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Abstract 

Spatial transcriptomics (ST) is a powerful new approach to characterize the cellular and 

molecular architecture of the tumor microenvironment. Previous single-cell RNA-sequencing 

(scRNA-seq) studies of pancreatic ductal adenocarcinoma (PDAC) have revealed a complex 

immunosuppressive environment characterized by numerous cancer associated fibroblasts (CAFs) 

subtypes that contributes to poor outcomes. Nonetheless, the evolutionary processes yielding that 

microenvironment remain unknown. Pancreatic intraepithelial neoplasia (PanIN) is a 

premalignant lesion with potential to develop into PDAC, but the formalin-fixed and paraffin-

embedded (FFPE) specimens required for PanIN diagnosis preclude scRNA-seq profiling. We 

developed a new experimental pipeline for FFPE ST analysis of PanINs that preserves clinical 

specimens for diagnosis. We further developed novel multi-omics analysis methods for three-

fold integration of imaging, ST, and scRNA-seq data to analyze the premalignant 

microenvironment. The integration of ST and imaging enables automated cell type annotation of 

ST spots at a single-cell resolution, enabling spot selection and deconvolution for unique cellular 

components of the tumor microenvironment (TME). Overall, this approach demonstrates that 

PanINs are surrounded by the same subtypes of CAFs present in invasive PDACs, and that the 

PanIN lesions are predominantly of the classical PDAC subtype. Moreover, this new 

experimental and computational protocol for ST analysis suggests a biological model in which 

CAF-PanIN interactions promote inflammatory signaling in neoplastic cells which transitions to 

proliferative signaling as PanINs progress to PDAC.  

Summary 
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Pancreatic intraepithelial neoplasia (PanINs) are pre-malignant lesions that progress into 

pancreatic ductal adenocarcinoma (PDAC).  Recent advances in single-cell technologies have 

allowed for detailed insights into the molecular and cellular processes of PDAC. However, 

human PanINs are stored as formalin-fixed and paraffin-embedded (FFPE) specimens limiting 

similar profiling of human carcinogenesis. Here, we describe a new analysis protocol that 

enables spatial transcriptomics (ST) analysis of PanINs while preserving the FFPE blocks 

required for clinical assessment. The matched H&E imaging for the ST data enables novel 

machine learning approaches to automate cell type annotations at a single-cell resolution and 

isolate neoplastic regions on the tissue. Transcriptional profiles of these annotated cells enable 

further refinement of imaging-based cellular annotations, showing that PanINs are predominatly 

of the classical subtype and surrounded by PDAC cancer associated fibroblast (CAF) subtypes. 

Applying transfer learning to integrate ST PanIN data with PDAC scRNA-seq data enables the 

analysis of cellular and molecular progression from PanINs to PDAC. This analysis identified a 

transition between inflammatory signaling induced by CAFs and proliferative signaling in PanIN 

cells as they become invasive cancers. Altogether, this integration of imaging, ST, and scRNA-

seq data provides an experimental and computational approach for the analysis of cancer 

development and progression.  
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Main text 

Single-cell RNA-sequencing (scRNA-seq) and spatial molecular technologies have enabled 

unprecedented characterization of the molecular and cellular pathways that comprise the tumor 

microenvironment (TME) and its function pan-cancer1,2. This has had a particularly profound 

impact on the understanding of the complex immunosuppressive environment that characterizes 

pancreatic ductal adenocarcinoma (PDAC) and its hypothesized role hypothesized role in cancer 

progression3–7. However, further characterization of premalignancy is needed to delineate the 

precise evolutionary mechanisms that underlie malignant transformations and to understand the 

impact of the complex microenvironment that facilitates carcinogenesis and the development of 

nearly universal therapeutic resistance in PDAC. Pancreatic intraepithelial neoplasia (PanIN) is a 

pre-malignant lesion that progresses into pancreatic ductal adenocarcinoma (PDAC), and thereby 

provides the opportunity to directly characterize these evolutionary processes. However, the 

diagnosis of preinvasive cancer lesions, such as PanINs, is almost always limited to formalin-

fixed and paraffin embedded (FFPE) tissue and most of the current knowledge on the biology of 

these lesions is restricted to bulk transcriptional analysis. 

Thus, the recent development of a spatial transcriptomics (ST) technology that can utilize FFPE 

samples will provide untapped opportunities to apply high dimensional approaches to evaluate 

archived FFPE specimens of preinvasive PanIN biospecimens, with broad applicability to further 

biobanks of clinical trials as well as standard of care diagnostic samples8. Spatial molecular 

technologies can drive pathway discoveries in cancers and their TME while preserving tissue 

architecture, enabling the characterization of molecular changes that result from cell-to-cell 

direct interactions2. ST approaches have already identified transcriptional signatures associated 

with spatial interactions that are delineating the cellular phenotypes that underlie tumor biology, 
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evolution, and responses to therapy2. Until recently, these approaches were limited to fresh 

frozen sample profiling that maintain RNA integrity9–13. The newly developed ST approach for 

FFPE will leverage the accessibility to major sources of biopsy and surgical tissue samples 

stored in paraffin blocks and will allow retrospective studies spanning stages of cancer evolution. 

An additional challenge regarding the use of FFPE samples is the section preparation as the 

platform limits the size of the tissue area that can be analyzed. Extensions of ST technology 

which enable direct profiling on custom slides surmount this limitation. However, sectioning of 

these valuable FFPE biospecimens for ST analysis can destroy their integrity for subsequent 

clinical diagnostic testing, which must take precedent to single-cell analysis in translational 

research studies. Therefore, this study develops new methods to prepare smaller sections from 

FFPE blocks for ST analysis that uniquely preserves limited and valuable clinical samples, 

including PanINs. 

Computational analysis methods to discovery the cellular and molecular changes in the evolution 

of the microenvironment are an essential component of ST technologies, and are being actively 

developed alongside the experimental approach2. Multi-omics analysis, including integration 

with scRNA-seq data, is of particular interest for both deconvolution methods that overcome the 

lack of single-cell resolution of spatial technologies14 and contextualization of pathways learned 

about the TME within the context of larger scRNA-seq reference atlases. The combination of 

imaging with ST data enables a further level of integration to improve analysis, and are currently 

being developed to augment clustering of ST data for cell type annotation15,16. In FFPE ST, the 

possibility of staining and imaging the sections prior to library preparation allows pathological 

examination of cell morphologies to enhance annotations of cellular function at a single-cell 

resolution that are disregarded in current integration methods. We recently developed a machine 
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learning method that provides 3-dimensional (3D) pathologic tissue assessments, named CODA, 

to identify and quantify normal and PanIN cells in the pancreas from hematoxylin and eosin 

(H&E) stained FFPE sections17. This advance combined with our recent collation of a robust 

single-cell atlas of 61 PDAC tumors provides the unique opportunity for an innovative, new 

three-fold integration of imaging, ST, and scRNA-seq data that is tailored to analyzing the 

dynamic cellular transitions throughout PDAC initiation and progression to advanced disease.  

In this study, we develop and apply novel experimental and computational approaches for ST 

analysis to a cohort of PanINs spanning low-grade and high-grade lesions. Analysis of the 

epithelial cells purified through integration with imaging using CODA revealed that all except 

one of the PanIN lesions share similar expression patterns to the classical PDAC subtype. The 

one PanIN sample that does not express this classical signature expresses cancer stem cell (CSC) 

markers, suggesting that cells with stemness transcriptional features are present at premalignant 

stages. Moreover, this integrative analysis demonstrated that the PanINs microenvironment 

contains the same cancer associated fibroblast (CAF) subtypes that are enriched in invasive 

PDACs, providing new evidence that these cells modulate premalingnacy. The further multi-

omics integration with our reference scRNA-seq atlas of PDAC further found that a CAF-

associated inflammatory pattern in neoplastic epithelial cells gradually decreases during PDAC 

invasion, and is associated with a compensatory increase in proliferation pathways in PDAC 

carcinogenesis. Altogether, this integrated experimental and computational approach for multi-

omics integration is broadly applicable to analysis of cancer progression in other tumor types.  

Spatial transcriptomics applied to FFPE specimens captures preneoplastic pancreatic 

tissue architecture 
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To identify the mechanisms associated with PanIN to PDAC progression, we applied a recently 

developed FFPE ST protocol to PanIN samples and the analysis combined two transfer learning 

methods (Figure 1A). The ST slide’s dedicated areas for analysis are small (6x6 mm), and the 

FFPE preserved samples are typically larger and would require coring or scraping of the block to 

isolate only the PanIN lesion. Extensive manipulation of FFPE blocks for the ST sample 

preparation would compromise future clinical diagnostics assessment of the broader PDAC 

surgical specimen associated with the PanIN lesions selected. Therefore, we developed a method 

to score the surface of the FFPE blocks using 5mm diameter circular skin biopsy punches. Prior 

to sectioning, the punches were used to score the regions containing the ~1mm PanIN lesion 

while preserving the block. The scoring then allowed the non-relevant tissue to detach from the 

regions that were collected and placed on the designated area of the ST slide (Figure 1A). This 

approach enables ST profiling of selected PanIN lesions, while minimizing manipulation to 

protect the FFPE block for further analysis. Following sections preparation and ST data 

generation, we incorporated a machine learning approach, CODA, to identify cell types in each 

sample and at the same time deconvolute the cell types captured in each ST spot (Figure 1A). 

The accurate cell classification for each ST spot allowed more robust differential analysis 

between normal and PanIN spots. To integrate the PanIN analysis with PDAC samples to build 

the carcinogenesis process of pancreatic cancer, we applied a transfer learning method, ProjectR, 

to identify PanIN signatures in a scRNA-seq PDAC compilation dataset, and vice-versa (Figure 

1A). 

To study the mechanisms of progression from pre-malignant early PanINs to PDAC, we applied 

this FFPE ST protocol to profile 4 patient tumor specimens with paired low- (LG) and high-

grade (HG) PanINs (total number of lesions = 8). This cohort was designed to enable 
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comparisons of progressive mechanisms within and between patients. Initial total RNA quality 

check indicated that all samples presented some level of RNA degradation (RIN ~2) but with a 

high concentration of 200bp fragments (DV200 > 50%) compatible with the FFPE ST platform. 

Following ST data generation, pre-processing and filtering, seven out of the eight samples 

presented high quality data for subsequent downstream analysis. We were able to detect an 

average of 71,695 reads and 2,537 genes per spatial spot, and an average of 16,266 genes per 

sample. 

The ST data from our PanIN cohort provides combined image and transcriptomics profiling 

(Figures 1B and 1C). We characterized the canonical cellular distribution of PanINs and 

surrounding pancreas tissue by first applying clustering to the ST profiling data alone. The 

normal pancreas is composed of multiple cell subtypes with different functions. To execute its 

most important functions, the pancreas is composed of exocrine cells (acinar cells) that are 

responsible for the production of digestive enzymes and by endocrine cells (islets of Langerhans) 

that produce insulin and other hormones. The excretion of enzymes occurs through pancreatic 

ducts, while insulin and hormones are directly released into the blood stream. PanINs and 

PDACs differentiation resembles the morphology of normal pancreatic ducts19. Annotating 

marker genes differentially expressed in each cluster learned from the transcriptional signal 

infers these canonical and transformed cell types (Figure 1C, Supplemental Figure 1). 

Moreover, the distribution of the normal and neoplastic cell types identified from clustering 

matches their locations in the corresponding section image (Figures 1B and 1C). In all samples, 

it was possible to map specific clusters to the PanINs that were distinct from the other clusters 

including the normal ducts. Nevertheless, in some regions the clusters extend beyond cellular 

boundaries into the adjacent cell types on H&E imaging (Supplemental Figure 2). This 
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extended signal could arise either from the intercellular signaling extending the molecular 

changes beyond cellular margins or from technical artifacts in the ST technology. 

To improve cluster annotations based on tissue morphology, we applied a machine learning 

method, named CODA, to the H&E data from Visium to automatically classify the pancreatic 

normal and neoplastic cells at a single-cell resolution to enhance the spot-based ST analysis. 

Briefly, CODA is a 3D imaging-based approach that uses deep learning semantic segmentation 

to identify different cell types within the human pancreas (acinar cells, islets of Langerhans, 

fibroblasts, adipocytes, endothelial cells, ductal cells, neoplastic cells)17. In this study, we 

adapted CODA for integration of imaging with Visium to obtain a color-coded image with each 

color corresponding to a specific cell type from the stained tissue sections (Figure 1D). In 

contrast to the clustering annotations, cells annotated through imaging using CODA are at single-

cell resolution. Thus, we could apply this approach to estimate the true proportion of cells within 

each spot (Supplemental Figure 3) associated with each spatial barcode in the ST data for 

further downstream analysis. By determining cell proportions in each ST spot we were able to 

select those representing a unique cell type, while filtering out spots capturing multiple cell types, 

to avoid unwanted bias in the comparisons between normal and PanIN clusters, for example. 

PanIN-associated fibroblasts are a heterogeneous population composed of the same 

subtypes detected in invasive PDAC 

The ability of our integration of imaging and ST data to characterize PanINs and their 

surrounding microenvironments provides the unique opportunity to examine the fibroblast 

population adjacent to these lesions. While CODA broadly annotates stromal cells (Figure 2A), 

the PDAC TME is enriched with a heterogeneous population of cancer associated fibroblasts 
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(CAFs). They have been classified into three subtypes based on transcriptional profiles: 

myofibroblastic CAFs (myCAFs), inflammatory CAFs (iCAFs), and antigen-presenting CAFs 

(apCAFs)21-23. These populations of mesenchymal cells play dual roles and can induce or inhibit 

PDAC progression21-24. CAFs exert a tumorigenic role by providing metabolites for tumor cell 

survival, stimulating cell growth pathways through paracrine signaling, and creating an 

immunosuppressive microenvironment22. However, a  tumor suppressing CAF enriched TME 

can reduce essential nutrients required for tumor progression and differentiation, and the same 

CAFs can be functionally repolarized to release chemokines that will recruit immune cells into 

the tumor22. 

MyCAFs and iCAFs have previously been observed in pancreatic premalignant lesions in murine 

models that recapitulate PDAC development, suggesting that they arise early during 

tumorigenesis25,26. Nevertheless, their presence is not well described in human premalignant 

lesions. Here, we leveraged our computational analysis approach to purify stromal cells in the ST 

data and further classify these cells from the ST data using established gene markers23 to map the 

distribution of myCAFs, iCAFs and apCAFs in the human PanINs microenvironment. In our 

cohort, the density of stromal cells inferred from CODA varied but were observed adjacent to 

each premalignant lesion (Figure 1D, pink annotated regions). The further integration of CODA 

annotations with the ST transcriptional profiles showed that a CAF common signature (pan-CAF) 

is consistently expressed across the collagen rich regions annotated by CODA (Figure 2B, 

orange and red spots). The expression of myCAF (Figure 2C) and iCAF (Figure 2D) markers 

were detected in all samples overlapping with the regions where pan-CAFs are present.  

The presence of a recently described subtype of apCAFs was also investigated using the 

transcriptional data in our cohort. apCAFs were first identified by scRNA-seq in a PDAC mouse 
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model. Further characterization showed that these cells express MHC-II genes and can present 

antigens to CD4+ T cells in vitro23. Subsequently, apCAFS have been shown to present antigen 

to Tregs which activates their suppressive capability27. In our study, expression of the apCAF 

signature was detected in all samples (Figure 2E). As expected, a significant proportion of the 

apCAF positive spots also express CD45, a marker of immune cells (Figure 2F) that can express 

the same MHC-II genes. Since CODA cannot annotate immune cells due to their limited size and 

scant cytoplasm, and ST does not provide single-cell resolution, the confirmation of apCAFs in 

some samples could not be exactly defined by our analysis. Nevertheless, in some regions of the 

stroma the expression of apCAF markers do not colocalize with CD45+ cells, indicating that 

these mesenchymal cells are present in human PanINs. 

ST identifies expression of both PDAC classical subtype and cancer stem cell signatures in 

PanINs 

CAFs are mediators of PDAC progression and aggressiveness through interactions with 

neoplastic cells22,23,28. The detection of PDAC associated fibroblast subtypes in PanINs prior to 

establishment of invasive carcinoma suggests that the differentiation of fibroblasts into CAFs is 

an early event that may influence PanIN progression to PDACs. To test this, we leveraged the 

automated cell type annotation from CODA with cluster-based annotations to select spots 

with >70% purity of ductal cells to compare normal and PanIN ducts (Figure 3A). Next, we 

characterized PanIN cell heterogeneity relative to the established classical and basal-like PDAC 

subtypes20. We found that six out of seven PanINs express the PDAC classical subtype signature 

(Figure 3B). The basal-like signature is not detected in any of the premalignant lesions (Figure 

3C). This observation supports the hypothesis that PDACs arise with a classical phenotype and 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 10, 2022. ; https://doi.org/10.1101/2022.07.16.500312doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.16.500312
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 12

likely acquire the basal-like phenotype upon progression and accumulation of molecular 

aberrations30.  

Only one HG PanIN sample (PanIN-HG3, Figure 1) expressed neither the classical nor the basal-

like signatures. Thus, we hypothesized that this sample expresses a third transcriptional 

phenotype. PDAC progression, resistance to therapies, and immune evasion are partialy 

associated with the presence of PDAC cells expressing cancer stem cell (CSC) markers21. We 

verified the expression of CSC markers among the PanINs in the cohort. The only sample with 

significantly high expression of CSC markers is the one that did not express the classical or the 

basal-like PDAC signatures (Figure 3D). The presence of cells expressing CSC markers in 

PanINs was previously described in a mouse model that mimics PDAC development22 and in 

human samples23, but little is known about the mechanisms leading to CSC genes up-regulation 

their role in PDAC progression. Our observation that this stemness signature is not observed in 

cells expressing the classical subtype suggests that neoplastic cells with stemness features are a 

distinct population that arise in early pre-malignant stages. Nonetheless, further investigation in a 

larger cohort is needed to determine the frequency of this stem-cell mechanism of progression, 

the pathways driven by stemness, and how these cells are interacting with the CAFs and other 

cells in the TME to modulate PDAC biology. 

Differential expression analysis between PanINs and normal ducts identifies gradual TFF1 

increased expression during PanIN progression limited to the classical phenotype 

To further define the molecular features of PanINs, spots from all samples CODA annotated as 

normal and PanIN ducts were merged for each patient and differential expression was performed 

to identify gene expression changes across each patient’s premalignant lesions. A total of 118 
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genes are differentially expressed in PanINs relative to normal ducts (Figure 3E) and their 

expression pattern discriminated PanINs from normal ducts among the different samples (Figure 

3F). Among the top 20 up-regulated genes in the premalignant lesions, only 5 genes (TM4SF1, 

CYP2S1, CD55, FER1L6 and PSCA) had no known role in pancreas tumorigenesis, suggesting 

that FFPE ST analysis is robust and corroborates previous gene expression analyses in PanINs34-

36. The pathway analysis from the differentially expressed genes indicates enrichment for MYC 

and oxidative phosphorylation pathway mediators. Both signaling pathways have been 

previously shown to be upregulated in PanINs and PDAC,  particulary in association with 

progression from premalignancy to invasive cancer, metastasis development, and resistance to 

therapy24–26 (Supplemental Figure 4). Although predominantly consisting of the classical 

subtype, the differential expression analysis highlighted the inter-sample heterogeneity with only 

one differentially expressed gene showing up-regulation in all classical samples (TFF1). TFF1 is 

known to be up-regulated in PanINs and PDACs and its protein levels have been suggested as a 

potential early detection marker found in bodily fluids. In in vitro cell culture models, the 

secreted form of TFF1 has been shown to increase PDAC and stellate cell motility without a 

significant impact on proliferation27. Since stellate cells are considered one of the precursors to 

some PDAC CAF subtypes28,29, it is possible that TFF1 is one of the mediators of intercellular 

interactions between PanIN and PDAC cells and CAFs.  However, the sample expressing the 

CSC markers signature does not express TFF1, suggesting that the stemness signature and TFF1 

are mutually exclusive (Supplemental Figure 5). 

The characterization of multiple ducts, including those spanning across stages of PanIN 

differentiation (mixed ducts), provides the opportunity to trace the cellular changes associated 

with PanIN progression. Additionally, ST analysis provides the ability to visualize the 
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preneoplastic differentiation stages and concomitantly map the respective gene expression level 

changes (Figure 4A). We therefore compared expression changes between lesions classified as 

LG or HG based on their morphology. The differentiation stages of PanINs cannot be 

discriminated using CODA and the classification of LG and HG preneoplastic ducts was 

performed through pathology examination (KF and LDW) (Figure 4B, C and D). Using the 

pathological PanIN classification, we identified mixed ducts containing normal, LG and HG 

preneoplastic cells (Figure 4E). 

We expanded our differential expression analysis study to uncover additional gene expression 

changes across PanIN stages. This analysis identified five other genes (MUCL3, C19orf33, 

TSPAN1, SCD, and ACTB) that were up-regulated in HG lesions relative to LG lesions 

(Supplemental Figure 7). In addition, the level of expression of MUCL3 and TSPAN1gradually 

increased from normal ducts through LG and HG lesions (Figure 4F and 4G). The same pattern 

was observed for TFF1 which was found to be up-regulated in the PanIN expressing the classical 

PDAC genes. This gradual change in expression is best visualized in one of the PanIN samples 

in which a single duct presents a mix of normal, LG and HG cells (Figure 4H). 

Changes in PanIN progression map to transitions in malignancy in PDAC 

PanINs are premalignant lesions that can progress to PDAC; this is supported by the detection of 

common driver mutations in premalignancies that are frequent in invasive cancer30–32. The 

examination of other molecular alterations that are present in PanINs and conserved in PDACs 

could provide new knowledge about the early transcriptional events of pancreatic carcinogenesis 

and the mechanisms driving the continuous development into invasive cancer. A limitation of 

our cohort in making these inferences is its small sample size and profiling only the PanIN 
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lesions across different individuals, and the lack of similar profiling of PDAC tumors from those 

patients. Our combined set of public domain scRNA-seq PDAC datasets (PDAC Atlas)18 

provides a cohort of over 61 samples against which we can further validate the molecular 

changes observed across grades of differentiation. While these single-cell datasets lack the 

imaging resolution of their ST counterparts, the dissociation procedures applied to the pancreas 

would be anticipated to retain cells from PanIN lesions when they co-occur with tumors. 

Therefore, further computational methods for multi-omics integration of our ST data of PanINs 

and scRNA-seq data in the PDAC atlas can further our analysis of molecular changes in the 

neoplastic epithelial cells that underly carcinogenesis (Figure 5A). 

To enable this analysis of tumor progression, we selected the gene expression profiles of 25,442 

epithelial ductal cells in 61 biospecimens collated from six previously published scRNA-seq 

datasets (Cancer: 14,589 cells; Normal: 7,561 cells; Normal Tumor Adjacent: 2,375 cells, 

Unspecified: 917 cells) (Supplemental Figure 8A). UMAP analysis of these cells identifies a 

phenotypic switch between true normal epitheial cells, tumor-adjacent normal cells, and within 

malignant epithelial cells supporting our hypothesis that these datasets likely contain 

unannotated PanIN cells. Using the PDAC atlas, we verified that TFF1 expression increases 

between normal epithelial cells and in tumor-adjacent normal epithelial cells and then again 

further increases in a subset of malignant PDAC cells (Figure 5B), mirroring the stage-specific 

increase in its expression observed in PanIN cells (Figure 5C). This integrative analysis further 

supports the association of this gene with PanIN and invasive PDAC progression. TFF1 

expression is almost undetectable in normal ductal cells. Surprisingly, the normal ductal cells 

adjacent to tumor cells express low levels of TFF1, suggesting that the transcriptionally normal 

surrounding ducts are already programmed toward a pre-malignant state. 
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To further delineate the molecular transitions that the malignant epithelial cells cells undergo, 

our complementary study of the PDAC atlas applied the Bayesian non-negative matrix 

factorization method CoGAPS48,49 that learned eight transcriptional patterns that delineate 

transitions in the epithelial cells18. In this current study, we seek to integrate the patterns learned 

from the scRNA-seq data with our ST dataset to determine the extent to which they represent 

stage-related transitions in the transformation from PanIN to PDAC.   To enable the integrative 

analysis between ST and scRNA-seq data, we adapted out transfer learning approach 

projectR33,34 to spatial data integration by projecting the patterns learned in the scRNA-seq data 

onto the epithelial spots from the ST data (N = 623 spots; normal = 254, LG = 110, HG = 159). 

Among the patterns projected from the atlas onto the ST data, Pattern 2 (Figure 5D and 

Supplemental Figure 8B), enriched with genes involved in KRAS signaling and estrogen 

response, showed a marked increase in projected pattern weights from normal epithelium 

through LG and HG PanINs (Figure 5E and Supplemental Figure 8C), corroborating 

previously reported studies showing up-regulation of pancreatic oncogenic signaling pathways in 

premalignancy initiation and progression50,51. Pattern 5 (Figure 5F and Supplemental Figure 

8D), associated with normal metabolic activity, showed a substantial decrease in projected 

pattern weights with progression of PanIN lesion grade (Figure 5G and Supplemental Figure 

8E), suggesting a decline of normal cellular function in the PanIN cells following the same trend 

that is present in the primary tumor cells from the PDAC Atlas. Pattern 7 (Figure 5H and 

Supplemental Figure 8F), representing an inflammatory state, is enriched in normal ductal cells 

and dissipates with the development of early stage PDAC and progression to advanced cancer. 

Pattern 7 also showed decreasing levels over the course of progression from normal cells to 

PanIN (independent of the differentiation grade), as demonstrated by the increase in the number 
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of spots with low projected weights (Figure 5I and Supplemental Figure 8G). This analysis 

provides further evidence that the scRNA-seq data in the PDAC atlas contains unclassified 

PanIN cells, and yields a model in which inflammatory signaling in epithelial cells precedes 

further signaling changes that promote growth in malignant cells during carcinogenesis. 

Discussion 

ST technologies are uncovering new molecular and intercellular interactions that provide insights 

into how these complex signaling networks mediate cancer development and progression2. In 

this study, we expanded a novel protocol developed for FFPE ST8 to preserve FFPE blocks and 

thereby enable the analysis of PanINs to uncover the mechanisms of progression from 

premalignancies to invasive PDAC. Another innovation of our study is the development of two 

machine learning methods for integrative analysis across imaging, ST profiles, and scRNA-seq 

data for the analysis of these data. The first method, CODA17, enabled the assignment of cell 

types to ST spots at a true single-cell resolution based on the imaging of the each ST section. 

Applying this imaging and ST integration facilitated accurate assignment of cell types, isolation 

of spots with single cell types for analysis, providing a framework for future ST deconvolution 

methods for analysis. The second method, ProjectR33,34, allowed the integration of scRNA-seq 

from invasive PDACs with ST data from PanINs to relate the mechanisms associated with 

PDAC initiation to subsequent PDAC progression. While our analysis applied this multi-omics 

approach to isolate molecular changes in purified cellular subpopulations, we note that the 

imaging-based cellular annotations and further scRNA-seq data can also be readily extended to 

spot-based deconvolution of ST data. In this study, our integration of state-of-the-art 

experimental and computational approaches allowed us to characterize the molecular and cellular 
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features of PanIN to PDAC development, providing a multi-omics framework for the broader 

study of carcinogenesis. 

Applying our combined experimental and computational approach to PanIN samples, we 

observed for the first time the presence of CAFs and the different transcriptional subtypes 

(myCAF, iCAF and apCAF) in premalignant human lesions. These subtypes were only 

previously described in PDAC21,23. CAFs are the most abundant cell type in the PDAC TME and 

are known to influence tumor cell behavior and to create an immunosuppressive environment35. 

The presence of these regulatory cells in human pancreatic premalignant lesions is not well 

described, but suggests that CAF-induced TME remodeling is an early event with durable impact 

on PDAC development. Further studies are necessary to examine the specific interactions driven 

by the different CAF subtypes and how they modulate preinvasive neoplastic cells and other 

cellular components of the PDAC TME. Such knowledge is critical to guide the development of 

new therapeutic interventions that inhibit or revert CAF oncogenic and immunosuppressive 

activity with the goal of intercepting PDAC development. 

ST analysis of the PanINs also identified transcriptional signatures that are known to be 

associated with PDAC phenotypes. PDACs are classified into classical and basal-like 

transcriptional subtypes20. Classical PDACs present a better prognosis and represent most tumor 

cells found in early stage cancers before patients receive treatment. This supports the hypothesis 

that initially all PDACs develop from the classical phenotype and that during the tumorigenesis 

there is a diverging point in which some cells will differentiate into the basal-like phenotype, a 

phenotype that is usually expanded by chemotherapy as resistance develops20,36. Further 

supporting this hypothesis, we detected the classical signature in six out of seven PanINs. The 

only sample that could not be classified as classical or basal-like expressed a CSC signature. 
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CSCs drive aggressive disease and their presence is associated with resistance to therapies, local 

recurrence, and development of metastasis37–39.  The presence of CSCs and CAFs in PanINs 

suggest that the features associated with resistance to therapies in PDAC arise early during 

tumorigenesis. Further studies are necessary to determine how the interactions between these cell 

types can modulate additional features of resistance to therapies and progression of PDACs. 

The differential expression analysis shows that LG and HG PanINs are transcriptionally similar. 

Among the few genes differentially expressed between these two PanIN grades, TFF1,  

frequently up-regulated in PanIN and PDAC, demonstrated gradual increase during PanIN 

progression but little is known about its role in tumorigenesis. As mentioned previously, secreted 

TFF1 could be involved in tumor cell interactions with CAFs27,40,41 The concomitant presence of 

CAFs and high levels of TFF1 should be further investigated to pinpoint the relationship 

between TFF1 expressing neoplastic cells and the adjacent CAFs to determine the involvement 

of this gene in the CAF-PDAC cross-talk. 

The computational approach we developed to analyze PanIN is novel and broadly applicable for 

multi-omic studies of carcinogenesis. While imaging data has been shown to refine clusters in 

ST analysis14,60, this is the first study to our knowledge to use large scale databases of imaging 

data to enable a machine-learning based annotation of broad cell subtypes at a single-cell 

resolution16. This approach is uniquely enabled by the FFPE extension of the ST technology, as 

FFPE based datasets are necessary to preserve cellular morphologies to leverage databases of 

pathology annotations. Moreover, the reliance on this approach on cellular morphology also 

enables potential future extensions to other imaging-based cellular classifiers of cellular 

function61. This imaging-based data integration approach (ST and CODA) enables accurate and 

automated identification of the transcriptional profiles of neoplastic cells across stages of PanIN 
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development through the differential expression analysis described above. However, fully 

relating these neoplastic cell state transitions to cancer progression requires relating these 

transcriptional states across the transition from normal epithelial through pre-malignancy to 

malignant PDAC cells. Here, we demonstrate that transfer learning approaches developed to 

integrate scRNA-seq data5,13,19 with matched imaging data can be extended to relate spatial data 

from precancer to reference tumor atlases. In this study, this two-stage computational approach 

integrating imaging, ST, and scRNA-seq data enabled us to identify a transition from 

inflammatory signaling in neoplastic cells from low grade PanIN to cellular proliferation in later 

stages of carcinogensis. In our complementary atlas study that identifies this inflammatory 

signaling, we further correlated this transition with CAF abundance and validated the ability of 

CAFS to promote this signaling in a novel human organoid co-culture model. The 

downregulation of this inflammatory signaling through LG to HG PanIN lesions observed in the 

ST data in this current study may be due to development of immunosuppressive CAFs that are 

already present in PanINs and are functionally similar to those present in PDACs, as we 

demonstrated using a human co-culture organoid model18. In addition, CAFs can create an 

immunosuppressive TME by producing and releasing cytokines that inhibit immune cell 

infiltration and factors that provide cancer cells additional growth and survival advantages at 

later stages42,43. This hypothesis is further supported by our observation of enhanced increased 

growth pathways in the transition from LG to HG PanIN lesions observed in our study. 

Although we used a limited sample number, we were able to corroborate previous findings 

related to PanINs and discover new features and their potential role in the progression of these 

lesions to a large-scale cohort of scRNA-seq data for invasive PDAC. We successfully visualized 

the microenvironment in which PanINs  developed and showed for the first time the presence of 
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CAFs  with potential suppressive function in PanINs. Our cohort included samples with varying 

stromal and acinar cell composition, but due to the limited size we did not observe correlations 

between PanIN transcriptional profiles with the adjacent cell types. To examine if the CAFs 

surrounding the PanINs remodel the premalignant microenvironment and influence 

premalignancy progression, a larger cohort with a more stringent selection criteria that includes 

patients’ clinical features and outcomes (e.g.: tumor stage, metastasis, response to therapies) 

would be better suited to unveil the critical features of CAF-PanIN (or PDAC) interactions in 

PDAC tumorigenesis through correlations between clinico-pathological features and TME 

compostion. Nonetheless, we demonstrate that multi-omics analysis enabled by FFPE ST, 

imaging data, and scRNA-seq data lead to a model in which neoplastic cells transition from 

CAF-induced inflammation to cellular proliferation during PDAC carcinogenesis. Moreover, this 

hybrid experimental and computational approach for provides broadly applicable tools to create a 

molecular and cellular model of the pathways that underlie carcinogenesis from multi-modal data 

spanning distinct high-dimensional transcriptomics and spatial molecular technologies. 

Data and code availability 

Submission of spatial transcriptomics data to dbGAP and code to github are in process.  
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FIGURES LEGENDS 
 

 
FIGURE 1 – Spatial transcriptomics analysis of FFPE pancreatic intraepithelial neoplasia 
(PanIN). (A) Pancreatic cancer surgical specimens in FFPE were examined and the regions 
containing PanIN lesions were identified for scoring using a 5mm skin biopsy punch and 
sectioning onto the spatial transcriptomics slide. (B) Stained sections were used for pathology 
examination and identification of PanINs and other pancreatic histological regions. (C) The 
unsupervised clustering of the spatial transcriptomics data identified gene expression clusters 
which location resembles the distribution observed in the stained sections. (D) Single-cell 
resolution of the cell subtypes indicated in the legend were defined automatically from cellular 
morphologies of the H&E imaging using the machine learning approach CODA16, thereby 
refining cellular annotations obtained from clustering alone.  
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FIGURE 2 – Spatial distribution of PDAC cancer associated fibroblasts (CAF) subtypes. (A) 
CAFs localization was mapped using pan-CAF markers, (B) myofibroblastic-CAF markers, (C) 
inflammatory-CAF markers and (D) antigen presenting-CAF markers. (E) CD45 expression was 
examined to identify regions where CAFs and immune cells were co-localized. 
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FIGURE 3 – Pancreatic intraepithelial neoplasia (PanINs) transcriptional features. (A) Six out of 
seven PanINs, expressed markers that characterize the classical subtype of pancreatic cancer, 
while (B) the basal-like signature was not expressed by any of the premalignant lesions. (C) The 
only sample that is neither classical nor basal-like expresses cancer stem cell (CSC) markers. (D) 
Differential expression analysis identified genes which up-regulation (blue dots) or down-
regulation (red dots) in PanINs, relative to normal ducts, discriminate preneoplastic from normal 
cells (E). 
  

0.2 0.0 0.2 0.4
CSC1

CTSE

MUC5AC

S100A6

ITGB4

LYZ

TFF1

TM4SF1

IFI27

CYP2S1

PPDPF

TFF2

TAGLN2

GPRC5A

CD55

S100P

FXYD3

ANXA10

FER1L6

MUC1

PSCA

MMP7

SLC4A4

PDLIM4

CFTR

CCL28

TGM2

BGN

LBH

TCN1

CRP

CLU

PFKFB3

FXYD2

DUOX2

ANXA4

MUC5B

LCN2

SPP1

DUOXA2

CRISP3

Cell type
Sample

Scaled gene
expression

��

��

0
2
4

Cell type

Duct
Neoplasia

Figure 3

A

B

C D E

CSC signature: 
ABCG2, ALDH1A1, CD24, CD44, 
EPCAM, PROM1, CXCR4, NES, 

DCLK1, SOX9, NANOG

Classical genes: BTNL8, FAM3D, ATAD4, AGR3, CTSE, LOC400573, LYZ, TFF2, TFF1, ANXA10, LGALS4, PLA2G10, CEACAM6, VSIG2, TSPAN8, 
ST6GALNAC1, AGR2, TFF3, CYP3A7, MYO1A, CLRN3, KRT20, CDH17, SPINK4, REG4

Basal-like genes: VGLL, UCA1, S100A2, LY6D, SPRR3, SPRR1B, LEMD1, KRT15, CTSL2, DHRS9, AREG, CST6, SERPINB3, KRT6C, KRT6A, 
SERPINB4, FAM83A, SCEL, FGFBP1, KRT7, KRT17, GPR87, TNS4, SLC2A1, ANXA8L2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 10, 2022. ; https://doi.org/10.1101/2022.07.16.500312doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.16.500312
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 28

 
FIGURE 4 – Identification of transcriptional changes associated with pancreatic intraepithelial 
neoplasia (PanIN) differentiation grade. (A) Normal, low grade (LG) and high grade (HG) 
PanINs are morphologically distinct and can be classified by pathology examination. (B, C and 
D) As a model for PanIN progression, a mixed pancreatic duct containing normal, LG and HG 
cells was used to better visualize changes in expression. Top genes from the differential 
expression analysis, (E) MUCL3, (F) TSPAN1 and (G) TFF1, show gradual increase from normal 
through LG until HG progression. 
  

Figure 4
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FIGURE 5 – Integration of pancreatic intraepithelial neoplasia (PanIN) spatial transcriptomics 
(ST) data with invasive pancreatic cancer single-cell RNA-sequencing (scRNAseq) using 
transfer learning. (A, C and E) Representation of enriched MSigDB pathways in Pattern 2, 
Pattern 5 and Pattern 7 of the PDAC atlas. (B, D and F) Violin plots of projected PDAC atlas 
Pattern 2, Pattern 5 and Pattern 7 weights in PanIN ST spots. (G) UMAP embedding of epithelial 
cells from the PDAC atlas colored by TFF1 expression. (H) Violin plots of TFF1 expression in 
all PanIN ST epithelial spots grouped by epithelial lesion grade. P-values were calculated using 
two-sample Wilcoxon rank-sum tests. (N: normal, LG: low-grade, HG: high-grade).  
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METHODS 

Sample selection 

FFPE pancreatic ductal adenocarcinoma (PDAC) surgical specimens collected from 2016 to 

2018 were examined by experienced pathologists (KF and LDW). PanINs present in the 

specimens were marked and selected for ST analysis and were classified as low- and high-grade 

by experienced pathologists (L.D.W. and K.F.). The samples were obtained from the Johns 

Hopkins University School of Medicine Department of Pathology archives under Institutional 

Review Board approval (IRB00274690) under a waiver of consent.  

RNA quality control 

All samples selected for the study had their RNA quality checked prior to the ST slides 

preparation. Total RNA was isolated from 20um sections of each sample using the RNase FFPE 

kit (Qiagen), following manufacturer’s instructions. RNA quality was measured using the 

DV200 assay on the Bionalyzer (Agilent) to determine the proportion of fragments with ~200bp 

in the sample. RNA quality was considered good if DV200 > 50%. 

Spatial transcriptomics slide preparation 

The ST data was generated using the commercial platform Visium FFPE (10x Genomics). The 

slides are designed to accommodate a total of 4 sections with a maximum size of 6 x 6 mm. For 

the specimens that were larger than the designated regions of the Visium slides, we scored the 

selected sample area containing the PanIN using skin punches of 5mm in diameter. The skin 

punches were used directly on the FFPE blocks to delimit the area of interest, so when the block 

was sectioned in the microtome the PanIN containing region was detached from the rest of the 
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section and could then be placed in the ST capture area of the slides (Figure 1A). A 5μm section 

from each sample with 5mm in diameter was used for the ST analysis. Upon preparation, the 

slides were incubated at 42oC and then stored in a desiccator until use. 

Spatial transcriptomics data generation 

Using the Visium FFPE (10x Genomics) platform and following manufacturer’s validated 

protocol the samples were deparaffinized, stained with hematoxylin, and scanned using the 

Nanozoomer scanner (Hamamatsu) at 40x magnification. Human probe hybridization was 

performed overnight at 50oC. Following probe ligation, the RNA was digested, and the tissue 

was permeabilized for the release, capture, and extension of the probes. The designated area for 

each sample is covered by probes containing oligo-d(T) that capture the probes by a poly-A tail 

sequence present in the probe sequence. The sequencing library preparations were performed as 

instructed by the manufacturer using the extended probes as the template. All libraries were 

sequenced with a depth of at least 50,000 reads per spot (minimum of ~250 millions per sample) 

at the NovaSeq (Illumina). The Visium Human Transcriptome Probe Set v1.0 contains probes to 

19,144 genes and after computational preprocessing (filtering for probes off-target activity) 

provides gene expression information for 17,943 genes. 

Cell type annotation using transfer learning from H&E imaging 

Seven microanatomical components of human pancreas tissue were multi-labelled using a 

semantic segmentation workflow. The seven components recognized were (1) islets of 

Langerhans, (2) normal ductal epithelium, (3) vasculature, (4) fat, (5) acinar tissue, (6) collagen, 

and (7) pancreatic intraepithelial neoplasia (PanIN). Briefly, fifty examples of each tissue type 

were manually annotated using Aperio ImageScope. Half of the newly generated annotations 
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were used in the training dataset for the convolutional neural network and the other half were 

used as an independent testing dataset to evaluate model performance. The testing dataset 

revealed an overall accuracy of 94.0% in classification of tissues in the TMAs. Following 

training, the tissue images were segmented to a resolution of 1µm.  

Nuclear coordinates were generated via detection of two-dimensional hematoxylin intensity 

peaks. Briefly, the TMA images were downsampled to a resolution of 1 µm/pixel. As the tissues 

contained only a hematoxylin signal, color deconvolution (generally used to de-mix the 

hematoxylin channel from the hematoxylin & eosin image) was not necessary. Instead, the color 

image was converted to greyscale. The image was smoothed using a Gaussian filter and two-

dimensional intensity peaks with minimum radii of 2µm were identified as nuclear coordinates. 

Registration of ST data with cell type annotations 

The low-resolution image used for the Visium pre-processing with Space Ranger was registered 

to the high-resolution tissue image used for microanatomical measurements to integrate the two 

workflows. The registration utilized the fiducial markers present on the ST glass slide to estimate 

the registration scale factor and translation. As registration was performed on two scans of 

identical tissue sections, it was assumed that rotation was not necessary. Here, the low-resolution 

image was registered to the high-resolution image (rather than the other way round) so that the 

scale factor was always greater than 1 and ensuring that the 1 µm resolution of the tissue micro 

annotations was preserved. First, the fiducial markers in each pair of images were segmented by 

identification of small, nonwhite objects surrounding the larger TMAs. Nonwhite objects were 

determined to be pixels with red-green-blue standard deviations greater than 6 in 8-bit space. 

These objects were morphologically closed and very small noise (<50 pixels) were removed. The 
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fiducial markers were then determined to be objects in the image within 20% of the median 

object size (as many fiducial markers existed for each corresponding tissue image). This process 

resulted in fiducial image masks for the high-resolution and low-resolution tissue images. With 

these masks, four possible registrations were calculated to account for the situation where the 

Visium analysis was performed on the tissue image rotated at a 0-, 90-, 180-, or 270-degree 

angle. For each registration, the corner fiducial markers of the low-resolution image were 

rescaled and translated to minimize the Euclidean distance to the fiducial markers of the high-

resolution image. Of the four registration results, the registration resulting in the greatest Jaccard 

coefficient between the high-resolution and low-resolution fiducial masks was chosen. For the 

eight TMAs, the average Jaccard coefficient of the fiducial masks was 0.94. 

The registration information used to overlay the low-resolution tissue image to the high-

resolution tissue image was used to convert the coordinates corresponding to the location of the 

Visium assessment in the low-resolution image into the high-resolution images coordinate 

system. Once the Visium coordinates were registered to the high-resolution image, the generated 

tissue microanatomy composition and cellularity were calculated for regions within 25µm of 

each coordinate. For each Visium coordinate, pixels in the micro-anatomically labelled mask 

image within 25µm of that coordinate were extracted. Tissue composition was determined by 

analyzing the % of each classified tissue type within that dot. The cellularity of each dot was 

determined by counting the number of nuclear coordinates within 25µm of each Visium 

coordinate. Cellular identity was estimated by determining the microanatomical label at each 

coordinate where a nucleus was detected (a nucleus detected in the same pixel where the 

semantic segmentation model detected normal ductal epithelium was labelled an epithelial cell). 

Spatial transcriptomics data analysis of PanIN samples 
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Sequencing data was processed using the Space Ranger software (10x Genomics) for 

demultiplexing and FASTQ conversion of barcodes and reads data, alignment of barcodes to the 

stained tissue image, and generation of read counts matrices. The processed sequencing data 

were inputs for the analyses using the Seurat software1-4. Data preprocessing with Seurat 

involved initial visualization of the counts onto the tissue image to discriminate technical 

variance from histological variance (e.g.: collagen enriched regions present lower cellularity that 

reflects in low counts). The filtered data was normalized using the SCTransform approach that 

uses a negative binomial method to preserve biological relevant changes while filtering out 

technical artifacts. Following normalization, data from all slides were merged and batch 

correction was performed with Harmony from harmony_0.1.0. Unsupervised clustering was 

subsequently performed on the harmony reduction using the Louvain algorithm as implemented 

by Seurat. 

Louvain clusters were annotated using the overlap of CODA annotations and quantifications per 

spot with well-characterized marker genes. Neoplastic and ductal epithelium groups were 

generated through selecting spots from the respective Louvain cluster that were estimated to be 

greater than or equal to 70% of the respective cell type on CODA.  The data dimensionality was 

reduced using PCA for clustering and in tissue visualization of the transcriptional clusters. 

Unsupervised clustering was performed based on the most variable features (genes). Differential 

gene expression analysis of normal ducts and PanINs, and low and high grade lesions were 

performed using the MAST test5 as implemented by Seurat. For comparisons performed across 

different slides, the slide was assigned as a latent variable and the matrix was prepared using 

PrepSCTFindMarkers to account for the multiple SCT models. Pathway analysis was performed 

using GSEA v4.2.16,7. High- and low-grade PanIN spots were subset from the neoplastic 
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Louvain cluster by pathologist (LDW) annotation using a custom-made Shiny app derived from 

the SpatialDimPlot function in Seurat.Violin plots, spatial plots, were generated in Seurat. 

Volcano plots were generated in ggplot28. Heatmaps were generated using ComplexHeatmap9. 

Transfer learning to relate ST data from PanIN to a scRNA-seq atlas of Pancreatic Ductal 

Adenocarcinoma 

We obtained scRNA-seq data for pancreatic epithelial cells from an atlas of 29 tumor samples 

and 14 non-cancerous samples collated from Peng et al. and Steele et al. as described in Kinny-

Koster et al.10. We inferred cellular phenotypes in the epithelial cells using CoGAPS (R, version 

3.5.8)11,12 to infer 8 patterns on the log transformed expression values. Pattern annotation was 

based on overrepresentation analysis of patternMarker genes identified by CoGAPS (R, version 

3.9.5)13 and Molecular Signatures Database Hallmark gene sets (version 7.5.1)14,15 using the R 

package fgsea (version 1.18.0)16. TFF1 expression was measured as log-normalized counts. 

Uniform manifold approximation and projection (UMAP) plots were made using monocle3 

(version 1.0.0)17-23. UMAP plots for epithelial cells from the PDAC atlas were made with cells 

colored by epithelial cell type, log normalized TFF1 expression, and Pattern 2, 5, 7 weights. 

PanIN ST data was subset to spots annotated as epithelial by CODA (N = 623 spots; normal = 

254, low-grade = 110, high-grade = 159). CoGAPS patterns learned from the PDAC atlas were 

projected onto scaled SCT expression values from epithelial ST spots using ProjectR (version 

1.8.0)24,25. Projected pattern weights were plotted as violin plots using Seurat (version 4.1.0). 

Mean pattern weights were compared across epithelial lesion grades using Wilcoxon rank-sum 

tests within ggpubr (version 0.4.0). UMAP plots of ST spots and over layed plots of ST spots 
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colored by epithelial type, log normalized TFF1 expression, and projected Pattern 2, 5, 7 weights 

over tissue slices were prepared using Seurat (version 4.1.0)1. 

Data and code availability 

Submission of spatial transcriptomics data to dbGAP and code to github are in process.  
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