtypes in which the molecular changes from
cell-cell interactions are introduced. Altogether, our extension
to the latent space analysis enables us to simultaneously infer
cellular architecture and model molecular changes resulting
from spatially interacting biological processes.

RESULTS

Interactions between overlapping latent features
delineate intercellular interactions in ST data

Here, we present SpaceMarkers, a bioinformatics algorithm for
identifying genes associated with cell-cell interactions in ST
data. SpaceMarkers is an extension of the latent space analysis
that leverages spatially overlapping latent features associated
with distinct cellular signatures to infer the genes associated
with their interaction (Figure 1). Fundamentally, this inference re-
lies on the estimation of spatially resolved latent features repre-
sentative of cellular signatures in the ST data. That is, the latent
feature information is characterized by continuous weights cor-
responding to each spatial coordinate in the ST data. We denote
these continuous weights as the patterns in the ST data. The in-
puts to the SpaceMarkers algorithm are the ST data matrix and
spatially resolved patterns learned through the latent space anal-
ysis, and the output is a list of genes associated with the interac-
tion between each pair of spatially overlapping patterns. The first
stage of the algorithm involves the identification of each pat-
tern’s region of influence and subsequently the region of pattern
interaction (Figure 1A; see also STAR Methods). If a pattern has a
nonzero value at a point, we hypothesize that its influence ex-
tends to its neighboring region but rapidly decreases with
increasing distance. We model this by spatially smoothing the
patterns using a Gaussian kernel-based approach (see STAR

286 Cell Systems 74, 285-301, April 19, 2023

Cell Systems

Methods). Subsequently, we identify the outlier values of
smoothed patterns by testing them against a null distribution ob-
tained by the identical smoothing of spatially permuted pattern
values. We denote the region corresponding to these outlier
values as the region of influence of the pattern. Furthermore,
two patterns are deemed to be interacting in the region with
overlapping influence from both patterns. We hypothesize that
genes associated with the spatially overlapping influence from
two patterns represent changes in the molecular pathways due
to the interaction between the biological features of the associ-
ated cells. Therefore, we devise the second stage of the
SpaceMarkers algorithm to rank genes exhibiting higher activity
levels in the interaction region relative to regions with exclusive
influence from each pattern (Figure 1B; see also STAR Methods).
To this end, we perform a non-parametric statistical test followed
by the post-hoc analysis to identify these genes that constitute
the SpaceMarkers output.

In the examples demonstrated here, the spatial data are ob-
tained using the spot-based 10x Visium spatial transcriptomics
technology'? with 1-10 cells per spot. SpaceMarkers is readily
applicable to spot-based ST data with regions of influence and
interaction defined as sets of spots in which one or two patterns,
respectively, have influence as identified by the Gaussian kernel-
based approach. We use CoGAPS Bayesian nonnegative matrix
factorization®®® for identifying the latent features associated
with cellular signatures. When two patterns have overlapping in-
fluences in the same region of the tissue, we assume an interac-
tion between these patterns in this interaction region. We provide
a differential expression (DE) mode for SpaceMarkers to quantify
genes with enhanced expressions in a region with overlapping
influence from two patterns when compared with regions with
exclusive influence from individual patterns. This DE mode
allows for broad applicability across latent space methods,
which we demonstrate by applications using CoGAPS and
STDeconvolve.'” Furthermore, we extend this approach to pro-
vide a “residual” mode—which identifies genes that have signif-
icantly higher residual error between the original ST data and its
estimated fit from the CoGAPS model in the region with overlap-
ping influence from two patterns when compared with the re-
gions with exclusive influence from each pattern. We hypothe-
size that the residual mode detects the nonlinear effects of
intercellular interaction more precisely by accounting for the un-
derlying linear latent features to mitigate confounding effects
from variations in the cell population density and cell types
with common markers. Thus, the SpaceMarkers algorithm infers
both simple molecular changes in the “DE” mode and more pre-
cise nonlinear molecular changes in the residual mode in regions
with overlapping influence from patterns associated with
different cell signatures. We denote such patterns with concur-
rent influence in a region as “spatially interacting” patterns.
The reliance on latent space patterns from CoGAPS enables
the further ability to integrate SpaceMarkers learned from ST
data in corresponding single-cell data using transfer learning
from projectR?*?® to refine the specific cells in which these mo-
lecular changes occur. Although the examples in this paper use
latent space patterns in ST data from CoGAPS or STdeconvolve
to define cellular signatures, it is generally applicable to the
output of any of a number of latent feature factorization ap-
proaches available in the literature.
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Figure 1. SpaceMarkers identifies genes associated with cell-cell interactions using spatially overlapping patterns

(A) Identifying the interaction region: the input to the SpaceMarkers algorithm are spatially resolved latent features resulting from latent space analyses (e.g.,
CoGAPS patterns). The images on the left show the intensity levels of two spatially resolved CoOGAPS patterns. For each pattern, the SpaceMarkers algorithm first
identifies regions of influence (red and blue spots, respectively) using a Gaussian-kernel based outlier detection method. The patterns are deemed to be in-
teracting in the region with overlapping influence (yellow spots) from both patterns. It also identifies regions with mutually exclusive influence from each pattern
(red and blue spots).

(B) Identifying SpaceMarkers genes: the second stage of the SpaceMarkers algorithm performs a non-parametric Kruskal-Wallis statistical test with post-hoc
analysis on the gene expression data in the three regions (pattern 1 only, pattern 2 only, and interaction region) to identify molecular changes due to cell-cell
interaction. The output is a list of genes associated with the pattern interaction (see STAR Methods).
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Gene Set Name |§Genes in Gene Set [# Genes in Overlap
HALLMARK MYC TARGETS V1 200 39
HALLMARK ALLOGRAFT REJECTION 200 29
HALLMARK OXIDATIVE PHOSPHORYLATION 200 24
HALLMARK INTERFERON GAMMA RESPONSE 200 21
HALLMARK INTERFERON ALPHA RESPONSE 97 13
HALLMARK APICAL JUNCTION 200 16
HALLMARK MTORC1 SIGNALING 200 16
HALLMARK P53 PATHWAY 200 16
HALLMARK PI3K AKT MTOR SIGNALING 105 12
HALLMARK G2M CHECKPOINT 200 15
HALLMARK COMPLEMENT 200 14
HALLMARK APOPTOSIS 161 12
HALLMARK EPITHELIAL MESENCHYMAL TRANSITION 200 12
HALLMARK COAGULATION 138 10
HALLMARK UNFOLDED PROTEIN RESPONSE 113 9
HALLMARK INFLAMMATORY RESPONSE 200 11
HALLMARK GLYCOLYSIS 200 10
HALLMARK HYPOXIA 200 10
HALLMARK UV RESPONSE UP 158 8
HALLMARK MITOTIC SPINDLE 199 9
HALLMARK E2F TARGETS 200 9
HALLMARK MYOGENESIS 200 9
HALLMARK TNFA SIGNALING VIA NFKB 200 9
HALLMARK DNA REPAIR 150 7
HALLMARK IL2 STATS SIGNALING 199 8
HALLMARK ADIPOGENESIS 200 8
HALLMARK MYC TARGETS V2 58 4

p-value|FDR g-value
5.34E-35 1.41E-32
1.70E-22|  1.80E-20|
6.73E-17|  3.55E-15
8.69E-14 2.70E-12
2.21E-10,  4.87E-09
4.40E-09| 8.01E-08
4.40E-09| 8.01E-08
4.40E-09| 8.01E-08
7.03E-09| 1.16E-07|
3.18E-08|  4.94E-07|
2.14E-07|  3.14E-06|
8.08E-07|  1.09E-05|
7.72E-06|  9.26E-05]
8.55E-06 1.00E-04
1.13E-05|  1.29E-04]
4.09E-05|  4.32E-04
1.98E-04| 1.94E-03
1.98E-04| 1.94E-03
7.82E-04 6.07E-03
8.41E-04|  6.30E-03]
8.71E-04|  6.30E-03]
8.71E-04|  6.30E-03]
8.71E-04|  6.30E-03]
2.61E-03 1.66E-02|
3.34E-03|  2.00E-02|
3.44E-03|  2.04E-02
5.62E-03 2.97E-02
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SpaceMarkers identifies molecular changes from
tumor-immune interactions associated with metastatic
pancreatic cancer cells invading the lymph node

In the first example, we applied SpaceMarkers on Visium ST
data from pancreatic cancer metastasis to the lymph node in
a patient who received neoadjuvant GVAX vaccination (see Fig-
ure 2). More specifically, this sample is characterized by the
presence of metastatic pancreatic ductal adenocarcinoma
(PDAC), immune cell aggregates, and germinal centers of B
cell maturation (Figure 2A). The analysis of H&E imaging from
the lymph node region used to generate the ST data
identifies a region of the tissue in which the metastatic PDAC
intersects the immune cells surrounding the germinal center.
On factorizing these data using CoGAPS, we obtain ten latent
patterns based only on the expression data (Figure S1; STAR
Methods). By matching pattern activity levels learned from
the data with the independent histological annotations, we
observe that CoGAPS can distinguish metastatic PDAC in
pattern 6 from immune cells in the surrounding lymph node tis-
sue in pattern 9 (Figure 2B).

We further analyzed the spatial activity of the metastatic PDAC
(pattern 6) and immune (pattern 9) patterns to identify the regions
of overlapping influence to associate with metastasis-immune
interaction. We represent the spatial variation in the activity
levels of pattern 6 and pattern 9 in relation to all the other patterns
in each spot (Figure 2B). This proportional analysis of patterns
enables us to observe a spatial overlap between the regions
where pattern 6 and pattern 9 are active. However, we hypothe-
size that a pattern has an influence in a spot even with zero
pattern activity but high-pattern activity levels in the neighboring
spots. SpaceMarkers first identifies the region with spatially
overlapping influence from these two patterns as their interac-
tion region. Next, the SpaceMarkers algorithm identifies the
gene expression changes that occur from metastasis-immune
interaction in this interaction region (Data S1; Table S2). Due to
the limited number of spots where the two patterns have overlap-
ping influences, we define SpaceMarkers based on DEs. This
analysis identifies 1,442 genes that exhibit a higher average
expression in the interaction region with an overlapping influence
from the two patterns compared with spots where only metasta-
tic PDAC in pattern 6 orimmune cells in pattern 9 have exclusive
influence (see STAR Methods for details of the statistical test,
Table S2 for the complete gene list with the associated statis-
tics). The SpaceMarkers optParams values are tabulated in
Table S1.

Figure S1 shows the expression heatmap of the Space
Markers genes in spots belonging to regions with exclusive in-
fluence from the metastatic PDAC pattern 6, exclusive

¢ CellP’ress

influence from the immune cell pattern 9, and overlapping
influence from both patterns in metastasis-immune interac-
tions. In all cases, the interactions are associated with
the changes in extracellular matrix genes, including notably
genes associated with cytoskeleton regulation (TMSB10,
TMSB4X, CFL1, and MARCKSL1), the myosin pathway
(MYL6, MYH9, and MYL12B), actin regulation (ACTB,
ACTN4, CAPG, LCP1, and SPTBN1), the matrix metallopepti-
dase family (MMP9 and MMP12), galectin genes (LGALST,
LGALS4, LGALS9, and LGALS3BP), collagen (COL1A2,
COL3A1, COL4A1, COL4A2, COL18A1, and COL6A2), and
cell adhesion (MSLN, ITGB4, ITGB6, and ADRMT1). The
SpaceMarkers include genes reflecting cell death in the
increased expression of ribosomal protein genes associated
with immune response through the expression of HLA family
genes, immunogloblulins, interleukins, cytokines, chemo-
kines, the interferon pathway IFITM2, and immune function.
This immune response is counterbalanced by the changes
to the pathways associated with enhanced invasion in cancer
cells, including JUNB, JUND, and VIM.

To further elucidate the molecular pathways associated
with the metastasis-immune interaction in the lymph node,
we performed gene set overrepresentation analyses (Fig-
ure 2D; Table S2) from the Hallmark, KEGG, and Biocarta
molecular pathways using the Molecular Signatures Database
(MSigDB).>"?° As seen in Figure 2D, Hallmark pathways
related to allograft rejection, interferon-gamma, and inter-
feron-alpha are all overrepresented in the pathway analysis
for the SpaceMarkers genes, and hence, in the region of over-
lap between the immune and metastatic PDAC patterns. This
confirms the activation of the immune response for tumor rejec-
tion at the interface between the metastatic PDAC and the
immune cells in the lymph node observed at the gene level.
Likewise, we observe overrepresentation in the epithelial to
mesenchymal signaling and pathways consistent with the inva-
sive process in the metastatic PDAC cells, further supported by
the enrichment of the apical junction consistent with the
changes to the extracellular matrix suggested by the gene-level
SpaceMarkers analysis.

The DE mode of SpaceMarkers is applicable when the avail-
able latent features provide only a partial reconstruction of the
original ST data matrix. However, the DE of a marker in the inter-
action region could occur because of cell-cell interactions or
confounders such as variable cell populations in each spot and
different co-localized cell types having common markers. In
the examples to follow, we mitigate these confounding effects
by using the residual error between the raw expression and its
reconstruction from the CoGAPS patterns, which capture the

Figure 2. SpaceMarkers identifies molecular changes associated with immune-metastatic pancreatic cancer interaction in the lymph node
(A) H&E staining of a peritumoral pancreatic lymph node with metastasis from PDAC (arrow) and annotated germinal center and immune cells (dark lines).

(B) Visualization of the relative activity in the COGAPS patterns associated with metastatic PDAC (pattern 6) and immune cells in the lymph node (pattern 9). Each
spot is represented as a pie chart with fractional gene expression at the location aggregated over the all genes for pattern 6 (orange), pattern 9 (blue), and all other

patterns put together (white).

(C) Boxplots of the expression of selected genes showing higher expression levels in the interaction region of pattern 6 and pattern 9 compared with the regions

with exclusive influence from pattern 6 and pattern 9, respectively.

(D) Table showing Hallmark gene set pathways significantly overrepresented in the region of interaction between pattern 6 and pattern 9, with the size of overlap

and FDR value (see Table S2 for KEGG and Biocarta pathways).
See also Figure S1.
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Figure 3. Residual mode can help to mitigate the confounding effects of other cell types present in the interaction region
(A) Tissue regions annotated by CODA based on morphological features show clusters of acinar cells in close proximity to the neoplasia duct.
(B) CoGAPS analysis reveals two patterns representing the stromal region (pattern 6, orange), the neoplasia region (pattern 9, blue), and all other patterns (white).

(legend continued on next page)
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effect of both variations in cell population density as well as var-
iations in individual marker expression.

Confounding factors from unrelated cell populations

can be mitigated by using SpaceMarkers in

residuals mode

Using SpaceMarkers in the DE mode identifies genes that are
enriched relative to two patterns, but the output is susceptible
to confounding factors from cell types independent of the two
patterns of interest. For example, if the interaction region be-
tween two patterns contains an independent cell type that is
not significantly present in the regions of exclusive influence of
either pattern, we hypothesize that the cell-type-specific genes
for the additional cell type will appear as space markers. To
test this hypothesis, we applied SpaceMarkers to a sample of
pancreatic intraepithelial neoplasia (PanIN),*° a premalignant
lesion associated with PDAC (Figure 3). As described in our pre-
vious study of this sample, the H&E imaging provided with the
Visium formalin-fixed paraffin-embedded (FFPE) technology
used to profile this sample enabled us to determine cell types
within the slide at a single-cell resolution using CODA,*' a
deep-learning classifier that annotates tissue regions based on
their morphological features (Figure 3A). This ground truth of
cellular features also enables us to benchmark the latent space
estimates of cellular features from CoGAPS. In this sample, we
learned 10 transcriptional patterns from the PanIN using
CoGAPS. Pattern 9 captures the PanIN on the tissue, and pattern
6 captures a majority of stromal cells (Figure 3B). The PanIN is
surrounded by two large acini, which express high quantities of
pancreatic enzymes that are not expressed elsewhere on the
slide (Figure 3D). The interaction region between patterns 6
and 9 captures much of these acini. The SpaceMarkers analyses
of these patterns in the DE mode results in several of the well-
characterized pancreatic enzymes (Data S1) produced exclu-
sively by acinar cells.®” Pathway analysis reveals that pancreatic
acinar cell gene set is the most overrepresented gene set (Fig-
ure 3E; Table S3).

In the residuals mode, SpaceMarkers accounts for the gene
signatures captured by CoGAPS patterns. Because pattern 5
represents the acinar cells in our dataset (Figure S2), we hypoth-
esize that the residuals mode attenuates the confounding factor
due to the acinar cells (Data S1). Unlike the DE mode, the top
pathway for residuals mode is no longer a pancreatic acinar
cell pathway (Figure 3F; Table S3). Residuals mode boosts the
signal from pathways that are highly overrepresented in the DE
mode, although maintaining the significance of the acinar gene
sets. Collectively, these results show that genes captured by
the DE mode can represent additional cell types that are not pre-
sentin either patterns of interest. In addition, if these cell type sig-
natures are unique and strong enough to be captured as an inde-
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pendent transcriptional pattern, the residuals mode is capable of
attenuating the signal from this additional cell type relative to
other expression changes present in the interaction region. The
SpaceMarkers optParams values are tabulated in Table S1.

SpaceMarkers identifies the markers of tumor-immune
interactions in invasive breast ductal carcinoma
through the residual space analysis
Although providing a means to detect molecular changes from
cellular interactions in limited interaction regions, using DE sta-
tistics for SpaceMarkers could confound nonlinear effects from
cell-cell interactions with expression changes resulting from
the increased density of co-localized cell types with shared
gene markers. In cases where the interaction region extends
across a greater number of spots, these confounding effects
can be mitigated by using the residual error between the raw
expression and its estimated fit from the CoGAPS model for
the SpaceMarkers. This estimated fit will capture the effect of
both variations in cell population density and variations in individ-
ual marker expression to refine the estimates of the nonlinear
effects from cell-cell interactions. We apply this approach to
identify the molecular pathways associated with tumor cells
and immune interactions in ST data from a breast cancer sample
that contains multiple ductal carcinoma in situ (DCIS) lesions, an
invasive carcinoma lesion, immune cells, and stroma (Figure 4A).
The visualization in Figure 4B shows widespread spatial regions
of interactions between immune and tumor cells at the boundaries
of both the invasive carcinoma and the DCIS lesions and some iso-
lated spots of immune activity in the interior of the invasive tumor.
However, the immune activity in these spots is not significantly
over the threshold to create substantial immune influence in the
neighborhood. Thus, the immune-invasive cancer interaction is
largely contained near the boundary of the tumor. Although the
pancreatic cancer sample in Figure 2 covered a smaller area
with fewer spots (< 300) having tumor and immune influences,
respectively, we identify much larger regions (> 1000 spots) of in-
fluence from the immune, invasive carcinoma, and DCIS cells (Fig-
ure 4B). This larger number of spots enables us to estimate
SpaceMarkers from CoGAPS residuals to distinguish the molecu-
lar changes ininvasive carcinoma from the DCIS lesions. Similar to
our analysis of the metastatic pancreatic cancer data, we obtain
latent features of the ST data from this breast sample using
CoGAPS factorization. These latent features reveal histological
annotations of invasive carcinoma, DCIS lesions, immune, and
stromal regions estimated from the H&E stain (Figure 4A).
Computing SpaceMarkers based on the CoGAPS residuals
identifies 461 genes associated with interactions between the
immune and invasive carcinoma patterns and 413 markers of im-
mune and DCIS pattern interactions (Data S1), compared with up
to 3,736 immune-invasive carcinoma and 3,036 immune-DCIS

(C) Scatterpie chart showing the overlap between pattern 6 and pattern 9 also illustrated how the acinar cells coincide with the interaction region between the two

patterns.

(D) Two markers of acinar cells identified among the top SpaceMarkers of interaction between patterns 6 and 9 also show overexpression in their interaction

region.

(E) Overrepresented pathways associated with neoplasia-stromal interactions identified by SpaceMarkers analysis in DE mode demonstrate overrepresentation

of acinar cell markers.

(F) Other relevant pathways are overrpresented in comparison with acinar markers with the SpaceMarkers analysis in the residual mode.

See also Figure S2.
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genes identified from applying a similar analysis based on the DE
for the same FDR value (Data S1). This reduction in the number of
markers through the analysis of CoGAPS residuals relative to the
inference of SpaceMarkers through the DE analysis is consistent
with the isolation of specific nonlinear changes resulting from in-
teractions between the cellular processes measured in the
CoGAPS patterns using this mode. We note that 85 of the
SpaceMarkers were associated with immune cell interactions
in both the invasive carcinoma and DCIS regions. The
SpaceMarkers optParams values are tabulated in Table S1. To
further determine the molecular pathways activated through im-
mune and tumor cell interactions in both regions, we performed
gene set overrepresentation analyses from the Hallmark, KEGG,
and Biocarta molecular pathways using the MSigDB, with a se-
lection of the pathways presented in Figure 4C (see Table S4 for
the complete list of pathways). We find that although certain
pathways were enriched in both interactions (e.g., antigen pro-
cessing and presentation, p53 pathway, Tnf-alpha signaling,
mTorc1 signaling, epithelial to mesenchymal transition, Inter-
feron Gamma response, hypoxia, and estrogen response early/
late), others were enriched exclusively in immune-DCIS (DNA
repair) and immune-invasive (WNT signaling, MAPK signaling,
and TGF beta signaling), respectively. Note that a pathway en-
riched in both immune-DCIS and immune-invasive carcinoma in-
teractions may have distinct gene subsets associated with each
interaction. For example, it is readily evident that the hallmark
interferon-gamma response gene set has greater overlap with
the SpaceMarkers of the Immune-DCIS interaction compared
with the immune-invasive interaction.

Using SpaceMarkers with high-resolution CoGAPS
reveals greater heterogeneity in intercellular
interactions within the TME

In all cases presented, the SpaceMarkers inferred fundamentally
depend on the resolution of the cellular processes inferred in the
CoGAPS latent space analysis. Indeed, nonlinear interactions in
interacting regions at a low-resolution analysis may be further
refined by increasing the dimensionality of the factorization on
the ST data consistent with the recent advances to multi-resolu-
tion matrix factorization.>® We further performed a higher-resolu-
tion CoGAPS analysis of the breast cancer data to test whether
the interaction region between two patterns and the associated
SpaceMarkers genes is identified by increasing the dimension-
ality of the latent space analysis. In this higher-dimensional anal-
ysis, CoGAPS identifies 16 distinct patterns associated with the
diverse biological processes in the TME. The activity levels of a
selection of the patterns overlaid on an H&E stained slide of
the sample are shown in Figure 5A (also see Figure S3). Although
the higher number of patterns reveals greater heterogeneity
of the biological processes in the sample by further resolving
patterns identified in the low-resolution analysis, it does not iden-
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tify patterns specific to the interactions identified between the
lower dimension patterns.

Although we do not associate each Visium spot with solely one
pattern, studying the most dominant pattern in spots informs us
of the dominant biological process at that location in the tissue
as inferred by CoGAPS. Consequently, the same spots are asso-
ciated with broader biological processes at a lower resolution
and with more specific processes at a higher resolution. The al-
luvial plot in Figure 5B shows the relationship between the most
dominant low- and high-resolution patterns at each spot.

For example, the single DCIS-related pattern in Figure 4A re-
solves into multiple DCIS patterns, some of which are associated
with individual DCIS lesions. Even within the single invasive car-
cinoma lesion, the low-resolution invasive carcinoma pattern
resolves into two distinct patterns, one of which is isolated to
the interior of the invasive carcinoma and one that spans to the
tumor-immune boundary. Although the DCIS lesions and inva-
sive carcinoma have universally high ERBB2 and ESR1 expres-
sions, evaluating the genes associated with the distinct patterns
identifies heterogeneity in growth factor signaling pathways with
enhanced IGFBP3 expression in the DCIS.5 pattern, FGFR4
expression in the DCIS.6 pattern, and FGFR1 expression in the
Invasive.2 carcinoma pattern (Figure S3; Table S5) We also see
spots previously associated with the immune pattern or with
dispersed patterns at the low resolution now being associated
with a dominant pattern that can be associated with the stromal
region. To further compare the enhanced resolution intra-tumor
heterogeneity to tumor-immune interactions in the high-resolu-
tion factorization, Figure 5C shows relative pattern weights and
overlap between the immune pattern and the two invasive pat-
terns. It is clear that only one of the invasive patterns overlaps
with the immune pattern, thus contributing to the tumor-immune
interaction. Still, both of these interacting patterns contain sub-
stantial numbers of spots that are isolated to the immune and
invasive carcinoma regions, respectively, suggesting that
increasing the resolution of the factorization does not compen-
sate for the estimation of nonlinear effects through the interac-
tion statistic. Similarly, Figure 5D shows relative pattern weights
and overlap between the immune pattern and the three DCIS
patterns. It logically follows that the overlapping regions of the
distinct DCIS patterns are also distinct and hence correspond
to different molecular alterations from DCIS-immune interactions
that will affect the subsequent outgrowth of these distinct
lesions.

For these interactions involving the immune pattern, we iden-
tify SpaceMarkers genes associated with the inter-pattern inter-
actions as the genes having higher CoGAPS residuals in the
interaction region compared with regions with exclusive influ-
ence from the individual patterns (Data S1). The SpaceMarkers
optParams values are tabulated in Table S1. On the identification
of statistically significant (FDR <0.05) signaling pathways

Figure 4. Low-resolution CoGAPS and SpaceMarkers analysis identifies markers of interaction between broad patterns in breast cancer

tissue

(A) Images of the breast cancer tissue showing activity levels of the immune, DCIS, and invasive carcinoma patterns, respectively, overlaid on annotated H&E
slides showing regions with invasive carcinoma, DCIS lesions, immune cells, and stroma.
(B) Scatterpie visualization shows the relative activity levels and overlap between the invasive carcinoma (green), immune (orange), DCIS (blue), and all other

patterns combined (white).

(C) Overrepresented pathways associated with DCIS-immune interactions and cancer-immune interactions (FDR < 0.05).

Cell Systems 74, 285-301, April 19, 2023 293




- ¢? CellPress

Patterns

Sl

v,

T
oo o
o

0%

Invasive.2

e
.

Invasive.3

Cell Systems

Methods

Dols e Immune
. DCIS.4
Disp.1 DCIS.5
DCIS.6
Disp.2
Disp.4
Immune Invasive.2
Invasive.3
Invasive
Stroma
LowRes (5) HighRes (20)

Patterns

- Immune. Invasive.2 . Invasive.3 D Others - Immune .DCIS.4-DCIS.5 ’—‘DCIS.SD Others

E

KEGG MAPK SIGNALING PATHWAY
HALLMARK TNFA SIGNALING VIA NFKB
HALLMARK HYPOXIA

KEGG TYPE | DIABETES MELLITUS

KEGG SYSTEMIC LUPUS ERYTHEMATOSUS
KEGG P53 SIGNALING PATHWAY

KEGG GRAFT VERSUS HOST DISEASE

KEGG AUTOIMMUNE THYROID DISEASE
KEGG APOPTOSIS

KEGG ANTIGEN PROCESSING AND PRESENTATION
KEGG ALLOGRAFT REJECTION

HALLMARK TGF BETA SIGNALING

HALLMARK P53 PATHWAY

HALLMARK MTORC1 SIGNALING

HALLMARK INTERFERON GAMMA RESPONSE
HALLMARK ESTROGEN RESPONSE LATE
HALLMARK ESTROGEN RESPONSE EARLY
HALLMARK EPITHELIAL MESENCHYMAL TRANSITION
HALLMARK APOPTOSIS

HALLMARK ANDROGEN RESPONSE
HALLMARK ALLOGRAFT REJECTION
BIOCARTA P53HYPOXIA PATHWAY
BIOCARTA P53 PATHWAY

BIOCARTA MHC PATHWAY

Immune
DCIS4
Interaction

Immune
DCIS5
Interaction

Immune Immune

DCIS6 Invasive.3
Interaction Interaction
.
L]
L]
.
.
.
. Number of Genes
Y s
® 0
. ® s
.
-1010g10(FOR)
. L] 125
° 100
7
» 50
. . 2
.
. °
[ ]
.
.

Figure 5. High-resolution CoGAPS and SpaceMarkers analysis of breast cancer tissue reveal greater heterogeneity in intercellular inter-

actions

(A) Multiple patterns associated with invasive carcinoma and DCIS regions identified in higher-resolution CoGAPS analysis with 16 patterns highlights the
heterogeneity in the tumor and TME by further resolving the underlying pathology (see Figure S3 for remaining patterns).
(B) Alluvial plot showing the most dominant pattern associated with each spot using low-resolution and high-resolution CoGAPS, respectively. Spots dominated
by low-resolution DCIS pattern are dominated by three distinct DCIS-related patterns associated with different lesions in the high-resolution analysis. Invasive
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(see Table S4) pertaining to the interaction of the immune pattern
with invasive carcinoma and DCIS patterns in the high-dimen-
sional CoGAPS results and comparing them with those found
in 5 dimensions, we find pathways common to all interactions
and unique to specific pattern interactions. For example, we
find 59 signaling pathways enriched due to immune-invasive
carcinoma interaction in 5 dimensions and 16 dimensions. These
include but are not limited to the pathways related to epithelial-
mesenchymal transition, apoptosis, antigen processing and pre-
sentation, hypoxia, p53 signaling, interferon-alpha and -gamma
responses, and finally targets of the oncogene MYC. However,
the higher-resolution analysis also reveals unique pathways rele-
vant to specificimmune-invasive carcinoma pattern interactions.
We found pathways related to the cancer-immune interactions
including those related to IL-5 and IL-6 signaling, KRAS
signaling, Toll-like receptor signaling, and the CDC25 pathway
exclusively when the dominant invasive carcinoma pattern (Inva-
sive.3) interacts with the immune cells. Similarly, the distinct im-
mune-DCIS interactions reveal heterogeneity in the enriched
pathways that were not evident with a single DCIS pattern using
low-resolution CoGAPS. Among the immune interactions with
different DCIS lesions, MAPK signaling, Tnf alpha signaling,
and hypoxia pathways, known to be mechanisms of resistance
to endocrine and immunotherapies, are enriched exclusively in
the immune-DCIS.4 interaction; antigen processing, allograft
rejection, and autoimmunity-related pathways are enriched
exclusively in immune-DCIS.5; and EMT pathway and estrogen
response early/late are exclusively enriched in the immune
DCIS.6 interactions. These pathways are consistent with the het-
erogeneity of subsequent outgrowth of these DCIS lesions, with
successful activation of pathways associated with the immune
attack in DCIS.5 relative to the invasive processes observed in
both DCIS.4 and DCIS.6.

Finally, in addition to the SpaceMarkers analysis of interacting
CoGAPS patterns, we also performed cell deconvolution using
STdeconvolve'” to identify cell populations abundant in the inva-
sive carcinoma and DCIS lesions, respectively, and the immune
cells (Figure S4). We used SpaceMarkers to identify the markers
of interaction between immune cells and the cell populations
found to be spatially interacting with them (Data S1). The
SpaceMarkers optParams values are tabulated in Table S1.

Integrated ST and single-cell RNA-seq analysis
identifies cell type-specific molecular changes from
immunotherapy treatment in hepatocellular carcinoma
In the examples so far, the SpaceMarkers statistic revealed the
molecular changes associated with intercellular interactions.
Since SpaceMarkers relies on spot-based co-localization, it
limits the ability to identify the cell subtypes in which these mo-
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lecular changes were induced. Transfer learning allows us proj-
ect new data into learned latent spaces, subsequently associ-
ating samples from the new data with known biology. We first
factorize the ST data collected from a resected hepatocellular
carcinoma (HCC) tumor after the administration of a neoadjuvant
cabozantinib and nivolumab therapy to obtain 9 CoGAPS pat-
terns. Figure 6A shows the individual tumor and immune-associ-
ated patterns overlaid on an H&E-stained image of the HCC tu-
mor sample. As in the other examples, these tumor and
immune patterns are spatially overlapping (Figure 6B) and are
deemed to be interacting in regions where they have overlapping
influence. This analysis identifies two distinct tumor cell patterns,
one of which spans all malignant regions in the sample (pattern 2)
and the other isolated to a specific region (pattern 1) that has less
co-localization of the immune cells (pattern 8). The interaction
between the immune cells and each of the tumor patterns
learned through SpaceMarkers identifies enhanced expressions
of hepatocyte markers (KRT18, SERPIN family genes, APOC2,
CD24), immune markers (CD63, HLA genes), and cell death
markers (TNF pathway associated genes, ribosomal genes,
ANXA2) consistent with the killing of tumor cells through immune
cells in the interaction between patterns 2 and 8 (Data S1). By
contrast, SpaceMarkers genes of the interaction between pat-
terns 1 and 8 identify fibroblast markers (collagen coding genes,
MYL9, TAGLN) consistent with a lack of successful immune
attack and infiltration in this portion of the tumor. The
SpaceMarkers optParams values are tabulated in Table S1.
Although the SpaceMarkers analysis of ST data suggests the
molecular changes associated with cell-cell interactions, this
analysis alone does not pinpoint the precise cells in which these
molecular changes occur. By transfer learning®**° of these latent
features into matched single-cell RNA-seq data from the same
tumor, we can associate individual cells with specific patterns
corresponding to tumor and immune signatures (Figure 6C).
This association can both identify whether a SpaceMarkers
gene’s expression changes in tumor or immune cells and
whether we can also predict the precise subpopulations of tumor
and immune cells involved in intercellular interactions by
observing the gene expression changes of the relevant
SpaceMarkers in individual cells. From Figure 6D, we observe
that changes in the expressions of genes SERPINC1, APOC?2,
and ADH1B are induced in a subset of the cancer cells attributed
to pattern 2, whereas the expression changes in gene PFN7 and
CD14 are induced in a subset of the immune cells. A further sub-
set of both pattern 2 tumor cells and immune cells co-express
HSP90AAT and ribosomal genes. Based on these gene expres-
sion patterns of the respective SpaceMarkers, we hypothesize
that these individual cells are sourced from the tumor-immune
boundary. Note that although the analysis in this section

pattern in low resolution resolves into three invasive carcinoma related patterns associated with varying levels of immune infiltration in the high-resolution

analysis. For alluvial plot with all 16 patterns, see Figure S4A.

(C) Relative activity levels ofimmune patterns with two invasive patterns reveals that the immune (orange) and Invasive.2 (blue) patterns have no overlap, hence do
not interact. Immune interaction with Invasive Carcinoma (green) is captured through the overlap between Immune and Invasive.3 pattern. White represents all

other patterns combined.

(D) Relative activity levels of immune pattern (orange) with three DCIS patterns (blue, green, and yellow) associated with separate lesions reveals distinct
overlapping regions associated with each interaction. White represents all other patterns combined.

(E) SpaceMarkers of Immune-DCIS and Immune-Invasive interactions reveal functional heterogeneity of the enriched pathways mirroring the spatial hetero-
geneity revealed in (C) and (D) (FDR < 0.05) (see Table S4 for complete list of gene sets).

See Figure S4 for SpaceMarkers with STdeconvolve.

Cell Systems 74, 285-301, April 19, 2023 295




Methods

Cell Systems

Pattern_8

spatial1

Pattern_2

Pattern_1

spatial1

Zlened

spatial1

Zleneds

e Pattern_8

Patterns

m Pattern_2

-
~ad0 <L
Hoor KT
Biebeadd
LI I B
e i
ﬂllm.r - = "m == -
il == - _
o S s =
I == _ "
= R e B T
Wyci—vs = = =
L =
= — L= = -
- s = -
-— = = e
——r
— .
- T =o S
i
o R g
- — = = s
m= = ——
= =R
_— Wl
S — T e -
- m—_ o —

Pattern_2

! II' 1] |

B

Pattern_1

Patterns

. Pattern 1 . Pattern 2 . Pattern 8 D Other
0

10

UMAP_1

UMAP_1

Pattorn Cluster

Pattern_8

i

HEY

raaads 333332323332
23333223233322235333429342429247435353
3373957474%9237235732573243323%4%3 73730

5
o
5
10

5

0

UMAP_1

(legend on next page)

296 Cell Systems 74, 285-301, April 19, 2023



Cell Systems

demonstrated the interaction between the dominant patterns
(1,2, and 8), some of the less-dominant patterns could represent
rare cell types or minor biological processes that are essential to
the tumor progression and immune response. Accordingly,
users should include such patterns for SpaceMarkers analysis
in their workflow if needed.

DISCUSSION

We demonstrate how the co-localization of multiple cellular pro-
cesses in spatial transcriptomics data can be leveraged as
an asset to infer molecular changes resulting from cell-cell inter-
actions. Specifically, this inference is enabled through
SpaceMarkers, an algorithm for identifying genes associated
with pairs of spatially interacting latent features that represent
distinct cellular processes. We accomplish this by first identi-
fying a region of influence for each latent feature in the vicinity
of spots with high feature activity. Two features are deemed to
be interacting in spots where they have a concurrent influence.
The SpaceMarkers algorithm can estimate molecular changes
from spatially interacting cellular processes in two ways—a
default residual mode and a DE mode. We demonstrate that
the DE mode is able to identify genes with significantly higher
expressions in the region where two latent features overlap.
However, the DE mode is subject to confounding factors such
as variable cell populations and marker association with multiple
cell types. We mitigate these confounding effects in the residual
mode, where we identify genes with a significantly higher resid-
ual error between the original data and its reconstruction in the
region of overlap between two latent features. However, this sta-
tistic requires a greater number of spots for robust analysis than
the DE method. Although we found that this requirement limited
the application of the residual model in the case of the smaller
lymph node sample with PDAC metastasis, it was generally
applicable to the other tumor-immune interactions in our sample
cohort. Although the examples used in this paper use spot-
based technologies, we note that SpaceMarkers is readily appli-
cable to alternative imaging-based ST technologies that achieve
single-cell resolutions. Consequently, the increased spatial res-
olution of the ST characterization or multi-omics methods for
inferring cellular boundaries®® will enable a broader applica-
tion of SpaceMarkers for cell-cell interactions.

We validated the SpaceMarkers output against independent
tissue classification algorithm*®>" and note that if a cell type is
entirely occurring within the interaction region, its marker genes
will be inferred as a marker of spatial interaction through
SpaceMarkers (Figure 3). Although not a direct molecular
change in the input cell states, this co-localization of the cell
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type exclusively in the interaction region may be a biological ef-
fect induced through the TME state induced by the intercellular
interactions. We also note that this effect is mitigated to an
extent, but not completely removed in the residual mode if
some of the learned patterns are associated with that cell type.
Ultimately, we leave it to the user to determine which inferences
from SpaceMarkers merit further investigation. Future work can
also include follow-up experimental studies using in vitro 2D/3D
cocultures or in vivo depletion studies of cell types found in the
interaction region to validate the SpaceMarkers output.

Although SpaceMarkers is not optimized for specific cancer
types, we notice that the analysis pipeline performs better
when inferring cell-cell interactions for the larger volume of can-
cer cells in breast and liver tumors (Figures 4, 5, and 6)
compared with a smaller density of tumor cells surrounding
the duct in the pancreatic samples (Figures 2 and 3). We hy-
pothesize that this difference in performance could be due to
a combination of factors including the fact that spot-based Vis-
ium technology does not capture the minute details of diffuse
tumors and their microenvironment, smaller samples resulting
in fewer spots for SpaceMarkers analysis. Future work will
focus on the application and optimization of SpaceMarkers to
spatial data with single-cell or subcellular-level resolution and
extend its performance for cancers with different types of tu-
mor structures.

Due to our focus on tumor-immune cell interactions in our bio-
logical analyses, the current version of the SpaceMarkers algo-
rithm admits only two overlapping latent features as input. How-
ever, this approach is generally applicable to cell-cell inference
from ST data across biological contexts and features associated
with any cell subtype or cellular feature defined through the latent
space analysis. For example, this approach also enables the
analysis of the molecular changes from cell-cell interactions be-
tween the immune and stromal cells in the breast cancer tissue
(Figure S3; Data S1) and between additional cell types in the
PanIN sample (Figure 3). In many cases, multiple latent features
are co-localized at the same spot. This could result in the same
genes being associated with multiple interaction types, although
we did not observe such effects in our case studies. Further-
more, many critical intercellular interactions such as cancer-
associated fibroblast (CAF)-driven immunosuppression® result
from possible co-localization of multiple cell phenotypes. To
address this, future work should extend the application of
SpaceMarkers to identify genes associated with multiple over-
lapping latent features.

We note that our inference of interactions between cellular
processes is performed directly from latent space analyses of
the ST data, without the need for additional reference datasets

Figure 6. Contextualizing scRNAseq data using SpaceMarkers and transfer learning from matched ST-scRNAseq data in HCC

(A) CoGAPS factorization reveals spatial patterns associated with tumor annotations of tumor and immune cells (see Figure S5).

(B) Scatterpie visualization shows the relative pattern activity levels associated with the spatially overlapping tumor (orange) and immune (blue) patterns in each
Visium spot using a pie chart (white represents activity from all other patterns). SpaceMarkers are genes exhibiting nonlinear effects in the residual space of the

CoGAPS patterns in the region with tumor-immune overlap.

(C) Transfer learning of patterns 1, 2, and 8 from ST data to matched scRNAseq data. Scatter plot shows projections of the spatial patterns onto individual cells in
the scRNAseq data. Individual cells in the scRNAseq data are associated with the pattern having the highest projection in the cell.
(D) Expression heatmap of SpaceMarkers in tumor and immune cells from matched single-cell data from the same tumor provide the spatial context of the

individual cells.
See also Figures S5 and S6.
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for single-cell resolution'® or direct estimates of cellular decon-
volution.'® Although our approach is generally applicable to
linear latent space estimation methods, the results of our algo-
rithm fundamentally depend on the latent space method
selected for the analysis of the ST data. We demonstrate the
application of SpaceMarkers to 10x Visium ST data from
different cancers, and we identify markers associated with the
interaction between latent features associated with different bio-
logical processes. In all cases, we observe that the Bayesian ma-
trix factorization method CoGAPS®****" can learn latent fea-
tures that distinguish regions with tumor and immune cells
directly from the ST data without reliance on previous knowledge
of marker genes, histology annotations, or spatial coordinates.
Because CoGAPS uses high-dimensional features to define
cellular phenotypes, it can go beyond the discrete cell types
learned from H&E through pathology and enable the deconvolu-
tion of spots into a more nuanced mix of biological patterns (Fig-
ure 4B). Moreover, pathology annotations from H&E imaging can
be limited on flash-frozen OCT samples (Figure 4), as they do not
preserve cellular morphology.®® In the case of FFPE samples,
automated machine learning-based pathology annotations can
be used for cell-type identification.®® Creating higher-resolution
CoGAPS analysis by increasing the number of latent features in-
ferred from the ST data is able to further resolve the biological
signatures, revealing the tissue heterogeneity. These higher-
dimensional patterns are independent of the interaction regions
between the latent features inferred with SpaceMarkers at a
lower dimension. This observation suggests that our approach
indeed isolates effects due to intercellular interactions rather
than unresolved latent features associated with specific cellular
processes.

To demonstrate the compatibility of SpaceMarkers with
other latent space methods, we have provided an example
of its application in DE mode to the output of STdeconvolve
(Figure S4). Future work could extend the SpaceMarkers algo-
rithm to additional latent space methods emerging for ST
data and include nonlinear regression with terms involving
combinations of patterns to supplement the available
SpaceMarkers modes. Still, we note that the current modes
for SpaceMarkers can readily be applied to nonlinear latent
space methods, provided that the low-dimensional features
they infer can be associated with a set of weights for each
cell through linearization.

The use of SpaceMarkers on the spot-based 10x Visium tech-
nology limits direct inference of the specific cell subtypes in
which the interactions induce molecular alterations. We demon-
strate that transfer learning®*® of the latent features inferred
from the CoGAPS analysis of the ST data into matched single-
cell RNA-seq data enables us to define the precise cellular
subpopulations with gene expression changes in each
SpaceMarkers gene. Other approaches mitigate the need for
paired data by coordinated expression changes between anno-
tated pairs of ligands and receptors in both spatial and non-
spatial single-cell data. Although these approaches directly
model the signaling process, they rely on the correspondence
between gene expression and protein function and databases
of ligand-receptor pairs.*® Coupling spatial data with newer sin-
gle-cell technologies that isolate interacting cells*® can further
enhance this inference.
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Ultimately, the results of SpaceMarkers depend on the pat-
terns inferred from the latent space method. The biological
robustness of the SpaceMarkers statistic relies on the use of pat-
terns associated with significant activity levels as well as a
spatial overlap with other patterns of interest. For example, we
analyzed the interaction of immune cells with one invasive carci-
noma pattern of the three invasive carcinoma patterns learned
using the high-resolution CoGAPS analysis. We did not analyze
the other two patterns because one was isolated away
from the immune pattern and hence had no interactions, and
although the other pattern had a spatial overlap with the immune
pattern, it had much lower activity levels. For the residual mode
to be effectively used, it is important not only just to resolve the
ST data into biologically meaningful latent features but also to
provide a good fit between the original ST data and its recon-
struction from the latent features. In the absence of a good fit,
the residual errors contain not only just the effects attributable
to inter-feature interaction and the measurement error but also
the estimation errors resulting from an overly constrained factor-
ization. In such cases, we recommend using the SpaceMarkers
in the DE mode. Similarly, the utility of SpaceMarkers is dimin-
ished if the learned latent features do not correspond to individ-
ual cell phenotypes or if markers of essential cell types are not
represented by any of the learned latent features. Future work
can overcome this limitation through semi-supervised learning
methods that use cell-type marker expression as a proxy for
the latent feature input in the DE mode for SpaceMarkers.

When genes associated with cell-surface interactions and
cytokine secretions are grouped together in a latent feature,
the assignment of a single kernel-width parameter to the latent
feature in the SpaceMarkers algorithm is inconsistent with the
varying distances associated with these two types of intercellular
interactions. Identification of intercellular interactions in such
scenarios requires a mathematical framework for spatially
resolved causal inference that models distinct cell types, varying
ranges and gradients of influence for cytokine secretions and
surface interactions, and spatially resolved expression of individ-
ual genes. One such example is MESSI,*" which uses mixture-
of-experts and multi-task learning approaches to predict the
gene expression in a particular cell type with the help of signaling
genes in neighboring cells. Future work integrating these
methods with latent features in place of individual genes will
both reduce the computational complexity and enhance the bio-
logical interpretability of these spatially aware network inference
methods.
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SOURCE

IDENTIFIER

Deposited data

Processed spatial and single-cell
transcriptomics data.

This paper.

GEO:GSE224411

Software and algorithms

SpaceMarkers v0.81
SpaceMarkers analysis scripts.
STdeconvolve

CoGAPS v3.15.2
projectR v1.6.0

This paper.
This paper.
Miller et al., 2022""

Sherman et al.*’

Sharma et al., 2022%°

https://doi.org/10.5281/zenodo.7621285
https://doi.org/10.5281/zenodo.7621291

https://github.com/JEFworks-Lab/
STdeconvolve

https://doi.org/10.18129/B9.bioc. CoGAPS
https://doi.org/10.18129/B9.bioc.projectR

GSEA Subramanian et al.?®; GSEA v4.2.3
https://www.gsea-msigdb.org/

Seurat v4.1.0 Hao et al., 2021 Version 4.1.0

Other

Gene sets www.msigdb.com MSigDB v7.5.1 (Hallmark, Biocarta,

High resolution figures

This paper.

and Kegg)
https://doi.org/10.5281/zenodo.7622690

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Elana J

Fertig (ejfertig@jhmi.edu)

Materials availability

This study did not generate new materials.

High-resolution figures

High resolution versions of the figures in this manuscript are available on Zenodo (https://doi.org/10.5281/zenodo.7622690).

Data and code availability

® Processed 10x Visium data from the PDAC lymph node, PanIN, and HCC samples have been deposited at the Gene Expression
Omnibus (GEO) and are publicly available as of the date of publication. Accession numbers are listed in the key resources table.
® The original code for the SpaceMarkers package is available at www.github.com/FertigLab/SpaceMarkers under MIT license
and archived on Zenodo (https://doi.org/10.5281/zenodo.7621285). The scripts used for the analysis presented in this paper is
available at www.github.com/atuldeshpande/SpaceMarkers-paper and archived on Zenodo (https://doi.org/10.5281/zenodo.

7621291).

® Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Sample collection, preparation, and storage
Invasive breast ductal carcinoma

The fresh frozen invasive breast ductal carcinoma was collected in 2011 and obtained from BiolVT. The tumor was stage IIA, ER Pos-
itive, PR Negative, Hercep Test 2+. The RNA quality of the sample, as measured with Bioanalyzer (Agilent) was RIN = 9.26. The sam-
ple was embedded in optimal cutting temperature (OCT) compound and immediately frozen. Cryosections of 10 um were placed on

Visium Gene Expression slides (10x Genomics).
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PDAC metastatic lymph node

The PDAC peritumoral lypmh node was surgically resected during curative surgery at the Johns Hopkins University. The lymph node
was embedded in OCT and immediately frozen. Pathological examination of an H&E stained cryosection identified a PDAC metas-
tasis to the lymph node. A cryosection of 10 um were placed on a Visium Gene Expression slide (10x Genomics).

PanIN sample

The PanIN sample was a surgical specimen from a collection obtained during 2016 to 2018 available in the Johns Hopkins University
School of Medicine Department of Pathology archives under Institutional Review Board approval (IRB00274690) under a waiver of
consent.

HCC sample

The HCC sample was surgically obtained as part of a clinical trial (NTC03299946) for neoadjuvant cabozantinib and nivolumab pre-
viously described.*® The surgical specimen was immediately embedded in OCT, frozen and a 10 um cryosection was placed in a
Visium Gene Expression slide (10x Genomics).

ST library preparation

Briefly, following tissue permeabilization optimization, according to 10x Genomics instructions, samples were fixed in methanol,
stained (H&E) and imaged. Sequencing libraries were prepared using the Visium Spatial Gene Expression Reagent Kit (10x
Genomics), following manufacturer’s instructions, and sequenced on an lllumina NovaSeq.

SpaceMarkers algorithm

Here we describe the SpaceMarkers algorithm to identify genes associated with nonlinear effects of latent feature interactions. To
facilitate exposition, we will refer to the spatial component of the latent features as ”patterns”.

Modeling pattern interactions in the residual space

We assume a generic latent space representation model where the ST data matrix D is factorized into two low-rank matrices A and P.
Consequently, the matrix product AP is a low-rank approximation of the high-dimensional spatial RNAseq data, accounting for all
linear combinations of the latent patterns such that

D,'/' = (AP)U +€,'j,

where measurement noise ¢; are independent and normally distributed with zero mean (see Fertig et al.?? for the CoGAPS-specific
model). However, this assumption associates the CoGAPS residuals purely with measurement noise, disregarding any molecular
changes resulting from inter-pattern interactions. To that end, we introduce an additional term f(A,P)),-/- which represents the un-
known molecular changes due to pattern interactions such that

Dy = (AP); +f(A,P); +¢j,

where the measurement noise ¢; are independent and normally distributed with zero mean and variance o,l"f. Thus, we hypothesize
that the residuals represent both measurement noise and the molecular changes from inter-pattern interactions. Within the scope of
this paper, we seek to only identify genes which exhibit higher residual effects associated with two interacting patterns. To this end,
we use CoGAPS with the default settings and analyze the residual space of the CoGAPS factorization results. That is, we use the
CoGAPS residuals as an estimate of f(A, P); such that

f(A.P), ﬁE[f(A,P)U.’D,A,P] = Dy — (AP),

in regions where two patterns interact (i.e., have overlapping influence) versus regions where each pattern has exclusive influence. To
identify the genes associated with the nonlinear interactions between a given pair of patterns, we first identify hotspots of pattern
influence for each pattern. If both patterns have overlapping influence in a spot, they are deemed to be interacting in that spot.
The CoGAPS residuals are computed in the interacting regions as well as in regions where each pattern is individually active.
When the null hypothesis of non-interaction between the patterns is true, the residuals have no dependence on underlying regions
(interacting or exclusive). On the other hand, genes associated with higher CoGAPS residuals in the interacting regions compared
with the regions with exclusive pattern influence from either pattern show a strong dependence on spatial overlap between the pat-
terns, and thus reject the null hypothesis. These genes constitute the SpaceMarkers, markers of spatial interaction between the two
patterns in question. Focusing on strictly higher residuals avoids the confounding factors from decreased gene expression due to
heterogeneous spot populations compared to homogeneous ones.

Identifying regions of pattern influence and pattern interaction

For each spatially resolved pattern, we identify its region of influence by using a Gaussian kernel-based spatial smoothing approach.
Through the spatial smoothing, we model a pattern’s influence extending beyond a spot to its neighboring spots as well. Given the
pattern intensity p(s;) associated with a i-th spot s; = (x;, ;) in the sample, we calculate the spatially smoothed pattern intensities by
using the leave-one-out method

ﬁWp (S,‘) = ZWp(ShS/)p(Sf)

Sj#Si
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with the spatial Gaussian kernel

2
- d(s, .s’-)
2
QUWp

1
\/évﬂtawp '
where d(s;,s;) = \/(X; — x)?+(yi — y;)? is the distance between the i-th and j-th spots, and aw, is the kernel width. We used the
Smooth.ppp function in the R package spatstat®* to perform the smoothing. We obtain a null-distribution by applying the kernel-
based smoothing to spatially permuted pattern values (by pseudorandomly assigning spot locations (nperm = 100)). This null-dis-
tribution is assumed to be normal, and we obtain the sample mean 1, and standard deviation a, for each pattern. We identify the
pattern’s region of influence as the set of spots with outliers

WP(Sivs/') =

P, (S1) > Hp + 70,

where 7, is the outlier threshold for the pattern. The optimal values of the kernel width w, and outlier threshold 7, are the arguments
that minimize the spatial autocorrelation (Moran’s 1) of the residuals

r(si) = p(si) — 5wp (si)-

The optimal kernel width w,, for each pattern is the value which minimizes the Moran’s | in the residuals over all spots in the sample.
Subsequently, the optimal outlier threshold 7, minimizes spatial autocorrelation of the residuals r(s;) over the spots contained in the
resulting region of pattern influence. If a spot is influenced by two or more patterns, these patterns are said to be interacting in such a
spot. For each pattern pair of interest, the set of all such spots is defined as their interacting region.

Statistical test to identify genes associated with pattern interactions

For a given pair of patterns p1 and p» with a substantial regions of exclusive pattern influence and pattern interaction, we define three
subregions characterized by

® The spots with p4 influence and no p, influence.
® The spots with p, influence with no p1 influence.
® The spots with overlapping influence from both p; and pa.

The elements from each row of R corresponding to the subregions described above denote the CoGAPS residuals in the respec-
tive subregions. For each gene (row) i, we perform a non-parametric Kruskal-Wallis test*® for stochastic dominance of the CoGAPS
residuals in at least one of the three subregions, with a posthoc Dunn’s test*® to ascertain the relative dominance between the respec-
tive subregions. Of particular interest to us are the genes which have statistically significantly higher CoGAPS residuals (FDR,0.05) in
the interacting region relative to the other two subregions as well as genes which exhibit statistically significantly higher CoGAPS
residuals exclusively in the interacting region compared to at least one of the two other subregions.

Multi-resolution CoGAPS analysis
The ST genes by spot counts data for each sample was filtered to remove genes and spots with no or constant signal and then log,
normalized. The final matrix size of the input data matrix D are noted in the table below. The element D; represents the expression of
the i-th gene in the j-th spot. The CoGAPS (version 3.5.8)>" algorithm was run using the filtered and normalized counts data as input.
Additionally, default CoOGAPS parameters were used except for nlterations = 50,000, sparseOptimization = TRUE, distributed = sin-
gle-cell, and nSets = 4. CoGAPS factorization results in two lower-dimensional matrices: an amplitude matrix (A) containing gene
weights and a pattern matrix (P) containing corresponding spot weights estimated for a pre-specified number of latent features (nPat-
terns). On each of the input datasets, the algorithm was tested for a range of nPatterns.

nPattern values and number of learned patterns for different CoGAPS runs. The values shown in boldface are used in further
analysis.

Sample # genes # spots numPatterns (Learned Patterns)
PDAC metastatic lymph node 18418 1351 5(5), 8(10), 15(21)

PanIN 16,954 1,872 5(5), 10(10)

Invasive breast ductal carcinoma 24228 4898 5(5), 10(9), 15(14), 20(16)

HCC 20423 3006 5(4), 10(7), 15(9), 20(10), 30(18)

The pattern weights for each spot were plotted over the tissue to show association between a pattern and a tissue region. In high-
Res Breast cancer analysis, genes were assigned to the pattern they were most strongly associated with using the patternMarker
function in CoGAPS (version) in R (version). The genes for each pattern were submitted to the Molecular Signatures Database
and searched within the BIOCARTA, KEGG, and HALLMARK pathways.?’*° Pathways were considered significant if FDR < 0.05.
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Scatterpie visualizations
We use the A and P matrices in the CoGAPS result to represent each Visium spot as a combination of overlapping latent patterns. To
this end, we calculate the fractional gene expression FSE; in pattern k at spotj as

Py Ak
> (P> Ak)

where i is the gene index. We use the ‘vizAllTopics* function from the ‘STdeconvolve* package'” to visualize each spot as a pie chart
showing the fractional gene expression in each pattern.

spotFE, =

ProjectR analysis with matched single-cell RNAseq data

For the HCC sample in Figure 6, we have matched single-cell RNAseq data from the same patient. This scRNAseq data was prepro-
cessed using the ‘sctransform’ package,’” a normalization and variance stabilization method based on regularized negative binomial
regression method, available in Seurat” package in R. The transfer learning method, ProjectR, was used to project the spatial pat-
terns from the HCC sample onto matched scRNAseq data from the same patient. Although the Visium data for CoGAPS and single-
cell datasets use different normalization methods, our previous studies have shown that projectR can identify related cellular attri-
butes across various data types and modalities in spite of batch effects.” The R package projectR (version 1.6.0) was used to project
the A matrix of the CoGAPS result into the target dataset. The CoGAPS result object and the counts data from the matched scRNA-
seq dataset were used as input where FULL = TRUE. Each individual cell in the scRNAseq dataset is associated with the pattern with
the highest projection. We limit the pattern association to the dominant patterns in the spatial data, namely Patterns 1,2, and 8.

Gene Set Enrichment Analysis using MsigDB

For each gene list query corresponding to SpaceMarkers for pairs of patterns, we compute their overlaps with gene sets belonging to
the HALLMARK, BIOCARTA and KEGG pathways in MsigDB,>’~*° and report statistically significant overlaps (FDR < 0.05).
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