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Magnetic Resonance Imaging-Based Assessment of
Pancreatic Fat Strongly Correlates With Histology-Based
Assessment of Pancreas Composition
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Objective: The aim of the study is to assess the relationship between
magnetic resonance imaging (MRI)-based estimation of pancreatic fat
and histology-based measurement of pancreatic composition.

Materials and Methods: In this retrospective study, MRI was used to
noninvasively estimate pancreatic fat content in preoperative images from
high-risk individuals and disease controls having normal pancreata. A deep
learning algorithm was used to label 11 tissue components at micron reso-
lution in subsequent pancreatectomy histology. A linear model was used to
determine correlation between histologic tissue composition and MRI
fat estimation.

Results: Twenty-seven patients (mean age 64.0 + 12.0 years [standard
deviation], 15 women) were evaluated. The fat content measured by
MRI ranged from 0% to 36.9%. Intrapancreatic histologic tissue fat con-
tent ranged from 0.8% to 38.3%. MRI pancreatic fat estimation positively
correlated with microanatomical composition of fat (r = 0.90, 0.83 to
0.95], P <0.001); as well as with pancreatic cancer precursor (» = 0.65,
P <0.001); and collagen (» = 0.46, P < 0.001) content, and negatively cor-
related with pancreatic acinar (» = —0.85, P < 0.001) content.
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Conclusions: Pancreatic fat content, measurable by MRI, correlates to
acinar content, stromal content (fibrosis), and presence of neoplastic pre-
cursors of cancer.
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Abbreviations: CI - confidence interval, H&E - hematoxylin and eosin,
HRI - high-risk individuals, IPMN - intraductal papillary mucinous
neoplasm, MRI - magnetic resonance imaging, ROI - region of interest
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KEY POINTS

Pancreatic fat content as measured in magnetic resonance imaging
(MRI) correlates strongly with pancreatic fat content as measured
via deep learning in histology.

Pancreatic fat content as measured in MRI correlates posi-
tively with pancreatic intraepithelial neoplasia and collagen and
correlates negatively with pancreatic acinar content as measured
via deep learning in histology.

Fatty pancreas, or fatty infiltration of the pancreatic tissue, '
is associated with serious conditions including obesity,>* diabetes
mellitus,* ¢ fatty liver disease,®® pancreatitis,” !! and pancreatic
ductal adenocarcinoma.''~'* These conditions are associated with
additional changes to the pancreatic microenvironment including
a loss of -cells within the islets of Langerhans, increased pancre-
atic collagen content, acinar atrophy, and development of pancreatic
cancer precursor lesions.'>'” Many of these pathologies are micro-
scopic and therefore not visualized by clinical imaging tests. Nonin-
vasive tools capable of quantifying fat in the pancreas could be
useful determiners of histologic changes and pancreatic diseases.

Prior reports correlate pancreatic fat content measured by
MRI and computed tomography with histology determined by vi-
sual inspection of a limited number of tissue sections,>! 1819
which may limit the accuracy of the comparison. Recent deep
learning—based tissue segmentation algorithms are capable of rap-
idly deconvolving histologic slides into their various microana-
tomical components.?®>* These algorithms allow rapid, consis-
tent calculation of tissue composition that can be quantitatively
validated. In addition, deep learning algorithms can discern di-
verse pancreatic structures, allowing comparisons of fat content
to a large number of other pancreatic tissue components.

The purpose of this study was twofold. First, we sought to
corroborate the relation between MRI-based and histology-based
measurements of pancreatic fat content using deep learning—based
histologic fat quantification. Second, an accurate estimate of pancre-
atic fat content with MRI could serve a stand in for other pathologies.
We aimed to evaluate other anatomical correlates of MRI-based pan-
creatic fat measurements, including pancreatic neoplasia, stroma, and
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acinar dropout to determine whether MRI-based estimation of
pancreatic fat content is accurate enough to recapitulate histologic
correlates of pancreatic fat content to stromal content, acinar con-
tent, and pancreatic cancer precursor content. To enable this, we
first calculated the correlation between histology-based measures
of different pancreatic tissue components. We reasoned that mea-
surable changes to the pancreatic architecture, such as pancreatic
fat fraction as estimated in MRI, may allow indirect evidence of
the presence of pancreatic cancer precursor lesions.

To increase the likelihood our cohort that contained a wide
spectrum of pancreatic fat, stroma, and pancreatic cancer precur-
sor lesion compositions, we examined the histology and MRI im-
ages both from patients in the Cancer of the Pancreas Screening
(CAPS) program who underwent resection for worrisome pancre-
atic imaging findings and from disease controls whose pancreata
were resected for other indications.

MATERIALS AND METHODS

This retrospective study was approved by the Johns Hopkins
University School of Medicine institutional review board.

Study Subjects

Individuals who underwent regular pancreatic surveillance
for their increased risk for pancreatic cancer (high-risk individuals
or HRIs) participated in a series of institutional review board—
approved prospective cohort studies at the Johns Hopkins Hospi-
tal from 1998 to 2019 (Cancer of the Pancreas Screening Studies
CAPS1-5%%7). The HRIs were enrolled based on either family
history criteria, which included individuals who had at least one
first-degree relative with pancreatic ductal adenocarcinoma, and
who were part of a kindred with at least one pair of affected
first-degree relatives (familial pancreatic cancer kindred), or muta-
tion criteria (carriers of a germline deleterious variant in a gene as-
sociated with hereditary pancreatic cancer [ATM, BRCAI,
BRCA2, PALB2, STK11 or CDKN2A pathogenic germline vari-
ant and/or familial atypical mole melanoma FAMMM, Lynch
syndrome, or Peutz-Jeghers syndrome]). The CAPS screening pro-
tocol consisted of baseline MRI and endoscopic ultrasound (EUS),
followed by either MRI or EUS alternating annually. Those HRIs
who developed a pancreatic lesion concerning for pancreatic can-
cer or a high-grade pancreatic cancer precursor neoplasm, such as
intraductal papillary mucinous neoplasm (IPMN) or pancreatic

intraepithelial neoplasia with high-grade dysplasia were offered oper-
ative treatment after a multidisciplinary conference. Of the 47 HRIs
who had pancreatic resections, 15 of the histologic slides and
the presurgical MRI sequences and images were available (Fig. 1).

Control subjects were non—high-risk individuals selected from
a series of consented patients at the Johns Hopkins Hospital who
underwent surgical resection of parts of their pancreas for either be-
nign nonprecursor lesions of the pancreas (eg, serous cystadenomas,
hemangiomas, heterotrophic spleen), or nonpancreatic lesions (eg,
duodenal adenomas) and were included if they had an MRI less
than 3 months before surgery and had available histologic slides
from their resection. For the normal pancreas controls, histologic
sections were selected from the pancreas downstream from the
resected lesion to minimize any potential upstream obstructive ef-
fects on the ducts and parenchyma analyzed.

The median time between presurgical MRI and surgery in days
for all subjects was 56, with an interquartile range of 108 days.

Assessment of Pancreatic Fat Content in MRI Images

Cross-sectional MRI images were acquired using a 3 Tesla
scanner (MAGNETOM Tim Trio; Siemens Healthcare, Erlangen,
Germany), equipped with an 18-channel phased-array body coil
in combination with a 32-channel spine matrix coil. Patients were
scanned in the supine position. Each sequence was acquired at the
end of inspiration in a single breath-hold. The imaging protocol
included a dual-echo volumetric interpolated breath-hold ex-
amination Dixon method, which was used to quantify the fat
fraction of the pancreas. The sequence is a commercially avail-
able, 3-dimensional parallel-accelerated volumetric interpolated
breath-hold examination sequence prototype, and was performed
to acquire opposed- and in-phase echoes. Sequence parameters
were as follows: repetition time 3.8 ms, opposed-phase echo time
1.22 ms, in-phase echo time 2.45 ms, flip angle 10 degrees, readout
echo bandwidth 1300 Hz/pixel, field of view 440 mm, and slice thick-
ness 3 mm. The acquisition was completed in a single breath-hold
of approximately 20 seconds. As in previous work that used MRI to
quantitate organ fat fraction,?®% the opposed-phase and in-phase im-
ages were then used to calculate the fat fraction of the pancreas ac-
cording to following equation: fat fraction = (in-phase — opposed-
phase) /2 x in-phase. Of note, this MRI method cannot quantify fat
content more than 50%. The in- and opposed-phase images are ac-
quired in the same acquisition. The ROIs are placed on the in-phase

HRI with a genetic predisposition to pancreatic
cancer who participated in prospective cohort
studies from 1998 to 2019 (Cancer of the
Pancreas Screening Study), n = 789.

Control subjects without a genetic predisposition
to pancreatic cancer who had surgery for benign
non-precancerous pancreatic lesions or non-
pancreatic lesions between 2015-2021, n = 140

Excluded n = 742 in whom operative
treatment was not performed.

HRI on whom operative treatment was
performed, n =47

Excluded n= 128 who did not have
pre-surgical MRIs or who did not
have available formalin fixed slides

Excluded n = 32 in whom formalin
fixed slides were not available or
pre-surgical MRIs did not have the
needed sequences available

Control subjects who had MRI within 3 month
prior to surgery and with available formalin-fixed
slides, n=12.

HRI with available formalin fixed slides and pre-
surgical MRI, n = 15.

FIGURE 1. Flow diagram of the subjects shows the selection of patients, including HRIs and control subjects.
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images and copied and pasted on the opposed-phase images to en-
sure identical localization.

Two readers who were not aware of the surgical and histo-
logic findings measured the MRI fat fraction values by manually
drawing 3 regions of interest (ROIs) on the fat fraction maps of
the dual-echo Dixon sequence (Fig. 2). Three oval ROIs with at
least 1-cm? diameter were placed in the head, body, and tail of
the pancreas. The ROIs were carefully placed over the pancreatic
parenchyma, avoiding surrounding peripancreatic fat, large vascu-
lature, bile duct, and duodenum. Each reader determined a fat
fraction for the pancreatic head, body, and tail, as well as an overall
pancreatic fat fraction (determined as an average of the head, body,
and tail measurements). These fat fraction averages did not take
into account ROI size, instead ranking head, body, and tail mea-
surements equally and requiring each ROI to be 21 cm?. The fat
fraction value from the portion of the pancreas that was surgically
resected was used for pathologic correlation, where the average of
the fat fractions as determined by the 2 independent readers was
correlated with pathologic data. Interreader agreement of average
fat fraction was calculated through assessment of the percent dif-
ference between fat fraction calculated between observer 1 and
observer 2.

Deep Learning Determination of
Histologic Composition

CODA, a previously described convolutional neural network
designed for rapid labelling of tissue microanatomy,®* was retrained
here to label 11 tissue types in digitized images of the hematoxylin
and eosin (H&E) stained slides: normal ductal epithelium, pancre-
atic intraductal precursor lesions (pancreatic intraepithelial neopla-
sia or IPMN), pancreatic cancer, islets of Langerhans, acini, blood
vessels, nerves, collagen, duodenum, lymph nodes, and fat (fat re-
ferring to adipocytes and their minimal associated connective tis-
sues, not to intracellular lipids in epithelia). Of the 421 histologic
images in this work, 50 were used for training and validation and
5 were used for independent testing of model accuracy. A resnet50
network was adapted for DeepLab v3+ semantic segmentation
and trained to a validation patience of 5. The final model obtained

In-phase sequence

AR: 2.35 cm?
AV: 287.06

AR: 2.75 cm?
AV:301.00

AR: 2.09 cm?
AV:248.49

Percent Difference in fat fraction

@ Median: 1
Hiar:2

ve]

an overall accuracy of 89.7% and was used to label components
of the 421 histologic images to a resolution of 1 um per pixel.

During image classification, it was noted that many of the
histologic slides contained extrapancreatic components. Because
the pancreas is not surrounded by a well-defined capsule, the
periphery of the pancreas mingles imperceptibly with extrapancreatic
structures, particularly extrapancreatic fat, and these structures are of-
ten resected along with the pancreas. The existence of extrapancreatic
structures in histologic sections could obfuscate the assessment of
pancreatic tissue composition. This extra pancreatic fat was excluded
from the analysis through manual annotation of nonpancreatic tis-
sues. As the lack of a defining capsule around the pancreas presents a
challenge when distinguishing between true extrapancreatic fat and
excessive fatty replacement of the acinar tissue, 3 independent readers
followed predetermined guidelines to remove extrapancreatic tissues,
and these measures were evaluated for consistency:

The 3 researchers who were blinded to the MRI findings, sepa-
rately reviewed the histologic images. A script written in MATLAB
2021Db to rapidly display each image, allowing the researchers to dig-
itally outline the pancreatic parenchyma. Large peripheral regions of
fat, connective tissue, nonpancreatic tissue such as duodenum or
lymph nodes, and tissue containing cancer were excluded. The
histologic analysis included all pancreatic anatomical components
including pancreatic ducts, acinar lobules, pancreatic fat, and pan-
creatic stroma. Fat was determined to be intrapancreatic if it was
surrounded by acinar lobules or contained sparse islets of Langerhans
(which may indicate atrophy of the exocrine pancreas and fatty re-
placement, leaving behind endocrine structures within the fat).
Three researchers independently decided which components of
tissue sections to exclude because of the subjective nature of de-
termining the precise edge of the pancreas in histologic images.
The 3 researchers' outlines were compared by calculation of the
intersection over union of the 3 masks per image. Pancreatic his-
tologic fractions were determined by taking the mean of the re-
sults of each of the three researchers.

The images were sorted by patient ID and by the approximate
anatomic location within the pancreas (head, body, or tail) from
which they were taken. For each histologic tissue type (acini, fat,
collagen, etc), the volumetric tissue composition was calculated

Out-of-phase sequence

AR: 2.35 cm?
AV:73.01

AR: 2.75 cm?
AV:78.94

AR: 2.09 cm?
AV:145.38

FIGURE 2. Sample images showing MRI-based pancreatic fat quantification. A, Areas (AR) with minimum size of 1 cm? were manually
identified in the pancreatic head, body, and tail. In each region the average signal intensity (AV) was compared between the in-phase and
out-of-phase sequence to estimate the intrapancreatic fat content. In this example, an average fat content of 32% was obtained. B, Violin plot
presenting percent difference in fat fraction as calculated by 2 independent readers. Median: 1%, interquartile range: 2%.
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TABLE 1. Study Participant Characteristics

Interquartile
Range

Age — 15.8 65

Sex (# female:# male) 15:12 — —

body mass index (# normal:# 7:16:4 — —
overweight:# obese)

Number of histological samples —
per patient

Location of histology/MRI

measurement in pancreas
(# head:# body:# tail)

Characteristic Ratio Median

385 12

18:17:14 — —

per image with and without excluding the nonpancreas tissue,
using the manual annotations described previously. For a given tis-
sue type, volumetric tissue composition percentage is defined as
the number of pixels of that tissue type normalized by the total
number of tissue pixels per histologic image.

Statistical Analyses

The linear dependence between the MRI and histologic fat
measurements was determined by calculation of their correlation
coefficient, », and linear relationships are reported using the
square of the correlation coefficient, 7. P values were determined
using the Wilcoxon rank sum test. Linear lines of best fit and 95%
confidence intervals (95% Cls) were used to further visualize the
correlation of the histologic and MRI data. Intersection over union
was used to compare the different manual annotations of the his-
tologic pancreatic area. All calculations were performed using
MATLAB 2021b.

RESULTS

Study Demographics

Fat compositions as determined by MRI and as quantified his-
tologically were compared across the cohort of 27 patients (15 HRIs,
12 normal pancreas controls), with a mean age 64.0 & 12.0 years,
a sex ratio of 15 women:12 men, and a body mass index ratio of
7 normal: 16 overweight:4 obese. An average of 15.6 & 21.4 histo-
logic images was analyzed for each patient. The set of histo-
logic images contained repeat samples from different anatomic
locations in the pancreas, resulting in a ratio of 18 pancreatic
head:17 pancreatic body:14 pancreatic tail measurements (49
total) (Table 1).

Assessment of Histologic Tissue and MRI
Fat Compositions

Volumetric tissue composition of each labeled component was
determined following deep learning semantic segmentation of the
histologic images. Average MRI intrapancreatic fat percentage
was also measured, and these data are summarized in Table 2.

Comparison of the Correlation Between
Histology-Based Measures of Pancreas
Tissue Composition

We first assessed the interrelation between the histology-based
measures of pancreatic tissue composition. The correlation between
the histology-based measures of pancreas composition was com-
puted between the 7 histologically detected components (Fig. 3).
We identified several correlations worth noting (with 95% CI lower
and upper bounds in parentheses): correlation of histologic fat to
pancreatic cancer precursor lesions: 0.61 (0.39 to 0.76); correlation
of histologic fat to collagen: 0.42 (0.16 to 0.63); correlation of his-
tologic fat to pancreatic acini: —0.88 (—0.93 to —0.79); correlation of
pancreatic cancer precursor lesions to collagen: 0.54 (0.31 to 0.72);
correlation of pancreatic cancer precursor lesions to pancreatic ac-
ini: —0.71 (—0.83 to —0.53); and correlation of collagen to pancre-
atic acini: —0.79 (—0.88 to —0.66). We next assessed whether the
noted correlations between fat and pancreatic tissue components
found in the histologic data could be replicated using MRI-based
estimation of fat fraction.

Relation Between Histology-Based Measures of
Tissue Composition and MRI-Based
Measures of Fat

Magnetic resonance imaging fat content and histologic composi-
tion were compared separately for the 7 pancreatic tissue components
identified by the segmentation algorithm (excluding duodenum,
lymph node, cancer, and other nonpancreatic structures). The per-
cent difference in the 2 observer's fat fraction estimation was de-
termined (Fig. 2B), with median of 1% and interquartile range
of 2%. The median overlap in manual annotations excluding
nonpancreatic structures was 89.9%, with an interquartile range of
12.7% (Fig. 4D). Correlation coefficients between MRI fat and over-
all histologic tissue percentage were as follows, including both the
intrapancreatic tissues (IP) and extrapancreatic (EP) tissues on the
slides, as defined in the materials and methods section (Fig. SA).

Correlation coefficients for positive correlations of MRI-based
fat to various histologic components (with 95% CI lower and up-
per bounds in parentheses): overall fat: 0.57 (0.38 to 0.71); overall
pancreatic cancer precursor lesion: 0.43 (0.22 to 0.61); and overall
collagen: 0.06 (—0.18 to 0.29). Correlation coefficients for negative

TABLE 2. Summary of MRI and Histological Tissue Measurements

MRI Composition

Overall Histologic Intrapancreatic Histologic

(Volume %) Composition (Volume %) Composition (Volume %)
Interquartile Range Median Interquartile Range Median Interquartile Range Median
Fat 12.0 53 20.2 23.8 13.7 10.0
Precancer — — 0.6 0.3 0.6 0.3
Collagen — — 12.3 16.0 9.0 10.8
Islets of Langerhans — — 1.2 0.8 1.3 1.1
Normal ductal epithelium — — 02 0.2 0.2 02
Smooth muscle — — 2.9 34 1.5 2.1
Acini — — 28.4 54.2 18.0 74.2
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Sample hematoxylin and eosin section

Sample tissue segmentation

B Acini
Islet of Langerhans
Normal duct
Precancer
Cancer
Fat
Collagen

Smooth muscle
. Lymph node

A B

Mask 1
Mask 2
Mask 3

C

Intersection over Union

® Median: 89.9
Hiar:12.7

0

FIGURE 3. Correlation matrix comparing histology-based compositional data. The correlation coefficient for each pair of deep learning
measured histology-based features was computed and displayed in heatmap form.

correlations: overall islets: —0.08 (—0.32 to 0.16); overall normal
ductal epithelium: —0.29 (—0.49 to —0.06); overall smooth muscle:
—0.15 (—0.38 t0 0.71); and overall acini: —0.40 (—0.58 to —0.18). Af-
ter repeating the correlation calculation for the intrapancreatic
components only, we observed that correlation of all components
with MRI fat percentage improved. Correlation coefficients for
positive correlations (with 95% CI lower and upper bounds in
parentheses): 1P fat: 0.90 (0.83 to 0.95); IP pancreatic cancer
precursor: 0.65 (0.44 to 0.79); and IP collagen: 0.46 (0.20 to
0.66). Correlation coefficients for negative correlations: IP is-
lets: —0.04 (—0.32 to 0.24); IP normal ductal epithelium: —0.14
(=0.41 to 0.15); IP smooth muscle: —0.23 (—0.48 to 0.07); and
IP acini: —0.85 (—0.91 to —0.74).

To further investigate the correlations, we determined the lin-
ear fit for the 4 pancreatic tissue components determined to have
strong correlation with MRI fat (absolute value >0.4, Figs. 3E, 5B).
Intrapancreatic tissue histologic fat percentage, pancreatic can-
cer precursor lesion percentage, and collagen percentage pre-
sented strong positive correlations with MRI fat (% = 0.81,
P<0.001;7=042, P<0.001;*=0.21, P<0.001). Intrapancreatic
tissue histologic acinar percentage had a strong negative correla-
tion with MRI fat (7% = 0.72, P < 0.001), suggesting an inverse re-
lationship between pancreatic acinar content and pancreatic fat
content.

DISCUSSION

Here, we compare MRI-based measurements of pancreatic fat
content to histology-based measurements of pancreatic microanatomic
composition. We show 2 improvements on previous work.

First, where past studies calculated histologic fat content
using visual inspection by trained pathologists,>*'1° we use a
novel deep learning approach to measure fat content at high accu-
racy and at micron resolution. Second, we compare noninvasive
MRI-based pancreatic fat measurements to additional histology-
based pancreatic components, including percent of pancreatic acini,
pancreatic cancer precursor neoplasms, and islets of Langerhans,

© 2024 Wolters Kluwer Health, Inc. All rights reserved.

allowing us to examine the relationship between fatty infiltration
of the pancreas and tissue compositions.

We confirm that MRI-based estimates of fat content correlate
closely with histology-based pancreatic fat content. We addition-
ally show that MRI-based fat content correlates positively with
the histology-based pancreatic cancer precursor lesion and colla-
gen content and negatively with histology-based pancreatic acinar
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Precursor lesion 05
Collagen
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Islets
Normalduct | -0.
1-05
Smooth muscle

Acini

FIGURE 4. Measuring microanatomical pancreatic tissue.

A, Example of a H&E-stained section of human pancreas. B, Deep
learning semantic segmentation of H&E section allows
quantification of 11 pancreatic tissue components. C, Manual
annotation of pancreatic tissue by 3 independent researchers allows
exclusion of structures such as lymph nodes and extrapancreatic
fat. D, A violin plot displays the similarity between the 3 researchers'
annotations of pancreatic tissue area per histologic image.
Intersection over union of the annotated tissue area was calculated
for each image. Median: 89.9%, interquartile range: 12.7%.
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FIGURE 5. Correlations of histologic to MRI data. A, Correlation coefficient between MRI-derived pancreatic fat and histology-derived
pancreatic tissue components. The leftmost column depicts correlations between MRI values and all histologic data. The rightmost column
depicts correlations between MRI values and intrapancreatic histologic data (excluding nonpancreatic tissues such as lymph nodes and
duodenum). B, Scatter plot linearly relating MRI fat to histologic intrapancreatic fat. C, Scatter plot linearly relating MRI fat to histologic
intrapancreatic acini. D, Scatter plot linearly relating MRI fat to histologic intrapancreatic pancreatic precursor lesions. E, Scatter plot linearly

relating MRI fat to histologic intrapancreatic collagen.

tissue. Previous studies observed that increased stromal content
and decreased acinar content occurs in areas involved with pancre-
atic neoplasia.'®> We provide further evidence that fat, as well as
denser stromal tissues, replace atrophied pancreatic lobules.

Our results are important for future studies related to surveil-
lance of HRIs undergoing repeated MRI imaging as part of a pan-
creatic cancer early detection or prevention strategy. We show that
MRI-measured pancreatic fat content positively correlates with
histologically measured pancreatic cancer precursor lesion con-
tent. Currently, patients at high risk for development of pancreatic
cancer undergo routine surveillance including use of MRI and
EUS imaging. Patients with visible pancreatic cysts in diagnostic
imaging are advised to undergo pancreatectomies to remove what
may be large pancreatic cancer precursor lesions called intraductal
papillary mucinous neoplasms or IPMNS, if there are associated
visible high risk or worrisome features. The data shown in this
study indicate that high pancreatic fat content as measured by
MRI may be another indicator that a patient has microscopic pan-
creatic cancer precursor lesions not detectable by current clinical
MRI. The use of MRI to estimate pancreatic fat has the potential
to provide better estimates of the extent of pancreatic neoplasia,
thereby helping select HRI for surgical intervention.

Our study has some limitations. Because of the relatively
small sample size used here, more research to prospectively vali-
date our methods and results in specific larger patient populations
are needed. Another limitation of the MRI fat fraction estimation
method used in this study is that it cannot quantify fat fractions
more than 0.50. However, none of the 27 pancreas cases in this
study had this much fat (the median fat fraction was 0.23 and
the highest fat fraction was 0.37, suggesting that even “fatty”
pancreases may contain fat fractions <0.50).
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