Three-dimensional reconstruction of fetal rhesus macaque kidneys at single-cell resolution reveals
complex inter-relation of structures.
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Abstract

Kidneys are among the most structurally complex organs in the body. Their architecture is critical to ensure proper
function and is often impacted by diseases such as diabetes and hypertension. Understanding the spatial interplay
between the different structures of the nephron and renal vasculature is crucial. Recent efforts have demonstrated the
value of three-dimensional (3D) imaging in revealing new insights into the various components of the kidney; however,
these studies used antibodies or autofluorescence to detect structures and so were limited in their ability to compare
the many subtle structures of the kidney at once. Here, through 3D reconstruction of fetal rhesus macaque kidneys at
cellular resolution, we demonstrate the power of deep learning in exhaustively labelling seventeen microstructures of
the kidney. Using these tissue maps, we interrogate the spatial distribution and spatial correlation of the glomeruli, renal
arteries, and the nephron. This work demonstrates the power of deep learning applied to 3D tissue images to improve
our ability to compare many microanatomical structures at once, paving the way for further works investigating renal
pathologies.



Introduction

The kidneys, responsible for blood filtration and urine formation, are one of the most structurally intricate organs in the
body. ! The functional unit of the kidney, the nephron, is a convoluted and three-dimensional (3D) tube which can be
sub-divided into distinct compartments: the glomerular tuft and its associated Bowman's capsule, the proximal tubule,
the loop of Henle, the distal tubules, and the collecting ducts. Each of these structures are intricately organized in
relation to each other and to the renal vasculature.

The 3D arrangement and morphology of nephrons are key markers of overall renal health, and alterations to the nephron
organization are routinely used to diagnose renal pathologies. For example, the Banff classification system has developed
specific guidelines for the quality assessment of kidney transplant biopsies through the counting of glomeruli.>® Similarly,
evaluation of chronic renal damage typically involves visually estimating the degree of fibrosis and the proportion of
atrophic tubules. 4 Yet, our understanding of the complex organization of the nephrons is incomplete. For example,
although the development of diabetic kidney disease has been associated with different markers of tubular injury and
inflammation, its exact impact on the overall architecture of the kidney remains poorly understood. ®

Past efforts in organ mapping have been used to study kidney diseases and have generally taken one of two approaches:
label many structural components in small tissue samples © or label few components in large tissue samples. "¢ While
these initiatives have advanced our understanding of renal diseases, we propose that the structural complexity of the
kidney calls for a hybrid technique: reconstruction of large samples and microanatomical labelling of many tissue
components at single-cell resolution. Recent works have demonstrated the value of 3D mapping of large biospecimens
for understanding tissue structure, capturing the inter- and intra-sample heterogeneity, identifying rare events, and
improving pathological classification and tumor grading. *"-2?

In this paper, we use CODA %, a novel imaging workflow that creates volumetric reconstruction of mm? to cm3-scale
tissue samples at single-cell resolution. CODA utilizes histological image registration and semantic segmentation to create
3D quantifiable maps of normal and diseased microanatomy from hematoxylin and eosin (H&E) staining alone. CODA has
been applied to normal and cancer-containing samples spanning pancreas, liver, lung and skin. Here, we utilize CODA to
deeply profile the microanatomy of the kidney. We extend CODA through demonstration of its ability to create whole-
organ models with 17 labelled anatomical components through quantitative mapping of fetal rhesus macaque kidneys.
As macaque anatomy more closely resembles human than mouse anatomy, macaques have become vital, translational
model systems for the study of a wide array of human diseases including diabetes and those associated with age. 24-2°
Additionally, a rhesus macaque model allowed histological sectioning and imaging of full organs. H&E images are the
gold standard in histology.?” As such, we hypothesized that deep learning models could identify physiologically relevant
microstructures of the kidney from H&E alone. % By doing so, we were able to expand the range of labels beyond what
has been achieved with fluorescent antibodies and tissue clearing to distinguish structures such as developing and
mature glomeruli.

With these reconstructed kidneys, we first deconstruct the size, cellularity, and cell density of the global and zonal
regions of the kidneys. Next, we explore the relationship of glomerular size, cellularity, and developmental state to its
position within the renal architecture. Lastly, by comparing our glomerular and vasculature labels, we quantify the
complex relationship between the corpuscles and renal arterioles. The results of the different quantifications performed
suggest a great heterogeneity in the spatial organization of developing kidneys and demonstrate the power of CODA to
deeply interrogate the functional units of organs.



3D reconstruction of fetal kidneys at cellular resolution using CODA

The CODA imaging workflow was used to create 3D reconstructions of 4 bisected, Rhesus macaque kidney samples,
collected from an 80-day old fetus (equivalent to a mid-trimester human fetus)(Fig. 1A). First, a nonlinear image
registration was used to align the 4um-thick, serially cut, H&E-stained histological images into a semi-continuous stack
(Fig. 1B). A cell detection workflow was optimized to detect the coordinates of cell nuclei on the H&E images with a true
positive rate of 84.9 %, a false positive rate of 12.4% and a false negative rate of 15%, on par with accepted validation
metrics in the field (Fig. 1C). 2>3%32 Finally, a deep learning algorithm was trained to recognize 17 microanatomical
components of the developing macaque kidney (Fig. 1D). Detected components included 4 developed components of
the nephron (proximal tubule, loop of Henle, distal tubule, collecting duct), 3 subtypes of the vasculature (arteries,
arterioles, and non-arterial vessels [veins and lymphatics]), 3 glomerular structures (mature glomerular tufts, developing
corpuscles, and Bowman'’s capsule & urinary space), and 2 components of the developing kidney (developing nephrons
and undifferentiated blastema cells). The model, whose performances were tested on annotations unseen during the
training, reached an average per-class recall of 89.7% and an average per-class precision of 90.6%. While several groups
have shown success using tissue clearing or micro-CT in labelling components such as the glomerular capillary tufts,'® the
renal vasculature,* and the branching ureteric,'®* here we were able to label all components together in a single kidney
using deep learning.
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Figure 1: CODA. A. Quantifiable 3D reconstructions of FFPE, serially sectioned and H&E-stained images of fetal rhesus macaque kidneys are created
using the CODA workflow. B. Serial H&E images were aligned using nonlinear image registration. C. Cell nuclei positions were determined on the
hematoxylin channel of the H&E images, obtained using color deconvolution. D. A deep learning model was trained from manual annotations to
label 17 different renal tissue subtypes on the H&E images with high accuracy.



Gross Microanatomy of fetal rhesus macaque kidneys

The results of each CODA step were integrated to create fully visualizable and quantifiable 3D maps of the kidneys,
whose volumes ranged from 19.9 to 29.7 mm? and comprised between 12.8 and 17.3 million cells. (Fig 2A) This includes
all cell nuclei detected on the H&E slide, regardless of their functional type. The color-coded rendering of one of the
labeled volumes illustrates the complex and dense architecture of developing kidneys in the rhesus macaque fetus. (Fig.
2B) We subsequently assessed the kidney composition through quantification of the volume fraction, cellular
composition (cell fraction) and cell packing density of each microanatomical structure. (Fig. 2C) We observed that, while
the overall tissue was mostly composed of loose and dense stroma, specific microstructures, such as the proximal
tubules and the metanephric mesenchyme make up the majority of the functional parenchyma (as seen in the cell
fraction).

Physiologically relevant combinations of microstructures were then isolated from the general volume and rendered in
3D. First, we rendered the glomerular tufts, arteries, and arterioles to visually demonstrate the spatial correlation
between these functional structures of the kidney. Second, we rendered the four detected sections of the renal tubule
(collecting ducts, distal tubule, Henle loop and proximal tubule) to show the very specific co-localization of these
structures in the kidney, distinctly highlighting the cortex and the medulla. The equivalent three-dimensional H&E
volume was created for both combinations of structures and rendered as a comparison, along with 2D H&E images
where each of these structures were selected to additionally showcase the exquisite detail of the deep learning
segmentation. (Fig. 2D)

The three distinct anatomical regions of the fetal macaque kidney are the nephrogenic zone, the medulla and the cortex.
We quantitatively defined each zone in 3D space based on the presence of undifferentiated blastema cells, glomerular
tufts and collecting ducts. respectively. (Fig. 2E) Assessment of the tissular composition of each zone showed that the
medulla was mostly composed of Henle loops and collecting ducts, the cortex was mostly composed of proximal tubules,
and the nephrogenic zone was mostly made of undifferentiated blastema cells and developing nephrons. Large arteries
were mostly found in the cortex and the medulla while smaller arterioles were mainly found in the cortex. The cortex
contained the highest fraction of non-arterial vessels (veins and lymphatic vessels). Interestingly, the medulla is the least
vascularized zone, due to its very low levels of non-arterial vessels in comparison to the other two zones.



Urothelium
Med. Collecting ducts

Collecting ducts

Distal tubule

Henle Loop

Proximal Tubule

" : Glomerular tuft

2;,??7‘:71 5 ggrgl:rl‘em B3 - Bowman's capsule

15.9 million cells 15.8 million cells Non arterial vessels

Arteries

Arterioles

Non tissue

Loose stroma

2 Dense stroma

S~ Developing corpuscle

Developing nephron

Sample C Sample D Metanephric mesenchyme

19.9 mm? 29.7 mm?®
12.8 million cells 17.3 million cells
30

n
o

-
o

Volume Fraction [%]

Cell Count

Cell Fraction [%]

= Glomerular Tuft Medulla 1mm
£
& Collecting Ducts Cortex
=
% 10 Undifferentiated Blastema Cells Nephrogenic Zone
5]
A
0
£
= Tissular Composition(%)
g Medulla | 0.3%01 | 0.248 0.1025 | 0.4919 | 4382 | 0.2275 | 5.144 | 0.1308 40

Cortex | 254 | 1285

Nephrogenic Zone | 1292 | 2277

30
1304 | 1500 | 6627 | 05207 | 0.3154 | 1.002 20
624 ECXOM 0.04727 | 0.1494 | 0.1388 10
0@ A o < < o o

. e S X S
N\ \e«\@ o0 e‘\e‘-’ o ¢
\“\?\(“ 0\0((\' e@ﬂ' o’\‘a" ?‘0*' \)\Z(\\a oo™ 0@1«0 6\’:)‘“‘ Oesl.\\ e Aoo\\' pﬁ\e‘\

Figure 2: Gross microanatomy of fetal Rhesus macaque kidneys. A. Four half fetal Rhesus macaque kidneys were reconstructed, and their volumes
and total cell count were assessed. B The 3D reconstructions include 17 microanatomical labels. C. The volume fraction, cell count, cell fraction and
cell packing density of each microanatomical subtype were computed and compared. D. A 3D rendering of glomerular tufts with arteries and
arterioles and a 3D rendering of the different parts of the tubules were compared to their corresponding aligned H&E volumes. Examples of
classified H&E images with segmented structures are shown for validation. E. The three zones of the developing kidney were delineated based on
the presence of three defining elements. The location of the zones and their corresponding defining structures were visualized using z-projections.
The tissular composition of each zone was assessed.

Spatial arrangement of developing and mature glomeruli in fetal macaque kidneys



We then moved our analysis beyond the global and regional quantifications to assess the spatial organization of different
structures relevant to kidney function. We started by considering glomeruli and their spatial distribution in the kidney
during crucial developmental phases. Glomeruli are a widely accepted marker of renal health #33and have been
extensively investigated. >**Aside from the number and size of glomeruli on a whole organ level, which is already
challenging information to extract using most organ mapping techniques, we used CODA to assess parameters that are
difficult to quantify at scale using conventional techniques. These parameters included the volume occupied by the
Bowman’s capsule and the urinary space in each glomerulus, as well as the absolute number of cells and the cell packing
density of glomeruli across different regions of the kidney.

The thickness of the combined Bowman'’s capsule and urinary space (referred to as the Bowman’s capsule thickness in
the remainder of this paper) was assessed in every detected mature glomerulus. (Fig. 3A) The Bowman’s capsule
thickness displayed a relatively spread-out distribution, with a minimum value of 0 um and maximum value of 6 um, but
with a mean value of 2 um. This parameter was evaluated against others in each glomerulus, and it appeared that; larger
glomeruli (by volume) had a larger Bowman'’s capsule thickness and glomeruli located further from the surface of the
kidney had a larger Bowman'’s capsule thickness. No relationship was found between Bowman'’s capsule thickness and
glomerular cell packing density.

The volume distribution of developing corpuscles and mature glomerular, with and without their respective Bowman’s
capsule and urinary space, was assessed. (Fig. 3B) As expected 34, developing corpuscles displayed much smaller volumes
than mature glomeruli. It appeared that the distribution of mature glomerular tufts was relatively narrow with a mean
volume of around 1.75x10° um?3. Interestingly, consideration of the combined volume of the glomeruli and the associated
Bowman'’s capsule thickness broadened the range of the distribution, suggesting that glomeruli of similar volumes
possess a range of Bowman’s space. From the 3D volume heatmap with all the glomeruli, in which each glomerulus was
assigned a color based on its size, we note that most of the smaller corpuscles lie on the margins of the kidney, while
larger glomeruli localize nearer the center of the kidney. This observation conforms to previous assessments of the
spatial distribution of glomerular size. 1!Additionally, as we can distinguish developing and mature glomeruli, we note
that developing corpuscles primarily occupy space within 0 to 0.5 mm of the kidney surface, and that, during the
developmental stages, the size of the corpuscle is not related to its location relative to the surface of kidney. In contrast,
mature corpuscles seem to increase in size as a function of their distance to the kidney surface, irrespective of
consideration of the Bowman’s capsule thickness.

We next characterized renal corpuscles in terms of cell packing density. (Fig. 3C) Similarly to Fig 3B, we described the
distributions of cell packing density of developing and mature corpuscles, with and without considering the Bowman'’s
space. Distribution of cell packing densities of the three glomeruli populations were relatively similar. It also appeared
that average cell packing density of a glomerulus does not vary as a function of its distance from the surface of the
kidney, although it is visible from the 3D cell packing density heatmap that the glomeruli with the lowest cell packing
density were predominantly located deep in the cortex. Interestingly, while there is almost a 20-fold increase between
the lowest and highest glomerular volumes detected, the highest and lowest cell packing densities varied by only 2-fold.
We conclude that while the size of developing and mature glomeruli varies greatly, the cell number varies linearly with
this size, such that cell density remains consistent. While developing corpuscles have a much lower absolute cell count
than mature ones, they also have a much smaller volume.
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Figure 3: Spatial distribution of developing and mature glomerular tufts in the fetal Rhesus macaque kidney. A. The thickness of the Bowmans’
capsule and the urinary space was assessed in mature renal corpuscles. The distribution of thickness was computed in the four samples and the
thickness was evaluated as a function of different parameters. B. A three-dimensional heatmap of glomerular volumes was rendered. The
distribution of volumes in mature and developing glomeruli was described and the relationship between the volume of a corpuscle and its position
in the organ was evaluated. C. A three-dimensional heatmap of glomerular cell packing densities was created. The distribution of cell packing
densities for the three glomeruli populations was computed. The cell packing density and absolute cell count of each glomerulus were studied as
functions of the glomeruli’s distance to the surface of the kidney.




Characterization of the 3D organization of renal arterial vessels and their association with glomeruli

The network of renal arterial vessels, split into arteries and arterioles, was 3D reconstructed (Fig. 4A). Using the 3D
arterial data, we assessed the volume fraction of arterial vessels as a function of the branching point of the segmental
artery (see black dot indicator in Fit 4A). First, we noted that the fraction of large arteries was highest at the vascular
entrance to the kidneys and decreased steadily as a function of distance into the kidney. In contrast, the size of arterioles
remained constant across the renal architecture. We also considered the relationship of vessel diameter as a function of
the distance from the branching point of the segmental artery and similarly found that arteries are largest when entering
the kidney before decreasing in size, while the arterioles maintain constant diameter throughout the kidney. 7

Finally, we combined our analysis of the renal arterial vessels with our assessment of glomeruli. (Fig. 4B) We investigated
the distribution of mature and developing corpuscles as a function of their distance from the branching point of the
segmental artery. In addition, we defined what we term “glomerular vascularization” as the volume fraction of arterial
vessels within a 0.1 mm radius around each point of a glomeruli. We found a strong correlation between glomerular size
and degree of vascularization (r? = 0.45 and p< 10?®), suggesting that larger glomeruli are more vascularized than smaller
glomeruli. Next, we compared the glomerular density to the volume fraction of arterioles at different distances from the
vascular entrance to the kidney to reveal that the number of (developing and mature) glomeruli at different regions in
the kidney is highly correlated with the volumes of arterioles in the same regions (r?> = 0.76 and p< 107°). This same
analysis revealed that developing glomeruli were less vascularized than mature glomeruli, emphasizing the importance
of differentiating developing and mature structures in study of fetal tissues.
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Figure 4: 3D organization of arterial vessels in the fetal macaque kidney and their association with glomeruli. A. Arteries and arterioles were
reconstructed in three dimensions. The volume fraction and the mean vessel diameter of vessels were assessed as a function of the distance from
the branching point of the segmental artery. B. The association between arterial vessels and glomeruli was determined through comparison of the
density of vessels in the vicinity of renal corpuscles and the distribution of glomeruli away from the arterial branching point. The number of
glomeruli detected within incremental distance windows (referred to as ‘distance x’ in the axis label) was evaluated against the fraction of the
volume occupied by arterioles within the same distance window (referred to as ‘distance x’ in the axis label). Glomeruli sizes were described as a
function of the density of arterial vessels in their vicinity.




In this work we created cellular-resolution maps of fetal rhesus macaque kidneys to explore the inter-relation of renal
vascular, glomerular, and nephron structure. Through successfully labelling seventeen microanatomical structures in
renal histology at >90% accuracy, we demonstrate the marked power of deep learning in creating highly annotated 3D
tissue maps for quantitative interrogation of tissue architecture. Importantly, we demonstrate that deep learning can aid
in differentiation of structures that cannot be distinguished using conventional tissue mapping techniques such as
molecular staining. Using histological morphology to guide a deep learning algorithm, we differentiate large arteries,
arterioles, and non-arterial vessels. We additionally differentiated developing vs. mature glomeruli, and we identified
Bowman’s space: an empty cavity between the Bowman’s capsule and the glomerular tuft that, by definition, cannot be
molecularly labelled.

This advancement is important in enabling quantitative comparison of functionally important but molecularly
indistinguishable structures, as demonstrated though our comparison of the spatial position within the kidney of
developing vs. mature glomeruli and arterial vessels.

By computing the respective tissular compositions of the nephrogenic zone, the cortex, and the medulla, we show the
differing composition of microanatomical structures across the zones of the kidney. The developing nephrons and
undifferentiated blastema cells were majority components in the nephrogenic zone, while deeper in the kidney, mature
components such as glomeruli and proximal were more prevalent in the cortex and loops of Henle and collecting ducts
were more prevalent in the medulla. We also observed differential vascularization of the different anatomical regions of
the developing kidney through the computation of their respective volume fractions in arteries, arterioles, and non-
arterial vessels. Examining the association between mature and developing glomeruli and arterial vessels in a spatially
resolved manner allowed us to show that developing glomeruli were less vascularized than mature ones. While extensive
work has not been performed that could validate our findings concerning developing structures, our observations of
vascular distribution in the kidney were on par with previous work showing that blood vessels do not associate uniformly
with different other renal structures. °

Overall, we illustrate the value of deep learning-based tissue mapping through construction of single-cell resolution 3D
maps of kidneys with numerous microanatomical structures labelled. We revealed the marked spatial organization of
developing and developed renal structures, with the developing regions generally nearer the outer margins and the
mature components at the core. Together, this work demonstrates the power of CODA in mapping numerous, inter-
related anatomical components in complex organs such as the kidney.

A.L.K. and D.W. conceived the project. J.L. and O.M. provided the biospecimens. L.D. led the histological image
processing, visualizations, and representation of results, with assistance from A.F. L.D. created the deep learning model
of renal architecture, with extensive pathology guidance from A.R. L.D. wrote the first draft of the manuscript, which all
authors edited and approved.

The authors acknowledge the following sources of support: 0D011092; U54CA268083; Lustgarten Foundation-AACR
Career development award for pancreatic cancer research in honor of Ruth Bader Ginsburg; Susan Wojcicki and Denis
Troper.



Sample Acquisition

Kidneys were collected from a male rhesus macaque fetus of 80 days gestation (equivalent to a mid-second trimester
human fetus) at the Oregon National Primate Research Center (ONPRC). The collected samples were then fixed in
formalin, embedded in paraffin and sectioned every 4um. The resulting slides were subsequently stained using H&E and
scanned at 20x using a Hamamatsu NanoZoomer.

Image Registration

Openslide software was used on the original images scanned at 20x (corresponding to 0.5 um/pixel) to create down-
sampled versions of each image, with a resolution of 8um/pixel, via nearest neighbor interpolation.

The down-sampled images were then registered with a combination of global and elastic registration using the method
described in .

Briefly, the down-sampled grayscale and gaussian-filtered versions of the high-resolution images were registered using
global and elastic registration with the center image of the stack as a point of reference. The parameters for global
registration, the rotation angle and the translation, were sequentially computed for an image and the next three images
closest to the center image. The rotation angle was determined first by selecting the angle between 0 and 359 that lead
to the highest cross-correlation between Radon transforms of the images being registered and the translation was then
found by maximizing the cross-correlation between rotated images. The final global registration was chosen as the one
yielding the highest pixel-to-pixel correlation between moving and reference images among the three that were
computed, while the other two were discarded. This was used to ensure no compounding error would arise from
potential folding or splitting of tissue regions on certain slides. Elastic registration was then subsequently computed on
the globally registered images by dividing them into smaller tiles on which global registration was performed.
Interpolation and Gaussian-smoothing of these local global registration results yielded the nonlinear, elastic registration
transformation. Successive global and elastic registration were computed for all images of the samples, such that they
would be aligned in the same coordinate system.

Nuclei cell detection on histological images

Openslide software was used on the 20x images to downsample them to 2um/pixel images, which were used to
determine the position of cell nuclei by following the method introduced in 2*First, color deconvolution was applied on
the colored H&E images to extract the hematoxylin channel. To do so, the H&E2 built-in staining matrix of the Image)
Color Deconvolution 2 plugin was used to deconvolve the H&E images into their eosin, hematoxylin, and background
channels. Following the method described in 3¢, the hematoxylin channel images were smoothed, and the position of
each cell nuclei was identified as the 2D intensity minima of the resulting images. The true positive, false positive and
false negative rates of the detection were computed by comparing the automatically generated coordinates with
manually annotated ones on 16 tiles 4mm?2, created from an annotation function built in Matlab 2021b. The maximum
distance between an automatically generated set of coordinates and the annotated ground truth for it to be considered
a true positive was set to be 7um.

Tissue labeling using a deep learning semantic segmentation model

Following the same method as in 2, a deep learning semantic segmentation model was trained and validated to
recognize different microanatomical renal structures on reduced size copies of the original 20x images, corresponding to
2um/pixel.

Thirteen 20x images equally spaced in the stack were used for each sample. These images were annotated using Aperio
ImageScope with between 30 to 100 examples of each class of microanatomical components. Manual annotations were
stored in a separate xml file containing the annotations coordinates for each annotated image. These coordinates were



then overlaid on the 2pm/pixel images and were used to create the bounding box of each annotation. A matrix was
created to keep track of what type of tissue each annotation contained.

Training and validation images were created from 9000x9000x3 zero-value RGB tiles which were iteratively recovered
with annotation bounding boxes, until it was covered at more than 65%. Annotations were randomly selected from the
bounding boxes containing the least represented class, so that all classes ultimately accounted for a similar number of
pixels on the filled tile image. Some of the annotations also undergone different data augmentation operations, such as
rotation, scaling and hue augmentation. This process was used to create 8 9000x9000x3, one was used for validation and
the remaining 7 were used for training. Each tile was cut into smaller 144 750x750x3 images, which created a training
dataset of 1,008 images and a validation dataset of 144 images.

These image sets were then used to train and validate a resnet50 network adapted for Deeplab v3+. The precision and
recall of the trained model were assessed on 2 manually annotated images that were not seen during the training or the
validation. New annotations were added and used to train a new model until the accuracy of each tissue class reached
over 75%.

The final model was then used to semantically segment all the 2um/pixel resolution images of the samples.
3D reconstruction of samples

Similarly to the way it was done in?, the samples were reconstructed as 3D matrices, built by applying the image
registration transformations to the semantically segmented images and assembling the registered classified images in
the third dimension. These 3D matrices were then rendered in MATLAB 2023a using the patch and isosurface commands.
To help with the visualization, each tissue subtype was assigned a unique RGB color triplet. In parallel, a 3D cell matrix
was created for each sample by registering the coordinates of the detected cell nuclei detected and consolidating the
results in 3D. The 3D cell matrices were visualized as single cells using the scatter3 function in MATLAB 2023a.

The 3D reconstructions had an original resolution in xy of 2um/voxel, corresponding to the resolution of the 10x images
used for the cell detection and the deep learning segmentation, and a resolution in z of 4um/voxel, corresponding to the
thickness of a histological section. However, the volumes were downsampled to an isotropic resolution of 4x4x4
um3/voxel, using nearest neighbor interpolation, for the rest of the computations.

Calculation of tissue volume, volume fraction, bulk cell packing density and local cell packing density

The volume of tissue in each sample was computed as the number of voxels labeled as tissue in the 3D matrices
multiplied by the volume of a voxel, that is 4x4x4um?3. The volume fraction of a particular tissue subtype was then
computed as the ratio between the number of voxels in the 3D matrix labeled as that class divided by the total number
of tissue voxels in the volume.

The cell counts in each tissue subtype were computed by associating the detected cell coordinates with a tissue subtype
in the labeled 3D matrix. Therefore, a cell nucleus detected at a voxel that is labeled as proximal tubule will be counted
towards the number of cells for the proximal tubule class. The cell count of each tissue subtype was corrected using the
formula introduced in (Kiemen et al., 2022),to avoid the potential double counting of nuclei detectable on multiple
consecutive slides. This formula makes use a parameter Dsustype Which was computed, for each tissue subtype, by
averaging 10 manually measured diameters obtained through Aperio ImageScope. Similarly to the volume fraction, the
cell fraction of each tissue subtype was computed as the ratio between the cell count of that subtype and the total
number of cells detected in the sample. Finally, bulk cell packing densities were calculated, for each tissue class, as the
ratio between its cell count and its total volume.

Delineation of the zones in the developing kidney

A 3D matrix where each voxel was attributed one of the three zones of the developing kidney (the nephrogenic zone, the
cortex or the medulla) was created. A zone was assigned to each voxel based on which of the undifferentiated blastema
cells, the mature glomerular tufts or the collecting ducts class was present in majority within a 150um radius around that



voxel. If the percentage of undifferentiated blastema cells was the highest, the voxel was set to be in the nephrogenic
zone while if it was the mature glomeruli or the collecting duct percentage, the zone was defined as the cortex or the
medulla respectively.

Practically, this was done by defining, for each of the three tissue subtypes, a logical 3D matrix with positive voxels where
that tissue was detected. Then, a 3D unit sphere of a 150um radius was created and convoluted around that logical
matrix. The 3D matrix resulting from this convolution operation was then divided by the volume of the sphere. This
created a 3D matrix whose value at a particular voxel corresponded to the percentage of the 150um sphere centered at
that voxel that is occupied by that particular tissue class. By repeating this for the two remaining classes, we were able to
define the 3D matrix by assigning, at each voxel, the zone that corresponded to the tissue class with the highest
percentage of presence.

Construction of z projections

As it was presented in 2’the Z-projection of a particular tissue subtype was created, at each pixel of a the xy plane, by
summing in the z direction the voxels of the 3D matrix corresponding to that tissue class. The z-projections of different
tissue classes were combined, normalized by their maximum and visualized, in the same color scheme as previously
defined, with the imagesc Matlab2023b command.

Analysis of the spatial arrangement of mature and developing glomeruli

The developing glomerular tufts, mature glomerular tufts labels and the combined urinary space and bowman’s capsule
label were isolated from the 3D matrices to create new volumes containing only these elements for each sample. These
matrices underwent slight smoothing to remove any noise due to potential misclassifications by the deep learning
model.

First, the thickness of the Bowman’s capsule and the urinary space associated with each individual glomerular tuft was
assessed. This parameter, called Bowman’s capsule thickness for simplicity, was defined as the difference between the
radius of the sphere formed by the combined bowman’s capsule and urinary space and the radius of the sphere formed
by the developing/mature glomerular tuft. This parameter was assessed and compared against other parameters
describing each individual glomerulus: the size of its tuft, its distance to the surface of the kidney and its cell packing
density. The size and cell packing density of each glomerulus were computed as explained previously. The distance to the
kidney surface was defined as the distance, computed using the bwdist function in MATLAB, between the centroid of the
object formed by a glomerulus (determined using the regionprops3 function in MATLAB) and the outer surface of the
whole tissue sample.

The size and cell packing distributions of glomeruli were computed. The size, cell count and cell packing density of each
glomerulus was then also compared against its position with respect to the surface of the kidney. Three dimensional
heatmaps of the glomerular volume and cell packing densities were built by assigning a color to each glomerulus based,
respectively, on its individual size and cell packing density.

3D reconstruction and characterization of the arterial network

The arterial network was reconstructed from a second deep learning model able to recognize three different
microstructures: renal tissue without arterial vessels, arterial vessels and their lumen, and the background of images.
This deep learning model was trained and tested on a new set of manual annotations following the same pipeline as the
previous 17-classes one. This was done to improve the segmentation accuracy of the original model, especially in the
segmentation of the vessels lumen and smaller arterioles, which allowed to increase the resolution of the reconstructed
arterial network. The new model achieved an average precision and recall of 95 %.

The results of the new 3-classes model were then consolidated using the image registration results previously computed.
This allowed the creation of the 3D arterial network of each sample, with a resolution of 4x4x4um3/voxel.



The newly reconstructed arterial vessels volume was smoothed using the morphological opening and closing functions in
MATLAB. The arterial vessels detected on the renal capsule and around the ureter were manually excluded to keep only
the inner network.

The vessels in that volume were given an artery/arteriole label by extrapolating the reconstructed results of the 17-
classes model. This was done by isolating the artery and arteriole label from the full 3D reconstruction and applying the
dilatation and morphological closing openly available on MATLAB. The dilated artery-arteriole volume was then dot
multiplied with the cleaned arterial vessels volume. It was estimated that around 85% of all voxels in the arterial vessel
reconstruction could be assigned a label from the old classification.

The volume fraction respectively occupied by arterial vessels, arteries and arterioles for different incremental windows of
distance from the branching point of the segmental artery was computed. That branching point was manually
determined by locating the branching point of the renal artery from the stack of aligned images. It was then defined as a
sphere of 0.1-mm radius centered on the manually determined coordinate within the arterial vessel volume. The
distance between the sphere and each voxel in the volume was determined using the bwdist function in MATLAB. The
volume fraction of a given type of arterial vessel within a window was computed as the number of voxels detected as
that vessel type, divided by the total number of voxels in the window.

Using the bwdist results previously computed, the mean diameter of the three types of arterial vessels was characterized
also as a function of their distance to the branching point of the segmental artery. The diameter of the vessels were
determined by applying the bwdist Matlab function on the opposite of the arterial network volume. The result of that
operation was then multiplied by 2 and dot multiplied with the morphological skeleton of the arterial network (obtained
using Matlab’s bwskel function). This gives a 3D skeleton in which each voxel gets its diameter as a value. The mean
blood vessel diameter within a given window from the segmental artery branching point is then computed as the
average of the value of the diameter skeleton voxels located within that window. This was done in turn for the three
types of vessels.

Analysis of the association between glomerular tufts and the arterial network

The association between glomeruli and the arterial network was then assessed. First, we counted the number of mature
and developing glomeruli within incremental distance windows from the segmental artery branching point.

We also described how the number of the different types of glomeruli detected within a given distance window was
associated with the volume fraction of arterioles previously computed within that window.

We then evaluated how the size of each glomerulus related to the density of arterial vessels within a 0.1mm radius
around it. This was done by defining 0.1mm radius sphere object and convolving it around the arterial vessel volume. By
dividing the result of that convolution by the volume of the sphere, we obtained at each voxel in the volume the volume
fraction occupied by arterial vessels within a 0.1mm sphere centered at that voxel. The density of vessel for a given
glomeruli was then obtained by averaging the densities computed for each voxel of that glomeruli.

We finally created a three-dimensional heatmap of the densities of vessels in the glomeruli vicinity by attributing a
distinct color to each glomerulus based on their density value.
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