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ABSTRACT 35 

The development of novel imaging platforms has improved our ability to collect and analyze large 36 
three-dimensional (3D) biological imaging datasets. Advances in computing have led to an ability 37 
to extract complex spatial information from these data, such as the composition, morphology, and 38 
interactions of multi-cellular structures, rare events, and integration of multi-modal features 39 
combining anatomical, molecular, and transcriptomic (among other) information. Yet, the accuracy 40 
of these quantitative results is intrinsically limited by the quality of the input images, which can 41 
contain missing or damaged regions, or can be of poor resolution due to mechanical, temporal, or 42 
financial constraints. In applications ranging from intact imaging (e.g. light-sheet microscopy and 43 
magnetic resonance imaging) to sectioning based platforms (e.g. serial histology and serial section 44 
transmission electron microscopy), the quality and resolution of imaging data has become 45 
paramount.  46 

Here, we address these challenges by leveraging frame interpolation for large image motion 47 
(FILM), a generative AI model originally developed for temporal interpolation, for spatial 48 
interpolation of a range of 3D image types. Comparative analysis demonstrates the superiority of 49 
FILM over traditional linear interpolation to produce functional synthetic images, due to its ability 50 
to better preserve biological information including microanatomical features and cell counts, as 51 
well as image quality, such as contrast, variance, and luminance. FILM repairs tissue damages in 52 
images and reduces stitching artifacts. We show that FILM can decrease imaging time by 53 
synthesizing skipped images. We demonstrate the versatility of our method with a wide range of 54 
imaging modalities (histology, tissue-clearing/light-sheet microscopy, magnetic resonance 55 
imaging, serial section transmission electron microscopy), species (human, mouse), healthy and 56 
diseased tissues (pancreas, lung, brain), staining techniques (IHC, H&E), and pixel resolutions (8 57 
nm, 2 µm, 1mm). Overall, we demonstrate the marked potential of generative AI in improving the 58 
resolution, throughput, and quality of biological image datasets, enabling improved 3D imaging.  59 
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INTRODUCTION 60 

Novel three-dimensional (3D) imaging techniques and algorithms designed to integrate large, 61 
multimodal datasets have improved our ability to assess normal anatomy and tissue heterogeneity 62 
using anatomical, molecular, -omic probes.1–7 Across 3D image modalities, a common challenge 63 
emerges: a lack of resolution due to mechanical or financial constraints, or due to the presence of 64 
damaged or distorted tissue. Here, we introduce a methodology to repair and enhance 3D 65 
biological imaging data using generative artificial intelligence (AI) image interpolation. We 66 
demonstrate the utility of this method across serial sectioning-based and intact imaging datasets. 67 

Serial sectioning-based and intact imaging methods both present resolution challenges. Imaging 68 
methods that utilize serial sectioning take advantage of the ability to multiplex across tens to 69 
hundreds of sections.2,8,9 However, sectioning-based techniques face two resolution-limiting 70 
hurdles. First, the resolution of the sample is limited by the thickness of the serial sections (4 – 10 71 
µm for histology and ~40 nm for serial section transmission electron microscopy [ssTEM]). This 72 
resolution is further limited during the common practice of intermixing stains (hematoxylin and 73 
eosin [H&E], immunohistochemistry [IHC], spatial transcriptomics) at regular intervals.6,8–12 74 
Second, the axial resolution of the sample is diminished due to physical artifacts of sectioning, 75 
where tissue splitting, folding, and warping can dramatically limit the user’s ability to reconstruct 76 
continuous structures.4,13,14 In contrast, intact imaging approaches such as magnetic resonance 77 
imaging (MRI), computed tomography (CT), and tissue clearing enable 3D views of continuous 78 
structures.15–17 While the preservation of 3D structure generally enables higher resolution images 79 
than serial sectioning approaches, these techniques sacrifice the ability to multiplex across z-80 
planes. Additionally, in spite of the lack of sectioning, resolution problems persist, as the effects 81 
of photobleaching, light-sheet absorption, susceptibility to motion artifacts, and signal loss can 82 
result in localized loss of tissue connectivity and clarity. 18–20 83 

A promising solution lies in the application of generative models and interpolation techniques to 84 
enhance the fidelity of reconstructed images. Various generative deep learning models have been 85 
employed to synthesize tissue images. Prominent are CycleGANs (Cycle-Consistent Generative 86 
Adversarial Networks) and diffusion models.21–28 CycleGANs are generative deep learning models 87 
that allow for cross modality translation. They have been used for the transformation of H&E-88 
stained slides into synthetic IHC-stained slides that mark specific proteins in tissues.23–25,29 89 
Diffusion models have been used to generate magnetic resonance imaging (MRI) and computed 90 
tomography (CT) scans to augment the training datasets of deep learning models.21,27,30  91 

Despite advances in generative models, limitations persist in achieving synthetic biological images 92 
that look realistic, as assessed by rigorous metrics.21–28,31–33 Issues such as the accurate 93 
representation of subtle or rare textures, cell arrangements, and tissue boundaries are areas of active 94 
research.22,26 Here, we explore interpolation techniques, such as frame interpolation for large 95 
motion (FILM), to enhance the resolution of 3D biological images.31–34 Using FILM to generate 96 
synthetic intervening slides, we propagate information contained in adjacent slides, which 97 
enhances z-axis resolution of 3D microanatomical structures and allows for additional information. 98 

We demonstrate that interpolation of biological images using FILM provides superior performance 99 
compared to conventional linear interpolation. FILM-synthesized images can reconstruct 100 
microanatomical features, image contrast, and cell counts from damaged slides. Using FILM, 3D 101 
reconstructions of semantically segmented synthetic images of complex microanatomical 102 
structures - such as ducts and blood vessels - feature fewer artifacts than original, damaged datasets 103 
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(as assessed considering 13 Haralick features). The versatility of FILM is shown by its applications 104 
to different imaging modalities (light microscopy, MRI, ssTEM), species (human, mouse), organs 105 
(pancreas, brain, lungs), and pixel resolutions (8 nm, 2 µm, 1mm). These applications highlight 106 
the potential of generative AI interpolation techniques such as FILM to enhance spatial resolution, 107 
restore and recover damaged image slides, and mitigate information loss in volumetric biomedical 108 
imaging. 109 

  110 
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MATERIALS AND METHODS 111 

Specimen acquisition 112 

A sample of non-diseased human pancreas tissue was stained with hematoxylin and eosin (H&E); 113 
another similar sample was stained with leukocyte marker CD45 via immunohistochemistry (IHC-114 
CD45). Both samples were from individuals who underwent surgical resection for pancreatic 115 
cancer at the Johns Hopkins Hospital.2 The H&E-stained dataset consisted of a stack of 101 serially 116 
sectioned 4µm apart slides at 5x magnification. H and E are standard histological stains that mark 117 
nuclei and cellular structures (H) and ECM (E). The IHC-CD45 stained dataset consisted of 275 118 
slides at 5x magnification where every third slide of the serial section was stained 16µm apart. 119 
CD45 is a general marker of leukocytes. This retrospective study was approved by the Johns 120 
Hopkins University Institutional Review Board (IRB). 121 

A stack of serial section transmission electron micrographs (ssTEM) within a densely annotated 122 
mouse visual cortex petascale image volume (public dataset Minnie65) was obtained through the 123 
online Brain Observatory Storage Service and Database (BossDB), created, and managed by the 124 
Johns Hopkins Applied Physics Laboratory (APL). This dataset consisted of 100 ssTEM slides 125 
captured at a resolution of 8 nm x 8nm x 40 nm.2,7 126 

Light-sheet microscopy images of mouse lung were obtained from the Image Data Resource (IDR) 127 
public repository.35,36 This dataset consisted of 401 serial light-sheet microscopy images captured 128 
at a resolution of 3.22µm x 3.22µm x 10µm. 129 

MRI samples of human brain were obtained from the Amsterdam Open MRI Collection 130 
(AOMIC).37 Specifically, the PIOP2 (Population Imaging of Psychology) cohort consisting of 131 
structural MRI scans of students was used. The dataset consisted of 220 structural MRI scans 132 
captured at a resolution of 1mm x 1mm x 1mm.  133 

 134 

Segmentation of pancreatic microanatomy in histology slides 135 

CODA, a previously developed semantic segmentation model, was leveraged to segment the H&E-136 
stained pancreas whole slide images (WSIs) into their respective microanatomical components.2 137 
CODA was specifically trained for the segmentation of microanatomical components of the 138 
pancreas and labeled seven components at a resolution of 2 µm per pixel, including islet of 139 
Langerhans, ductal epithelium, blood vessels, fat, acini, extracellular matrix (ECM), and 140 
pancreatic intraepithelial neoplasia (PanIN), which are precursor lesions of pancreatic cancer.2 141 

 142 

Interpolation between 2D images 143 

Spatial interpolation between 2D slides within a stack was carried out using Frame Interpolation 144 
for Large Image Motion (FILM), a model previously developed for temporal interpolation between 145 
frames of videos by Reda et al.34 The model uses a three-step process to generate intermediate 146 
frames between two input images: a feature extraction pyramid, optical flow estimation, and 147 
feature fusion and frame generation.  148 
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The feature extraction pyramid consists of six convolutional layers responsible for extracting 149 
features from the input images, each with increasing kernel size and decreasing stride capturing 150 
progressively larger receptive fields, extracting features from coarser to finer scales. This coupled 151 
with the use of shared weights across scales, allows the model to extract features for both small 152 
and large motions efficiently. 153 

The features extracted are then fed into a bi-directional optical flow estimation module. This 154 
module calculates the pixel-wise motion vectors (or "flows") between the features of two input 155 
images at each pyramid level. These flows represent the transformation needed to warp the features 156 
from one frame to the other. The bi-directional approach allows the model to capture both forward 157 
and backward motion, leading to more accurate and detailed interpolations.34 158 

With the extracted features and estimated flows, FILM enters the final fusion stage. The aligned 159 
features from both input images, along with the flows and the original input images themselves, 160 
are concatenated into a single feature pyramid. This captures both the feature information and the 161 
motion dynamics between the two frames. Finally, a U-Net decoder architecture processes this 162 
fused feature pyramid and generates the final interpolated frame. The U-Net's skip connections, 163 
which bypass several layers within the network and concatenate their outputs directly with the 164 
outputs of later layers, ensures that the generated frame retains fine details and maintains 165 
consistency with the input images.34 166 

FILM used a recursive function (Eq.1) which accounted for the number of input frames, n, and the 167 
number of recursive passes over which the model would interpolate, k. This limited the number of 168 
frames that could be generated between the input images to be either one, four, seven, or fifteen 169 
frames (Eq.1). 170 

𝑓𝑓 = 2𝑘𝑘(𝑛𝑛 − 1) − 1          Eq.1 171 

Recognizing the need for flexibility in slide skipping based on user requirements, a time series 172 
spanning from 0 to 1 was implemented, with step sizes dynamically determined by the number of 173 
skipped slides. This approach generated time points corresponding to the skipped slides, 174 
facilitating variable frame interpolation between input pairs. 175 

FILM was pretrained on the Vimeo-90k dataset, a largescale dataset of 89,800 high quality videos 176 
designed specifically to train models oriented towards video processing tasks such as frame 177 
interpolation, image denoising and resolution enhancement.34 The optical flow of this model is 178 
already robustly pretrained on a diverse set of videos with different moving objects, such as 179 
vehicles, people, and smaller features like cameras and soccer balls. Re-training of the model posed 180 
two challenges: a lack of documentation on retraining and perfectly registering histological slides 181 
to curate a training dataset. The focus of FILM on optical flow means that the model is sensitive 182 
to misalignment in the training images, making histological slides an unfavorable dataset to retrain 183 
the optical flow model due to inherent variability in tissue preparation, staining intensities, and 184 
sectioning processes, which lead to unpredictable distortions and variations that complicate 185 
accurate spatial alignment of a stack of slides.  186 

 187 
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Pearson correlation  188 

To characterize the correlation between input image pairs to our model, the Pearson correlation 189 
was calculated between pairs of authentic images used to interpolate. This metric allowed for a 190 
comparison of three interpolation techniques: nearest-neighbor interpolation, linear interpolation, 191 
and FILM. By determining the correlation between the middle interpolated image (furthest from 192 
input images) and the corresponding authentic image for each method of interpolation we 193 
determined linear interpolation performed the nearest to FILM and hence chose it as the form of 194 
interpolation for a more stringent comparison to FILM interpolation (Fig. 2d). The Pearson 195 
correlation was calculated using the SciPy stats package available in python.   196 

 197 

Haralick texture features 198 

Thirteen Haralick texture features were calculated to provide a quantitative representation of the 199 
texture patterns within an image, offering insights into its spatial arrangements and 200 
relationships.38,39 The 13 features measured: angular second moment, contrast, correlation, sum of 201 
squares variance, inverse difference moment, sum average, sum variance, difference variance, sum 202 
entropy, difference entropy, entropy, information measure of correlation 1, and information 203 
measure of correlation 2.38,39 Contrast measures the intensity variations between neighboring 204 
pixels, correlation gauges the linear dependency of gray levels, energy represents the image 205 
uniformity, and homogeneity measures the closeness of gray level pairs. 206 

To manage the complexity and high dimensionality of the feature space, dimensionality reduction 207 
was carried out using principal component analysis (PCA). PCA transformed the original set of 208 
Haralick features into a reduced set of principal components, retaining the most significant 209 
information while discarding redundant or less informative aspects. This reduction not only 210 
simplifies the interpretation of the data, but also allows for a holistic assessment of image quality, 211 
capturing the essential texture information in a more compact form. 212 

Additionally, analysis of the Euclidean distances between authentic and interpolated images was 213 
computed using 13 of the Haralick features. By considering the Euclidean distances across all 214 
selected Haralick features simultaneously, a comprehensive evaluation of the overall error value 215 
was achieved. This validation process ensured that the collective impact of texture features was 216 
considered, providing a robust measure of dissimilarity or similarity between images. The 217 
combination of Haralick texture features, PCA for dimensionality reduction, and Euclidean 218 
distance computation offered a systematic and effective approach for evaluating image quality and 219 
texture patterns. 220 

 221 

Cell detection in histological sections 222 

To validate the interpolated IHC images, the CODA cell detection module was used to count the 223 
total number of CD45+ cells and compare it with respective authentic images.2 For this task, the 224 
intensity range of blue pixels was first determined for the nuclei of cells, along with the intensity 225 
of brown pixels for positive CD45 stain. Using k-means clustering, the mode blue pixel intensity 226 
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was determined and selected to represent the hematoxylin channel, while the mode brown pixel 227 
intensity was selected to represent the positive stain. With color deconvolution, the cells stained 228 
with hematoxylin could be extracted from the remaining tissue, thereby providing a cell count. 229 

 230 

3D rendering of interpolated 2D images 231 

FILM was used to interpolate stacks of images defined by different regions of interest (ROI’s) and 232 
stacks of whole slide images of missing and damaged slides, which resulted in the recreation of a 233 
serial section of the dataset (Fig. 1b). During post-processing, CODA was used to semantically 234 
segment histology slides and MRI images to reconstruct microanatomical tissue structures and 235 
whole organs in 3D (Fig. 1b). 2 Through manual annotations of microanatomical tissue structures 236 
in a small subset of histology slides and whole organ annotations of the brain in a subset of MRI 237 
images, CODA allowed for two deep learning models to be trained to recognize these annotations 238 
and apply them to the remaining slides/images in the respective datasets, thereby generating stacks 239 
of segmented histology slides and MRI images. Labels within the segmented slides/images, 240 
corresponding to the annotations could then be used by CODA to reconstruct and visualize 3D 241 
tissue structures of interest, such as epithelial ducts in the case of the pancreas, and whole organs 242 
such as the brain. Similarly, CODA was leveraged to 3D reconstruct synapses in the mouse brain 243 
using pre-segmented ssTEM slides with the appropriate synapse label. Tissue-cleared light-sheet 244 
images were separated into their respective RGB channels allowing for three stacks to be obtained, 245 
one for each channel. 3D reconstructions of structures within the tissue-cleared light-sheet images 246 
of the lung were then generated by creating volumes using stacks of channel-separated images. 247 
Specifically, the red channel was used to reconstruct the bronchioles in the mouse lung.     248 

  249 
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RESULTS 250 

Multi-modal tissue cohorts and interpolation workflows 251 

Here we applied a method based on optical flow, FILM, to restore damages in stacks of 2D images 252 
to recover lost microanatomical features in 3D reconstructions of tissue architecture and 253 
tissue/cellular composition (Fig. 1).27 We procured and tested FILM for a non-diseased pancreatic 254 
tissue cohort (stained with H&E and IHC), a structural MRI dataset of the human brain, a stack of 255 
ssTEM micrographs of thin sections of the mouse brain, and a mouse lung tissue cleared and 256 
imaged under light-sheet microscopy. The selection of these datasets encompassed different image 257 
characteristics (size and resolution), species (human, mouse), tissue types (pancreas, brain, lung), 258 
imaging modalities (histology, ssTEM, structural MRI, tissue clearing for light-sheet microscopy), 259 
and magnifications. This diversity of datasets ensured that the robustness of FILM was evaluated 260 
across a broad spectrum of imaging modalities. 261 

FILM, which we compare to other interpolation methods, uses pairs of undamaged 2D images 262 
from an image stack to improve spatial resolution or recover lost microanatomical information 263 
(Fig. 1b). The user specifies the number of images to be interpolated based on the number of 264 
damaged or missing images between the input slides. Using the output interpolated 2D image 265 
stacks, 3D volumes can be reconstructed without missing or damaged images (Fig. 1b). This results 266 
in improved spatial resolution and reconstruction of tissue components in 3D (Fig. 1b).  267 

 268 

FILM interpolation for stacks of histological images 269 

We first tested the ability of FILM to interpolate images in a stack of histological images from 270 
human pancreatic tissue samples. Histological slides are often lost or damaged due to improper 271 
storage or documentation.13,14 The ability of FILM to interpolate slides was compared to a linear 272 
interpolation of the same slides and then compared to the corresponding authentic slide (Fig. 273 
2).32,40–42 Two ROI’s from the 101 serially sectioned and H&E stained human pancreas dataset 274 
were selected based on the tissue structures present. ROIs had a total of eight tissue components, 275 
including islets of Langerhans, ductal epithelium, blood vessels, fat, acini, ECM, whitespace, and 276 
PanIN (precursor) lesions. Pairs of images were selected one every 8 images (skip 7) of the original 277 
stack of authentic images, and the missing 7 images were interpolated (Fig. 2a). Interpolated 278 
images were validated against their respective authentic images (Fig. 2, b and c). 279 

We examined ducts and blood vessels due to their complex branching character within the first 280 
ROI (Fig. 2b). The authentic image of the duct showed damage fixed by FILM interpolation (top 281 
row, top arrow, Fig. 2b). In contrast, the epithelium layer of the duct showed significant noise in 282 
the linearly interpolated image due to pixel averaging (top row, bottom arrowhead, Fig. 2b). This 283 
caused overlay artifacts absent in FILM, which tracked pixel movements using optical flow for a 284 
sharper image. We also observed that linear interpolation replaced the damaged areas with acinus, 285 
unlike the whitespace in the authentic slide (top row, top arrowhead, Fig. 2b). In contrast, FILM 286 
successfully removed the damage and preserved the whitespace (top row, top arrow, Fig. 2b). 287 
Furthermore, FILM preserved the central structure of the duct, whereas linear interpolation thinned 288 
and elongated the lumen (top row, middle arrowhead, Fig. 2b). The superiority of FILM over linear 289 
interpolation was further seen in the blood vessel microanatomical structures (bottom row, bottom 290 
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arrowhead, Fig. 2b). With linear interpolation, overlay artifacts were present throughout the entire 291 
structure of the blood vessel (bottom arrow, Fig. 2b). Critically, linear interpolation could not 292 
preserve the structure of the blood vessel, unlike FILM (Fig. 2b). Linear interpolation also 293 
incorrectly generated fat regions absent in the authentic images (bottom row, top arrowhead, Fig. 294 
2b).  295 

In the second ROI, enriched in ducts, fat, and islets, linear interpolation created a duct lumen 296 
shadow (top row, top arrowhead, Fig. 2c). In contrast, FILM accurately interpolated the duct 297 
without artifact (top row, Fig. 2c). Other key structures were fat and islets, which typically 298 
presented a small and faint morphology (bottom row, Fig. 2c). The authentic slide contained 8 fat 299 
and 5 islets structures, however linear interpolated images showed fat shadows where the real fat 300 
was located (bottom row, top arrowhead, Fig. 2c). Additionally, it generated a non-existent fat 301 
region (bottom row, bottom arrowhead Fig. 2c). These fat shadows could be wrongly interpreted 302 
as islets, especially in regions where islets are present (bottom row Fig. 2c). Although FILM 303 
struggled with overlapping fat, it properly interpolated distinct fat without artifacts and could 304 
clearly distinguish islets from fat. 305 

We quantified differences between FILM and linear interpolation using Pearson correlation for 306 
each of our scenarios (when skipping 1, 3, and 7 slides) (Fig. 2d). The correlation was calculated 307 
(i) between the two input images to the model as well as (ii) between the input images and middle 308 
authentic image for each scenario. This correlation (ii) represented the correlation achieved when 309 
interpolating images using the nearest neighbor form of interpolation. Lastly, the correlation (iii) 310 
between the middle FILM, (iv) the middle linear interpolated image and the middle authentic 311 
image for each scenario was calculated. FILM-interpolated images were clearly more correlated 312 
to their authentic counterparts than the nearest neighbor-interpolated images. Linearly interpolated 313 
images closely matched the correlation obtained between FILM interpolated images and authentic 314 
images (Fig. 2d). Hence, linear interpolation was chosen as the benchmark comparative form of 315 
interpolation to FILM. 316 

Thirteen Haralick features (angular second moment, contrast, correlation, sum of squares variance, 317 
inverse difference moment, sum average, sum variance, difference variance, sum entropy, 318 
difference entropy, entropy, information measure of correlation 1, and information measure of 319 
correlation 2) were measured to evaluate the interpolated images (Fig. 2e).38,39 The results of each 320 
score were averaged for the different tested scenarios (authentic, FILMskip1, FILMskip3, FILMskip7, 321 
linearskip1, linearskip3, and linearskip7) (Table S1.), which allowed for principal component analysis 322 
(PCA) to be carried out (Fig. 2f). This analysis demonstrated that the FILM-interpolated slides 323 
represented more closely the information in the authentic slides, even when skipping seven slides, 324 
as compared to linear interpolation. The averaged values were also used to compute the Euclidean 325 
distance of the 13 Haralick features between authentic and interpolated images (Fig. 2f). Even 326 
skipping 7 slides, FILM images were <1/2 the distance of linear images skipping just 1 slide from 327 
authentic images. 328 

Standard metrics, such as mean square error (MSE), structural similarity index measure (SSIM), 329 
peak signal-to-noise ratio (PSNR), Spearman correlation, Jaccard correlation, Sobel filter, and 330 
channel wise pixel-to-pixel intensity correlation could not quantify the structural errors in 331 
microanatomical features from linear interpolation (Fig. 2, b and c). The dominant, easily 332 
interpolated acini surrounding microanatomy resulted in similar metric values for linear and FILM, 333 
since these metrics are less sensitive to small-pixel deviations compared to large-pixel deviations. 334 
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Masking out acini to consider only the pixels associated with microanatomical structures was 335 
attempted, but registration differences between authentic and interpolated images meant that these 336 
metrics only highlighted alignment differences rather than the quality of interpolation. 337 

In sum, FILM can accurately interpolate damaged or missing H&E-stained histological images, 338 
which restores lost information in 2D image stacks and, consequently, improves connectivity of 339 
microanatomical structures in 3D (see also more below). Unlike linear interpolation, FILM does 340 
not generate non-existent microanatomical structures like ducts or fat. 341 

 342 

FILM interpolation for stacks of MRI and light-sheet microscopy images 343 

Next, we tested the ability of FILM to interpolate images within stacks of MRI images. MRI 344 
imaging faces inherent limitations, such as susceptibility to motion artifacts due to prolonged scan 345 
times, leading to patient discomfort, and potential for signal loss due to magnetic field in 346 
homogeneity that can impact the quality of acquired images. Pairs of images were selected one 347 
every 8 images (skip 7) of the original stack of authentic images, and the missing 7 images were 348 
interpolated (Fig. 3a). Interpolated images were validated against their respective authentic images 349 
(Fig. 3b). 350 

Linear interpolation of MRI images caused band artifacts generated around the boundary of the 351 
soft tissue, unlike FILM which did not such artifacts (middle row, Fig. 3b). Additionally, FILM 352 
could accurately interpolate the soft tissue structure to make biologically accurate structures, 353 
whereas linear interpolation created what resembles a grey smudge with significant overlay 354 
artifacts (bottom row, Fig. 3b).  355 

To further demonstrate its versatility, we applied FILM to interpolate images within a stack of 356 
light-sheet micrographs obtained from a cleared mouse lung. Light-sheet microscopy presents 357 
challenges, including photobleaching and light sheet absorption, which may result in uneven 358 
illumination, and tissue movement during imaging, which can introduce distortions. Again, pairs 359 
of images were selected every 8 images of the authentic stack (Fig. 3e), and interpolated images 360 
were compared to their authentic counterpart.     361 

Linear interpolation of light-sheet micrographs created double boundary lines around the 362 
bronchioles creating a structure that is biologically inaccurate (middle row, top arrowhead, Fig. 363 
3f) (bottom row, bottom arrowhead, Fig. 3f). In contrast, FILM correctly interpolated the structure 364 
of bronchioles to accurately depict the structure observed in the authentic image (middle row, 365 
arrow Fig. 3f). In the second row of zoom-ins, we can see that the authentic image suffers from 366 
artifacts of light-sheet absorption and photobleaching on the top left side of the bronchiole, which 367 
cause bleeding of the green and red channels into the bronchiole (bottom row, arrowhead, Fig. 3f). 368 
Linear interpolation reduced these artifacts, but could not remove them entirely (bottom row, top 369 
arrowhead Fig. 3f), whereas FILM removed the bleed of the red and green channels (bottom row, 370 
arrow Fig. 3f).  371 

For both MRI and light-sheet microscopy datasets, thirteen Haralick texture features introduced 372 
above were measured to compare authentic and interpolated images, when interpolating 1, 3, and 373 
7 slides. The results for each score were averaged for the different comparisons (authentic, 374 
FILMskip1, FILMskip3, FILMskip7, linearskip1, linearskip3, and linearskip7) (Table S1.), and shown in a 375 
principal component analysis (PCA) plane (Fig 3, c and g). For MRI images, FILM-interpolated 376 
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slides represented more closely the information in the authentic slides, even when skipping seven 377 
slides, compared to linear interpolation. The averaged values were also used to compute the 378 
Euclidean distance between authentic and interpolated images (Fig 3c). Again, even when skipping 379 
seven slides, FILM-interpolated slides were < 1/2 the Euclidean distance between the authentic 380 
slides and the linearly interpolated slides when skipping only one slide. The Euclidean distance by 381 
slide further emphasizes the superiority of FILM over linear interpolation as the Euclidean distance 382 
increased when progressing through the stack of slides and interpolating linearly as opposed to 383 
FILM (Fig 3d).  384 

Similarly, the PCA analysis for light-sheet interpolated images showed that FILM interpolated 385 
images were more closely representative of the authentic images for principal component 2, while 386 
the linear interpolated images were closer for principal component 1 (Fig 3g). Nevertheless, when 387 
considering the mean Euclidean distance, FILM outperformed linear interpolation for each 388 
individual skip scenario (Fig 3g). The Euclidean distance by slide increased when interpolating 389 
linearly through the stack as opposed to FILM, for which it remained consistent through the stack. 390 
(Fig 3h). 391 

In sum, we demonstrated the ability of FILM to interpolate MRI and light-sheet images more 392 
accurately than linear interpolation. FILM reduces motion artifacts in MRI images whereas linear 393 
interpolation exaggerates these artifacts, resulting in band artifacts. FILM reduces photobleaching 394 
and light-sheet absorption artifacts present in the authentic light-sheet images, whereas linear 395 
interpolation cannot. Elimination of such artifacts allows for more accurate 3D reconstructions of 396 
whole organ structures and microanatomical structures in tissue samples. 397 

 398 

FILM interpolation for stacks of images stained via immunohistochemistry (IHC)  399 

To further demonstrate the ability of FILM to interpolate histological images, a second human 400 
pancreas sample was immunostained (IHC) for leukocyte marker CD45. We note the substantial 401 
z-directional distance of 52 μm between input slides, equivalent to omitting twelve successive 4-402 
μm-thick sections (Fig. 4a). The target images, for which authentic validation slides were available 403 
for comparison, are shaded in dark grey, while the missing slides between the input and target 404 
slides are shaded in light grey (Fig. 4a).  405 

We compared the middle target slide interpolated to the middle authentic validation slide using 406 
both linear and FILM models (Fig. 4a). When zooming in to a specific fat dense region, linear 407 
interpolation artifacts were evident, while FILM lacked such artifacts (bottom row, middle 408 
arrowhead, top row, arrow Fig. 4a). Additionally, whereas cells were distinctly observed in the 409 
authentic image, the linearly interpolated image showed faintly stained cells covered with white 410 
hues resembling fat (bottom row, right arrowhead, Fig. 4a). In contrast, FILM could interpolate 411 
distinct cells around the fat and even preserved most of the ductal and ECM structures (top row, 412 
arrow, Fig. 4a), unlike the linear model (bottom row, left arrowhead, Fig. 4a). 413 

Using CODA, the total cell count of CD45 positive cells was determined for each of the linear and 414 
FILM interpolated slides and compared to the counts in the authentic slides. While linearly 415 
interpolated slides more closely represented the total positive cell count in the authentic slides 416 
when skipping 7 slides, it regularly overestimated the number of cells in the authentic image, when 417 
skipping 12 slides (Fig 4b). FILM regularly underestimated the number of cells in the image when 418 
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skipping both 7 and 12 slides; however, it was closer to the total cell count of the authentic when 419 
skipping 12 slides (Fig. 4b).  420 

Thirteen Haralick texture features were evaluated for authentic and interpolated images when 421 
interpolating 7 and 12 slides. The results of each score were averaged for the different scenarios 422 
assessed (authentic, FILMskip7, FILMskip12, linearskip7, and linearskip12) (Table S1.). PCA showed 423 
FILM-interpolated slides more closely represented authentic slide information along principal 424 
component 1, while linear along component 2 (Fig 4d). The Euclidean distance between authentic 425 
and interpolated images demonstrated FILMskip7 more closely represented the authentic slides than 426 
linearskip7 and similarly when skipping 12 slides (Fig 4d). 427 

In summary, by interpolating IHC-CD45 stained images and determining the difference in cell 428 
count between authentic and interpolated images, we show the ability of FILM to interpolate not 429 
only multicellular structures (ducts, blood vessels) in stacks of histological images, but also smaller 430 
features such as individual cells. We show that while skipping a distance as large as 54 µm between 431 
adjacent slides, FILM interpolates images with a cell count within 7% error of the authentic cell 432 
count. 433 

 434 

FILM interpolation and restoration of ssTEM images 435 

A stack of serial section transmission electron micrographs (ssTEM) of the mouse brain was used 436 
to show our ability to interpolate not only histological sections, but also EM micrographs of tissue 437 
sections (Fig. 4c). Authentic tiles shown represent a 2000x3500 pixel tile of the authentic whole 438 
slide image (top row, Fig. 4c). Thick irregular black lines were observed across most of the slides 439 
in the authentic stack of images, which correspond to damage due to unavoidable tissue tear during 440 
processing of thin sections (top row, arrows, Fig. 4c). For a randomly selected subset of 100 441 
continuous slides from a stack of the >13,000 ssTEM slides, we found that >70% were damaged, 442 
many of them containing >1 damaged region. Additionally, fainter grey lines were observed, going 443 
horizontally across the authentic images, which are artifacts of image stitching (top row, bound by 444 
red box Fig. 4c). Interpolation between two undamaged EM slides using FILM could not only 445 
remove the damage to the slides while preserving the structures within them, but also significantly 446 
reduce stitching artifacts (bottom row, Fig. 4c). 447 

Thirteen Haralick features were measured for the authentic and interpolated images when 448 
interpolating 1, 3, and 7 slides. The results of each score were averaged for the different tested 449 
scenarios (authentic, FILMskip1, FILMskip3, FILMskip7, linearskip1, linearskip3, and linearskip7) (Table 450 
S1.). PCA showed that FILM-interpolated slides more closely represented authentic slide 451 
information along principal component 2, while linear along component 1 (Fig. 4e). Euclidean 452 
distance between authentic and interpolated images where it can be seen that FILMskip1 more 453 
closely represents the authentic than linearskip1 and similarly for the instance of skipping 3 and 7 454 
slides (Fig. 4e). 455 

In sum, we demonstrate the ability of FILM to eliminate damage in ssTEM slides. This allows for 456 
more accurate 3D reconstructions of the neural pathways by decreasing loss connectivity which 457 
arises due to the damage on individual 2D sections.  458 

 459 
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3D reconstruction of FILM-interpolated images  460 

To better show the application of FILM to enhance 3D visualization of microanatomical structures 461 
from 2D interpolated images, FILM interpolation was applied across different image modalities 462 
such as histological (H&E and IHC), MRI, ssTEM, and light-sheet images. Sematic segmentation 463 
and subsequent concatenation of the 2D segmented images into a volume allowed visualization of 464 
microanatomical features in three dimensions. 465 

Using CODA, we 3D reconstructed the epithelial duct from the pancreatic H&E dataset (Fig. 5a). 466 
The 3D reconstruction of the authentic volume skipping 7 images demonstrates the loss in ductal 467 
connectivity as a result of missing or damaged slides. Linear interpolation of the H&E samples 468 
created noise around the structure of the duct when 3D reconstructed and was unable to preserve 469 
the branching structure of the duct (zoom-in, Fig. 5a). On the other hand, FILM was able to restore 470 
the microanatomical connectivity in the 3D reconstruction of the main and smaller branches of the 471 
duct, while also creating a smoother volume without the propagation of noise. 472 

Similarly, CODA was used to 3D reconstruct a whole human brain using the stack of MRI images. 473 
A comparison of the authentic volume to the authentic volume skipping 7 images showed how 474 
connectivity was lost as a result of damaged or missing images. The authentic volume skipping 7 475 
images also lacked the topographical structure of the brain seen in the authentic volume, replacing 476 
the topography with single planes of information (Fig 5b). Using linear interpolation to recover 477 
the missing or damaged scans resulted in increased edges in 3D volumes, which resembled objects 478 
extruding abnormally out of the brain. This is especially evident around the base of the brain where 479 
the brain stem starts and at the top of the brain towards the skull cap (Fig. 5b). When interpolating 480 
images using FILM, the 3D reconstructed volume resembled more closely that of the authentic 481 
one, with accurate indentations around the surface of the brain and even accurate reconstruction 482 
of the branching brain stem structure. 483 

Tissue-cleared light-sheet images were separated by channel and used to 3D reconstruct the 484 
bronchioles in a mouse lung (Fig 5c). Similarly, a comparison of the authentic volume to a 485 
downsampled reconstruction of the authentic volume (skipping 7 images between adjacent z-486 
planes) demonstrates the loss in connectivity of the bronchioles in 3D as a result of damaged or 487 
missing image scans. The use of linear interpolation to recover missing z-planes did not improve 488 
the connectivity of the bronchioles in 3D, but rather more closely resembled the structure of the 489 
downsampled volume (Fig. 5c). FILM recovered the missing planes, which restored the 490 
connectivity of the bronchioles, and consequently resulted in a volume that resembled the authentic 491 
biospecimen. 492 

Segmented ssTEM images were interpolated using FILM and linear interpolation to 3D reconstruct 493 
synapses in the mouse brain. A qualitative assessment between the authentic volume and 494 
downsampled recreation of the authentic volume (skipping 7 images between adjacent z-planes) 495 
shows the loss in synapse connectivity (Fig. 5d). Linear interpolation to recover the missing z-496 
planes results in the creation of a low resolution volume with blocked structures. Conversely, using 497 
FILM to recover the missing planes resulted in a higher resolution 3D volume, which resembled 498 
that of the authentic volume, and allowed for the synapse connectivity to be restored. 499 

In sum, missing or damaged slides and images in biomedical image stacks cause significant loss 500 
in 3D spatial information which hinders the accurate 3D reconstruction of microanatomical and 501 
whole organ structures from these 2D image stacks. We demonstrate that linear interpolation is 502 
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not sufficiently robust to recover the information lost in complex biomedical images, resulting in 503 
inaccurate 3D reconstructions. In contrast, the optical flow-based model FILM can recover more 504 
information to allow for 3D reconstructions that resemble their authentic counterparts.  505 
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DISCUSSION 506 

We are entering an era in which 3D imaging of biomedical samples has become a requirement as 507 
2D assessments are not sufficient in capturing the content and morphology of multi-cellular 508 
structures, rare events, and spatial relationships among different cell types.1 Various models have 509 
been developed to leverage 2D biomedical image stacks of histology slides, MRI images, ssTEM 510 
slides, and tissue-cleared light-sheet images to reconstruct volumes of microanatomical structures 511 
and whole organs. Such models rely on the quality of individual 2D images within the image stacks 512 
for the accurate reconstruction of volumes. Limitations in z-resolution often arise due to missing 513 
slides and images, tissue damage, and the high cost associated with imaging.  514 

Here, we address these challenges by leveraging FILM and its ability to extract and track features 515 
in biomedical images using optical flow for image interpolation. By interpolating between 516 
undamaged slides to generate missing or damaged slides, we bridge gaps in z-resolution. This 517 
technique enhances 3D reconstructions and mitigates issues arising from damaged or missing 518 
slides. This method broadens the applicability of 2D biomedical image stacks for 3D 519 
reconstructions and quantitative assessments of cellular composition, tissue topography, and 520 
degree of branching of ducts and blood vessels in volumetric tissues. 521 

We conducted a thorough comparative assessment of FILM to linear interpolation using thirteen 522 
Haralick texture features. Linear interpolation, which averages pixel intensities creating hued 523 
colors and structures, cannot create realistic biomedical images. As the number of images skipped 524 
increases, linearly interpolated images further degrade in authenticity, especially for the images 525 
furthest from input images (middle-interpolated image). For large number of skipped images (skip 526 
7), the middle-interpolated image presents strong hues as pixel intensities deviate largely between 527 
input images. Conversely, FILM can interpolate biomedical images that resemble their authentic 528 
counterparts.  529 

By interpolating images using FILM, we reduce the time required for image acquisition. This is 530 
especially applicable when considering MRI scans and the time spent by patients in the machine, 531 
which can lead to patient discomfort and, in extension, motion artifacts that hinder imaging quality. 532 
Similarly, for light-sheet microscopy, we demonstrate the ability of FILM to accurately interpolate 533 
images in the z-direction reducing the number z-steps required during image acquisition. This 534 
significantly decreases the total time required to image a sample as samples are imaged tile by tile 535 
laterally before moving onto the next z-level. Collection time increases exponentially with the 536 
lateral size of the sample, from minutes for a 104 µm3 sample at a spatial resolution of 500 nm to 537 
a week for a 108 µm3 sample at the same resolution.16 FILM interpolation helps address this 538 
limitation.  539 

In conclusion, our work goes beyond existing methods of image translation which use 540 
CycleGAN’s and diffusion models to generate biomedical images by leveraging FILM’s method 541 
of image interpolation. Where image translation would require physical access to the slides of 542 
interest to be translated, our workflow interpolates missing or inaccessible slides, restores damaged 543 
images, eliminates artifacts of image stitching, and works with a wide range of complex 544 
multimodal biomedical images.  545 

 546 
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Figures and Captions  648 

 649 
Fig 1. Interpolation workflow and datasets. (a) Samples were obtained from two species, mouse, and 650 
human. Four different organs were analyzed: human pancreas, human brain, mouse brain, and mouse lung. 651 
Five imaging modalities were tested: hematoxylin and eosin (H&E) stained histology slides, 652 
immunohistochemistry (IHC) stained histology slides, magnetic resonance imaging (MRI), serial section 653 
transmission electron microscopy (ssTEM) slides, and combined tissue clearing with light-sheet 654 
microscopy slides. (b) Aligned slides are manually searched through to identify missing or damaged slides, 655 
and damaged slides are removed from the stack of slides. FILM interpolation is carried out using the 656 
sections adjacent to the damaged or missing slides as inputs to recreate slides that were stained differently, 657 
missing, or damaged, resulting in a uniform stack of slides. Using CODA, slides are segmented into labeled 658 
tissue masks, with each label representing different microanatomical structures in the slide, which is then 659 
used to recreate and visualize microanatomical 3D structures in the tissue sample.  660 
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 661 
Fig. 2 FILM interpolation for stacks of histological images of pancreatic tissues. (a) Regions of interest (ROI’s) 662 
were selected from the whole slide image (WSI), ensuring that all microanatomical features (islets of Langerhans, 663 
ductal epithelium, blood vessels, fat cells, acini, extra-cellular matrix (ECM), whitespace, and pancreatic 664 
intraepithelial neoplasia (PanIN) were present in the ROI and slides were interpolated while skipping 7 slides between 665 
adjacent sections, thereby generating 7 slides. (b) ROI 1: Comparison of linear and FILM interpolation to the authentic 666 
ROI for the middle-interpolated image (image 4) for ductal epithelium and blood vessels. Arrowheads show linear 667 
interpolation replacing damage with acini as opposed to whitespace, creating noise around the epithelium layer of the 668 
duct, incorrectly generating fat regions, and unable to preserve vessel structure. The arrow shows FILM correctly 669 
replaces damage with whitespace. (c) ROI 2: Comparison of linear and FILM interpolation to the authentic ROI for 670 
the middle-interpolated image (image 4) for ductal epithelium, fat cells, and blood vessels. Arrowheads show linear 671 
interpolation that creates duct lumen shadows and fat shadows resembling islets as well as non-existent fat regions. 672 
(d) Pearson correlation compares the correlation between the authentic input images and the nearest-neighbor-673 
interpolated, FILM-interpolated, and linearly interpolated images. (e) Principal component analysis of thirteen 674 
Haralick features for authentic, FILM, and linearly interpolated images for various numbers of skipped images. Mean 675 
Euclidean distance of interpolated images from authentic images based on thirteen Haralick features. (f) Euclidean 676 
distance by slide of interpolated images from authentic images based on thirteen Haralick features for ROI1 and ROI2. 677 
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 678 

Fig. 3. FILM interpolation for stacks of MRI and light-sheet microscopy images. (a) MRI images were 679 
interpolated while skipping 7 slides between adjacent sections, thereby generating 7 slides. (b) Qualitative comparison 680 
of linear and FILM interpolation to the authentic image for the middle-interpolated MRI image (image 4). The circled 681 
region shows linear interpolation creates band artifacts, unlike FILM. (c) Principal component analysis of thirteen 682 
Haralick features for authentic, FILM, and linearly interpolated MRI images for various numbers of skipped images. 683 
Mean Euclidean distance of interpolated images from authentic images based on thirteen Haralick features. (d) 684 
Euclidean distance by slide of interpolated images from authentic images based on thirteen Haralick features for 685 
various numbers of skipped MRI images. (e) Tissue-cleared light-sheet images were interpolated skipping 7 slides 686 
between adjacent sections, thereby generating 7 slides. (f) Qualitative comparison of linear and FILM interpolations 687 
to the authentic image for the middle-interpolated light-sheet image (image 4). Arrowhead shows linear interpolation 688 
creates double boundary lines around bronchioles. In second row, the arrowhead shows photobleaching in authentic 689 
reduced by linear interpolation and completely removed by FILM (arrow). (g) Principal component analysis of thirteen 690 
Haralick features for authentic, FILM, and linearly interpolated light-sheet images for various numbers of skipped 691 
light-sheet images. Mean Euclidean distance of interpolated images from authentic images based on thirteen Haralick 692 
features. (h) Euclidean distance by slide of interpolated images from authentic images based on thirteen Haralick 693 
features for various numbers of skipped light-sheet images.  694 
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 695 

Fig. 4. FILM interpolation for stacks of IHC and ssTEM images. (a) IHC pancreas slides used to interpolate with 696 
authentic slides for validation to compare interpolated images to authentic images. The middle validation slide is 697 
visualized for comparison with the interpolated images. (b) Comparison of cell counts in authentic images and 698 
interpolated images as well as percent error in cell counts for each slide between authentic images and interpolated 699 
images. Arrow shows how FILM preserves vessel structure, unlike linear interpolation, which was also unable to 700 
preserve fat domains (arrowheads). (c) FILM interpolation of mouse brain ssTEM slides to remove damage from 701 
slides (arrowheads) and reduce stitching artifacts (red box). (d) Principal component analysis of thirteen Haralick 702 
features for authentic, FILM, and linearly interpolated IHC images for various numbers of skipped images. Mean 703 
Euclidean distance of interpolated images from authentic images based on thirteen Haralick features. (e) Principal 704 
component analysis of thirteen Haralick features for authentic, FILM, and linearly interpolated ssTEM images for 705 
various skipped images. Mean Euclidean distance of interpolated images from authentic images based on thirteen 706 
Haralick features. 707 
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 708 
Fig. 5. 3D reconstruction of interpolated images. (a) Comparison of 3D reconstructions of pancreatic duct when 709 
skipping 7 slides between authentic images and when interpolating the missing slides using linear and FILM 710 
interpolations. (b) Comparison of 3D reconstructions of brain MRI images when skipping 7 images between authentic 711 
images and when interpolating the missing slides using linear and FILM interpolations. (c) Comparison of 3D 712 
reconstructions of bronchioles from light-sheet images of the mouse lung when skipping 7 images between authentic 713 
images and when interpolating the missing slides using linear and FILM interpolations. (d) Comparison of 3D 714 
reconstructions of synapses from ssTEM slides of the mouse brain when skipping 7 images between authentic images 715 
and when interpolating the missing slides using linear and FILM interpolations. 716 

 717 
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Extended Fig 1. Qualitative comparison of linear and FILM interpolations to authentic H&E-stained 718 
histological slides of a human pancreas when skipping 7 slides for four different ROI’s. (a) Four ROIs were 719 
selected from H&E-stained whole slide images (WSI’s). Slides were interpolated when skipping 7 slides between 720 
adjacent sections, thereby generating 7 slides. (b) The top row of authentic images shows the middle skipped z-slide 721 
of all four different ROIs selected for interpolation. The middle row of zoom-ins of authentic images shows 722 
microanatomical structures observed within the different ROI’s. The third row of zoom-ins shows the CODA 723 
classification of these microanatomical structures. (c)  The top row of linearly interpolated images shows the middle 724 
interpolated z-slide of all four different ROI’s corresponding to the authentic images. The middle row of zoom-ins of 725 
linearly interpolated images shows microanatomical structures generated by linear interpolation within the different 726 
ROI’s. The third row of zoom-ins shows the CODA classification of these linearly interpolated microanatomical 727 
structures. (d) The top row of FILM interpolated images shows the middle interpolated z-slide of all four different 728 
ROI’s corresponding to the authentic images. The middle row of zoom-ins of FILM interpolated images shows 729 
microanatomical structures generated by FILM within the different ROI’s. The third row of zoom-ins shows the 730 
CODA classification of these FILM interpolated microanatomical structures. 731 
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 732 

Table S1. Mean Haralick texture feature scores for each dataset and skip scenario. 733 

Dataset Energy Contrast Correlation Variance Homogenetiy Sum Average Sum Variance Sum Entropy Entropy
Difference 
Variance

Difference 
Entropy

Info Meas 
of Corr

Info Meas 
of Corr 2

Authentic 1.64E-04 8.25E+02 7.93E-01 2.08E+03 7.71E-02 1.74E+02 7.14E+03 8.07E+00 1.35E+01 0.00E+00 5.77E+00 -8.99E-02 8.39E-01
FILM_1 1.79E-04 6.47E+02 8.22E-01 1.85E+03 7.94E-02 1.83E+02 6.74E+03 7.90E+00 1.34E+01 8.96E-05 5.63E+00 -9.90E-02 8.58E-01
FILM_3 1.79E-04 6.23E+02 8.23E-01 1.79E+03 7.92E-02 1.84E+02 6.53E+03 7.89E+00 1.33E+01 9.12E-05 5.61E+00 -9.94E-02 8.59E-01
FILM_7 1.73E-04 6.26E+02 8.19E-01 1.75E+03 7.75E-02 1.85E+02 6.38E+03 7.89E+00 1.34E+01 9.09E-05 5.61E+00 -9.77E-02 8.56E-01
Linear_1 2.13E-04 4.72E+02 8.38E-01 1.49E+03 8.33E-02 1.85E+02 5.49E+03 7.76E+00 1.30E+01 1.04E-04 5.43E+00 -1.04E-01 8.65E-01
Linear_3 2.01E-04 4.94E+02 8.28E-01 1.47E+03 8.12E-02 1.86E+02 5.38E+03 7.78E+00 1.31E+01 1.02E-04 5.46E+00 -1.02E-01 8.63E-01
Linear_7 1.85E-04 5.46E+02 8.12E-01 1.47E+03 7.78E-02 1.88E+02 5.34E+03 7.82E+00 1.32E+01 9.84E-05 5.52E+00 -9.88E-02 8.57E-01

Dataset Energy Contrast Correlation Variance Homogenetiy Sum Average Sum Variance Sum Entropy Entropy
Difference 
Variance

Difference 
Entropy

Info Meas 
of Corr

Infor Meas 
of Corr 2

Authentic 1.80E-04 7.12E+02 8.25E-01 2.03E+03 8.16E-02 1.86E+02 7.41E+03 7.97E+00 1.35E+01 8.78E-05 5.68E+00 -1.02E-01 8.68E-01
FILM_1 2.02E-04 5.36E+02 8.59E-01 1.90E+03 8.60E-02 1.85E+02 7.04E+03 7.89E+00 1.32E+01 9.93E-05 5.49E+00 -1.15E-01 8.88E-01
FILM_3 1.98E-04 5.23E+02 8.58E-01 1.84E+03 8.51E-02 1.85E+02 6.85E+03 7.89E+00 1.32E+01 1.00E-04 5.48E+00 -1.14E-01 8.88E-01
FILM_7 1.90E-04 5.18E+02 8.57E-01 1.81E+03 8.38E-02 1.85E+02 6.74E+03 7.90E+00 1.32E+01 1.01E-04 5.47E+00 -1.14E-01 8.88E-01
Linear_1 2.34E-04 3.97E+02 8.74E-01 1.58E+03 8.97E-02 1.86E+02 5.91E+03 7.77E+00 1.29E+01 1.14E-04 5.31E+00 -1.21E-01 8.97E-01
Linear_3 2.17E-04 4.17E+02 8.64E-01 1.53E+03 8.66E-02 1.87E+02 5.70E+03 7.80E+00 1.30E+01 1.12E-04 5.34E+00 -1.19E-01 8.94E-01
Linear_7 1.98E-04 4.56E+02 8.51E-01 1.52E+03 8.32E-02 1.86E+02 5.63E+03 7.84E+00 1.31E+01 1.08E-04 5.39E+00 -1.16E-01 8.90E-01

Dataset Energy Contrast Correlation Variance Homogenetiy Sum Average Sum Variance Sum Entropy Entropy
Difference 
Variance

Difference 
Entropy

Info Meas 
of Corr

Infor Meas 
of Corr 2

Authentic 4.40E-01 7.62E+01 9.26E-01 5.32E+02 7.18E-01 2.40E+01 2.05E+03 3.39E+00 4.77E+00 3.73E-03 2.35E+00 -4.12E-01 9.41E-01
FILM_1 4.42E-01 6.99E+01 9.33E-01 5.29E+02 7.28E-01 2.40E+01 2.04E+03 3.39E+00 4.73E+00 3.54E-03 2.28E+00 -4.41E-01 9.51E-01
FILM_3 4.42E-01 6.68E+01 9.35E-01 5.23E+02 7.29E-01 2.40E+01 2.02E+03 3.39E+00 4.72E+00 3.54E-03 2.26E+00 -4.44E-01 9.51E-01
FILM_7 4.32E-01 6.45E+01 9.37E-01 5.23E+02 7.24E-01 2.45E+01 2.03E+03 3.45E+00 4.81E+00 3.18E-03 2.29E+00 -4.40E-01 9.58E-01
Linear_1 4.34E-01 5.51E+01 9.46E-01 5.10E+02 7.24E-01 2.41E+01 1.98E+03 3.42E+00 4.76E+00 3.53E-03 2.26E+00 -4.41E-01 9.53E-01
Linear_3 4.38E-01 5.02E+01 9.48E-01 4.92E+02 7.23E-01 2.41E+01 1.92E+03 3.39E+00 4.68E+00 4.04E-03 2.24E+00 -4.40E-01 9.50E-01
Linear_7 4.21E-01 5.15E+01 9.45E-01 4.87E+02 7.12E-01 2.46E+01 1.90E+03 3.49E+00 4.86E+00 3.67E-03 2.32E+00 -4.30E-01 9.57E-01

Dataset Energy Contrast Correlation Variance Homogenetiy Sum Average Sum Variance Sum Entropy Entropy
Difference 
Variance

Difference 
Entropy

Info Meas 
of Corr

Infor Meas 
of Corr 2

Authentic 3.89E-01 4.25E-01 9.87E-01 1.94E+01 9.22E-01 6.25E+00 7.70E+01 2.61E+00 2.85E+00 5.36E-03 7.05E-01 -7.19E-01 9.67E-01
FILM_1 3.97E-01 3.80E-01 9.88E-01 1.88E+01 9.29E-01 6.25E+00 7.46E+01 2.57E+00 2.79E+00 5.57E-03 6.58E-01 -7.49E-01 9.72E-01
FILM_3 3.98E-01 3.57E-01 9.89E-01 1.80E+01 9.29E-01 6.24E+00 7.16E+01 2.56E+00 2.78E+00 5.66E-03 6.52E-01 -7.48E-01 9.72E-01
FILM_7 3.96E-01 3.39E-01 9.89E-01 1.71E+01 9.29E-01 6.25E+00 6.81E+01 2.57E+00 2.78E+00 5.88E-03 6.53E-01 -7.45E-01 9.72E-01
Linear_1 3.89E-01 3.42E-01 9.88E-01 1.84E+01 9.26E-01 6.24E+00 7.32E+01 2.60E+00 2.82E+00 5.95E-03 6.77E-01 -7.26E-01 9.67E-01
Linear_3 3.88E-01 3.15E-01 9.89E-01 1.77E+01 9.28E-01 6.25E+00 7.05E+01 2.60E+00 2.81E+00 6.72E-03 6.63E-01 -7.31E-01 9.69E-01
Linear_7 3.86E-01 3.10E-01 9.88E-01 1.71E+01 9.27E-01 6.25E+00 6.81E+01 2.60E+00 2.81E+00 7.22E-03 6.63E-01 -7.31E-01 9.69E-01

Dataset Energy Contrast Correlation Variance Homogenetiy Sum Average Sum Variance Sum Entropy Entropy
Difference 
Variance

Difference 
Entropy

Info Meas 
of Corr

Infor Meas 
of Corr 2

Authentic 3.23E-03 1.62E+01 8.25E-01 4.71E+01 2.76E-01 2.60E+02 1.72E+02 5.74E+00 8.76E+00 7.71E-04 3.14E+00 -1.77E-01 8.97E-01
FILM_1 5.63E-03 7.47E+00 8.90E-01 3.48E+01 3.77E-01 2.59E+02 1.32E+02 5.53E+00 7.99E+00 1.20E-03 2.62E+00 -2.55E-01 9.45E-01
FILM_3 5.48E-03 8.03E+00 8.83E-01 3.49E+01 3.70E-01 2.61E+02 1.32E+02 5.54E+00 8.05E+00 1.14E-03 2.67E+00 -2.45E-01 9.41E-01
FILM_7 5.02E-03 8.80E+00 8.83E-01 3.77E+01 3.61E-01 2.62E+02 1.42E+02 5.61E+00 8.18E+00 1.10E-03 2.73E+00 -2.42E-01 9.42E-01
Linear_1 5.00E-03 9.25E+00 8.61E-01 3.40E+01 3.38E-01 2.60E+02 1.27E+02 5.51E+00 8.13E+00 1.07E-03 2.77E+00 -2.17E-01 9.23E-01
Linear_3 6.40E-03 9.63E+00 8.52E-01 3.31E+01 3.39E-01 2.62E+02 1.23E+02 5.47E+00 7.95E+00 1.04E-03 2.79E+00 -2.14E-01 9.17E-01
Linear_7 5.33E-03 1.03E+01 8.54E-01 3.52E+01 3.30E-01 2.62E+02 1.30E+02 5.54E+00 8.14E+00 1.01E-03 2.83E+00 -2.12E-01 9.20E-01

Dataset Energy Contrast Correlation Variance Homogenetiy Sum Average Sum Variance Sum Entropy Entropy
Difference 
Variance

Difference 
Entropy

Info Meas 
of Corr

Infor Meas 
of Corr 2

Authentic 8.70E-03 8.59E+02 4.19E-01 7.43E+02 2.02E-01 4.23E+02 2.11E+03 7.01E+00 1.19E+01 1.46E-04 5.61E+00 -9.23E-02 8.23E-01
FILM_7 5.42E-03 4.93E+02 5.31E-01 5.26E+02 1.82E-01 4.25E+02 1.61E+03 6.94E+00 1.18E+01 1.44E-04 5.32E+00 -9.07E-02 8.11E-01
FILM_12 3.79E-03 4.71E+02 5.47E-01 5.31E+02 1.36E-01 4.20E+02 1.33E+03 6.97E+00 1.17E+01 1.40E-04 5.23E+00 -8.59E-02 8.03E-01
Linear_7 4.10E-03 4.75E+02 4.69E-01 4.48E+02 1.59E-01 4.24E+02 1.32E+03 6.90E+00 1.18E+01 1.26E-04 5.37E+00 -7.29E-02 7.61E-01
Linear_12 3.37E-03 4.99E+02 4.54E-01 4.57E+02 1.47E-01 4.23E+02 1.33E+03 6.93E+00 1.20E+01 1.18E-04 5.42E+00 -6.61E-02 7.38E-01

IHC

H&E ROI 1

H&E ROI 2

MRI

Light-sheet

Cryo-electron microscopy

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2024. ; https://doi.org/10.1101/2024.03.07.583909doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.07.583909
http://creativecommons.org/licenses/by-nc-nd/4.0/

