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SUMMARY
Recent advances in spatial transcriptomics (STs) enable gene expression measurements from a tissue sam-
ple while retaining its spatial context. This technology enables unprecedented in situ resolution of the regu-
latory pathways that underlie the heterogeneity in the tumor as well as the tumor microenvironment (TME).
The direct characterization of cellular co-localization with spatial technologies facilities quantification of
the molecular changes resulting from direct cell-cell interaction, as it occurs in tumor-immune interactions.
We present SpaceMarkers, a bioinformatics algorithm to infer molecular changes from cell-cell interactions
from latent space analysis of ST data. We apply this approach to infer the molecular changes from tumor-im-
mune interactions in Visium spatial transcriptomics data of metastasis, invasive and precursor lesions, and
immunotherapy treatment. Further transfer learning in matched scRNA-seq data enabled further quantifica-
tion of the specific cell types in which SpaceMarkers are enriched. Altogether, SpaceMarkers can identify the
location and context-specific molecular interactions within the TME from ST data.
INTRODUCTION

The tumor microenvironment (TME) is the tissue region created

and controlled by a tumor in its surroundings and plays a key

role in tumorigenesis and therapeutic response in cancer.1–4

The TME contains tumor cells, stroma, blood vessels, and im-

mune cells as well as cells from the resident tissue.4 A thorough

understanding of the molecular profile of individual cells and the

impact of intercellular interactions in the TME is crucial for distin-

guishing the determinants of tumor progression5–7 and precision

medicine strategies.3,8–11
Advances in single-cell technologies have led to the develop-

ment of spatially resolved transcriptomics (STs) that captures the

transcriptome in situ12 and thus allows us to study the spatial

relationship between the various cell populations within the

TME and their relationship with the tumor cells. For example,

the 10X Visium spatial transcriptomic technology allows us to

resolve tissue heterogeneity at a near single-cell resolution

(from one to tens of cells per spot). The technique has been

applied to characterize the cellular and molecular compositions

of tumors.13–15 Robust analysis pipelines for cell-based analysis

and cellular deconvolution have been proposed to model the
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cellular composition of spatial-transcriptomics data16–20 and

cellular phenotypes within each spot.21 Although spot deconvo-

lution methods can infer linear combinations of molecular

markers that are reflective of cellular co-localization, new

computational methods are needed to characterize the molecu-

lar changes resulting from cell-cell interactions at a genome-

wide scale.

Many analysis pipelines for Visium ST rely on the latent space

methods for cellular deconvolution to overcome the mixture of

cells at each spot. In this paper, we present the SpaceMarkers

algorithm that leverages spatially interacting latent features to

infer molecular changes resulting from interactions between

cell types or biological processes represented by the features.

SpaceMarkers uses a kernel-based smoothing approach to

model the influence of a highly expressed feature in a spot ex-

tending to its neighboring spots as well. Using latent features in-

ferred from CoGAPS,22 we demonstrate the broad utility of

SpaceMarkers to infer molecular changes resulting from cell-

cell interactions in Visium samples from invasion to lymph

node, pancreatic premalignant lesions, breast primary tumor,

and immunotherapy-treated cancer. We selected CoGAPS, a

Bayesian nonnegative matrix factorization approach, based on

its robustness for single-cell RNA-seq data.23,24 We also show

the compatibility of SpaceMarkers with other latent space

methods, using STdeconvolve17 as an example. Further exten-

sion of this approach to integrate Visium data with single-cell

data through transfer learning also enables the identification of

the precise cell subtypes in which the molecular changes from

cell-cell interactions are introduced. Altogether, our extension

to the latent space analysis enables us to simultaneously infer

cellular architecture and model molecular changes resulting

from spatially interacting biological processes.

RESULTS

Interactions between overlapping latent features
delineate intercellular interactions in ST data
Here, we present SpaceMarkers, a bioinformatics algorithm for

identifying genes associated with cell-cell interactions in ST

data. SpaceMarkers is an extension of the latent space analysis

that leverages spatially overlapping latent features associated

with distinct cellular signatures to infer the genes associated

with their interaction (Figure 1). Fundamentally, this inference re-

lies on the estimation of spatially resolved latent features repre-

sentative of cellular signatures in the ST data. That is, the latent

feature information is characterized by continuous weights cor-

responding to each spatial coordinate in the ST data. We denote

these continuous weights as the patterns in the ST data. The in-

puts to the SpaceMarkers algorithm are the ST data matrix and

spatially resolved patterns learned through the latent space anal-

ysis, and the output is a list of genes associated with the interac-

tion between each pair of spatially overlapping patterns. The first

stage of the algorithm involves the identification of each pat-

tern’s region of influence and subsequently the region of pattern

interaction (Figure 1A; see also STARMethods). If a pattern has a

nonzero value at a point, we hypothesize that its influence ex-

tends to its neighboring region but rapidly decreases with

increasing distance. We model this by spatially smoothing the

patterns using a Gaussian kernel-based approach (see STAR
286 Cell Systems 14, 285–301, April 19, 2023
Methods). Subsequently, we identify the outlier values of

smoothed patterns by testing them against a null distribution ob-

tained by the identical smoothing of spatially permuted pattern

values. We denote the region corresponding to these outlier

values as the region of influence of the pattern. Furthermore,

two patterns are deemed to be interacting in the region with

overlapping influence from both patterns. We hypothesize that

genes associated with the spatially overlapping influence from

two patterns represent changes in the molecular pathways due

to the interaction between the biological features of the associ-

ated cells. Therefore, we devise the second stage of the

SpaceMarkers algorithm to rank genes exhibiting higher activity

levels in the interaction region relative to regions with exclusive

influence from each pattern (Figure 1B; see also STARMethods).

To this end, we perform a non-parametric statistical test followed

by the post-hoc analysis to identify these genes that constitute

the SpaceMarkers output.

In the examples demonstrated here, the spatial data are ob-

tained using the spot-based 10x Visium spatial transcriptomics

technology12 with 1–10 cells per spot. SpaceMarkers is readily

applicable to spot-based ST data with regions of influence and

interaction defined as sets of spots in which one or two patterns,

respectively, have influence as identified by the Gaussian kernel-

based approach. We use CoGAPS Bayesian nonnegative matrix

factorization22,25 for identifying the latent features associated

with cellular signatures. When two patterns have overlapping in-

fluences in the same region of the tissue, we assume an interac-

tion between these patterns in this interaction region.We provide

a differential expression (DE) mode for SpaceMarkers to quantify

genes with enhanced expressions in a region with overlapping

influence from two patterns when compared with regions with

exclusive influence from individual patterns. This DE mode

allows for broad applicability across latent space methods,

which we demonstrate by applications using CoGAPS and

STDeconvolve.17 Furthermore, we extend this approach to pro-

vide a ‘‘residual’’ mode—which identifies genes that have signif-

icantly higher residual error between the original ST data and its

estimated fit from the CoGAPS model in the region with overlap-

ping influence from two patterns when compared with the re-

gions with exclusive influence from each pattern. We hypothe-

size that the residual mode detects the nonlinear effects of

intercellular interaction more precisely by accounting for the un-

derlying linear latent features to mitigate confounding effects

from variations in the cell population density and cell types

with common markers. Thus, the SpaceMarkers algorithm infers

both simple molecular changes in the ‘‘DE’’ mode and more pre-

cise nonlinear molecular changes in the residual mode in regions

with overlapping influence from patterns associated with

different cell signatures. We denote such patterns with concur-

rent influence in a region as ‘‘spatially interacting’’ patterns.

The reliance on latent space patterns from CoGAPS enables

the further ability to integrate SpaceMarkers learned from ST

data in corresponding single-cell data using transfer learning

from projectR24,26 to refine the specific cells in which these mo-

lecular changes occur. Although the examples in this paper use

latent space patterns in ST data from CoGAPS or STdeconvolve

to define cellular signatures, it is generally applicable to the

output of any of a number of latent feature factorization ap-

proaches available in the literature.



Figure 1. SpaceMarkers identifies genes associated with cell-cell interactions using spatially overlapping patterns

(A) Identifying the interaction region: the input to the SpaceMarkers algorithm are spatially resolved latent features resulting from latent space analyses (e.g.,

CoGAPS patterns). The images on the left show the intensity levels of two spatially resolved CoGAPS patterns. For each pattern, the SpaceMarkers algorithm first

identifies regions of influence (red and blue spots, respectively) using a Gaussian-kernel based outlier detection method. The patterns are deemed to be in-

teracting in the region with overlapping influence (yellow spots) from both patterns. It also identifies regions with mutually exclusive influence from each pattern

(red and blue spots).

(B) Identifying SpaceMarkers genes: the second stage of the SpaceMarkers algorithm performs a non-parametric Kruskal-Wallis statistical test with post-hoc

analysis on the gene expression data in the three regions (pattern 1 only, pattern 2 only, and interaction region) to identify molecular changes due to cell-cell

interaction. The output is a list of genes associated with the pattern interaction (see STAR Methods).
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SpaceMarkers identifies molecular changes from
tumor-immune interactions associated with metastatic
pancreatic cancer cells invading the lymph node
In the first example, we applied SpaceMarkers on Visium ST

data from pancreatic cancer metastasis to the lymph node in

a patient who received neoadjuvant GVAX vaccination (see Fig-

ure 2). More specifically, this sample is characterized by the

presence of metastatic pancreatic ductal adenocarcinoma

(PDAC), immune cell aggregates, and germinal centers of B

cell maturation (Figure 2A). The analysis of H&E imaging from

the lymph node region used to generate the ST data

identifies a region of the tissue in which the metastatic PDAC

intersects the immune cells surrounding the germinal center.

On factorizing these data using CoGAPS, we obtain ten latent

patterns based only on the expression data (Figure S1; STAR

Methods). By matching pattern activity levels learned from

the data with the independent histological annotations, we

observe that CoGAPS can distinguish metastatic PDAC in

pattern 6 from immune cells in the surrounding lymph node tis-

sue in pattern 9 (Figure 2B).

We further analyzed the spatial activity of themetastatic PDAC

(pattern 6) and immune (pattern 9) patterns to identify the regions

of overlapping influence to associate with metastasis-immune

interaction. We represent the spatial variation in the activity

levels of pattern 6 and pattern 9 in relation to all the other patterns

in each spot (Figure 2B). This proportional analysis of patterns

enables us to observe a spatial overlap between the regions

where pattern 6 and pattern 9 are active. However, we hypothe-

size that a pattern has an influence in a spot even with zero

pattern activity but high-pattern activity levels in the neighboring

spots. SpaceMarkers first identifies the region with spatially

overlapping influence from these two patterns as their interac-

tion region. Next, the SpaceMarkers algorithm identifies the

gene expression changes that occur from metastasis-immune

interaction in this interaction region (Data S1; Table S2). Due to

the limited number of spotswhere the two patterns have overlap-

ping influences, we define SpaceMarkers based on DEs. This

analysis identifies 1,442 genes that exhibit a higher average

expression in the interaction region with an overlapping influence

from the two patterns compared with spots where only metasta-

tic PDAC in pattern 6 or immune cells in pattern 9 have exclusive

influence (see STAR Methods for details of the statistical test,

Table S2 for the complete gene list with the associated statis-

tics). The SpaceMarkers optParams values are tabulated in

Table S1.

Figure S1 shows the expression heatmap of the Space

Markers genes in spots belonging to regions with exclusive in-

fluence from the metastatic PDAC pattern 6, exclusive
Figure 2. SpaceMarkers identifies molecular changes associated with

(A) H&E staining of a peritumoral pancreatic lymph node with metastasis from PD

(B) Visualization of the relative activity in the CoGAPS patterns associated with me

spot is represented as a pie chart with fractional gene expression at the location ag

patterns put together (white).

(C) Boxplots of the expression of selected genes showing higher expression level

with exclusive influence from pattern 6 and pattern 9, respectively.

(D) Table showing Hallmark gene set pathways significantly overrepresented in th

and FDR value (see Table S2 for KEGG and Biocarta pathways).

See also Figure S1.
influence from the immune cell pattern 9, and overlapping

influence from both patterns in metastasis-immune interac-

tions. In all cases, the interactions are associated with

the changes in extracellular matrix genes, including notably

genes associated with cytoskeleton regulation (TMSB10,

TMSB4X, CFL1, and MARCKSL1), the myosin pathway

(MYL6, MYH9, and MYL12B), actin regulation (ACTB,

ACTN4, CAPG, LCP1, and SPTBN1), the matrix metallopepti-

dase family (MMP9 and MMP12), galectin genes (LGALS1,

LGALS4, LGALS9, and LGALS3BP), collagen (COL1A2,

COL3A1, COL4A1, COL4A2, COL18A1, and COL6A2), and

cell adhesion (MSLN, ITGB4, ITGB6, and ADRM1). The

SpaceMarkers include genes reflecting cell death in the

increased expression of ribosomal protein genes associated

with immune response through the expression of HLA family

genes, immunogloblulins, interleukins, cytokines, chemo-

kines, the interferon pathway IFITM2, and immune function.

This immune response is counterbalanced by the changes

to the pathways associated with enhanced invasion in cancer

cells, including JUNB, JUND, and VIM.

To further elucidate the molecular pathways associated

with the metastasis-immune interaction in the lymph node,

we performed gene set overrepresentation analyses (Fig-

ure 2D; Table S2) from the Hallmark, KEGG, and Biocarta

molecular pathways using the Molecular Signatures Database

(MSigDB).27–29 As seen in Figure 2D, Hallmark pathways

related to allograft rejection, interferon-gamma, and inter-

feron-alpha are all overrepresented in the pathway analysis

for the SpaceMarkers genes, and hence, in the region of over-

lap between the immune and metastatic PDAC patterns. This

confirms the activation of the immune response for tumor rejec-

tion at the interface between the metastatic PDAC and the

immune cells in the lymph node observed at the gene level.

Likewise, we observe overrepresentation in the epithelial to

mesenchymal signaling and pathways consistent with the inva-

sive process in the metastatic PDAC cells, further supported by

the enrichment of the apical junction consistent with the

changes to the extracellular matrix suggested by the gene-level

SpaceMarkers analysis.

The DE mode of SpaceMarkers is applicable when the avail-

able latent features provide only a partial reconstruction of the

original ST data matrix. However, the DE of a marker in the inter-

action region could occur because of cell-cell interactions or

confounders such as variable cell populations in each spot and

different co-localized cell types having common markers. In

the examples to follow, we mitigate these confounding effects

by using the residual error between the raw expression and its

reconstruction from the CoGAPS patterns, which capture the
immune-metastatic pancreatic cancer interaction in the lymph node

AC (arrow) and annotated germinal center and immune cells (dark lines).

tastatic PDAC (pattern 6) and immune cells in the lymph node (pattern 9). Each

gregated over the all genes for pattern 6 (orange), pattern 9 (blue), and all other

s in the interaction region of pattern 6 and pattern 9 compared with the regions

e region of interaction between pattern 6 and pattern 9, with the size of overlap

Cell Systems 14, 285–301, April 19, 2023 289
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Figure 3. Residual mode can help to mitigate the confounding effects of other cell types present in the interaction region

(A) Tissue regions annotated by CODA based on morphological features show clusters of acinar cells in close proximity to the neoplasia duct.

(B) CoGAPS analysis reveals two patterns representing the stromal region (pattern 6, orange), the neoplasia region (pattern 9, blue), and all other patterns (white).

(legend continued on next page)
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effect of both variations in cell population density as well as var-

iations in individual marker expression.

Confounding factors from unrelated cell populations
can be mitigated by using SpaceMarkers in
residuals mode
Using SpaceMarkers in the DE mode identifies genes that are

enriched relative to two patterns, but the output is susceptible

to confounding factors from cell types independent of the two

patterns of interest. For example, if the interaction region be-

tween two patterns contains an independent cell type that is

not significantly present in the regions of exclusive influence of

either pattern, we hypothesize that the cell-type-specific genes

for the additional cell type will appear as space markers. To

test this hypothesis, we applied SpaceMarkers to a sample of

pancreatic intraepithelial neoplasia (PanIN),30 a premalignant

lesion associated with PDAC (Figure 3). As described in our pre-

vious study of this sample, the H&E imaging provided with the

Visium formalin-fixed paraffin-embedded (FFPE) technology

used to profile this sample enabled us to determine cell types

within the slide at a single-cell resolution using CODA,31 a

deep-learning classifier that annotates tissue regions based on

their morphological features (Figure 3A). This ground truth of

cellular features also enables us to benchmark the latent space

estimates of cellular features from CoGAPS. In this sample, we

learned 10 transcriptional patterns from the PanIN using

CoGAPS. Pattern 9 captures the PanIN on the tissue, and pattern

6 captures a majority of stromal cells (Figure 3B). The PanIN is

surrounded by two large acini, which express high quantities of

pancreatic enzymes that are not expressed elsewhere on the

slide (Figure 3D). The interaction region between patterns 6

and 9 captures much of these acini. The SpaceMarkers analyses

of these patterns in the DE mode results in several of the well-

characterized pancreatic enzymes (Data S1) produced exclu-

sively by acinar cells.32 Pathway analysis reveals that pancreatic

acinar cell gene set is the most overrepresented gene set (Fig-

ure 3E; Table S3).

In the residuals mode, SpaceMarkers accounts for the gene

signatures captured by CoGAPS patterns. Because pattern 5

represents the acinar cells in our dataset (Figure S2), we hypoth-

esize that the residuals mode attenuates the confounding factor

due to the acinar cells (Data S1). Unlike the DE mode, the top

pathway for residuals mode is no longer a pancreatic acinar

cell pathway (Figure 3F; Table S3). Residuals mode boosts the

signal from pathways that are highly overrepresented in the DE

mode, although maintaining the significance of the acinar gene

sets. Collectively, these results show that genes captured by

the DEmode can represent additional cell types that are not pre-

sent in either patterns of interest. In addition, if these cell type sig-

natures are unique and strong enough to be captured as an inde-
(C) Scatterpie chart showing the overlap between pattern 6 and pattern 9 also illus

patterns.

(D) Two markers of acinar cells identified among the top SpaceMarkers of intera

region.

(E) Overrepresented pathways associated with neoplasia-stromal interactions ide

of acinar cell markers.

(F) Other relevant pathways are overrpresented in comparison with acinar marke

See also Figure S2.
pendent transcriptional pattern, the residuals mode is capable of

attenuating the signal from this additional cell type relative to

other expression changes present in the interaction region. The

SpaceMarkers optParams values are tabulated in Table S1.

SpaceMarkers identifies the markers of tumor-immune
interactions in invasive breast ductal carcinoma
through the residual space analysis
Although providing a means to detect molecular changes from

cellular interactions in limited interaction regions, using DE sta-

tistics for SpaceMarkers could confound nonlinear effects from

cell-cell interactions with expression changes resulting from

the increased density of co-localized cell types with shared

gene markers. In cases where the interaction region extends

across a greater number of spots, these confounding effects

can be mitigated by using the residual error between the raw

expression and its estimated fit from the CoGAPS model for

the SpaceMarkers. This estimated fit will capture the effect of

both variations in cell population density and variations in individ-

ual marker expression to refine the estimates of the nonlinear

effects from cell-cell interactions. We apply this approach to

identify the molecular pathways associated with tumor cells

and immune interactions in ST data from a breast cancer sample

that contains multiple ductal carcinoma in situ (DCIS) lesions, an

invasive carcinoma lesion, immune cells, and stroma (Figure 4A).

The visualization in Figure 4Bshowswidespreadspatial regions

of interactionsbetween immuneand tumor cells at theboundaries

ofboth the invasivecarcinomaand theDCIS lesionsandsome iso-

lated spots of immune activity in the interior of the invasive tumor.

However, the immune activity in these spots is not significantly

over the threshold to create substantial immune influence in the

neighborhood. Thus, the immune-invasive cancer interaction is

largely contained near the boundary of the tumor. Although the

pancreatic cancer sample in Figure 2 covered a smaller area

with fewer spots (< 300) having tumor and immune influences,

respectively, we identify much larger regions (> 1000 spots) of in-

fluence from the immune, invasive carcinoma,andDCIScells (Fig-

ure 4B). This larger number of spots enables us to estimate

SpaceMarkers fromCoGAPS residuals to distinguish themolecu-

lar changes in invasive carcinoma from theDCIS lesions.Similar to

our analysis of the metastatic pancreatic cancer data, we obtain

latent features of the ST data from this breast sample using

CoGAPS factorization. These latent features reveal histological

annotations of invasive carcinoma, DCIS lesions, immune, and

stromal regions estimated from the H&E stain (Figure 4A).

Computing SpaceMarkers based on the CoGAPS residuals

identifies 461 genes associated with interactions between the

immune and invasive carcinoma patterns and 413markers of im-

mune andDCIS pattern interactions (Data S1), comparedwith up

to 3,736 immune-invasive carcinoma and 3,036 immune-DCIS
trated how the acinar cells coincide with the interaction region between the two

ction between patterns 6 and 9 also show overexpression in their interaction

ntified by SpaceMarkers analysis in DE mode demonstrate overrepresentation

rs with the SpaceMarkers analysis in the residual mode.
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genes identified from applying a similar analysis based on the DE

for the same FDR value (Data S1). This reduction in the number of

markers through the analysis of CoGAPS residuals relative to the

inference of SpaceMarkers through the DE analysis is consistent

with the isolation of specific nonlinear changes resulting from in-

teractions between the cellular processes measured in the

CoGAPS patterns using this mode. We note that 85 of the

SpaceMarkers were associated with immune cell interactions

in both the invasive carcinoma and DCIS regions. The

SpaceMarkers optParams values are tabulated in Table S1. To

further determine the molecular pathways activated through im-

mune and tumor cell interactions in both regions, we performed

gene set overrepresentation analyses from the Hallmark, KEGG,

and Biocarta molecular pathways using the MSigDB, with a se-

lection of the pathways presented in Figure 4C (see Table S4 for

the complete list of pathways). We find that although certain

pathways were enriched in both interactions (e.g., antigen pro-

cessing and presentation, p53 pathway, Tnf-alpha signaling,

mTorc1 signaling, epithelial to mesenchymal transition, Inter-

feron Gamma response, hypoxia, and estrogen response early/

late), others were enriched exclusively in immune-DCIS (DNA

repair) and immune-invasive (WNT signaling, MAPK signaling,

and TGF beta signaling), respectively. Note that a pathway en-

riched in both immune-DCIS and immune-invasive carcinoma in-

teractions may have distinct gene subsets associated with each

interaction. For example, it is readily evident that the hallmark

interferon-gamma response gene set has greater overlap with

the SpaceMarkers of the Immune-DCIS interaction compared

with the immune-invasive interaction.

Using SpaceMarkers with high-resolution CoGAPS
reveals greater heterogeneity in intercellular
interactions within the TME
In all cases presented, the SpaceMarkers inferred fundamentally

depend on the resolution of the cellular processes inferred in the

CoGAPS latent space analysis. Indeed, nonlinear interactions in

interacting regions at a low-resolution analysis may be further

refined by increasing the dimensionality of the factorization on

the ST data consistent with the recent advances to multi-resolu-

tionmatrix factorization.33We further performed a higher-resolu-

tion CoGAPS analysis of the breast cancer data to test whether

the interaction region between two patterns and the associated

SpaceMarkers genes is identified by increasing the dimension-

ality of the latent space analysis. In this higher-dimensional anal-

ysis, CoGAPS identifies 16 distinct patterns associated with the

diverse biological processes in the TME. The activity levels of a

selection of the patterns overlaid on an H&E stained slide of

the sample are shown in Figure 5A (also see Figure S3). Although

the higher number of patterns reveals greater heterogeneity

of the biological processes in the sample by further resolving

patterns identified in the low-resolution analysis, it does not iden-
Figure 4. Low-resolution CoGAPS and SpaceMarkers analysis identifi

tissue

(A) Images of the breast cancer tissue showing activity levels of the immune, DC

slides showing regions with invasive carcinoma, DCIS lesions, immune cells, and

(B) Scatterpie visualization shows the relative activity levels and overlap betwee

patterns combined (white).

(C) Overrepresented pathways associated with DCIS-immune interactions and c
tify patterns specific to the interactions identified between the

lower dimension patterns.

Althoughwe do not associate each Visium spot with solely one

pattern, studying the most dominant pattern in spots informs us

of the dominant biological process at that location in the tissue

as inferred by CoGAPS. Consequently, the same spots are asso-

ciated with broader biological processes at a lower resolution

and with more specific processes at a higher resolution. The al-

luvial plot in Figure 5B shows the relationship between the most

dominant low- and high-resolution patterns at each spot.

For example, the single DCIS-related pattern in Figure 4A re-

solves intomultiple DCIS patterns, some of which are associated

with individual DCIS lesions. Even within the single invasive car-

cinoma lesion, the low-resolution invasive carcinoma pattern

resolves into two distinct patterns, one of which is isolated to

the interior of the invasive carcinoma and one that spans to the

tumor-immune boundary. Although the DCIS lesions and inva-

sive carcinoma have universally high ERBB2 and ESR1 expres-

sions, evaluating the genes associated with the distinct patterns

identifies heterogeneity in growth factor signaling pathways with

enhanced IGFBP3 expression in the DCIS.5 pattern, FGFR4

expression in the DCIS.6 pattern, and FGFR1 expression in the

Invasive.2 carcinoma pattern (Figure S3; Table S5) We also see

spots previously associated with the immune pattern or with

dispersed patterns at the low resolution now being associated

with a dominant pattern that can be associated with the stromal

region. To further compare the enhanced resolution intra-tumor

heterogeneity to tumor-immune interactions in the high-resolu-

tion factorization, Figure 5C shows relative pattern weights and

overlap between the immune pattern and the two invasive pat-

terns. It is clear that only one of the invasive patterns overlaps

with the immune pattern, thus contributing to the tumor-immune

interaction. Still, both of these interacting patterns contain sub-

stantial numbers of spots that are isolated to the immune and

invasive carcinoma regions, respectively, suggesting that

increasing the resolution of the factorization does not compen-

sate for the estimation of nonlinear effects through the interac-

tion statistic. Similarly, Figure 5D shows relative pattern weights

and overlap between the immune pattern and the three DCIS

patterns. It logically follows that the overlapping regions of the

distinct DCIS patterns are also distinct and hence correspond

to different molecular alterations fromDCIS-immune interactions

that will affect the subsequent outgrowth of these distinct

lesions.

For these interactions involving the immune pattern, we iden-

tify SpaceMarkers genes associated with the inter-pattern inter-

actions as the genes having higher CoGAPS residuals in the

interaction region compared with regions with exclusive influ-

ence from the individual patterns (Data S1). The SpaceMarkers

optParams values are tabulated in Table S1. On the identification

of statistically significant (FDR< 0:05) signaling pathways
es markers of interaction between broad patterns in breast cancer

IS, and invasive carcinoma patterns, respectively, overlaid on annotated H&E

stroma.

n the invasive carcinoma (green), immune (orange), DCIS (blue), and all other

ancer-immune interactions (FDR< 0:05).
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Figure 5. High-resolution CoGAPS and SpaceMarkers analysis of breast cancer tissue reveal greater heterogeneity in intercellular inter-

actions

(A) Multiple patterns associated with invasive carcinoma and DCIS regions identified in higher-resolution CoGAPS analysis with 16 patterns highlights the

heterogeneity in the tumor and TME by further resolving the underlying pathology (see Figure S3 for remaining patterns).

(B) Alluvial plot showing the most dominant pattern associated with each spot using low-resolution and high-resolution CoGAPS, respectively. Spots dominated

by low-resolution DCIS pattern are dominated by three distinct DCIS-related patterns associated with different lesions in the high-resolution analysis. Invasive

(legend continued on next page)
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(see Table S4) pertaining to the interaction of the immune pattern

with invasive carcinoma and DCIS patterns in the high-dimen-

sional CoGAPS results and comparing them with those found

in 5 dimensions, we find pathways common to all interactions

and unique to specific pattern interactions. For example, we

find 59 signaling pathways enriched due to immune-invasive

carcinoma interaction in 5 dimensions and 16 dimensions. These

include but are not limited to the pathways related to epithelial-

mesenchymal transition, apoptosis, antigen processing and pre-

sentation, hypoxia, p53 signaling, interferon-alpha and -gamma

responses, and finally targets of the oncogene MYC. However,

the higher-resolution analysis also reveals unique pathways rele-

vant to specific immune-invasive carcinomapattern interactions.

We found pathways related to the cancer-immune interactions

including those related to IL-5 and IL-6 signaling, KRAS

signaling, Toll-like receptor signaling, and the CDC25 pathway

exclusively when the dominant invasive carcinoma pattern (Inva-

sive.3) interacts with the immune cells. Similarly, the distinct im-

mune-DCIS interactions reveal heterogeneity in the enriched

pathways that were not evident with a single DCIS pattern using

low-resolution CoGAPS. Among the immune interactions with

different DCIS lesions, MAPK signaling, Tnf alpha signaling,

and hypoxia pathways, known to be mechanisms of resistance

to endocrine and immunotherapies, are enriched exclusively in

the immune-DCIS.4 interaction; antigen processing, allograft

rejection, and autoimmunity-related pathways are enriched

exclusively in immune-DCIS.5; and EMT pathway and estrogen

response early/late are exclusively enriched in the immune

DCIS.6 interactions. These pathways are consistent with the het-

erogeneity of subsequent outgrowth of these DCIS lesions, with

successful activation of pathways associated with the immune

attack in DCIS.5 relative to the invasive processes observed in

both DCIS.4 and DCIS.6.

Finally, in addition to the SpaceMarkers analysis of interacting

CoGAPS patterns, we also performed cell deconvolution using

STdeconvolve17 to identify cell populations abundant in the inva-

sive carcinoma and DCIS lesions, respectively, and the immune

cells (Figure S4). We used SpaceMarkers to identify the markers

of interaction between immune cells and the cell populations

found to be spatially interacting with them (Data S1). The

SpaceMarkers optParams values are tabulated in Table S1.

Integrated ST and single-cell RNA-seq analysis
identifies cell type-specific molecular changes from
immunotherapy treatment in hepatocellular carcinoma
In the examples so far, the SpaceMarkers statistic revealed the

molecular changes associated with intercellular interactions.

Since SpaceMarkers relies on spot-based co-localization, it

limits the ability to identify the cell subtypes in which these mo-
pattern in low resolution resolves into three invasive carcinoma related pattern

analysis. For alluvial plot with all 16 patterns, see Figure S4A.

(C) Relative activity levels of immune patternswith two invasive patterns reveals th

not interact. Immune interaction with Invasive Carcinoma (green) is captured thro

other patterns combined.

(D) Relative activity levels of immune pattern (orange) with three DCIS pattern

overlapping regions associated with each interaction. White represents all other

(E) SpaceMarkers of Immune-DCIS and Immune-Invasive interactions reveal fu

geneity revealed in (C) and (D) (FDR< 0:05) (see Table S4 for complete list of gen

See Figure S4 for SpaceMarkers with STdeconvolve.
lecular changes were induced. Transfer learning allows us proj-

ect new data into learned latent spaces, subsequently associ-

ating samples from the new data with known biology. We first

factorize the ST data collected from a resected hepatocellular

carcinoma (HCC) tumor after the administration of a neoadjuvant

cabozantinib and nivolumab therapy to obtain 9 CoGAPS pat-

terns. Figure 6A shows the individual tumor and immune-associ-

ated patterns overlaid on an H&E-stained image of the HCC tu-

mor sample. As in the other examples, these tumor and

immune patterns are spatially overlapping (Figure 6B) and are

deemed to be interacting in regions where they have overlapping

influence. This analysis identifies two distinct tumor cell patterns,

one of which spans all malignant regions in the sample (pattern 2)

and the other isolated to a specific region (pattern 1) that has less

co-localization of the immune cells (pattern 8). The interaction

between the immune cells and each of the tumor patterns

learned through SpaceMarkers identifies enhanced expressions

of hepatocyte markers (KRT18, SERPIN family genes, APOC2,

CD24), immune markers (CD63, HLA genes), and cell death

markers (TNF pathway associated genes, ribosomal genes,

ANXA2) consistent with the killing of tumor cells through immune

cells in the interaction between patterns 2 and 8 (Data S1). By

contrast, SpaceMarkers genes of the interaction between pat-

terns 1 and 8 identify fibroblast markers (collagen coding genes,

MYL9, TAGLN) consistent with a lack of successful immune

attack and infiltration in this portion of the tumor. The

SpaceMarkers optParams values are tabulated in Table S1.

Although the SpaceMarkers analysis of ST data suggests the

molecular changes associated with cell-cell interactions, this

analysis alone does not pinpoint the precise cells in which these

molecular changes occur. By transfer learning24,26 of these latent

features into matched single-cell RNA-seq data from the same

tumor, we can associate individual cells with specific patterns

corresponding to tumor and immune signatures (Figure 6C).

This association can both identify whether a SpaceMarkers

gene’s expression changes in tumor or immune cells and

whether we can also predict the precise subpopulations of tumor

and immune cells involved in intercellular interactions by

observing the gene expression changes of the relevant

SpaceMarkers in individual cells. From Figure 6D, we observe

that changes in the expressions of genes SERPINC1, APOC2,

and ADH1B are induced in a subset of the cancer cells attributed

to pattern 2, whereas the expression changes in gene PFN1 and

CD14 are induced in a subset of the immune cells. A further sub-

set of both pattern 2 tumor cells and immune cells co-express

HSP90AA1 and ribosomal genes. Based on these gene expres-

sion patterns of the respective SpaceMarkers, we hypothesize

that these individual cells are sourced from the tumor-immune

boundary. Note that although the analysis in this section
s associated with varying levels of immune infiltration in the high-resolution

at the immune (orange) and Invasive.2 (blue) patterns have no overlap, hence do

ugh the overlap between Immune and Invasive.3 pattern. White represents all

s (blue, green, and yellow) associated with separate lesions reveals distinct

patterns combined.

nctional heterogeneity of the enriched pathways mirroring the spatial hetero-

e sets).
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demonstrated the interaction between the dominant patterns

(1, 2, and 8), some of the less-dominant patterns could represent

rare cell types or minor biological processes that are essential to

the tumor progression and immune response. Accordingly,

users should include such patterns for SpaceMarkers analysis

in their workflow if needed.

DISCUSSION

We demonstrate how the co-localization of multiple cellular pro-

cesses in spatial transcriptomics data can be leveraged as

an asset to infer molecular changes resulting from cell-cell inter-

actions. Specifically, this inference is enabled through

SpaceMarkers, an algorithm for identifying genes associated

with pairs of spatially interacting latent features that represent

distinct cellular processes. We accomplish this by first identi-

fying a region of influence for each latent feature in the vicinity

of spots with high feature activity. Two features are deemed to

be interacting in spots where they have a concurrent influence.

The SpaceMarkers algorithm can estimate molecular changes

from spatially interacting cellular processes in two ways—a

default residual mode and a DE mode. We demonstrate that

the DE mode is able to identify genes with significantly higher

expressions in the region where two latent features overlap.

However, the DE mode is subject to confounding factors such

as variable cell populations and marker association with multiple

cell types. We mitigate these confounding effects in the residual

mode, where we identify genes with a significantly higher resid-

ual error between the original data and its reconstruction in the

region of overlap between two latent features. However, this sta-

tistic requires a greater number of spots for robust analysis than

the DE method. Although we found that this requirement limited

the application of the residual model in the case of the smaller

lymph node sample with PDAC metastasis, it was generally

applicable to the other tumor-immune interactions in our sample

cohort. Although the examples used in this paper use spot-

based technologies, we note that SpaceMarkers is readily appli-

cable to alternative imaging-based ST technologies that achieve

single-cell resolutions. Consequently, the increased spatial res-

olution of the ST characterization or multi-omics methods for

inferring cellular boundaries34,35 will enable a broader applica-

tion of SpaceMarkers for cell-cell interactions.

We validated the SpaceMarkers output against independent

tissue classification algorithm30,31 and note that if a cell type is

entirely occurring within the interaction region, its marker genes

will be inferred as a marker of spatial interaction through

SpaceMarkers (Figure 3). Although not a direct molecular

change in the input cell states, this co-localization of the cell
Figure 6. Contextualizing scRNAseq data using SpaceMarkers and tra

(A) CoGAPS factorization reveals spatial patterns associated with tumor annotat

(B) Scatterpie visualization shows the relative pattern activity levels associated w

Visium spot using a pie chart (white represents activity from all other patterns). Sp

CoGAPS patterns in the region with tumor-immune overlap.

(C) Transfer learning of patterns 1, 2, and 8 from ST data to matched scRNAseq da

the scRNAseq data. Individual cells in the scRNAseq data are associated with th

(D) Expression heatmap of SpaceMarkers in tumor and immune cells from mat

individual cells.

See also Figures S5 and S6.
type exclusively in the interaction region may be a biological ef-

fect induced through the TME state induced by the intercellular

interactions. We also note that this effect is mitigated to an

extent, but not completely removed in the residual mode if

some of the learned patterns are associated with that cell type.

Ultimately, we leave it to the user to determine which inferences

from SpaceMarkers merit further investigation. Future work can

also include follow-up experimental studies using in vitro 2D/3D

cocultures or in vivo depletion studies of cell types found in the

interaction region to validate the SpaceMarkers output.

Although SpaceMarkers is not optimized for specific cancer

types, we notice that the analysis pipeline performs better

when inferring cell-cell interactions for the larger volume of can-

cer cells in breast and liver tumors (Figures 4, 5, and 6)

compared with a smaller density of tumor cells surrounding

the duct in the pancreatic samples (Figures 2 and 3). We hy-

pothesize that this difference in performance could be due to

a combination of factors including the fact that spot-based Vis-

ium technology does not capture the minute details of diffuse

tumors and their microenvironment, smaller samples resulting

in fewer spots for SpaceMarkers analysis. Future work will

focus on the application and optimization of SpaceMarkers to

spatial data with single-cell or subcellular-level resolution and

extend its performance for cancers with different types of tu-

mor structures.

Due to our focus on tumor-immune cell interactions in our bio-

logical analyses, the current version of the SpaceMarkers algo-

rithm admits only two overlapping latent features as input. How-

ever, this approach is generally applicable to cell-cell inference

from ST data across biological contexts and features associated

with any cell subtype or cellular feature defined through the latent

space analysis. For example, this approach also enables the

analysis of the molecular changes from cell-cell interactions be-

tween the immune and stromal cells in the breast cancer tissue

(Figure S3; Data S1) and between additional cell types in the

PanIN sample (Figure 3). In many cases, multiple latent features

are co-localized at the same spot. This could result in the same

genes being associated with multiple interaction types, although

we did not observe such effects in our case studies. Further-

more, many critical intercellular interactions such as cancer-

associated fibroblast (CAF)-driven immunosuppression36 result

from possible co-localization of multiple cell phenotypes. To

address this, future work should extend the application of

SpaceMarkers to identify genes associated with multiple over-

lapping latent features.

We note that our inference of interactions between cellular

processes is performed directly from latent space analyses of

the ST data, without the need for additional reference datasets
nsfer learning from matched ST-scRNAseq data in HCC

ions of tumor and immune cells (see Figure S5).

ith the spatially overlapping tumor (orange) and immune (blue) patterns in each

aceMarkers are genes exhibiting nonlinear effects in the residual space of the

ta. Scatter plot shows projections of the spatial patterns onto individual cells in

e pattern having the highest projection in the cell.

ched single-cell data from the same tumor provide the spatial context of the
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for single-cell resolution16 or direct estimates of cellular decon-

volution.18 Although our approach is generally applicable to

linear latent space estimation methods, the results of our algo-

rithm fundamentally depend on the latent space method

selected for the analysis of the ST data. We demonstrate the

application of SpaceMarkers to 10x Visium ST data from

different cancers, and we identify markers associated with the

interaction between latent features associated with different bio-

logical processes. In all cases, we observe that the Bayesianma-

trix factorization method CoGAPS22,24,37 can learn latent fea-

tures that distinguish regions with tumor and immune cells

directly from the ST data without reliance on previous knowledge

of marker genes, histology annotations, or spatial coordinates.

Because CoGAPS uses high-dimensional features to define

cellular phenotypes, it can go beyond the discrete cell types

learned from H&E through pathology and enable the deconvolu-

tion of spots into a more nuanced mix of biological patterns (Fig-

ure 4B). Moreover, pathology annotations fromH&E imaging can

be limited on flash-frozen OCT samples (Figure 4), as they do not

preserve cellular morphology.38 In the case of FFPE samples,

automated machine learning-based pathology annotations can

be used for cell-type identification.30 Creating higher-resolution

CoGAPS analysis by increasing the number of latent features in-

ferred from the ST data is able to further resolve the biological

signatures, revealing the tissue heterogeneity. These higher-

dimensional patterns are independent of the interaction regions

between the latent features inferred with SpaceMarkers at a

lower dimension. This observation suggests that our approach

indeed isolates effects due to intercellular interactions rather

than unresolved latent features associated with specific cellular

processes.

To demonstrate the compatibility of SpaceMarkers with

other latent space methods, we have provided an example

of its application in DE mode to the output of STdeconvolve

(Figure S4). Future work could extend the SpaceMarkers algo-

rithm to additional latent space methods emerging for ST

data and include nonlinear regression with terms involving

combinations of patterns to supplement the available

SpaceMarkers modes. Still, we note that the current modes

for SpaceMarkers can readily be applied to nonlinear latent

space methods, provided that the low-dimensional features

they infer can be associated with a set of weights for each

cell through linearization.

The use of SpaceMarkers on the spot-based 10x Visium tech-

nology limits direct inference of the specific cell subtypes in

which the interactions induce molecular alterations. We demon-

strate that transfer learning24,26 of the latent features inferred

from the CoGAPS analysis of the ST data into matched single-

cell RNA-seq data enables us to define the precise cellular

subpopulations with gene expression changes in each

SpaceMarkers gene. Other approaches mitigate the need for

paired data by coordinated expression changes between anno-

tated pairs of ligands and receptors in both spatial and non-

spatial single-cell data. Although these approaches directly

model the signaling process, they rely on the correspondence

between gene expression and protein function and databases

of ligand-receptor pairs.39 Coupling spatial data with newer sin-

gle-cell technologies that isolate interacting cells40 can further

enhance this inference.
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Ultimately, the results of SpaceMarkers depend on the pat-

terns inferred from the latent space method. The biological

robustness of the SpaceMarkers statistic relies on the use of pat-

terns associated with significant activity levels as well as a

spatial overlap with other patterns of interest. For example, we

analyzed the interaction of immune cells with one invasive carci-

noma pattern of the three invasive carcinoma patterns learned

using the high-resolution CoGAPS analysis. We did not analyze

the other two patterns because one was isolated away

from the immune pattern and hence had no interactions, and

although the other pattern had a spatial overlap with the immune

pattern, it had much lower activity levels. For the residual mode

to be effectively used, it is important not only just to resolve the

ST data into biologically meaningful latent features but also to

provide a good fit between the original ST data and its recon-

struction from the latent features. In the absence of a good fit,

the residual errors contain not only just the effects attributable

to inter-feature interaction and the measurement error but also

the estimation errors resulting from an overly constrained factor-

ization. In such cases, we recommend using the SpaceMarkers

in the DE mode. Similarly, the utility of SpaceMarkers is dimin-

ished if the learned latent features do not correspond to individ-

ual cell phenotypes or if markers of essential cell types are not

represented by any of the learned latent features. Future work

can overcome this limitation through semi-supervised learning

methods that use cell-type marker expression as a proxy for

the latent feature input in the DE mode for SpaceMarkers.

When genes associated with cell-surface interactions and

cytokine secretions are grouped together in a latent feature,

the assignment of a single kernel-width parameter to the latent

feature in the SpaceMarkers algorithm is inconsistent with the

varying distances associatedwith these two types of intercellular

interactions. Identification of intercellular interactions in such

scenarios requires a mathematical framework for spatially

resolved causal inference that models distinct cell types, varying

ranges and gradients of influence for cytokine secretions and

surface interactions, and spatially resolved expression of individ-

ual genes. One such example is MESSI,41 which uses mixture-

of-experts and multi-task learning approaches to predict the

gene expression in a particular cell type with the help of signaling

genes in neighboring cells. Future work integrating these

methods with latent features in place of individual genes will

both reduce the computational complexity and enhance the bio-

logical interpretability of these spatially aware network inference

methods.
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Fertig (ejfertig@jhmi.edu)

Materials availability
This study did not generate new materials.

High-resolution figures
High resolution versions of the figures in this manuscript are available on Zenodo (https://doi.org/10.5281/zenodo.7622690).

Data and code availability
d Processed 10x Visiumdata from the PDAC lymph node, PanIN, andHCC samples have been deposited at theGene Expression

Omnibus (GEO) and are publicly available as of the date of publication. Accession numbers are listed in the key resources table.

d The original code for the SpaceMarkers package is available at www.github.com/FertigLab/SpaceMarkers under MIT license

and archived on Zenodo (https://doi.org/10.5281/zenodo.7621285). The scripts used for the analysis presented in this paper is

available at www.github.com/atuldeshpande/SpaceMarkers-paper and archived on Zenodo (https://doi.org/10.5281/zenodo.

7621291).

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

Sample collection, preparation, and storage
Invasive breast ductal carcinoma

The fresh frozen invasive breast ductal carcinoma was collected in 2011 and obtained fromBioIVT. The tumor was stage IIA, ER Pos-

itive, PR Negative, Hercep Test 2+. The RNA quality of the sample, as measured with Bioanalyzer (Agilent) was RIN = 9.26. The sam-

ple was embedded in optimal cutting temperature (OCT) compound and immediately frozen. Cryosections of 10 mmwere placed on

Visium Gene Expression slides (10x Genomics).
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PDAC metastatic lymph node

The PDAC peritumoral lypmh node was surgically resected during curative surgery at the Johns Hopkins University. The lymph node

was embedded in OCT and immediately frozen. Pathological examination of an H&E stained cryosection identified a PDAC metas-

tasis to the lymph node. A cryosection of 10 mm were placed on a Visium Gene Expression slide (10x Genomics).

PanIN sample

The PanIN sample was a surgical specimen from a collection obtained during 2016 to 2018 available in the Johns Hopkins University

School of Medicine Department of Pathology archives under Institutional Review Board approval (IRB00274690) under a waiver of

consent.

HCC sample

The HCC sample was surgically obtained as part of a clinical trial (NTC03299946) for neoadjuvant cabozantinib and nivolumab pre-

viously described.43 The surgical specimen was immediately embedded in OCT, frozen and a 10 mm cryosection was placed in a

Visium Gene Expression slide (10x Genomics).

ST library preparation
Briefly, following tissue permeabilization optimization, according to 10x Genomics instructions, samples were fixed in methanol,

stained (H&E) and imaged. Sequencing libraries were prepared using the Visium Spatial Gene Expression Reagent Kit (10x

Genomics), following manufacturer’s instructions, and sequenced on an Illumina NovaSeq.

SpaceMarkers algorithm
Here we describe the SpaceMarkers algorithm to identify genes associated with nonlinear effects of latent feature interactions. To

facilitate exposition, we will refer to the spatial component of the latent features as ’’patterns’’.

Modeling pattern interactions in the residual space

We assume a generic latent space representation model where the ST data matrixD is factorized into two low-rankmatrices A and P.

Consequently, the matrix product AP is a low-rank approximation of the high-dimensional spatial RNAseq data, accounting for all

linear combinations of the latent patterns such that

Dij ^ ðAPÞij + εij;

where measurement noise εij are independent and normally distributed with zero mean (see Fertig et al.22 for the CoGAPS-specific

model). However, this assumption associates the CoGAPS residuals purely with measurement noise, disregarding any molecular

changes resulting from inter-pattern interactions. To that end, we introduce an additional term fðA;PÞÞij which represents the un-

known molecular changes due to pattern interactions such that

Dij ^ ðAPÞij + fðA;PÞij + εij;

where the measurement noise εij are independent and normally distributed with zero mean and variance s2ij . Thus, we hypothesize

that the residuals represent both measurement noise and the molecular changes from inter-pattern interactions. Within the scope of

this paper, we seek to only identify genes which exhibit higher residual effects associated with two interacting patterns. To this end,

we use CoGAPS with the default settings and analyze the residual space of the CoGAPS factorization results. That is, we use the

CoGAPS residuals as an estimate of fðA;PÞij such that

bf ðA;PÞij ^E
h
fðA;PÞij

���D;A;Pi = Dij � ðAPÞij
in regions where two patterns interact (i.e., have overlapping influence) versus regions where each pattern has exclusive influence. To

identify the genes associated with the nonlinear interactions between a given pair of patterns, we first identify hotspots of pattern

influence for each pattern. If both patterns have overlapping influence in a spot, they are deemed to be interacting in that spot.

The CoGAPS residuals are computed in the interacting regions as well as in regions where each pattern is individually active.

When the null hypothesis of non-interaction between the patterns is true, the residuals have no dependence on underlying regions

(interacting or exclusive). On the other hand, genes associated with higher CoGAPS residuals in the interacting regions compared

with the regions with exclusive pattern influence from either pattern show a strong dependence on spatial overlap between the pat-

terns, and thus reject the null hypothesis. These genes constitute the SpaceMarkers, markers of spatial interaction between the two

patterns in question. Focusing on strictly higher residuals avoids the confounding factors from decreased gene expression due to

heterogeneous spot populations compared to homogeneous ones.

Identifying regions of pattern influence and pattern interaction

For each spatially resolved pattern, we identify its region of influence by using a Gaussian kernel-based spatial smoothing approach.

Through the spatial smoothing, we model a pattern’s influence extending beyond a spot to its neighboring spots as well. Given the

pattern intensity pðsiÞ associated with a i-th spot si = ðxi; yiÞ in the sample, we calculate the spatially smoothed pattern intensities by

using the leave-one-out method

bpwp
ðsiÞ =

X
sjssi

wpðsi; sjÞpðsjÞ
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with the spatial Gaussian kernel

wpðsi; sjÞ =
1ffiffiffiffiffiffi

2p
p

swp

e

�dðsi ;sjÞ2
2s2wp ;

where dðsi; sjÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞ2 + ðyi � yjÞ2

q
is the distance between the i-th and j-th spots, and swp

is the kernel width. We used the

Smooth.ppp function in the R package spatstat44 to perform the smoothing. We obtain a null-distribution by applying the kernel-

based smoothing to spatially permuted pattern values (by pseudorandomly assigning spot locations ðnperm = 100Þ). This null-dis-

tribution is assumed to be normal, and we obtain the sample mean cmp and standard deviation csp for each pattern. We identify the

pattern’s region of influence as the set of spots with outliers

bpwp
ðsiÞ > cmp + tpcsp ;

where tp is the outlier threshold for the pattern. The optimal values of the kernel width wp and outlier threshold tp are the arguments

that minimize the spatial autocorrelation (Moran’s I) of the residuals

rðsiÞ = pðsiÞ � bpwp
ðsiÞ:

The optimal kernel width wp for each pattern is the value which minimizes the Moran’s I in the residuals over all spots in the sample.

Subsequently, the optimal outlier threshold tp minimizes spatial autocorrelation of the residuals rðsiÞ over the spots contained in the

resulting region of pattern influence. If a spot is influenced by two or more patterns, these patterns are said to be interacting in such a

spot. For each pattern pair of interest, the set of all such spots is defined as their interacting region.

Statistical test to identify genes associated with pattern interactions

For a given pair of patterns p1 and p2 with a substantial regions of exclusive pattern influence and pattern interaction, we define three

subregions characterized by

d The spots with p1 influence and no p2 influence.

d The spots with p2 influence with no p1 influence.

d The spots with overlapping influence from both p1 and p2.

The elements from each row of bR corresponding to the subregions described above denote the CoGAPS residuals in the respec-

tive subregions. For each gene (row) i, we perform a non-parametric Kruskal-Wallis test45 for stochastic dominance of the CoGAPS

residuals in at least one of the three subregions, with a posthocDunn’s test46 to ascertain the relative dominance between the respec-

tive subregions. Of particular interest to us are the genes which have statistically significantly higher CoGAPS residuals (FDR¸0.05) in

the interacting region relative to the other two subregions as well as genes which exhibit statistically significantly higher CoGAPS

residuals exclusively in the interacting region compared to at least one of the two other subregions.

Multi-resolution CoGAPS analysis
The ST genes by spot counts data for each sample was filtered to remove genes and spots with no or constant signal and then log2
normalized. The final matrix size of the input data matrix D are noted in the table below. The element Dij represents the expression of

the i-th gene in the j-th spot. The CoGAPS (version 3.5.8)37 algorithm was run using the filtered and normalized counts data as input.

Additionally, default CoGAPS parameters were used except for nIterations = 50,000, sparseOptimization = TRUE, distributed = sin-

gle-cell, and nSets = 4. CoGAPS factorization results in two lower-dimensional matrices: an amplitude matrix (A) containing gene

weights and a patternmatrix (P) containing corresponding spot weights estimated for a pre-specified number of latent features (nPat-

terns). On each of the input datasets, the algorithm was tested for a range of nPatterns.

nPattern values and number of learned patterns for different CoGAPS runs. The values shown in boldface are used in further

analysis.
Sample # genes # spots numPatterns (Learned Patterns)

PDAC metastatic lymph node 18418 1351 5(5), 8(10), 15(21)

PanIN 16,954 1,872 5(5), 10(10)

Invasive breast ductal carcinoma 24228 4898 5(5), 10(9), 15(14), 20(16)

HCC 20423 3006 5(4), 10(7), 15(9), 20(10), 30(18)
The pattern weights for each spot were plotted over the tissue to show association between a pattern and a tissue region. In high-

Res Breast cancer analysis, genes were assigned to the pattern they were most strongly associated with using the patternMarker

function in CoGAPS (version) in R (version). The genes for each pattern were submitted to the Molecular Signatures Database

and searched within the BIOCARTA, KEGG, and HALLMARK pathways.27–29 Pathways were considered significant if FDR< 0:05.
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Scatterpie visualizations
We use the A and Pmatrices in the CoGAPS result to represent each Visium spot as a combination of overlapping latent patterns. To

this end, we calculate the fractional gene expression FSEkj in pattern k at spot j as

spotFEkj =
Pkj

P
iAikP

k

�
Pkj

P
iAik

� ;
where i is the gene index. We use the ‘vizAllTopics‘ function from the ‘STdeconvolve‘ package17 to visualize each spot as a pie chart

showing the fractional gene expression in each pattern.

ProjectR analysis with matched single-cell RNAseq data
For the HCC sample in Figure 6, we have matched single-cell RNAseq data from the same patient. This scRNAseq data was prepro-

cessed using the ‘sctransform’ package,47 a normalization and variance stabilizationmethod based on regularized negative binomial

regression method, available in Seurat42 package in R. The transfer learning method, ProjectR, was used to project the spatial pat-

terns from the HCC sample onto matched scRNAseq data from the same patient. Although the Visium data for CoGAPS and single-

cell datasets use different normalization methods, our previous studies have shown that projectR can identify related cellular attri-

butes across various data types andmodalities in spite of batch effects.24 The R package projectR (version 1.6.0) was used to project

the Amatrix of the CoGAPS result into the target dataset. The CoGAPS result object and the counts data from the matched scRNA-

seq dataset were used as input where FULL = TRUE. Each individual cell in the scRNAseq dataset is associated with the pattern with

the highest projection. We limit the pattern association to the dominant patterns in the spatial data, namely Patterns 1,2, and 8.

Gene Set Enrichment Analysis using MsigDB
For each gene list query corresponding to SpaceMarkers for pairs of patterns, we compute their overlaps with gene sets belonging to

the HALLMARK, BIOCARTA and KEGG pathways in MsigDB,27–29 and report statistically significant overlaps (FDR < 0.05).
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