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Abstract

Spatial transcriptomics (ST) is a powerful new approach to characterize the cellular and
molecular architecture of the tumor microenvironment. Previous single-cell RNA-sequencing
(scRNA-seq) studies of pancreatic ductal adenocarcinoma (PDAC) have revealed a complex
immunosuppressive environment characterized by numerous cancer associated fibroblasts (CAFs)
subtypes that contributes to poor outcomes. Nonetheless, the evolutionary processes yielding that
microenvironment remain unknown. Pancreatic intragpithelial neoplasia (PanIN) is a
premalignant lesion with potential to develop into PDAC, but the formalin-fixed and paraffin-
embedded (FFPE) specimens required for PanIN diagnosis preclude scRNA-seq profiling. We
developed a new experimental pipeline for FFPE ST analysis of PanINs that preserves clinical
specimens for diagnosis. We further developed novel multi-omics analysis methods for three-
fold integration of imaging, ST, and scRNA-seq data to anayze the premalignant
microenvironment. The integration of ST and imaging enables automated cell type annotation of
ST gpots at a single-cell resolution, enabling spot selection and deconvolution for unique cellular
components of the tumor microenvironment (TME). Overall, this approach demonstrates that
PanlINs are surrounded by the same subtypes of CAFs present in invasive PDACSs, and that the
PanIN lesions are predominantly of the classca PDAC subtype. Moreover, this new
experimental and computational protocol for ST analysis suggests a biological model in which
CAF-PanIN interactions promote inflammatory signaling in neoplastic cells which transitions to

proliferative signaling as PanINs progress to PDAC.

Summary
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Pancreatic intraepithelial neoplasia (PanINs) are pre-malignant lesions that progress into
pancreatic ductal adenocarcinoma (PDAC). Recent advances in single-cell technologies have
allowed for detailed insights into the molecular and cellular processes of PDAC. However,
human PanINs are stored as formalin-fixed and paraffin-embedded (FFPE) specimens limiting
similar profiling of human carcinogenesis. Here, we describe a new analysis protocol that
enables spatial transcriptomics (ST) analysis of PanINs while preserving the FFPE blocks
required for clinical assessment. The matched H&E imaging for the ST data enables novel
machine learning approaches to automate cell type annotations at a single-cell resolution and
isolate neoplastic regions on the tissue. Transcriptional profiles of these annotated cells enable
further refinement of imaging-based cellular annotations, showing that PanINs are predominatly
of the classical subtype and surrounded by PDAC cancer associated fibroblast (CAF) subtypes.
Applying transfer learning to integrate ST PanIN data with PDAC scRNA-seq data enables the
analysis of cellular and molecular progression from PanINs to PDAC. This analysis identified a
transition between inflammatory signaling induced by CAFs and proliferative signaling in PanIN
cells as they become invasive cancers. Altogether, this integration of imaging, ST, and scCRNA-
seq data provides an experimental and computational approach for the analysis of cancer

devel opment and progression.
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Main text

Single-cell RNA-sequencing (scRNA-seq) and spatial molecular technologies have enabled
unprecedented characterization of the molecular and cellular pathways that comprise the tumor
microenvironment (TME) and its function pan-cancer*?. This has had a particularly profound
impact on the understanding of the complex immunosuppressive environment that characterizes
pancreatic ductal adenocarcinoma (PDAC) and its hypothesized role hypothesized role in cancer
progression®”’. However, further characterization of premalignancy is needed to delineate the
precise evolutionary mechanisms that underlie malignant transformations and to understand the
impact of the complex microenvironment that facilitates carcinogenesis and the development of
nearly universal therapeutic resistance in PDAC. Pancreatic intragpithelial neoplasia (PanIN) is a
pre-malignant lesion that progresses into pancreatic ductal adenocarcinoma (PDAC), and thereby
provides the opportunity to directly characterize these evolutionary processes. However, the
diagnosis of preinvasive cancer lesions, such as PanINs, is amost always limited to formalin-
fixed and paraffin embedded (FFPE) tissue and most of the current knowledge on the biology of

these lesionsisrestricted to bulk transcriptional analysis.

Thus, the recent development of a spatial transcriptomics (ST) technology that can utilize FFPE
samples will provide untapped opportunities to apply high dimensional approaches to evaluate
archived FFPE specimens of preinvasive PanlN biospecimens, with broad applicability to further
biobanks of clinical trials as well as standard of care diagnostic samples®. Spatial molecular
technologies can drive pathway discoveries in cancers and their TME while preserving tissue
architecture, enabling the characterization of molecular changes that result from cell-to-cell
direct interactions’. ST approaches have already identified transcriptional signatures associated

with spatial interactions that are delineating the cellular phenotypes that underlie tumor biology,
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evolution, and responses to therapy?. Until recently, these approaches were limited to fresh
frozen sample profiling that maintain RNA integrity®™3. The newly developed ST approach for
FFPE will leverage the accessibility to maor sources of biopsy and surgical tissue samples

stored in paraffin blocks and will allow retrospective studies spanning stages of cancer evolution.

An additional challenge regarding the use of FFPE samples is the section preparation as the
platform limits the size of the tissue area that can be analyzed. Extensions of ST technology
which enable direct profiling on custom slides surmount this limitation. However, sectioning of
these valuable FFPE biospecimens for ST analysis can destroy their integrity for subsequent
clinical diagnostic testing, which must take precedent to single-cell analysis in trandational
research studies. Therefore, this study develops new methods to prepare smaller sections from
FFPE blocks for ST analysis that uniquely preserves limited and valuable clinical samples,

including PanINs.

Computational analysis methods to discovery the cellular and molecular changes in the evolution
of the microenvironment are an essential component of ST technologies, and are being actively
developed aongside the experimental approach®. Multi-omics analysis, including integration
with scRNA-seq data, is of particular interest for both deconvolution methods that overcome the
lack of single-cell resolution of spatial technologies* and contextualization of pathways learned
about the TME within the context of larger sScCRNA-seq reference atlases. The combination of
imaging with ST data enables a further level of integration to improve analysis, and are currently
being developed to augment clustering of ST data for cell type annotation™*°. In FFPE ST, the
possibility of staining and imaging the sections prior to library preparation allows pathological
examination of cell morphologies to enhance annotations of cellular function at a single-cell

resolution that are disregarded in current integration methods. We recently developed a machine
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learning method that provides 3-dimensional (3D) pathologic tissue assessments, named CODA,
to identify and quantify normal and PanIN cells in the pancreas from hematoxylin and eosin
(H&E) stained FFPE sections'’. This advance combined with our recent collation of a robust
single-cell atlas of 61 PDAC tumors provides the unique opportunity for an innovative, new
three-fold integration of imaging, ST, and scRNA-seq data that is tailored to analyzing the

dynamic cellular transitions throughout PDAC initiation and progression to advanced disease.

In this study, we develop and apply novel experimental and computational approaches for ST
analysis to a cohort of PanINs spanning low-grade and high-grade lesions. Analysis of the
epithelial cells purified through integration with imaging using CODA revealed that all except
one of the PanIN lesions share similar expression patterns to the classica PDAC subtype. The
one PanIN sample that does not express this classical signature expresses cancer stem cell (CSC)
markers, suggesting that cells with stemness transcriptional features are present at premalignant
stages. Moreover, this integrative analysis demonstrated that the PanINs microenvironment
contains the same cancer associated fibroblast (CAF) subtypes that are enriched in invasive
PDACs, providing new evidence that these cells modulate premalingnacy. The further multi-
omics integration with our reference scRNA-seq atlas of PDAC further found that a CAF-
associated inflammatory pattern in neoplastic epithelial cells gradually decreases during PDAC
invasion, and is associated with a compensatory increase in proliferation pathways in PDAC
carcinogenesis. Altogether, this integrated experimental and computational approach for multi-

omics integration is broadly applicable to analysis of cancer progression in other tumor types.

Spatial transcriptomics applied to FFPE specimens captures preneoplastic pancreatic

tissue ar chitecture
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To identify the mechanisms associated with PanIN to PDAC progression, we applied a recently
developed FFPE ST protocol to PanIN samples and the analysis combined two transfer learning
methods (Figure 1A). The ST slide’s dedicated areas for analysis are small (6x6 mm), and the
FFPE preserved samples are typically larger and would require coring or scraping of the block to
isolate only the PanIN lesion. Extensive manipulation of FFPE blocks for the ST sample
preparation would compromise future clinical diagnostics assessment of the broader PDAC
surgical specimen associated with the PanIN lesions selected. Therefore, we developed a method
to score the surface of the FFPE blocks using 5mm diameter circular skin biopsy punches. Prior
to sectioning, the punches were used to score the regions containing the ~1mm PanIN lesion
while preserving the block. The scoring then allowed the non-relevant tissue to detach from the
regions that were collected and placed on the designated area of the ST dide (Figure 1A). This
approach enables ST profiling of sdected PanIN lesions, while minimizing manipulation to
protect the FFPE block for further analysis. Following sections preparation and ST data
generation, we incorporated a machine learning approach, CODA, to identify cell types in each
sample and at the same time deconvolute the cell types captured in each ST spot (Figure 1A).
The accurate cdl classification for each ST spot allowed more robust differential analysis
between normal and PanIN spots. To integrate the PanIN analysis with PDAC samples to build
the carcinogenesis process of pancreatic cancer, we applied atransfer learning method, ProjectR,
to identify PanIN signatures in a sScCRNA-seq PDAC compilation dataset, and vice-versa (Figure

1A).

To study the mechanisms of progression from pre-malignant early PaniNs to PDAC, we applied
this FFPE ST protocol to profile 4 patient tumor specimens with paired low- (LG) and high-

grade (HG) PanINs (total number of lesions = 8). This cohort was designed to enable
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comparisons of progressive mechanisms within and between patients. Initial total RNA quality
check indicated that all samples presented some level of RNA degradation (RIN ~2) but with a
high concentration of 200bp fragments (DV 200 > 50%) compatible with the FFPE ST platform.
Following ST data generation, pre-processing and filtering, seven out of the eight samples
presented high quality data for subsequent downstream analysis. We were able to detect an
average of 71,695 reads and 2,537 genes per spatial spot, and an average of 16,266 genes per

sample.

The ST data from our PanIN cohort provides combined image and transcriptomics profiling
(Figures 1B and 1C). We characterized the canonical cellular distribution of PanINs and
surrounding pancreas tissue by first applying clustering to the ST profiling data alone. The
normal pancreas is composed of multiple cell subtypes with different functions. To execute its
most important functions, the pancreas is composed of exocrine cells (acinar cells) that are
responsible for the production of digestive enzymes and by endocrine cells (islets of Langerhans)
that produce insulin and other hormones. The excretion of enzymes occurs through pancreatic
ducts, while insulin and hormones are directly released into the blood stream. PanINs and
PDACs differentiation resembles the morphology of normal pancreatic ducts'. Annotating
marker genes differentially expressed in each cluster learned from the transcriptional signal
infers these canonical and transformed cel types (Figure 1C, Supplemental Figure 1).
Moreover, the distribution of the normal and neoplastic cell types identified from clustering
matches their locations in the corresponding section image (Figures 1B and 1C). In all samples,
it was possible to map specific clusters to the PanINs that were distinct from the other clusters
including the normal ducts. Nevertheless, in some regions the clusters extend beyond cellular

boundaries into the adjacent cell types on H&E imaging (Supplemental Figure 2). This
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extended signal could arise either from the intercellular signaling extending the molecular

changes beyond cellular margins or from technical artifactsin the ST technology.

To improve cluster annotations based on tissue morphology, we applied a machine learning
method, named CODA, to the H&E data from Visum to automatically classify the pancreatic
normal and neoplastic cells at a single-cell resolution to enhance the spot-based ST analysis.
Briefly, CODA is a 3D imaging-based approach that uses deep learning semantic segmentation
to identify different cell types within the human pancreas (acinar cells, islets of Langerhans,
fibroblasts, adipocytes, endothelial cells, ductal cells, neoplastic cells)’. In this study, we
adapted CODA for integration of imaging with Visium to obtain a color-coded image with each
color corresponding to a specific cell type from the stained tissue sections (Figure 1D). In
contrast to the clustering annotations, cells annotated through imaging using CODA are at single-
cell resolution. Thus, we could apply this approach to estimate the true proportion of cells within
each spot (Supplemental Figure 3) associated with each spatial barcode in the ST data for
further downstream analysis. By determining cell proportions in each ST spot we were able to
select those representing a unique cell type, while filtering out spots capturing multiple cell types,

to avoid unwanted bias in the comparisons between normal and PanIN clusters, for example.

PanlN-associated fibroblasts are a heterogeneous population composed of the same

subtypes detected in invasive PDAC

The ability of our integration of imaging and ST data to characterize PanINs and their
surrounding microenvironments provides the unique opportunity to examine the fibroblast
population adjacent to these lesions. While CODA broadly annotates stromal cells (Figure 2A),

the PDAC TME is enriched with a heterogeneous population of cancer associated fibroblasts
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(CAFs). They have been classified into three subtypes based on transcriptional profiles:
myofibroblastic CAFs (myCAFs), inflammatory CAFs (iCAFs), and antigen-presenting CAFs
(apCAFs)*%, These populations of mesenchymal cells play dual roles and can induce or inhibit
PDAC progression®?*, CAFs exert a tumorigenic role by providing metabolites for tumor cell
survival, stimulating cell growth pathways through paracrine signaling, and creating an
immunosuppressive microenvironment?’. However, a tumor suppressing CAF enriched TME
can reduce essential nutrients required for tumor progression and differentiation, and the same
CAFs can be functionally repolarized to release chemokines that will recruit immune cells into

the tumor?.

MyCAFs and iCAFs have previously been observed in pancreatic premalignant lesionsin murine
models that recapitulate PDAC development, suggesting that they arise early during
tumorigenesis™?® Nevertheless, their presence is not well described in human premalignant
lesions. Here, we leveraged our computational analysis approach to purify stromal cellsin the ST
data and further classify these cells from the ST data using established gene markers® to map the
digtribution of myCAFs, iCAFs and apCAFs in the human PanINs microenvironment. In our
cohort, the density of stromal cells inferred from CODA varied but were observed adjacent to
each premalignant lesion (Figure 1D, pink annotated regions). The further integration of CODA
annotations with the ST transcriptional profiles showed that a CAF common signature (pan-CAF)
is consistently expressed across the collagen rich regions annotated by CODA (Figure 2B,
orange and red spots). The expression of myCAF (Figure 2C) and iCAF (Figure 2D) markers

were detected in all samples overlapping with the regions where pan-CAFs are present.

The presence of a recently described subtype of apCAFs was also investigated using the

transcriptional datain our cohort. apCAFs were first identified by scRNA-seq in a PDAC mouse

10


https://doi.org/10.1101/2022.07.16.500312
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.16.500312; this version posted October 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

model. Further characterization showed that these cells express MHC-II genes and can present
antigens to CD4" T cells in vitro®®. Subsequently, apCAFS have been shown to present antigen
to Tregs which activates their suppressive capability”’. In our study, expression of the apCAF
signature was detected in al samples (Figure 2E). As expected, a significant proportion of the
apCAF positive spots also express CD45, a marker of immune cells (Figur e 2F) that can express
the same MHC-I11 genes. Since CODA cannot annotate immune cells due to their limited size and
scant cytoplasm, and ST does not provide single-cell resolution, the confirmation of apCAFsin
some samples could not be exactly defined by our analysis. Nevertheless, in some regions of the
stroma the expression of apCAF markers do not colocalize with CD45+ cells, indicating that

these mesenchymal cells are present in human PaniNs.

ST identifies expression of both PDAC classical subtype and cancer stem cell signaturesin

PanlNs

CAFs are mediators of PDAC progression and aggressiveness through interactions with
neoplastic cells*?*?, The detection of PDAC associated fibroblast subtypes in PanINs prior to
establishment of invasive carcinoma suggests that the differentiation of fibroblasts into CAFs is
an early event that may influence PanIN progression to PDACs. To test this, we leveraged the
automated cell type annotation from CODA with cluster-based annotations to select spots
with >70% purity of ductal cells to compare normal and PanIN ducts (Figure 3A). Next, we
characterized PanIN cell heterogeneity relative to the established classical and basal-like PDAC
subtypes™. We found that six out of seven PanINs express the PDAC classical subtype signature
(Figure 3B). The basal-like signature is not detected in any of the premalignant lesions (Figure

3C). This observation supports the hypothesis that PDACs arise with a classical phenotype and
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likely acquire the basal-like phenotype upon progression and accumulation of molecular

aberrations™.

Only one HG PanIN sample (PanIN-HGS3, Figure 1) expressed neither the classical nor the basal-
like signatures. Thus, we hypothesized that this sample expresses a third transcriptional
phenotype. PDAC progression, resistance to therapies, and immune evasion are partiay
associated with the presence of PDAC cells expressing cancer stem cell (CSC) markers™. We
verified the expression of CSC markers among the PanINs in the cohort. The only sample with
significantly high expression of CSC markers is the one that did not express the classical or the
basal-like PDAC signatures (Figure 3D). The presence of cells expressing CSC markers in
PanINs was previously described in a mouse model that mimics PDAC development® and in
human samples®, but little is known about the mechanisms leading to CSC genes up-regulation
their role in PDAC progression. Our observation that this stemness signature is not observed in
cells expressing the classical subtype suggests that neoplastic cells with stemness features are a
distinct population that arise in early pre-malignant stages. Nonetheless, further investigation in a
larger cohort is needed to determine the frequency of this stem-cell mechanism of progression,
the pathways driven by stemness, and how these cells are interacting with the CAFs and other

cellsin the TME to modulate PDAC biology.

Differential expression analysis between PanINs and normal ductsidentifiesgradual TFF1

increased expression during PanlN progression limited to the classical phenotype

To further define the molecular features of PanINs, spots from all samples CODA annotated as
normal and PanIN ducts were merged for each patient and differential expression was performed

to identify gene expression changes across each patient’s premalignant lesions. A total of 118
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genes are differentially expressed in PanlINs relative to normal ducts (Figure 3E) and their
expression pattern discriminated PanINs from normal ducts among the different samples (Figure
3F). Among the top 20 up-regulated genes in the premalignant lesions, only 5 genes (TM4SF1,
CYP2SL, CD55, FER1L6 and PSCA) had no known role in pancreas tumorigenesis, suggesting
that FFPE ST analysisis robust and corroborates previous gene expression analyses in PanINs*
% The pathway analysis from the differentially expressed genes indicates enrichment for MYC
and oxidative phosphorylation pathway mediators. Both signaling pathways have been
previously shown to be upregulated in PaniNs and PDAC, particulary in association with
progression from premalignancy to invasive cancer, metastasis development, and resistance to

22 (supplemental Figure 4). Although predominantly consisting of the classical

therapy
subtype, the differential expression analysis highlighted the inter-sample heterogeneity with only
one differentially expressed gene showing up-regulation in all classical sasmples (TFF1). TFF1is
known to be up-regulated in PanINs and PDACs and its protein levels have been suggested as a
potential early detection marker found in bodily fluids. In in vitro cell culture models, the
secreted form of TFF1 has been shown to increase PDAC and stellate cell motility without a
significant impact on proliferation®’. Since stellate cells are considered one of the precursors to
some PDAC CAF subtypes®®, it is possible that TFF1 is one of the mediators of intercellular
interactions between PanIN and PDAC cells and CAFs. However, the sample expressing the

CSC markers signature does not express TFF1, suggesting that the stemness signature and TFF1

are mutually exclusive (Supplemental Figureb).

The characterization of multiple ducts, including those spanning across stages of PanIN
differentiation (mixed ducts), provides the opportunity to trace the cellular changes associated

with PanIN progression. Additionally, ST analysis provides the ability to visualize the

13


https://doi.org/10.1101/2022.07.16.500312
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.16.500312; this version posted October 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

preneoplastic differentiation stages and concomitantly map the respective gene expression level
changes (Figure 4A). We therefore compared expression changes between lesions classified as
LG or HG based on their morphology. The differentiation stages of PanINs cannot be
discriminated usng CODA and the classification of LG and HG preneoplastic ducts was
performed through pathology examination (KF and LDW) (Figure 4B, C and D). Using the
pathological PanIN classification, we identified mixed ducts containing normal, LG and HG

preneoplastic cells (Figure 4E).

We expanded our differential expression analysis study to uncover additional gene expression
changes across PanIN stages. This analysis identified five other genes (MUCL3, C190rf33,
TSPAN1, SCD, and ACTB) that were up-regulated in HG lesions relative to LG lesions
(Supplemental Figure 7). In addition, the level of expression of MUCL3 and TSPAN1gradually
increased from normal ducts through LG and HG lesions (Figure 4F and 4G). The same pattern
was observed for TFF1 which was found to be up-regulated in the PanIN expressing the classical
PDAC genes. This gradual change in expression is best visualized in one of the PanIN samples

in which asingle duct presents amix of normal, LG and HG cédlls (Figure 4H).
Changesin PanIN progresson map to transitionsin malignancy in PDAC

PanlINs are premalignant lesions that can progress to PDAC; thisis supported by the detection of
common driver mutations in premalignancies that are frequent in invasive cancer’® . The
examination of other molecular alterations that are present in PanINs and conserved in PDACs
could provide new knowledge about the early transcriptional events of pancreatic carcinogenesis
and the mechanisms driving the continuous development into invasive cancer. A limitation of

our cohort in making these inferences is its small sample size and profiling only the PanIN
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lesions across different individuals, and the lack of similar profiling of PDAC tumors from those
patients. Our combined set of public domain scRNA-seq PDAC datasets (PDAC Atlas)™®
provides a cohort of over 61 samples against which we can further validate the molecular
changes observed across grades of differentiation. While these single-cell datasets lack the
imaging resolution of their ST counterparts, the dissociation procedures applied to the pancreas
would be anticipated to retain cells from PanIN lesions when they co-occur with tumors.
Therefore, further computational methods for multi-omics integration of our ST data of PanINs
and scRNA-seq data in the PDAC atlas can further our analysis of molecular changes in the

neoplastic epithelial cells that underly carcinogenesis (Figure 5A).

To enable this analysis of tumor progression, we selected the gene expression profiles of 25,442
epithelial ductal cells in 61 biospecimens collated from six previously published scRNA-seq
datasets (Cancer: 14,589 cels; Normal: 7,561 cells; Normal Tumor Adjacent: 2,375 cells,
Unspecified: 917 cells) (Supplemental Figure 8A). UMAP analysis of these cells identifies a
phenotypic switch between true normal epitheia cells, tumor-adjacent normal cells, and within
malignant epithelial cells supporting our hypothesis that these datasets likely contain
unannotated PanIN cells. Using the PDAC atlas, we verified that TFF1 expression increases
between normal epithelial cells and in tumor-adjacent normal epithelial cells and then again
further increases in a subset of malignant PDAC cells (Figure 5B), mirroring the stage-specific
increase in its expression observed in PanIN cells (Figure 5C). This integrative analysis further
supports the association of this gene with PanIN and invasve PDAC progression. TFF1
expression is amost undetectable in normal ductal cells. Surprisingly, the normal ductal cells
adjacent to tumor cells express low levels of TFF1, suggesting that the transcriptionally normal

surrounding ducts are already programmed toward a pre-malignant state.
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To further delineate the molecular transtions that the malignant epithelia cells cells undergo,
our complementary study of the PDAC atlas applied the Bayesian non-negative matrix
factorization method CoGAPS™* that learned eight transcriptional patterns that delineate
transitions in the epithelial cells™®. In this current study, we seek to integrate the patterns learned
from the scRNA-seq data with our ST dataset to determine the extent to which they represent
stage-related transitions in the transformation from PanIN to PDAC. To enable the integrative
analysis between ST and scRNA-seq data, we adapted out transfer learning approach

projectR*3*

to gpatial data integration by projecting the patterns learned in the sScRNA-seq data
onto the epithelial spots from the ST data (N = 623 spots; normal = 254, LG = 110, HG = 159).
Among the patterns projected from the atlas onto the ST data, Pattern 2 (Figure 5D and
Supplemental Figure 8B), enriched with genes involved in KRAS signaling and estrogen
response, showed a marked increase in projected pattern weights from normal epithelium
through LG and HG PanINs (Figure 5E and Supplemental Figure 8C), corroborating
previously reported studies showing up-regulation of pancreatic oncogenic signaling pathways in

premalignancy initiation and progression®**

. Pattern 5 (Figure 5F and Supplemental Figure
8D), associated with norma metabolic activity, showed a substantial decrease in projected
pattern weights with progression of PanIN lesion grade (Figure 5G and Supplemental Figure
8E), suggesting a decline of normal cellular function in the PanIN cells following the same trend
that is present in the primary tumor cells from the PDAC Atlas. Pattern 7 (Figure 5H and
Supplemental Figure 8F), representing an inflammatory state, is enriched in normal ductal cells
and dissipates with the development of early stage PDAC and progression to advanced cancer.

Pattern 7 also showed decreasing levels over the course of progression from normal cells to

PanIN (independent of the differentiation grade), as demonstrated by the increase in the number
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of spots with low projected weights (Figure 51 and Supplemental Figure 8G). This analysis
provides further evidence that the scRNA-seq data in the PDAC atlas contains unclassified
PanIN cells, and yields a mode in which inflammatory signaling in epithelial cells precedes

further signaling changes that promote growth in malignant cells during carcinogenesis.
Discussion

ST technologies are uncovering new molecular and intercellular interactions that provide insights
into how these complex signaling networks mediate cancer development and progression?. In
this study, we expanded a novel protocol developed for FFPE ST® to preserve FFPE blocks and
thereby enable the analysis of PanINs to uncover the mechanisms of progression from
premalignancies to invasive PDAC. Another innovation of our study is the development of two
machine learning methods for integrative analysis across imaging, ST profiles, and scRNA-seq
data for the analysis of these data. The first method, CODA®Y, enabled the assignment of cell
types to ST spots at a true single-cell resolution based on the imaging of the each ST section.
Applying this imaging and ST integration facilitated accurate assignment of cell types, isolation
of spots with single cell types for analysis, providing a framework for future ST deconvolution
methods for analysis. The second method, ProjectR****, allowed the integration of ScRNA-seq
from invasve PDACs with ST data from PanINs to relate the mechanisms associated with
PDAC initiation to subsequent PDAC progression. While our analysis applied this multi-omics
approach to isolate molecular changes in purified celular subpopulations, we note that the
imaging-based cellular annotations and further sScRNA-seq data can also be readily extended to
gpot-based deconvolution of ST data. In this study, our integration of state-of-the-art

experimental and computational approaches allowed us to characterize the molecular and cellular
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features of PanIN to PDAC development, providing a multi-omics framework for the broader

study of carcinogenesis.

Applying our combined experimental and computational approach to PanIN samples, we
observed for the first time the presence of CAFs and the different transcriptional subtypes
(myCAF, iCAF and apCAF) in premalignant human lesions. These subtypes were only
previously described in PDAC*?%. CAFs are the most abundant cell type in the PDAC TME and
are known to influence tumor cell behavior and to create an immunosuppressive environment™.
The presence of these regulatory cells in human pancreatic premalignant lesions is not well
described, but suggests that CAF-induced TME remodedling is an early event with durable impact
on PDAC development. Further studies are necessary to examine the specific interactions driven
by the different CAF subtypes and how they modulate preinvasive neoplastic cells and other
cellular components of the PDAC TME. Such knowledge is critical to guide the development of
new therapeutic interventions that inhibit or revert CAF oncogenic and immunosuppressive

activity with the goal of intercepting PDAC development.

ST analysis of the PanINs also identified transcriptional signatures that are known to be
associated with PDAC phenotypes. PDACs are classified into classical and basal-like
transcriptional subtypes®. Classical PDACs present a better prognosis and represent most tumor
cells found in early stage cancers before patients receive treatment. This supports the hypothesis
that initially all PDACs develop from the classical phenotype and that during the tumorigenesis
there is a diverging point in which some cells will differentiate into the basal-like phenotype, a
phenotype that is usually expanded by chemotherapy as resistance develops®®. Further
supporting this hypothesis, we detected the classical signature in six out of seven PanINs. The

only sample that could not be classified as classical or basal-like expressed a CSC signature.
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CSCs drive aggressive disease and their presence is associated with resistance to therapies, local
recurrence, and development of metastasis® . The presence of CSCs and CAFs in PanINs
suggest that the features associated with resistance to therapies in PDAC arise early during
tumorigenesis. Further studies are necessary to determine how the interactions between these cell

types can modulate additional features of resistance to therapies and progression of PDACSs.

The differential expression analysis shows that LG and HG PanINs are transcriptionally similar.
Among the few genes differentially expressed between these two PanIN grades, TFF1,
frequently up-regulated in PanIN and PDAC, demonstrated gradual increase during PanIN
progression but little is known about its role in tumorigenesis. As mentioned previously, secreted
TFF1 could be involved in tumor cell interactions with CAFs™"***! The concomitant presence of
CAFs and high levels of TFF1 should be further investigated to pinpoint the relationship
between TFF1 expressing neoplastic cells and the adjacent CAFs to determine the involvement

of this genein the CAF-PDAC cross-tak.

The computational approach we developed to analyze PaniIN is novel and broadly applicable for
multi-omic studies of carcinogenesis. While imaging data has been shown to refine clusters in
ST analysis™®, this is the first study to our knowledge to use large scale databases of imaging
data to enable a machine-learning based annotation of broad cell subtypes at a single-cell
resolution®®. This approach is uniquely enabled by the FFPE extension of the ST technology, as
FFPE based datasets are necessary to preserve cellular morphologies to leverage databases of
pathology annotations. Moreover, the reliance on this approach on cellular morphology also
enables potential future extensions to other imaging-based cdlular classifiers of celular
function®. This imaging-based data integration approach (ST and CODA) enables accurate and

automated identification of the transcriptional profiles of neoplastic cells across stages of PanIN
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development through the differential expression analysis described above. However, fully
relating these neoplastic cell state transitions to cancer progression requires relating these
transcriptional states across the transition from normal epithelial through pre-malignancy to
malignant PDAC cells. Here, we demonstrate that transfer learning approaches developed to
integrate ScCRNA-seq data>*>*° with matched imaging data can be extended to relate spatial data
from precancer to reference tumor atlases. In this study, this two-stage computational approach
integrating imaging, ST, and scRNA-seq data enabled us to identify a transition from
inflammatory signaling in neoplastic cells from low grade PanIN to cellular proliferation in later
stages of carcinogensis. In our complementary atlas study that identifies this inflammatory
signaling, we further correlated this transition with CAF abundance and validated the ability of
CAFS to promote this signaling in a novel human organoid co-culture model. The
downregulation of this inflammatory signaling through LG to HG PanIN lesions observed in the
ST data in this current study may be due to development of immunosuppressive CAFs that are
already present in PanINs and are functionally similar to those present in PDACs, as we
demonstrated using a human co-culture organoid model®®. In addition, CAFs can create an
immunosuppressive TME by producing and releasing cytokines that inhibit immune cell
infiltration and factors that provide cancer cells additional growth and survival advantages at
later stages™“*. This hypothesis is further supported by our observation of enhanced increased

growth pathways in the transition from LG to HG PanIN lesions observed in our study.

Although we used a limited sample number, we were able to corroborate previous findings
related to PanINs and discover new features and their potential role in the progression of these
lesionsto a large-scale cohort of sScCRNA-seq data for invasive PDAC. We successfully visualized

the microenvironment in which PanINs developed and showed for the first time the presence of
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CAFs with potential suppressive function in PanINs. Our cohort included samples with varying
stromal and acinar cell composition, but due to the limited size we did not observe correlations
between PanIN transcriptional profiles with the adjacent cell types. To examine if the CAFs
surrounding the PanINs remodel the premalignant microenvironment and influence
premalignancy progression, a larger cohort with a more stringent selection criteria that includes
patients' clinical features and outcomes (e.g.: tumor stage, metastasis, response to therapies)
would be better suited to unveil the critical features of CAF-PanIN (or PDAC) interactions in
PDAC tumorigenesis through correlations between clinico-pathological features and TME
compostion. Nonetheless, we demonstrate that multi-omics analysis enabled by FFPE ST,
imaging data, and scRNA-seq data lead to a model in which neoplastic cells transition from
CAF-induced inflammation to cellular proliferation during PDAC carcinogenesis. Moreover, this
hybrid experimental and computational approach for provides broadly applicable tools to create a
molecular and cellular model of the pathways that underlie carcinogenesis from multi-modal data

spanning distinct high-dimensional transcriptomics and spatial molecular technologies.

Data and code availability

Submission of spatial transcriptomics data to doGAP and code to github are in process.
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FIGURE 1 — Spatial transcriptomics analysis of FFPE pancreatic intragpithelial neoplasia
(PanIN). (A) Pancrestic cancer surgical specimens in FFPE were examined and the regions
containing PanIN lesions were identified for scoring using a 5mm skin biopsy punch and
sectioning onto the spatial transcriptomics slide. (B) Stained sections were used for pathology
examination and identification of PanINs and other pancreatic histological regions. (C) The
unsupervised clustering of the spatial transcriptomics data identified gene expression clusters
which location resembles the distribution observed in the stained sections. (D) Single-cell
resolution of the cell subtypes indicated in the legend were defined automatically from cellular
morphologies of the H& E imaging using the machine learning approach CODA*, thereby
refining cellular annotations obtained from clustering alone.
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Figure 2

FIGURE 2 — Spatial distribution of PDAC cancer associated fibroblasts (CAF) subtypes. (A)
CAFs localization was mapped using pan-CAF markers, (B) myofibroblastic-CAF markers, (C)
inflammatory-CAF markers and (D) antigen presenting-CAF markers. (E) CD45 expression was
examined to identify regions where CAFs and immune cells were co-localized.
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FIGURE 3 — Pancreatic intraepithelial neoplasia (PanINs) transcriptional features. (A) Six out of
seven PanINs, expressed markers that characterize the classical subtype of pancreatic cancer,
while (B) the basal-like signature was not expressed by any of the premalignant lesions. (C) The
only samplethat is neither classical nor basal-like expresses cancer stem cdl (CSC) markers. (D)
Differential expression analysis identified genes which up-regulation (blue dots) or down-
regulation (red dots) in PanINs, relative to normal ducts, discriminate preneoplastic from normal
cels (E).
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FIGURE 4 — Identification of transcriptional changes associated with pancrestic intraepithelial
neoplasia (PanIN) differentiation grade. (A) Normal, low grade (LG) and high grade (HG)
PanINs are morphologically distinct and can be classified by pathology examination. (B, C and
D) Asamode for PanIN progression, a mixed pancreatic duct containing normal, LG and HG
cells was used to better visualize changes in expression. Top genes from the differential
expression analysis, (E) MUCL3, (F) TSPAN1 and (G) TFF1, show gradual increase from normal
through LG until HG progression.
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FIGURE 5 — Integration of pancreatic intragpithelial neoplasia (PanIN) spatial transcriptomics
(ST) data with invasive pancreatic cancer single-cell RNA-sequencing (SCRNAseq) using
transfer learning. (A, C and E) Representation of enriched M SigDB pathways in Pattern 2,
Pattern 5 and Pattern 7 of the PDAC atlas. (B, D and F) Violin plots of projected PDAC atlas
Pattern 2, Pattern 5 and Pattern 7 weightsin PanIN ST spots. (G) UMAP embedding of epithelial
cellsfrom the PDAC atlas colored by TFF1 expression. (H) Violin plots of TFF1 expression in
al PanIN ST epithelial spots grouped by epithelial lesion grade. P-values were calculated using
two-sample Wilcoxon rank-sum tests. (N: normal, LG: low-grade, HG: high-grade).
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METHODS

Sample selection

FFPE pancreatic ductal adenocarcinoma (PDAC) surgical specimens collected from 2016 to
2018 were examined by experienced pathologists (KF and LDW). PanIiNs present in the
specimens were marked and selected for ST analysis and were classified as low- and high-grade
by experienced pathologists (L.D.W. and K.F.). The samples were obtained from the Johns
Hopkins University School of Medicine Department of Pathology archives under Institutional

Review Board approval (IRB00274690) under a waiver of consent.

RNA quality control

All samples selected for the study had their RNA quality checked prior to the ST dlides
preparation. Total RNA was isolated from 20um sections of each sample using the RNase FFPE
kit (Qiagen), following manufacturer’s instructions. RNA quality was measured using the
DV 200 assay on the Bionalyzer (Agilent) to determine the proportion of fragments with ~200bp

in the sample. RNA quality was considered good if DV 200 > 50%.

Spatial transcriptomics slide prepar ation

The ST data was generated using the commercia platform Visum FFPE (10x Genomics). The
dlides are designed to accommodate a total of 4 sections with a maximum size of 6 x 6 mm. For
the specimens that were larger than the designated regions of the Visium dlides, we scored the
selected sample area containing the PanIN using skin punches of 5mm in diameter. The skin
punches were used directly on the FFPE blocks to delimit the area of interest, so when the block

was sectioned in the microtome the PanIN containing region was detached from the rest of the
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section and could then be placed in the ST capture area of the slides (Figure 1A). A 5um section
from each sample with 5mm in diameter was used for the ST analysis. Upon preparation, the

dlides were incubated at 42°C and then stored in a desiccator until use.

Spatial transcriptomics data generation

Using the Visum FFPE (10x Genomics) platform and following manufacturer’s validated
protocol the samples were deparaffinized, stained with hematoxylin, and scanned using the
Nanozoomer scanner (Hamamatsu) at 40x magnification. Human probe hybridization was
performed overnight at 50°C. Following probe ligation, the RNA was digested, and the tissue
was permeabilized for the release, capture, and extension of the probes. The designated area for
each sample is covered by probes containing oligo-d(T) that capture the probes by a poly-A tail
seguence present in the probe sequence. The sequencing library preparations were performed as
instructed by the manufacturer using the extended probes as the template. All libraries were
sequenced with a depth of at least 50,000 reads per spot (minimum of ~250 millions per sample)
at the NovaSeq (lllumina). The Visium Human Transcriptome Probe Set v1.0 contains probes to
19,144 genes and after computational preprocessing (filtering for probes off-target activity)

provides gene expression information for 17,943 genes.

Cell type annotation using transfer learning from H& E imaging

Seven microanatomical components of human pancreas tissue were multi-labelled using a
semantic segmentation workflow. The seven components recognized were (1) islets of
Langerhans, (2) normal ductal epithelium, (3) vasculature, (4) fat, (5) acinar tissue, (6) collagen,
and (7) pancreatic intragpithelial neoplasia (PanIN). Briefly, fifty examples of each tissue type

were manually annotated using Aperio ImageScope. Half of the newly generated annotations
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were used in the training dataset for the convolutional neural network and the other half were
used as an independent testing dataset to evaluate model performance. The testing dataset
revealed an overall accuracy of 94.0% in classfication of tissues in the TMAs. Following

training, the tissue images were segmented to a resolution of 1um.

Nuclear coordinates were generated via detection of two-dimensional hematoxylin intensity
peaks. Briefly, the TMA images were downsampled to a resolution of 1 um/pixel. As the tissues
contained only a hematoxylin signal, color deconvolution (generally used to de-mix the
hematoxylin channel from the hematoxylin & eosin image) was not necessary. Instead, the color
image was converted to greyscale. The image was smoothed using a Gaussian filter and two-

dimensional intensity peaks with minimum radii of 2um were identified as nuclear coordinates.

Registration of ST data with cell type annotations

The low-resolution image used for the Visium pre-processing with Space Ranger was registered
to the high-resolution tissue image used for microanatomical measurements to integrate the two
workflows. The registration utilized the fiducial markers present on the ST glass dide to estimate
the registration scale factor and translation. As registration was performed on two scans of
identical tissue sections, it was assumed that rotation was not necessary. Here, the low-resolution
image was registered to the high-resolution image (rather than the other way round) so that the
scale factor was always greater than 1 and ensuring that the 1 pum resolution of the tissue micro
annotations was preserved. First, the fiducial markers in each pair of images were segmented by
identification of small, nonwhite objects surrounding the larger TMAs. Nonwhite objects were
determined to be pixels with red-green-blue standard deviations greater than 6 in 8-bit space.

These objects were morphologically closed and very small noise (<50 pixels) were removed. The

32


https://doi.org/10.1101/2022.07.16.500312
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.16.500312; this version posted October 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

fiducial markers were then determined to be objects in the image within 20% of the median
object size (as many fiducial markers existed for each corresponding tissue image). This process
resulted in fiducial image masks for the high-resolution and low-resolution tissue images. With
these masks, four possible registrations were calculated to account for the situation where the
Visium analysis was performed on the tissue image rotated at a 0-, 90-, 180-, or 270-degree
angle. For each registration, the corner fiducial markers of the low-resolution image were
rescaled and tranglated to minimize the Euclidean distance to the fiducial markers of the high-
resolution image. Of the four registration results, the registration resulting in the greatest Jaccard
coefficient between the high-resolution and low-resolution fiducial masks was chosen. For the

eight TMAS, the average Jaccard coefficient of the fiducial masks was 0.94.

The registration information used to overlay the low-resolution tissue image to the high-
resolution tissue image was used to convert the coordinates corresponding to the location of the
Visium assessment in the low-resolution image into the high-resolution images coordinate
system. Once the Visium coordinates were registered to the high-resolution image, the generated
tissue microanatomy composition and cellularity were calculated for regions within 25um of
each coordinate. For each Visium coordinate, pixels in the micro-anatomically labelled mask
image within 25um of that coordinate were extracted. Tissue composition was determined by
analyzing the % of each classified tissue type within that dot. The cdlularity of each dot was
determined by counting the number of nuclear coordinates within 25um of each Visium
coordinate. Cellular identity was estimated by determining the microanatomical label at each
coordinate where a nucleus was detected (a nucleus detected in the same pixel where the

semantic segmentation model detected normal ductal epithelium was labelled an epithelial cdll).

Spatial transcriptomics data analysis of PanIN samples
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Sequencing data was processed using the Space Ranger software (10x Genomics) for
demultiplexing and FASTQ conversion of barcodes and reads data, alignment of barcodes to the
stained tissue image, and generation of read counts matrices. The processed sequencing data
were inputs for the analyses using the Seurat software'™. Data preprocessing with Seurat
involved initial visualization of the counts onto the tissue image to discriminate technical
variance from histological variance (e.g.: collagen enriched regions present lower cdlularity that
reflects in low counts). The filtered data was normalized using the SCTransform approach that
uses a negative binomial method to preserve biological relevant changes while filtering out
technical artifacts. Following normalization, data from all slides were merged and batch
correction was performed with Harmony from harmony_0.1.0. Unsupervised clustering was
subsequently performed on the harmony reduction using the Louvain algorithm as implemented

by Seurat.

Louvain clusters were annotated using the overlap of CODA annotations and quantifications per
spot with well-characterized marker genes. Neoplastic and ductal epithelium groups were
generated through selecting spots from the respective Louvain cluster that were estimated to be
greater than or equal to 70% of the respective cell type on CODA. The data dimensionality was
reduced using PCA for clustering and in tissue visualization of the transcriptional clusters.
Unsupervised clustering was performed based on the most variable features (genes). Differential
gene expression analysis of normal ducts and PanINs, and low and high grade lesions were
performed using the MAST test® as implemented by Seurat. For comparisons performed across
different dlides, the dlide was assigned as a latent variable and the matrix was prepared using
PrepSCTFindMarkers to account for the multiple SCT models. Pathway analysis was performed

using GSEA v4.2.1%". High- and low-grade PanIN spots were subset from the neoplastic
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Louvain cluster by pathologist (LDW) annotation using a custom-made Shiny app derived from
the SpatialDimPlot function in Seurat.Violin plots, spatial plots, were generated in Seurat.

Volcano plots were generated in ggplot2®. Heatmaps were generated using ComplexHeatmap®.

Transfer learning to relate ST data from PanIN to a scRNA-seq atlas of Pancreatic Ductal

Adenocar cinoma

We obtained scRNA-seq data for pancreatic epithelial cells from an atlas of 29 tumor samples
and 14 non-cancerous samples collated from Peng et al. and Steele et al. as described in Kinny-
Koster et a.'°. We inferred cellular phenotypes in the epithelial cells using CoGAPS (R, version
3.5.8)""* to infer 8 patterns on the log transformed expression values. Pattern annotation was
based on overrepresentation analysis of patternMarker genes identified by CoGAPS (R, version
3.9.5)" and Molecular Signatures Database Hallmark gene sets (version 7.5.1)*** using the R
package fgsea (version 1.18.0)*°. TFF1 expression was measured as log-normalized counts.
Uniform manifold approximation and projection (UMAP) plots were made using monocle3
(version 1.0.0)'"%%. UMAP plots for epithelial cells from the PDAC atlas were made with cells

colored by epithelial cell type, log normalized TFF1 expression, and Pattern 2, 5, 7 weights.

PanIN ST data was subset to spots annotated as epithelial by CODA (N = 623 spots, normal =
254, low-grade = 110, high-grade = 159). CoGAPS patterns learned from the PDAC atlas were
projected onto scaled SCT expression values from epithelial ST spots using ProjectR (version
1.8.0)**%. Projected pattern weights were plotted as violin plots using Seurat (version 4.1.0).
Mean pattern weights were compared across epithelial lesion grades using Wilcoxon rank-sum

tests within ggpubr (version 0.4.0). UMAP plots of ST spots and over layed plots of ST spots
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colored by epithelial type, log normalized TFF1 expression, and projected Pattern 2, 5, 7 weights

over tissue slices were prepared using Seurat (version 4.1.0)".
Data and code availability
Submission of spatial transcriptomics data to doGAP and code to github are in process.
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