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ABSTRACT

The development of novel imaging platforms has improved our ability to collect and analyze large
three-dimensional (3D) biological imaging datasets. Advances in computing have led to an ability
to extract complex spatial information from these data, such as the composition, morphology, and
interactions of multi-cellular structures, rare events, and integration of multi-modal features
combining anatomical, molecular, and transcriptomic (among other) information. Yet, the accuracy
of these quantitative results is intrinsically limited by the quality of the input images, which can
contain missing or damaged regions, or can be of poor resolution due to mechanical, temporal, or
financial constraints. In applications ranging from intact imaging (e.g. light-sheet microscopy and
magnetic resonance imaging) to sectioning based platforms (e.g. serial histology and serial section
transmission electron microscopy), the quality and resolution of imaging data has become
paramount.

Here, we address these challenges by leveraging frame interpolation for large image motion
(FILM), a generative Al model originally developed for temporal interpolation, for spatial
interpolation of a range of 3D image types. Comparative analysis demonstrates the superiority of
FILM over traditional linear interpolation to produce functional synthetic images, due to its ability
to better preserve biological information including microanatomical features and cell counts, as
well as image quality, such as contrast, variance, and luminance. FILM repairs tissue damages in
images and reduces stitching artifacts. We show that FILM can decrease imaging time by
synthesizing skipped images. We demonstrate the versatility of our method with a wide range of
imaging modalities (histology, tissue-clearing/light-sheet microscopy, magnetic resonance
imaging, serial section transmission electron microscopy), species (human, mouse), healthy and
diseased tissues (pancreas, lung, brain), staining techniques (IHC, H&E), and pixel resolutions (8
nm, 2 um, Imm). Overall, we demonstrate the marked potential of generative Al in improving the
resolution, throughput, and quality of biological image datasets, enabling improved 3D imaging.
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60 INTRODUCTION

61  Novel three-dimensional (3D) imaging techniques and algorithms designed to integrate large,
62  multimodal datasets have improved our ability to assess normal anatomy and tissue heterogeneity
63  using anatomical, molecular, -omic probes.!~” Across 3D image modalities, a common challenge
64  emerges: a lack of resolution due to mechanical or financial constraints, or due to the presence of
65 damaged or distorted tissue. Here, we introduce a methodology to repair and enhance 3D
66  biological imaging data using generative artificial intelligence (AI) image interpolation. We
67  demonstrate the utility of this method across serial sectioning-based and intact imaging datasets.

68  Serial sectioning-based and intact imaging methods both present resolution challenges. Imaging
69 methods that utilize serial sectioning take advantage of the ability to multiplex across tens to
70  hundreds of sections.>®® However, sectioning-based techniques face two resolution-limiting
71 hurdles. First, the resolution of the sample is limited by the thickness of the serial sections (4 — 10
72 um for histology and ~40 nm for serial section transmission electron microscopy [ssTEM]). This
73 resolution is further limited during the common practice of intermixing stains (hematoxylin and
74  eosin [H&E], immunohistochemistry [IHC], spatial transcriptomics) at regular intervals.5%12
75  Second, the axial resolution of the sample is diminished due to physical artifacts of sectioning,
76 where tissue splitting, folding, and warping can dramatically limit the user’s ability to reconstruct
77  continuous structures.*!*!* In contrast, intact imaging approaches such as magnetic resonance
78  imaging (MRI), computed tomography (CT), and tissue clearing enable 3D views of continuous
79  structures.'”"!” While the preservation of 3D structure generally enables higher resolution images
80 than serial sectioning approaches, these techniques sacrifice the ability to multiplex across z-
81  planes. Additionally, in spite of the lack of sectioning, resolution problems persist, as the effects
82  of photobleaching, light-sheet absorption, susceptibility to motion artifacts, and signal loss can
83  result in localized loss of tissue connectivity and clarity. 182

84 A promising solution lies in the application of generative models and interpolation techniques to
85  enhance the fidelity of reconstructed images. Various generative deep learning models have been
86 employed to synthesize tissue images. Prominent are CycleGANs (Cycle-Consistent Generative
87  Adversarial Networks) and diffusion models.?! 8 CycleGANs are generative deep learning models
88 that allow for cross modality translation. They have been used for the transformation of H&E-
89  stained slides into synthetic IHC-stained slides that mark specific proteins in tissues.?*>>?
90 Diffusion models have been used to generate magnetic resonance imaging (MRI) and computed
91  tomography (CT) scans to augment the training datasets of deep learning models.?"?”-3

92  Despite advances in generative models, limitations persist in achieving synthetic biological images
93  that look realistic, as assessed by rigorous metrics.2!28313% Issues such as the accurate
94  representation of subtle or rare textures, cell arrangements, and tissue boundaries are areas of active
95  research.’>?® Here, we explore interpolation techniques, such as frame interpolation for large
96  motion (FILM), to enhance the resolution of 3D biological images.*!"** Using FILM to generate
97  synthetic intervening slides, we propagate information contained in adjacent slides, which
98 enhances z-axis resolution of 3D microanatomical structures and allows for additional information.

99  We demonstrate that interpolation of biological images using FILM provides superior performance
100 compared to conventional linear interpolation. FILM-synthesized images can reconstruct
101  microanatomical features, image contrast, and cell counts from damaged slides. Using FILM, 3D
102 reconstructions of semantically segmented synthetic images of complex microanatomical
103  structures - such as ducts and blood vessels - feature fewer artifacts than original, damaged datasets
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(as assessed considering 13 Haralick features). The versatility of FILM is shown by its applications
to different imaging modalities (light microscopy, MRI, ssTEM), species (human, mouse), organs
(pancreas, brain, lungs), and pixel resolutions (8 nm, 2 um, 1mm). These applications highlight
the potential of generative Al interpolation techniques such as FILM to enhance spatial resolution,
restore and recover damaged image slides, and mitigate information loss in volumetric biomedical
imaging.
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111  MATERIALS AND METHODS
112 Specimen acquisition

113 A sample of non-diseased human pancreas tissue was stained with hematoxylin and eosin (H&E);
114  another similar sample was stained with leukocyte marker CD45 via immunohistochemistry (IHC-
115  CD45). Both samples were from individuals who underwent surgical resection for pancreatic
116  cancer at the Johns Hopkins Hospital.> The H&E-stained dataset consisted of a stack of 101 serially
117  sectioned 4um apart slides at 5x magnification. H and E are standard histological stains that mark
118  nuclei and cellular structures (H) and ECM (E). The IHC-CD45 stained dataset consisted of 275
119  slides at 5x magnification where every third slide of the serial section was stained 16um apart.
120 CD45 is a general marker of leukocytes. This retrospective study was approved by the Johns
121 Hopkins University Institutional Review Board (IRB).

122 A stack of serial section transmission electron micrographs (ssTEM) within a densely annotated
123 mouse visual cortex petascale image volume (public dataset Minnie65) was obtained through the
124  online Brain Observatory Storage Service and Database (BossDB), created, and managed by the
125  Johns Hopkins Applied Physics Laboratory (APL). This dataset consisted of 100 ssTEM slides
126  captured at a resolution of 8 nm x 8nm x 40 nm.>’

127  Light-sheet microscopy images of mouse lung were obtained from the Image Data Resource (IDR)
128  public repository.>>* This dataset consisted of 401 serial light-sheet microscopy images captured
129  ataresolution of 3.22um x 3.22um x 10um.

130 MRI samples of human brain were obtained from the Amsterdam Open MRI Collection
131 (AOMIC).*” Specifically, the PIOP2 (Population Imaging of Psychology) cohort consisting of
132 structural MRI scans of students was used. The dataset consisted of 220 structural MRI scans
133 captured at a resolution of Imm x Imm x Imm.

134
135  Segmentation of pancreatic microanatomy in histology slides

136  CODA, apreviously developed semantic segmentation model, was leveraged to segment the H&E-
137  stained pancreas whole slide images (WSIs) into their respective microanatomical components.>
138 CODA was specifically trained for the segmentation of microanatomical components of the
139  pancreas and labeled seven components at a resolution of 2 um per pixel, including islet of
140  Langerhans, ductal epithelium, blood vessels, fat, acini, extracellular matrix (ECM), and
141  pancreatic intraepithelial neoplasia (PanIN), which are precursor lesions of pancreatic cancer.’

142
143 Interpolation between 2D images

144  Spatial interpolation between 2D slides within a stack was carried out using Frame Interpolation
145  for Large Image Motion (FILM), a model previously developed for temporal interpolation between
146  frames of videos by Reda et al.** The model uses a three-step process to generate intermediate
147  frames between two input images: a feature extraction pyramid, optical flow estimation, and
148  feature fusion and frame generation.
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149  The feature extraction pyramid consists of six convolutional layers responsible for extracting
150 features from the input images, each with increasing kernel size and decreasing stride capturing
151  progressively larger receptive fields, extracting features from coarser to finer scales. This coupled
152  with the use of shared weights across scales, allows the model to extract features for both small
153  and large motions efficiently.

154  The features extracted are then fed into a bi-directional optical flow estimation module. This
155  module calculates the pixel-wise motion vectors (or "flows") between the features of two input
156  images at each pyramid level. These flows represent the transformation needed to warp the features
157  from one frame to the other. The bi-directional approach allows the model to capture both forward
158  and backward motion, leading to more accurate and detailed interpolations.>*

159  With the extracted features and estimated flows, FILM enters the final fusion stage. The aligned
160  features from both input images, along with the flows and the original input images themselves,
161 are concatenated into a single feature pyramid. This captures both the feature information and the
162  motion dynamics between the two frames. Finally, a U-Net decoder architecture processes this
163  fused feature pyramid and generates the final interpolated frame. The U-Net's skip connections,
164  which bypass several layers within the network and concatenate their outputs directly with the
165  outputs of later layers, ensures that the generated frame retains fine details and maintains
166  consistency with the input images.*

167  FILM used a recursive function (Eq.1) which accounted for the number of input frames, n, and the
168  number of recursive passes over which the model would interpolate, 4. This limited the number of
169  frames that could be generated between the input images to be either one, four, seven, or fifteen
170  frames (Eq.1).

171 f=2¥n—-1)—-1 Eq.1

172 Recognizing the need for flexibility in slide skipping based on user requirements, a time series
173 spanning from 0 to 1 was implemented, with step sizes dynamically determined by the number of
174  skipped slides. This approach generated time points corresponding to the skipped slides,
175  facilitating variable frame interpolation between input pairs.

176 ~ FILM was pretrained on the Vimeo-90k dataset, a largescale dataset of 89,800 high quality videos
177  designed specifically to train models oriented towards video processing tasks such as frame
178  interpolation, image denoising and resolution enhancement.** The optical flow of this model is
179  already robustly pretrained on a diverse set of videos with different moving objects, such as
180  vehicles, people, and smaller features like cameras and soccer balls. Re-training of the model posed
181  two challenges: a lack of documentation on retraining and perfectly registering histological slides
182  to curate a training dataset. The focus of FILM on optical flow means that the model is sensitive
183  to misalignment in the training images, making histological slides an unfavorable dataset to retrain
184  the optical flow model due to inherent variability in tissue preparation, staining intensities, and
185  sectioning processes, which lead to unpredictable distortions and variations that complicate
186  accurate spatial alignment of a stack of slides.

187
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188 Pearson correlation

189  To characterize the correlation between input image pairs to our model, the Pearson correlation
190  was calculated between pairs of authentic images used to interpolate. This metric allowed for a
191  comparison of three interpolation techniques: nearest-neighbor interpolation, linear interpolation,
192  and FILM. By determining the correlation between the middle interpolated image (furthest from
193  input images) and the corresponding authentic image for each method of interpolation we
194  determined linear interpolation performed the nearest to FILM and hence chose it as the form of
195 interpolation for a more stringent comparison to FILM interpolation (Fig. 2d). The Pearson
196  correlation was calculated using the SciPy stats package available in python.

197
198  Haralick texture features

199  Thirteen Haralick texture features were calculated to provide a quantitative representation of the
200 texture patterns within an image, offering insights into its spatial arrangements and
201 relationships.*®3° The 13 features measured: angular second moment, contrast, correlation, sum of
202  squares variance, inverse difference moment, sum average, sum variance, difference variance, sum
203  entropy, difference entropy, entropy, information measure of correlation 1, and information
204  measure of correlation 2.%*3° Contrast measures the intensity variations between neighboring
205 pixels, correlation gauges the linear dependency of gray levels, energy represents the image
206  uniformity, and homogeneity measures the closeness of gray level pairs.

207  To manage the complexity and high dimensionality of the feature space, dimensionality reduction
208  was carried out using principal component analysis (PCA). PCA transformed the original set of
209  Haralick features into a reduced set of principal components, retaining the most significant
210 information while discarding redundant or less informative aspects. This reduction not only
211 simplifies the interpretation of the data, but also allows for a holistic assessment of image quality,
212 capturing the essential texture information in a more compact form.

213 Additionally, analysis of the Euclidean distances between authentic and interpolated images was
214 computed using 13 of the Haralick features. By considering the Euclidean distances across all
215  selected Haralick features simultaneously, a comprehensive evaluation of the overall error value
216  was achieved. This validation process ensured that the collective impact of texture features was
217  considered, providing a robust measure of dissimilarity or similarity between images. The
218  combination of Haralick texture features, PCA for dimensionality reduction, and Euclidean
219  distance computation offered a systematic and effective approach for evaluating image quality and
220  texture patterns.

221
222 Cell detection in histological sections

223 To validate the interpolated IHC images, the CODA cell detection module was used to count the
224  total number of CD45+ cells and compare it with respective authentic images.? For this task, the
225 intensity range of blue pixels was first determined for the nuclei of cells, along with the intensity
226 of brown pixels for positive CD45 stain. Using k-means clustering, the mode blue pixel intensity
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227  was determined and selected to represent the hematoxylin channel, while the mode brown pixel
228 intensity was selected to represent the positive stain. With color deconvolution, the cells stained
229  with hematoxylin could be extracted from the remaining tissue, thereby providing a cell count.

230
231 3D rendering of interpolated 2D images

232 FILM was used to interpolate stacks of images defined by different regions of interest (ROI’s) and
233 stacks of whole slide images of missing and damaged slides, which resulted in the recreation of a
234  serial section of the dataset (Fig. 1b). During post-processing, CODA was used to semantically
235  segment histology slides and MRI images to reconstruct microanatomical tissue structures and
236 whole organs in 3D (Fig. 1b).?> Through manual annotations of microanatomical tissue structures
237  in a small subset of histology slides and whole organ annotations of the brain in a subset of MRI
238  images, CODA allowed for two deep learning models to be trained to recognize these annotations
239  and apply them to the remaining slides/images in the respective datasets, thereby generating stacks
240  of segmented histology slides and MRI images. Labels within the segmented slides/images,
241  corresponding to the annotations could then be used by CODA to reconstruct and visualize 3D
242 tissue structures of interest, such as epithelial ducts in the case of the pancreas, and whole organs
243 such as the brain. Similarly, CODA was leveraged to 3D reconstruct synapses in the mouse brain
244  using pre-segmented ssTEM slides with the appropriate synapse label. Tissue-cleared light-sheet
245  images were separated into their respective RGB channels allowing for three stacks to be obtained,
246  one for each channel. 3D reconstructions of structures within the tissue-cleared light-sheet images
247  of the lung were then generated by creating volumes using stacks of channel-separated images.
248  Specifically, the red channel was used to reconstruct the bronchioles in the mouse lung.

249


https://doi.org/10.1101/2024.03.07.583909
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.07.583909; this version posted March 12, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

250 RESULTS
251  Multi-modal tissue cohorts and interpolation workflows

252  Here we applied a method based on optical flow, FILM, to restore damages in stacks of 2D images
253  to recover lost microanatomical features in 3D reconstructions of tissue architecture and
254  tissue/cellular composition (Fig. 1).2” We procured and tested FILM for a non-diseased pancreatic
255  tissue cohort (stained with H&E and THC), a structural MRI dataset of the human brain, a stack of
256  ssSTEM micrographs of thin sections of the mouse brain, and a mouse lung tissue cleared and
257  imaged under light-sheet microscopy. The selection of these datasets encompassed different image
258  characteristics (size and resolution), species (human, mouse), tissue types (pancreas, brain, lung),
259  imaging modalities (histology, ssTEM, structural MRI, tissue clearing for light-sheet microscopy),
260 and magnifications. This diversity of datasets ensured that the robustness of FILM was evaluated
261  across a broad spectrum of imaging modalities.

262  FILM, which we compare to other interpolation methods, uses pairs of undamaged 2D images
263  from an image stack to improve spatial resolution or recover lost microanatomical information
264  (Fig. 1b). The user specifies the number of images to be interpolated based on the number of
265 damaged or missing images between the input slides. Using the output interpolated 2D image
266  stacks, 3D volumes can be reconstructed without missing or damaged images (Fig. 1b). This results
267  in improved spatial resolution and reconstruction of tissue components in 3D (Fig. 1b).

268

269  FILM interpolation for stacks of histological images

270  We first tested the ability of FILM to interpolate images in a stack of histological images from
271 human pancreatic tissue samples. Histological slides are often lost or damaged due to improper
272 storage or documentation.'*!* The ability of FILM to interpolate slides was compared to a linear
273  interpolation of the same slides and then compared to the corresponding authentic slide (Fig.
274 2).3%4042 Two ROI’s from the 101 serially sectioned and H&E stained human pancreas dataset
275  were selected based on the tissue structures present. ROIs had a total of eight tissue components,
276  including islets of Langerhans, ductal epithelium, blood vessels, fat, acini, ECM, whitespace, and
277  PanIN (precursor) lesions. Pairs of images were selected one every 8 images (skip 7) of the original
278  stack of authentic images, and the missing 7 images were interpolated (Fig. 2a). Interpolated
279  images were validated against their respective authentic images (Fig. 2, b and c).

280  We examined ducts and blood vessels due to their complex branching character within the first
281  ROI (Fig. 2b). The authentic image of the duct showed damage fixed by FILM interpolation (top
282  row, top arrow, Fig. 2b). In contrast, the epithelium layer of the duct showed significant noise in
283  the linearly interpolated image due to pixel averaging (top row, bottom arrowhead, Fig. 2b). This
284  caused overlay artifacts absent in FILM, which tracked pixel movements using optical flow for a
285  sharper image. We also observed that linear interpolation replaced the damaged areas with acinus,
286  unlike the whitespace in the authentic slide (top row, top arrowhead, Fig. 2b). In contrast, FILM
287  successfully removed the damage and preserved the whitespace (top row, top arrow, Fig. 2b).
288  Furthermore, FILM preserved the central structure of the duct, whereas linear interpolation thinned
289  and elongated the lumen (top row, middle arrowhead, Fig. 2b). The superiority of FILM over linear
290 interpolation was further seen in the blood vessel microanatomical structures (bottom row, bottom
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291 arrowhead, Fig. 2b). With linear interpolation, overlay artifacts were present throughout the entire
292 structure of the blood vessel (bottom arrow, Fig. 2b). Critically, linear interpolation could not
293  preserve the structure of the blood vessel, unlike FILM (Fig. 2b). Linear interpolation also
294  incorrectly generated fat regions absent in the authentic images (bottom row, top arrowhead, Fig.
295  2b).

296 In the second ROI, enriched in ducts, fat, and islets, linear interpolation created a duct lumen
297  shadow (top row, top arrowhead, Fig. 2c). In contrast, FILM accurately interpolated the duct
298  without artifact (top row, Fig. 2c). Other key structures were fat and islets, which typically
299  presented a small and faint morphology (bottom row, Fig. 2¢). The authentic slide contained 8 fat
300 and 5 islets structures, however linear interpolated images showed fat shadows where the real fat
301  was located (bottom row, top arrowhead, Fig. 2¢). Additionally, it generated a non-existent fat
302 region (bottom row, bottom arrowhead Fig. 2c). These fat shadows could be wrongly interpreted
303 as islets, especially in regions where islets are present (bottom row Fig. 2c). Although FILM
304  struggled with overlapping fat, it properly interpolated distinct fat without artifacts and could
305 clearly distinguish islets from fat.

306 We quantified differences between FILM and linear interpolation using Pearson correlation for
307 each of our scenarios (when skipping 1, 3, and 7 slides) (Fig. 2d). The correlation was calculated
308 (i) between the two input images to the model as well as (ii) between the input images and middle
309 authentic image for each scenario. This correlation (ii) represented the correlation achieved when
310 interpolating images using the nearest neighbor form of interpolation. Lastly, the correlation (iii)
311  between the middle FILM, (iv) the middle linear interpolated image and the middle authentic
312  image for each scenario was calculated. FILM-interpolated images were clearly more correlated
313  to their authentic counterparts than the nearest neighbor-interpolated images. Linearly interpolated
314  images closely matched the correlation obtained between FILM interpolated images and authentic
315  images (Fig. 2d). Hence, linear interpolation was chosen as the benchmark comparative form of
316  interpolation to FILM.

317  Thirteen Haralick features (angular second moment, contrast, correlation, sum of squares variance,
318 inverse difference moment, sum average, sum variance, difference variance, sum entropy,
319  difference entropy, entropy, information measure of correlation 1, and information measure of
320  correlation 2) were measured to evaluate the interpolated images (Fig. 2¢).3%*° The results of each
321  score were averaged for the different tested scenarios (authentic, FILMkip1, FILMskip3, FILMgkip7,
322 linearskip1, linearskips, and linearsip7) (Table S1.), which allowed for principal component analysis
323  (PCA) to be carried out (Fig. 2f). This analysis demonstrated that the FILM-interpolated slides
324  represented more closely the information in the authentic slides, even when skipping seven slides,
325 as compared to linear interpolation. The averaged values were also used to compute the Euclidean
326  distance of the 13 Haralick features between authentic and interpolated images (Fig. 2f). Even
327  skipping 7 slides, FILM images were <1/2 the distance of linear images skipping just 1 slide from
328  authentic images.

329  Standard metrics, such as mean square error (MSE), structural similarity index measure (SSIM),
330 peak signal-to-noise ratio (PSNR), Spearman correlation, Jaccard correlation, Sobel filter, and
331 channel wise pixel-to-pixel intensity correlation could not quantify the structural errors in
332  microanatomical features from linear interpolation (Fig. 2, b and c¢). The dominant, easily
333  interpolated acini surrounding microanatomy resulted in similar metric values for linear and FILM,
334  since these metrics are less sensitive to small-pixel deviations compared to large-pixel deviations.
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335 Masking out acini to consider only the pixels associated with microanatomical structures was
336  attempted, but registration differences between authentic and interpolated images meant that these
337  metrics only highlighted alignment differences rather than the quality of interpolation.

338 In sum, FILM can accurately interpolate damaged or missing H&E-stained histological images,
339  which restores lost information in 2D image stacks and, consequently, improves connectivity of
340 microanatomical structures in 3D (see also more below). Unlike linear interpolation, FILM does
341 not generate non-existent microanatomical structures like ducts or fat.

342
343  FILM interpolation for stacks of MRI and light-sheet microscopy images

344  Next, we tested the ability of FILM to interpolate images within stacks of MRI images. MRI
345  imaging faces inherent limitations, such as susceptibility to motion artifacts due to prolonged scan
346  times, leading to patient discomfort, and potential for signal loss due to magnetic field in
347  homogeneity that can impact the quality of acquired images. Pairs of images were selected one
348 every 8 images (skip 7) of the original stack of authentic images, and the missing 7 images were
349 interpolated (Fig. 3a). Interpolated images were validated against their respective authentic images
350 (Fig. 3b).

351  Linear interpolation of MRI images caused band artifacts generated around the boundary of the
352  soft tissue, unlike FILM which did not such artifacts (middle row, Fig. 3b). Additionally, FILM
353  could accurately interpolate the soft tissue structure to make biologically accurate structures,
354  whereas linear interpolation created what resembles a grey smudge with significant overlay
355 artifacts (bottom row, Fig. 3b).

356  To further demonstrate its versatility, we applied FILM to interpolate images within a stack of
357  light-sheet micrographs obtained from a cleared mouse lung. Light-sheet microscopy presents
358 challenges, including photobleaching and light sheet absorption, which may result in uneven
359  illumination, and tissue movement during imaging, which can introduce distortions. Again, pairs
360 of images were selected every 8 images of the authentic stack (Fig. 3e), and interpolated images
361  were compared to their authentic counterpart.

362  Linear interpolation of light-sheet micrographs created double boundary lines around the
363  bronchioles creating a structure that is biologically inaccurate (middle row, top arrowhead, Fig.
364  3f) (bottom row, bottom arrowhead, Fig. 3f). In contrast, FILM correctly interpolated the structure
365  of bronchioles to accurately depict the structure observed in the authentic image (middle row,
366  arrow Fig. 3f). In the second row of zoom-ins, we can see that the authentic image suffers from
367 artifacts of light-sheet absorption and photobleaching on the top left side of the bronchiole, which
368  cause bleeding of the green and red channels into the bronchiole (bottom row, arrowhead, Fig. 3f).
369 Linear interpolation reduced these artifacts, but could not remove them entirely (bottom row, top
370 arrowhead Fig. 3f), whereas FILM removed the bleed of the red and green channels (bottom row,
371  arrow Fig. 3f).

372 For both MRI and light-sheet microscopy datasets, thirteen Haralick texture features introduced
373  above were measured to compare authentic and interpolated images, when interpolating 1, 3, and
374 7 slides. The results for each score were averaged for the different comparisons (authentic,
375  FILMiskipt, FILMskip3, FILMkip7, linearskip1, linearskips, and linearskip7) (Table S1.), and shown in a
376  principal component analysis (PCA) plane (Fig 3, ¢ and g). For MRI images, FILM-interpolated
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377  slides represented more closely the information in the authentic slides, even when skipping seven
378  slides, compared to linear interpolation. The averaged values were also used to compute the
379  Euclidean distance between authentic and interpolated images (Fig 3¢). Again, even when skipping
380 seven slides, FILM-interpolated slides were < 1/2 the Euclidean distance between the authentic
381  slides and the linearly interpolated slides when skipping only one slide. The Euclidean distance by
382  slide further emphasizes the superiority of FILM over linear interpolation as the Euclidean distance
383 increased when progressing through the stack of slides and interpolating linearly as opposed to
384  FILM (Fig 3d).

385  Similarly, the PCA analysis for light-sheet interpolated images showed that FILM interpolated
386  images were more closely representative of the authentic images for principal component 2, while
387 the linear interpolated images were closer for principal component 1 (Fig 3g). Nevertheless, when
388  considering the mean Euclidean distance, FILM outperformed linear interpolation for each
389 individual skip scenario (Fig 3g). The Euclidean distance by slide increased when interpolating
390 linearly through the stack as opposed to FILM, for which it remained consistent through the stack.
391 (Fig 3h).

392 In sum, we demonstrated the ability of FILM to interpolate MRI and light-sheet images more
393  accurately than linear interpolation. FILM reduces motion artifacts in MRI images whereas linear
394 interpolation exaggerates these artifacts, resulting in band artifacts. FILM reduces photobleaching
395 and light-sheet absorption artifacts present in the authentic light-sheet images, whereas linear
396 interpolation cannot. Elimination of such artifacts allows for more accurate 3D reconstructions of
397  whole organ structures and microanatomical structures in tissue samples.

398
399  FILM interpolation for stacks of images stained via immunohistochemistry (IHC)

400 To further demonstrate the ability of FILM to interpolate histological images, a second human
401  pancreas sample was immunostained (IHC) for leukocyte marker CD45. We note the substantial
402  z-directional distance of 52 pm between input slides, equivalent to omitting twelve successive 4-
403  um-thick sections (Fig. 4a). The target images, for which authentic validation slides were available
404  for comparison, are shaded in dark grey, while the missing slides between the input and target
405  slides are shaded in light grey (Fig. 4a).

406  We compared the middle target slide interpolated to the middle authentic validation slide using
407  both linear and FILM models (Fig. 4a). When zooming in to a specific fat dense region, linear
408 interpolation artifacts were evident, while FILM lacked such artifacts (bottom row, middle
409  arrowhead, top row, arrow Fig. 4a). Additionally, whereas cells were distinctly observed in the
410  authentic image, the linearly interpolated image showed faintly stained cells covered with white
411  hues resembling fat (bottom row, right arrowhead, Fig. 4a). In contrast, FILM could interpolate
412  distinct cells around the fat and even preserved most of the ductal and ECM structures (top row,
413  arrow, Fig. 4a), unlike the linear model (bottom row, left arrowhead, Fig. 4a).

414  Using CODA, the total cell count of CD45 positive cells was determined for each of the linear and
415  FILM interpolated slides and compared to the counts in the authentic slides. While linearly
416  interpolated slides more closely represented the total positive cell count in the authentic slides
417  when skipping 7 slides, it regularly overestimated the number of cells in the authentic image, when
418  skipping 12 slides (Fig 4b). FILM regularly underestimated the number of cells in the image when
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419  skipping both 7 and 12 slides; however, it was closer to the total cell count of the authentic when
420  skipping 12 slides (Fig. 4b).

421  Thirteen Haralick texture features were evaluated for authentic and interpolated images when
422  interpolating 7 and 12 slides. The results of each score were averaged for the different scenarios
423  assessed (authentic, FILMskip7, FILMgkip12, linearsip7, and linearsipi2) (Table S1.). PCA showed
424  FILM-interpolated slides more closely represented authentic slide information along principal
425  component 1, while linear along component 2 (Fig 4d). The Euclidean distance between authentic
426  and interpolated images demonstrated FILMgkip7 more closely represented the authentic slides than
427  linearskip7 and similarly when skipping 12 slides (Fig 4d).

428  In summary, by interpolating IHC-CD45 stained images and determining the difference in cell
429  count between authentic and interpolated images, we show the ability of FILM to interpolate not
430  only multicellular structures (ducts, blood vessels) in stacks of histological images, but also smaller
431  features such as individual cells. We show that while skipping a distance as large as 54 um between
432 adjacent slides, FILM interpolates images with a cell count within 7% error of the authentic cell
433  count.

434
435  FILM interpolation and restoration of ssTEM images

436 A stack of serial section transmission electron micrographs (ssTEM) of the mouse brain was used
437  to show our ability to interpolate not only histological sections, but also EM micrographs of tissue
438  sections (Fig. 4c). Authentic tiles shown represent a 2000x3500 pixel tile of the authentic whole
439  slide image (top row, Fig. 4c). Thick irregular black lines were observed across most of the slides
440 in the authentic stack of images, which correspond to damage due to unavoidable tissue tear during
441  processing of thin sections (top row, arrows, Fig. 4c¢). For a randomly selected subset of 100
442  continuous slides from a stack of the >13,000 ssTEM slides, we found that >70% were damaged,
443  many of them containing >1 damaged region. Additionally, fainter grey lines were observed, going
444  horizontally across the authentic images, which are artifacts of image stitching (top row, bound by
445  red box Fig. 4c). Interpolation between two undamaged EM slides using FILM could not only
446  remove the damage to the slides while preserving the structures within them, but also significantly
447  reduce stitching artifacts (bottom row, Fig. 4c).

448  Thirteen Haralick features were measured for the authentic and interpolated images when
449  interpolating 1, 3, and 7 slides. The results of each score were averaged for the different tested
450  scenarios (authentic, FILMskip1, FILMskip3, FILMskip7, linearskip1, linearskips, and linearskip7) (Table
451  S1.). PCA showed that FILM-interpolated slides more closely represented authentic slide
452  information along principal component 2, while linear along component 1 (Fig. 4e). Euclidean
453  distance between authentic and interpolated images where it can be seen that FILMip1 more
454  closely represents the authentic than linearskip1 and similarly for the instance of skipping 3 and 7
455  slides (Fig. 4e).

456  In sum, we demonstrate the ability of FILM to eliminate damage in ssTEM slides. This allows for
457  more accurate 3D reconstructions of the neural pathways by decreasing loss connectivity which
458  arises due to the damage on individual 2D sections.

459
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460 3D reconstruction of FILM-interpolated images

461  To better show the application of FILM to enhance 3D visualization of microanatomical structures
462  from 2D interpolated images, FILM interpolation was applied across different image modalities
463  such as histological (H&E and IHC), MRI, ssTEM, and light-sheet images. Sematic segmentation
464  and subsequent concatenation of the 2D segmented images into a volume allowed visualization of
465  microanatomical features in three dimensions.

466  Using CODA, we 3D reconstructed the epithelial duct from the pancreatic H&E dataset (Fig. 5a).
467  The 3D reconstruction of the authentic volume skipping 7 images demonstrates the loss in ductal
468  connectivity as a result of missing or damaged slides. Linear interpolation of the H&E samples
469  created noise around the structure of the duct when 3D reconstructed and was unable to preserve
470  the branching structure of the duct (zoom-in, Fig. 5a). On the other hand, FILM was able to restore
471  the microanatomical connectivity in the 3D reconstruction of the main and smaller branches of the
472 duct, while also creating a smoother volume without the propagation of noise.

473  Similarly, CODA was used to 3D reconstruct a whole human brain using the stack of MRI images.
474 A comparison of the authentic volume to the authentic volume skipping 7 images showed how
475  connectivity was lost as a result of damaged or missing images. The authentic volume skipping 7
476  images also lacked the topographical structure of the brain seen in the authentic volume, replacing
477  the topography with single planes of information (Fig 5b). Using linear interpolation to recover
478  the missing or damaged scans resulted in increased edges in 3D volumes, which resembled objects
479  extruding abnormally out of the brain. This is especially evident around the base of the brain where
480  the brain stem starts and at the top of the brain towards the skull cap (Fig. 5b). When interpolating
481  images using FILM, the 3D reconstructed volume resembled more closely that of the authentic
482  one, with accurate indentations around the surface of the brain and even accurate reconstruction
483  of the branching brain stem structure.

484  Tissue-cleared light-sheet images were separated by channel and used to 3D reconstruct the
485  bronchioles in a mouse lung (Fig 5c). Similarly, a comparison of the authentic volume to a
486  downsampled reconstruction of the authentic volume (skipping 7 images between adjacent z-
487  planes) demonstrates the loss in connectivity of the bronchioles in 3D as a result of damaged or
488  missing image scans. The use of linear interpolation to recover missing z-planes did not improve
489  the connectivity of the bronchioles in 3D, but rather more closely resembled the structure of the
490  downsampled volume (Fig. 5c). FILM recovered the missing planes, which restored the
491  connectivity of the bronchioles, and consequently resulted in a volume that resembled the authentic
492  biospecimen.

493  Segmented ssTEM images were interpolated using FILM and linear interpolation to 3D reconstruct
494  synapses in the mouse brain. A qualitative assessment between the authentic volume and
495  downsampled recreation of the authentic volume (skipping 7 images between adjacent z-planes)
496  shows the loss in synapse connectivity (Fig. 5d). Linear interpolation to recover the missing z-
497  planes results in the creation of a low resolution volume with blocked structures. Conversely, using
498  FILM to recover the missing planes resulted in a higher resolution 3D volume, which resembled
499 that of the authentic volume, and allowed for the synapse connectivity to be restored.

500 In sum, missing or damaged slides and images in biomedical image stacks cause significant loss
501 in 3D spatial information which hinders the accurate 3D reconstruction of microanatomical and
502  whole organ structures from these 2D image stacks. We demonstrate that linear interpolation is
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503 not sufficiently robust to recover the information lost in complex biomedical images, resulting in
504 inaccurate 3D reconstructions. In contrast, the optical flow-based model FILM can recover more
505 information to allow for 3D reconstructions that resemble their authentic counterparts.


https://doi.org/10.1101/2024.03.07.583909
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.07.583909; this version posted March 12, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

506 DISCUSSION

507  We are entering an era in which 3D imaging of biomedical samples has become a requirement as
508 2D assessments are not sufficient in capturing the content and morphology of multi-cellular
509  structures, rare events, and spatial relationships among different cell types.! Various models have
510 been developed to leverage 2D biomedical image stacks of histology slides, MRI images, ssTEM
511  slides, and tissue-cleared light-sheet images to reconstruct volumes of microanatomical structures
512  and whole organs. Such models rely on the quality of individual 2D images within the image stacks
513  for the accurate reconstruction of volumes. Limitations in z-resolution often arise due to missing
514  slides and images, tissue damage, and the high cost associated with imaging.

515  Here, we address these challenges by leveraging FILM and its ability to extract and track features
516 in biomedical images using optical flow for image interpolation. By interpolating between
517 undamaged slides to generate missing or damaged slides, we bridge gaps in z-resolution. This
518 technique enhances 3D reconstructions and mitigates issues arising from damaged or missing
519  slides. This method broadens the applicability of 2D biomedical image stacks for 3D
520 reconstructions and quantitative assessments of cellular composition, tissue topography, and
521  degree of branching of ducts and blood vessels in volumetric tissues.

522  We conducted a thorough comparative assessment of FILM to linear interpolation using thirteen
523  Haralick texture features. Linear interpolation, which averages pixel intensities creating hued
524  colors and structures, cannot create realistic biomedical images. As the number of images skipped
525 increases, linearly interpolated images further degrade in authenticity, especially for the images
526  furthest from input images (middle-interpolated image). For large number of skipped images (skip
527 7), the middle-interpolated image presents strong hues as pixel intensities deviate largely between
528 input images. Conversely, FILM can interpolate biomedical images that resemble their authentic
529  counterparts.

530 By interpolating images using FILM, we reduce the time required for image acquisition. This is
531  especially applicable when considering MRI scans and the time spent by patients in the machine,
532  which can lead to patient discomfort and, in extension, motion artifacts that hinder imaging quality.
533  Similarly, for light-sheet microscopy, we demonstrate the ability of FILM to accurately interpolate
534  images in the z-direction reducing the number z-steps required during image acquisition. This
535 significantly decreases the total time required to image a sample as samples are imaged tile by tile
536 laterally before moving onto the next z-level. Collection time increases exponentially with the
537 lateral size of the sample, from minutes for a 10* pm? sample at a spatial resolution of 500 nm to
538 a week for a 10® um® sample at the same resolution.'® FILM interpolation helps address this
539  limitation.

540 In conclusion, our work goes beyond existing methods of image translation which use
541 CycleGAN’s and diffusion models to generate biomedical images by leveraging FILM’s method
542  of image interpolation. Where image translation would require physical access to the slides of
543 interest to be translated, our workflow interpolates missing or inaccessible slides, restores damaged
544  images, eliminates artifacts of image stitching, and works with a wide range of complex
545  multimodal biomedical images.

546
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650  Fig 1. Interpolation workflow and datasets. (a) Samples were obtained from two species, mouse, and

651  human. Four different organs were analyzed: human pancreas, human brain, mouse brain, and mouse lung.
652  Five imaging modalities were tested: hematoxylin and eosin (H&E) stained histology slides,
653  immunohistochemistry (IHC) stained histology slides, magnetic resonance imaging (MRI), serial section
654  transmission electron microscopy (ssTEM) slides, and combined tissue clearing with light-sheet
655  microscopy slides. (b) Aligned slides are manually searched through to identify missing or damaged slides,
656  and damaged slides are removed from the stack of slides. FILM interpolation is carried out using the
657  sections adjacent to the damaged or missing slides as inputs to recreate slides that were stained differently,
658  missing, or damaged, resulting in a uniform stack of slides. Using CODA, slides are segmented into labeled
659 tissue masks, with each label representing different microanatomical structures in the slide, which is then
660  used to recreate and visualize microanatomical 3D structures in the tissue sample.
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662 Fig. 2 FILM interpolation for stacks of histological images of pancreatic tissues. (a) Regions of interest (ROI’s)
663  were selected from the whole slide image (WSI), ensuring that all microanatomical features (islets of Langerhans,
664  ductal epithelium, blood vessels, fat cells, acini, extra-cellular matrix (ECM), whitespace, and pancreatic
665 intraepithelial neoplasia (PanIN) were present in the ROI and slides were interpolated while skipping 7 slides between
666  adjacent sections, thereby generating 7 slides. (b) ROI 1: Comparison of linear and FILM interpolation to the authentic
667  ROI for the middle-interpolated image (image 4) for ductal epithelium and blood vessels. Arrowheads show linear
668 interpolation replacing damage with acini as opposed to whitespace, creating noise around the epithelium layer of the
669 duct, incorrectly generating fat regions, and unable to preserve vessel structure. The arrow shows FILM correctly
670 replaces damage with whitespace. (¢) ROI 2: Comparison of linear and FILM interpolation to the authentic ROI for
671 the middle-interpolated image (image 4) for ductal epithelium, fat cells, and blood vessels. Arrowheads show linear
672 interpolation that creates duct lumen shadows and fat shadows resembling islets as well as non-existent fat regions.
673 (d) Pearson correlation compares the correlation between the authentic input images and the nearest-neighbor-
674 interpolated, FILM-interpolated, and linearly interpolated images. (e) Principal component analysis of thirteen
675 Haralick features for authentic, FILM, and linearly interpolated images for various numbers of skipped images. Mean
676 Euclidean distance of interpolated images from authentic images based on thirteen Haralick features. (f) Euclidean
677 distance by slide of interpolated images from authentic images based on thirteen Haralick features for ROI1 and ROI2.
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679 Fig. 3. FILM interpolation for stacks of MRI and light-sheet microscopy images. (a) MRI images were
680 interpolated while skipping 7 slides between adjacent sections, thereby generating 7 slides. (b) Qualitative comparison
681 of linear and FILM interpolation to the authentic image for the middle-interpolated MRI image (image 4). The circled
682 region shows linear interpolation creates band artifacts, unlike FILM. (¢) Principal component analysis of thirteen
683 Haralick features for authentic, FILM, and linearly interpolated MRI images for various numbers of skipped images.
684 Mean Euclidean distance of interpolated images from authentic images based on thirteen Haralick features. (d)
685 Euclidean distance by slide of interpolated images from authentic images based on thirteen Haralick features for
686 various numbers of skipped MRI images. (e) Tissue-cleared light-sheet images were interpolated skipping 7 slides
687 between adjacent sections, thereby generating 7 slides. (f) Qualitative comparison of linear and FILM interpolations
688 to the authentic image for the middle-interpolated light-sheet image (image 4). Arrowhead shows linear interpolation
689 creates double boundary lines around bronchioles. In second row, the arrowhead shows photobleaching in authentic
690 reduced by linear interpolation and completely removed by FILM (arrow). (g) Principal component analysis of thirteen
691 Haralick features for authentic, FILM, and linearly interpolated light-sheet images for various numbers of skipped
692 light-sheet images. Mean Euclidean distance of interpolated images from authentic images based on thirteen Haralick
693 features. (h) Euclidean distance by slide of interpolated images from authentic images based on thirteen Haralick
694 features for various numbers of skipped light-sheet images.
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696 Fig. 4. FILM interpolation for stacks of IHC and ssTEM images. (a) IHC pancreas slides used to interpolate with
697 authentic slides for validation to compare interpolated images to authentic images. The middle validation slide is
698  visualized for comparison with the interpolated images. (b) Comparison of cell counts in authentic images and
699  interpolated images as well as percent error in cell counts for each slide between authentic images and interpolated
700  images. Arrow shows how FILM preserves vessel structure, unlike linear interpolation, which was also unable to
701 preserve fat domains (arrowheads). (¢) FILM interpolation of mouse brain ssTEM slides to remove damage from
702 slides (arrowheads) and reduce stitching artifacts (red box). (d) Principal component analysis of thirteen Haralick
703 features for authentic, FILM, and linearly interpolated IHC images for various numbers of skipped images. Mean
704 Euclidean distance of interpolated images from authentic images based on thirteen Haralick features. (e) Principal
705 component analysis of thirteen Haralick features for authentic, FILM, and linearly interpolated ssTEM images for
706 various skipped images. Mean Euclidean distance of interpolated images from authentic images based on thirteen
707 Haralick features.
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a 3D reconstruction of interpolated ducts from histology b 3D reconstruction of interpolated brain from MRI
o

Authentic

Authentic

Authentic 1:8

Linear

100 mm
-—

C 3D reconstruction of interpolated bronchioli from light-sheet d 3D reconstruction of interpolated synapses from ssTEM
Authentic Authentic 1:8

Fig. 5. 3D reconstruction of interpolated images. (a) Comparison of 3D reconstructions of pancreatic duct when
skipping 7 slides between authentic images and when interpolating the missing slides using linear and FILM
interpolations. (b) Comparison of 3D reconstructions of brain MRI images when skipping 7 images between authentic
images and when interpolating the missing slides using linear and FILM interpolations. (¢) Comparison of 3D
reconstructions of bronchioles from light-sheet images of the mouse lung when skipping 7 images between authentic
images and when interpolating the missing slides using linear and FILM interpolations. (d) Comparison of 3D
reconstructions of synapses from ssTEM slides of the mouse brain when skipping 7 images between authentic images
and when interpolating the missing slides using linear and FILM interpolations.
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718 Extended Fig 1. Qualitative comparison of linear and FILM interpolations to authentic H&E-stained
719 histological slides of a human pancreas when skipping 7 slides for four different ROI’s. (a) Four ROIs were
720 selected from H&E-stained whole slide images (WSI’s). Slides were interpolated when skipping 7 slides between
721 adjacent sections, thereby generating 7 slides. (b) The top row of authentic images shows the middle skipped z-slide
722 of all four different ROIs selected for interpolation. The middle row of zoom-ins of authentic images shows
723 microanatomical structures observed within the different ROI’s. The third row of zoom-ins shows the CODA
724 classification of these microanatomical structures. (¢) The top row of linearly interpolated images shows the middle
725 interpolated z-slide of all four different ROI’s corresponding to the authentic images. The middle row of zoom-ins of
726 linearly interpolated images shows microanatomical structures generated by linear interpolation within the different
727 ROTI’s. The third row of zoom-ins shows the CODA classification of these linearly interpolated microanatomical
728 structures. (d) The top row of FILM interpolated images shows the middle interpolated z-slide of all four different
729  ROTI’s corresponding to the authentic images. The middle row of zoom-ins of FILM interpolated images shows
730  microanatomical structures generated by FILM within the different ROI’s. The third row of zoom-ins shows the
731 CODA classification of these FILM interpolated microanatomical structures.
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H&EROI 1

Difference Difference Info Meas Info Meas
Dataset Energy Contrast Correlation Variance Homogenetiy Sum Average Sum Variance Sum Entropy Entropy Variance Entropy of Corr of Corr 2
Authentic 1.64E-04 8.25E+02 7.93E-01 2.08E+03  7.71E-02 1.74E+02 7.14E+03 8.07E+00 1.35E+01 0.00E+00 5.77E+00 -8.99E-02  8.39E-01
FILM_1  1.79E-04 6.47E+02 8.22E-01 1.85E+03  7.94E-02 1.83E+02 6.74E+03 7.90E+00 1.34E+01 8.96E-05 5.63E+00 -9.90E-02 = 8.58E-01
FILM_3  1.79E-04 6.23E+02 8.23E-01 1.79E+03  7.92E-02 1.84E+02 6.53E+03 7.89E+00 1.33E+01 9.12E-05 5.61E+00 -9.94E-02  8.59E-01
FILM_7  1.73E-04 6.26E+02 8.19E-01 1.75E+03  7.75E-02 1.85E+02 6.38E+03 7.89E+00 1.34E+01 9.09E-05 5.61E+00 -9.77E-02  8.56E-01
Linear_1 2.13E-04 4.72E+02 8.38E-01 1.49E+03  8.33E-02 1.85E+02 5.49E+03 7.76E+00 1.30E+01 1.04E-04 5.43E+00 -1.04E-01 8.65E-01
Linear_3 2.01E-04 4.94E+02 8.28tE-01 1.47E+03  8.12E-02 1.86E+02 5.38E+03 7.78E+00 1.31E+01 1.02E-04 5.46E+00 -1.02E-01 8.63E-01
Linear 7 1.85E-04 5.46E+02 8.12E-01 1.47E+03  7.78E-02 1.88E+02 5.34E+03 7.82E+00 1.32E+01 9.84E-05 5.52E+00 -9.88E-02  8.57E-01

H&E ROI 2

Difference Difference Info Meas Infor Meas
Dataset Energy Contrast Correlation Variance Homogenetiy Sum Average Sum Variance Sum Entropy Entropy Variance Entropy of Corr of Corr 2
Authentic 1.80E-04 7.12E+02 8.25E-01 2.03E+03  8.16E-02 1.86E+02 7.41E+03 7.97E+00 1.35E+01 8.78E-05 5.68E+00 -1.02E-01  8.68E-01
FILM_1  2.02E-04 5.36E+02 8.59E-01 1.90E+03  8.60E-02 1.85E+02 7.04E+03 7.89E+00 1.32E+01 9.93E-05 5.49E+00 -1.15E-01  8.88E-01
FILM_3  1.98E-04 5.23E+02 8.58E-01 1.84E+03  8.51E-02 1.85E+02 6.85E+03 7.89E+00 1.32E+01 1.00E-04 5.48E+00 -1.14E-01  8.88E-01

FILM_7  1.90E-04 5.18E+02 8.57E-01 1.81E+03  8.38E-02 1.85E+02 6.74E+03 7.90E+00 1.32E+01 1.01E-04 5.47E+00 -1.14E-01  8.88E-01

Linear_1 2.34E-04 3.97E+02 8.74E-01 1.58E+03  8.97E-02 1.86E+02 5.91E+03 7.77e+00 1.29e+01 1.14E-04 5.31E+00 -1.21E-01 8.97E-01

Linear_3 2.17E-04 4.17E+02 8.64E-01 1.53E+03  8.66E-02 1.87E+02 5.70E+03 7.80E+00 1.30E+01 1.12E-04 5.34E+00 -1.19E-01  8.94E-01

Linear 7 1.98E-04 4.56E+02 8.51E-01 1.52E+03  8.32E-02 1.86E+02 5.63E+03 7.84E+00 1.31E+01 1.08E-04 5.39E+00 -1.16E-01  8.90E-01
MRI

Difference Difference Info Meas Infor Meas
Dataset Energy Contrast Correlation Variance Homogenetiy Sum Average Sum Variance Sum Entropy Entropy Variance Entropy of Corr of Corr2
Authentic 4.40E-01 7.62E+01 9.26E-01 5.32E+02  7.18E-01 2.40E+01 2.05E+03 3.39E+00 4.77E+00 3.73E-03  2.35E+00 -4.12E-01 9.41E-01
FILM_1  4.42E-01 6.99E+01 9.33E-01 5.29E+02  7.28E-01 2.40E+01 2.04E+03 3.39E+00 4.73E+00 3.54E-03  2.28E+00 -4.41E-01 9.51E-01
FILM_3  4.42E-01 6.68E+01 9.35E-01 5.23E+02  7.29E-01 2.40E+01 2.02E+03 3.39E+00 4.72E+00 3.54E-03 2.26E+00 -4.44E-01  9.51E-01

FILM_7  4.32E-01 6.45E+01 9.37E-01  5.23E+02 7.24E-01 2.45E+01 2.03E+03 3.45E+00 4.81E+00 3.18E-03 2.29E+00 -4.40E-01  9.58E-01

Linear_1 4.34E-01 5.51E+01 9.46E-01 5.10E+02 7.24E-01 2.41E+01 1.98E+03 3.42E+00 4.76E+00 3.53E-03 2.26E+00 -4.41E-01  9.53E-01

Linear_3 4.38E-01 5.02E+01 9.48E-01 4.92E+02 7.23E-01 2.41E+01 1.92E+03 3.39E+00 4.68E+00 4.04E-03  2.24E+00 -4.40E-01  9.50E-01

Linear_7 4.21E-01 5.15E+01 9.45E-01 4.87E+02  7.12E-01 2.46E+01 1.90E+03 3.49+00 4.86E+00 3.67E-03 2.32E+00 -4.30E-01  9.57E-01
Light-sheet

Difference Difference Info Meas Infor Meas
Dataset Energy Contrast Correlation Variance Homogenetiy Sum Average Sum Variance Sum Entropy Entropy Variance Entropy of Corr of Corr 2
Authentic 3.89E-01 4.25E-01 9.87E-01 1.94E+01  9.22E-01 6.25E+00 7.70E+01 2.61E+00 2.85E+00 5.36E-03 7.05E-01 -7.19E-01  9.67E-01
FILM_1  3.976-01 3.80E-01 9.88E-01 1.88E+01  9.29E-01 6.25E+00 7.46E+01 2.57E+00 2.79+00 5.57E-03 6.58E-01 = -7.49E-01 = 9.72E-01
FILM_3  3.98E-01 3.57E-01 9.89E-01 1.80E+01  9.29E-01 6.24E+00 7.16E+01 2.56E+00 2.78E+00 5.66E-03 6.52E-01 -7.48E-01  9.72E-01
FILM_7  3.96E-01 3.39E-01 9.89E-01 1.71E+01  9.29E-01 6.25E+00 6.81E+01 2.57E+00 2.78E+00 5.88E-03  6.53E-01 = -7.45E-01 = 9.72E-01
Linear_1 3.89E-01 3.42E-01 9.88E-01 1.84E+01  9.26E-01 6.24E+00 7.32E4+01 2.60E+00 2.82E+00 5.95E-03 6.77E-01 -7.26E-01  9.67E-01
Linear_3 3.88E-01 3.15E-01 9.89E-01 1.77E+01  9.28E-01 6.25E+00 7.05E+01 2.60E+00 2.81E+00 6.72E-03 6.63E-01 = -7.31E-01 = 9.69E-01
Linear_7 3.86E-01 3.10E-01 9.88E-01 1.71E+01  9.27E-01 6.25E+00 6.81E+01 2.60E+00 2.81E+00 7.22E-03 6.63E-01 -7.31E-01  9.69E-01

Cryo-electron microscopy

Difference Difference Info Meas Infor Meas
Dataset Energy Contrast Correlation Variance Homogenetiy Sum Average Sum Variance Sum Entropy Entropy Variance Entropy of Corr of Corr2
Authentic 3.23E-03 1.62E+01 8.25E-01 4.71E+01  2.76E-01 2.60E+02 1.72E+02 5.74E+00 8.76E+00 7.71E-04 3.14E+00 -1.77E-01 8.97E-01
FILM_1  5.63E-03 7.47E+00 8.90E-01 3.48E+01  3.77E-01 2.59E+02 1.32E+02 5.53E+00 7.99E+00 1.20E-03 2.62E+00 -2.55E-01  9.45E-01
FILM_3  5.48E-03 8.03E+00 8.83E-01 3.49E+01  3.70E-01 2.61E+02 1.32E+02 5.54E+00 8.05E+00 1.14E-03 2.67E+00 -2.45E-01 9.41E-01
FILM_7  5.02E-03 8.80E+00 8.83E-01 3.77E+01  3.61E-01 2.62E+02 1.42E+02 5.61E+00 8.18E+00 1.10E-03 2.73E+00 -2.42E-01 9.42E-01

Linear_1 5.00E-03 9.25E+00 8.61E-01 3.40E+01  3.38E-01 2.60E+02 1.27E+02 5.51E+00 8.13E+00 1.07E-03 2.77E+00 -2.17E-01  9.23E-01

Linear_3 6.40E-03 9.63E+00 8.52E-01 3.31E+01  3.39E-01 2.62E+02 1.23E+02 5.47E+00 7.95E+00 1.04E-03 2.79E+00 -2.14E-01 9.17E-01

Linear 7 5.33E-03 1.03E+01 8.54E-01 3.52E+01  3.30E-01 2.62E+02 1.30E+02 5.54E+00 8.14E+00 1.01E-03 2.83E+00 -2.12E-01  9.20E-01
IHC

Difference Difference Info Meas Infor Meas
Dataset Energy Contrast Correlation Variance Homogenetiy Sum Average Sum Variance Sum Entropy Entropy Variance Entropy of Corr of Corr2
Authentic 8.70E-03 8.59E+02 4.19E-01 7.43E+02  2.02E-01 4.23E+02 2.11E+03 7.01E+00 1.19E+01 1.46E-04 5.61E+00 -9.23E-02  8.23E-01
FILM_7  5.42E-03 4.93E+02 5.31E-01 5.26E+02  1.82E-01 4.25E+02 1.61E+03 6.94E+00 1.18E+01 1.44E-04 5.32E+00 -9.07E-02 8.11E-01
FILM_12 3.79E-03 4.71E+02 5.47E-01 5.31E+02  1.36E-01 4.20E+02 1.33E+03 6.97E+00 1.17E+01 1.40E-04 5.23E+00 -8.59E-02  8.03E-01
Linear_7 4.10E-03 4.75E+02 4.69E-01 4.48E+02  1.59E-01 4.24E+02 1.32E+03 6.90E+00 1.18E+01 1.26E-04 5.37E+00 -7.29E-02  7.61E-01
732 Linear_12 3.37E-03 4.99E+02 4.54E-01 4.57E+02  1.47E-01 4.23E+02 1.33E+03 6.93E+00 1.20E+01 1.18E-04 5.42E+00 -6.61E-02  7.38E-01

733  Table S1. Mean Haralick texture feature scores for each dataset and skip scenario.
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