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Pancreaticintraepithelial neoplasias (PanINs) are the most common precursors

of pancreatic cancer, but their small size and inaccessibility in humans make them
challenging to study". Critically, the number, dimensions and connectivity of human
PanINs remain largely unknown, precludingimportant insights into early cancer
development. Here, we provide a microanatomical survey of human PanINs by
analysing 46 large samples of grossly normal human pancreas with a machine-learning
pipeline for quantitative 3D histological reconstruction at single-cell resolution.

To elucidate genetic relationships between and within PanINs, we developed a
workflow in which 3D modelling guides multi-region microdissection and targeted
and whole-exome sequencing. From these samples, we calculated amean burden
of 13 PanINs per cm®and extrapolated that the normalintact adult pancreas harbours
hundreds of PanINs, almost all with oncogenic KRAS hotspot mutations. We found that
most PanINs originate as independent clones with distinct somatic mutation profiles.
Some spatially continuous PanINs were found to contain multiple KRAS mutations;
computational and in situ analyses demonstrated that different KRAS mutations
localize to distinct cell subpopulations within these neoplasms, indicating their
polyclonal origins. The extensive multifocality and genetic heterogeneity of PanINs
raisesimportant questions about mechanisms that drive precancer initiation and
confer differential progression risk in the human pancreas. This detailed 3D genomic
mapping of molecular alterations in human PanINs provides an empirical foundation
for early detection and rational interception of pancreatic cancer.

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy
thatis frequently diagnosed at an advanced stage, leading to a 5-year
survival rate?® of 11%. PDAC arises from noninvasive precursor lesions,
most commonly PanINs, which are curable if detected and treated
early'. PanINs are challenging to study; owing to their small size
(by definitionless than 0.5 cmin astandard histological section), they
cannot be grossly identified*’. So far, studies of human PanINs have
evaluated discrete slides of sectioned pancreatic tissue®’, Although
this 2D approach may identify parts of PanINs, their total numbers,

size, shape or connectivity within tissue cannot be fully appreciated,
precluding fullunderstanding of the earliest steps of pancreatic tumo-
rigenesis. Amore complete assessment of these features necessitates
3D analysis of larger slabs of tissue. We recently reported CODA,
amachine-learning pipeline for 3D image analysis that can gener-
ate quantifiable models of large tissues with single-cell resolution.
Using CODA, we are able to quantify the number and connectivity
of PanINs through systematic evaluation of large pieces of human
pancreatic tissue.
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Fig.1| Tissue processing workflow and cohorts for CODA 3D modellingand
sequencing. Top left, each pancreatic tissue slab was serially sectioned, and
every third slide was stained with haematoxylin and eosin (H&E) and imaged for
3D modelling. Top right, with CODA, H&E serial sections are registered to
createadigital volumeandtissue typesare labelled by deep learning, enabling

The accumulation of somatic mutations drives theinitiation and pro-
gression of PanINs'. These include hotspot mutations in the oncogene
KRAS, which are found in more than 90% of invasive pancreatic cancers
and are thought to initiate pancreatic ductal neoplasia, as well as less
prevalentinactivating mutations in tumour suppressor genes such as
CDKN2A and TP53"*" ™ Inintraductal papillary mucinous neoplasms
(IPMNs), the larger noninvasive cystic precursors to PDAC, multi-region
next-generation sequencing (NGS) has demonstrated driver gene muta-
tions to be heterogeneous, attesting to complex clonal evolution™ . By
contrast, driver gene heterogeneity has not beenidentified in examined
primary PDACs or metastases'®". Assessment of genetic heterogeneity
in PanINs requires integration of 3D modelling and genetic analysis, so
that spatially distinct PanINs can be exhaustively identified and then
separately sequenced.

This study describes the 3D microanatomy, cellular features and
somatic genetic alterations of human PanINs. We generated 3D models
fromalarge cohort of grossly normal, surgically resected human pan-
creatictissue slabs using CODA. We also created a workflow for mapping
genetic variation across 3D microanatomy by integrating CODA with
multi-region targeted and whole-exome sequencing (WES), enabling
rigorous evaluation of both intra-PanIN and inter-PanIN genetic het-
erogeneity. Together, our datareveal amarked multifocality of PanINs
and elucidate their complex molecular origins.

Normal pancreas contains many PanINs

Wefirst used CODAto determine the size, shape and number of PanINs
in the human pancreas in 3D at single-cell resolution (Fig. 1 and
Extended Data Fig. 1). Thirty-eight slabs of grossly normal pancreatic
tissue were obtained from surgical pancreatectomy specimens, includ-
ing 12 to resect PDAC and 26 to resect other neoplasms not involving
the pancreatic ductal system (Supplementary Table 1). We examined
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3Dreconstruction of pancreas microanatomy. Middle, thirty-eight slabs were
analysed solely for 3D modelling. Bottom, eight additional slabs were 3D
modelled, and the intervening unstained slides were used for 3D-guided
multi-region microdissection of spatially distinct PanINs for NGS and WES.

amean of 1,288 slides per slab (range 679-1,703) and mean tissue
volume of 2.03 cm® (range 0.94-3.62 cm®) (Supplementary Table 2).
Thirty-six slabs contained exclusively low-grade (LG) PanINs, and two
slabs included PanINs with regions of high-grade (HG) dysplasia.

Pancreatic ducts were 3D-rendered for each slab to visualize the
spatial distribution of PanINs and normal ductal epithelium (Fig. 2a
and Extended Data Fig. 2). Across 38 slabs, 889 spatially separate
PanINs were modelled, with amedian of 21 PanINs per slab (range 4-92)
(Supplementary Table 2). PanINs contained a median of 3,515 cells, a
mean of 95,021 cells, and a range of 267,239,369 cells. Most PanINs
(764 out of 889 (86%)) contained fewer than 100,000 cells; 266 (30%
of PanINs) contained fewer than1,000 cells (Fig. 2b,c). Nine slabs (23%)
had one or more large PanINs exceeding 1,000,000 cells, and no slab
contained more than 3 PanINs of this size. The two PanINs with HG
dysplasia occupied the largest volumes in their respective slabs, with
cell counts exceeding 200,000 cells (Supplementary Table 2). The
vast majority of PanINs (91%) measured less than 0.5 cmin the largest
dimension, inkeeping with the histopathological definition of PanINs
on2Dsections’. We next quantified the normal ductal cells in each slab
to calculate the percentage of neoplastic cells within the ductal epi-
thelium. We found that amedian of 30% of ductal epithelial cells were
neoplastic PanIN cells (range 0.2-75%) (Fig. 2d). Although individual
PanINs remained small, their cumulative presence occupied more than
aquarter of the ductal system in most cases.

The meanoverall PanIN burden, calculated as the number of PanINs
per slab divided by tissue volume, was 13 PanINs per cm> with a range
of1to 31 PanINs per cm? (Fig. 2e). Although not statistically signifi-
cant, this metric was greater in patients with PDAC elsewhere in their
pancreas compared to those with non-ductal disease (Extended
Data Fig. 3a). No statistically significant differences in PanIN burden
were observed on the basis of sex, age or location of collected tissue
(Extended Data Fig.3b-d). The percentage of the ductal system affected



by PanIN and the number of PanIN cells were similarly higher in patients
with PDAC compared to those with non-ductal disease (Extended Data
Fig.3e,f). Whenrelative proportions of cell types constituting a tissue
slabwere compared, PanIN cells were significantly correlated to normal
ductal cells (P=0.0015) and cells in the extracellular matrix (P < 0.001)
(Extended Data Fig. 3g,h). There was a significant inverse correlation
between the relative proportions of PanIN cells and of acinar cells
(P<0.001), but no correlation with either fat or islet cells (Extended
Data Fig. 3i-1). Together, these data suggest that PanIN is associated
with fibrosis and acinar cell dropout, but further work is required to
determine causality. One possibility is that inflammation predisposes
to PanIN and also results in fibrosis and acinar cell dropout; another
possibility is that obstruction of pancreatic ducts by PanINs leads to
fibrosis and atrophy.

The above calculations are likely to represent maximum PanIN bur-
dens, astheyinclude allmodelled PanINs regardless of their extension
beyond the sampled slab. Of the 889 PanINs modelled, 592 were com-
pletely enclosed within the analysed tissue, whereas 297 were tran-
sected by asample edge (Supplementary Table 2). The 592 completely
contained PanINs represent the minimum number of histologically
separate PanINsinour cohort. Whenonly these PanINs are considered,
we find amean of15independent PanINs per slab (range 3-64) (Fig. 2e),
leading to amore conservative mean PanIN burden of 9 PanINs per cm?
(range 1-26 PanINs per cm®).

From these values, we extrapolated the potential PanIN burden
of anintact human pancreas. As whole-pancreas volumes for the 3D
tissue modelling cohort were unknown, we first determined normal
pancreas volumes from the computed tomography (CT) scans of
807 kidney donors without known pancreatic abnormalities (female,
77.51cm®+17.82 cm?® male, 94.18 cm?®+20.74 cm® (mean +s.d.)). AlICT
scans were confirmed to be radiographically normal without evidence
of neoplasia. We used these values to estimate sex-specific normal prior
distributions for non-neoplastic whole-pancreas volume, from which
10,000 random deviates were sampled and multiplied by PanIN burdens
obtained from our 3D tissue modelling cohort. This generated a prior
predictive distribution for extrapolated whole-pancreas PanIN burden
in each patient. Our approach led to median extrapolated estimates
of 1,021 PanINs (range 138-2,406) for a whole female pancreas and
998 PanlINs (range 131-2,902) for a whole male pancreas (Fig. 2f and
Supplementary Table 2). The higher estimated burden in the female
pancreas mirrors the higher female PanIN burden within our 3D tissue
modelling cohort (median 7.80 enclosed PanINs per cm? in females
versus 6.68 enclosed PanINs per cm?in males). Even the lowest PanIN
burdeninour tissue cohort led to an estimate in excess of 100 PanINs
per whole pancreas, underscoring the unexpectedly large number of
PanINs in grossly normal pancreata.

CODA-guided NGS enables 3D genomics

Our 3D reconstructions revealed a high multifocality of PanINs within
human pancreata. However, anatomical analysis alone cannot distin-
guish whether these spatially unconnected PanINs arose independently
orviaintraductal spread of asingle PanIN. To assess clonal relationships
and genetic heterogeneity between and within PanINs, we integrated
our 3D anatomic workflow with multi-region DNA sequencingin eight
additional specimens of grossly normal pancreas. Despite smaller
average specimen size (mean volume 0.91 cm®), the mean overall PanIN
burden (15 PanINs per cm®) was similar to that of the previous cohort.
These 8 slabs overall yielded 109 spatially separate PanINs (median10
perslab, range 4-43; Supplementary Table 2), of which 37 were of suf-
ficientsize forindividual microdissection and NGS. Slabs were divided
intofive vertical regions along the zaxis, and every regionin each PanIN
was microdissected and collected separately. Although most PanINs
(34 out of 37) had only LG dysplasia, three PanINs that also contained
HG dysplasia had their LG and HG areas isolated separately. We also

microdissected regions of PDAC that were identified deep within two
slabs (Supplementary Table 3). In total, we sequenced 99 regions from
37 PanINs as well as 5 regions of PDAC using a custom targeted NGS
panel of 154 established cancer driver genes, including allmajor known
drivers of pancreatic ductal neoplasia (Supplementary Table 3 and
Supplementary Videos 3-10).

The mean distinct coverage for all targeted sequencing samples
was 221x. Among PanINs, single-nucleotide variants (SNVs) and/or
small insertion-deletion mutations (indels) were identified in well-
characterized pancreaticdriver genes KRAS (36 out of 37), GNAS (5 out
of 37), RNF43 (2 out of 37), TP53 (1 out of 37), and KDM6A (1 out of 37).
Less prevalent somatic mutations were also identified in ERBB4 (1 out
of37), RET (1out of 37), ATRX (1 out of 37), STK11 (1 out of 37), NF1 (2 out
of37), FLT3(1out of 37) and FGFR3 (2 out of 37). Each PanIN had between
one and four somatic mutations identified from the targeted panel,
and the two PDACs contained three to five somatic mutations. KRAS
was the most commonly mutated gene, with allbut one PanIN harbour-
ing a mutation (36 out of 37 PanINs; 97%), consistent with previous
studies®*?° (Supplementary Table 3). Six PanINs harboured KRAS
p.Q61H mutations (16%), whereas 31 (86%) had at least one mutation
in codon 12 (19 KRAS p.G12D; 15 KRAS p.G12V; 5 KRAS p.G12R; and 1
KRAS p.G12C; Extended Data Fig. 4a,b). Fifty-four per cent of PanINs
contained only somatic mutationsin KRASin the targeted sequencing
analysis, with no other gene mutated in the panel.

When sufficient amounts of DNA remained, we complemented our
targeted sequencing data with multi-region WES and ultra-deep muta-
tion capsule sequencing of KRAS hotspots®%, Intotal, 57 samples from
24 lesions (20 exclusively LG, 2 with LG and HG dysplasia and 2 PDAC)
were analysed further (Supplementary Tables 4 and 5). For cases asso-
ciated witha PDAC diagnosis, we analysed an additional PDAC sample
obtained from archival tissue blocks to examine relationships between
the analysed PanINs and co-occurring cancer. The mean distinct WES
coverage was 392x (Supplementary Table 5). Between1and 4 exomes
were analysed per PanIN, with amean of 13 somatic mutations detected
perregion. We observed atrend for increasing mutation burden from
LG PanIN to HG PanIN to PDAC, with a significantly greater burden in
PDAC compared with LG PanINs (Extended Data Fig. 4¢).

To characterize patterns of somatic mutations in PanINs, we com-
bined 674 SNVs from 52 WES samples representing 22 distinct PanINs
for mutational signature analysis. The number of signatures to be
extracted was tested with values between1and 25, and the suggested
number of de novo signatures by SigProfilerExtracter was 1. This single
denovosignature was decomposed into two COSMIC signatures, SBS1
(28.62%) and SBS5 (71.38%). Both SBS1and SBS5 are clock-like signatures
that have been reported in normal cells and neoplastic cells of many
cancer types?>**. SBS5 was previously identified in normal pancreatic
ductal and acinar cells. However, normal pancreatic cells have also been
previously reported to harbour SBS18 (damage by reactive oxygen
species) and SBS40 (unknown aetiology), signatures not observed in
our PanIN samples®. In addition to SBS1, mutational signatures such
as SBS2 and SBS13 (APOBEC activity), SBS3 (defective homologous
recombination DNA damage repair), SBS17A/B and SBS40 (unknown
aetiology) and SBS18 (damage by reactive oxygen species) have been
identified in PDAC*. The mutational signatures of our PanINs overlap
withboth normal pancreatictissue and PDAC, but the absence of multi-
ple PDAC-associated signatures, especially those linked to DNA damage
and APOBEC activity, suggest that distinct mutational processes may
drive early and late stages of pancreatic tumorigenesis.

Copy number analysis was performed for all WES samples. In PanINs,
copy number gains and losses were rare. Multiple PanINs in slab 92
had gain of chromosome 8p, whereas loss of chromosome 18p was
identified in PanINs from slabs 92 and 117 (Extended Data Fig. 5). Gain
of chromosome 1q was present in two different PanINs containing
both LG and HG components (slab 92 PanIN D and slab 104 PanIN D;
Extended DataFig. 5), with the highest gaininthe HG component of slab
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Fig.2|Quantified microanatomical features of 3D-rendered PanINs.

a, Representative 3D models of two human pancreatic tissue slabs rendered by
CODA. Bluerepresents normal pancreatic ducts; each spatially distinct PanIN
isdepictedinadifferent colour.Scalebars,1cm.b, PanIN cell counts for all
PanINs. The number of cells in each PanIN is shown for each numbered tissue
slab. ¢, PanIN cell counts for the subset of PanINs in b that containing fewer than
1,000,000 cells.d, Percentage of the ductal system affected by PanINsineach
tissueslab. e, PanIN burden (the number of PanINs per cm?tissue) for eachslab,

104. All other copy number alterations were limited to single PanINs.
Of note, the HG component of PanIN D in slab 92 harboured loss of
TP53-containing chromosome 17p as well as a point mutationin 7P53,
indicating bi-allelic alteration of this key tumour suppressor gene. In
contrast to the PanIN samples, all PDAC samples contained numerous
copy number gains and losses, consistent with previous studies®%. The
progression from arelatively low number of copy number alterations
in LG PanINs to increasing prevalence in HG PanIN and PDAC suggests
that such alterations occur later in carcinogenesis.

PanINs arise via distinct genetic events

All eight pancreatic tissue slabs that underwent 3D genomic analysis
contained multiple spatially unconnected PanINs. With our unique
experimental approach, comparison of somatic mutations between
these PanINs can delineate their shared or independent clonal ori-
gin (Figs. 3 and 4 and Extended Data Figs. 6 and 7). For example,
multi-region targeted sequencing showed a distinct KRAS hotspot

mutation for each of the four histologically separate PanINs in slab
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calculated according the total number of PanINs and by PanINs completely
enclosed within the analysed tissue.d,e, The crossindicates the mean of n=38
independent samples. Whiskers extend to minimum and maximum values,
boxedges show firstand third quartiles, and the centre line denotes the
median. f, Extrapolation of PanIN burden over the whole pancreas, calculated
separately for each tissueslab. Error bars correspond to 95% credible intervals
ofthe predictive distribution of the whole-pancreas PanIN numbers.

104 (Fig. 3a), with no additional shared mutationsin the targeted panel
(Fig.3b).Inthe two PanINs (Cand D) withboth LG and HG dysplasia, the
LG and HG components within a PanIN shared the same KRAS hotspot
mutation, whereas mutations were not shared between discontinuous
PanINs regardless of shared grade of dysplasia. Overall, our results
suggested that spatially distinct PanINs arose independently.

With few driver gene mutations in PanINs, drawing robust conclu-
sions from targeted sequencing can be challenging. We therefore com-
pared WES data for 7 samples from 3 PanINs in slab 104. Although we
identified amean of 19 somatic mutations per PanIN, none were shared
between lesions that were spatially separate. By contrast, contiguous
regions withinasingle PanIN shared on average 14 somatic mutations,
indicating a common clonal origin. Slab 104 also contained a small
focus of PDAC that we analysed by targeted and exome sequencing.
Whereas its KRAS mutation was shared with PanIN D, the PDAC also
harboured unshared somatic mutationsin CDKN2A, TP53 and SMAD4.

PanIN D also had an exclusive ERBB4 mutation that was absent in the
PDAC. We hypothesized that PanIN D and PDAC in slab 104 were inde-
pendent neoplasms that shared acommon KRAS hotspot mutation by
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chance. The WES data, which showed no common somatic mutations
between PanIN D and PDAC other than the KRAS hotspot, confirmed
our hypothesis of distinct clonal origins (Fig. 3¢).

In general, most PanINs appear to represent independent clones.
Among the cohort, another five PanINs shared no genetic alterations
with any other PanIN within the same slabs (Figs.3-5). Six PanINs shared
only their KRAS hotspot mutations, with numerous unshared mutations
in WES, whichwe interpret asindependent PanINs acquiring common
hotspot mutations by chance (Fig. 5and Extended Data Fig. 7e-h). Even
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when multiple spatially distinct PanINs existed in close proximity, their
mutationsreflected independent origins. Inaddition, whenever LG and
HG dysplasia constituted a single PanIN, they shared driver and pas-
senger gene mutations, indicating HG PanINs arose from contiguous LG
PanIN (Figs.3 and 5). Across all three HG PanINs, only one HG-to-LG dif-
ferenceindriver gene mutation was detected—a clonal TP53 mutation
inaHG PanIN that was found to be subclonalinits LG counterpart. This
highlights the necessity of 3D modelling to delineate distinct lesions
and to discern LG PanINs that are contiguous with HG dysplasia.
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Rareintrapancreatic spread of LG PanIN
Ofthe1lunconnected PanINsinslab 98, four PanINs (F, G, H and I) that
clustered within 4 mm of one another shared KRAS p.Q16H mutations
(Fig.4a-c).Notably, PanINs Hand I were entirely contained, excluding
connection of the lesions outside of the analysed tissue (Fig. 4a). We
performed WES on PanINs F, G and H. PanINs F, G and H shared seven
somatic mutations, although they were separated by regions of histo-
logically normal non-neoplastic pancreatic duct (Fig. 4d). Similarly,
in slab 114, two LG PanINs (A and B) shared seven somatic mutations,
including a KRAS hotspot mutation. They were at most 1 mmapart but
not contiguous; PanIN Bwas completely contained within the slaband
separated from PanIN A by normal non-neoplastic duct (Extended Data
Fig.7a-d). Although rare, our 3D genomic mapping demonstrates that
LG PanIN cells are capable of travelling short distances within the pan-
creas, establishing physically separate but genetically related lesions
that share multiple somatic mutations beyond oncogenic hotspots.
Considering that PanINs are by definition limited to the ductal epithe-
lium and that all PanINs analysed in this study were found in the ductal
system, intraductal spread of LG PanINs is the most likely explanation
of our findings. Nonetheless, future studies could assess other possible
routes of spread, including via the stroma or vasculature.

Some PanINs may have polyclonal origins

Separate sequencing of multiple regions within individual PanINs
enables thorough assessment of intra-PanIN genetic heterogeneity.
Whereas 81% of PanINs had 1 clonal KRAS mutation, 7 PanINs (19%) from
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four slabs (slabs 92,114,116 and 117) had multiple KRAS hotspot muta-
tions. In slab 92 (Fig. 5a), multiple KRAS mutations were found in 3 of
the 4 PanINs. PanIN A contained 5 different KRAS hotspot mutations
(2-4 per region); B contained 2. In PanIN D, LG regions possessed 3
different KRAS mutations. Of note, this heterogeneity was markedly
reducedinthe HG components. We note that a TP53 p.R248W mutation
specifictoasingle LG regionwas also presentinall HG regions, demon-
strating expansion of a TP53-mutant clone at progression to HG PanIN
(Fig. 5b). Loss of 17p was identified only in HG components of PanIN
D in copy number analysis (Extended Data Fig. 5), further illustrating
thealteration of TP53with progression of this PanIN. Intra-PanIN KRAS
mutational heterogeneity was confirmed by mutation capsule analysis
for PanINs A and D, which revealed 5 and 4 distinct KRAS mutations,
respectively (Fig. 5c). As in other tissue slabs, no somatic mutations
were shared by spatially separate PanINs (Fig. 5d). Because KRAS muta-
tions are considered very early events in PanIN development, the pres-
ence of multiple KRAS mutations within a single spatially continuous
PanIN suggests a polyclonal origin for some PanINs.

To evaluate the hypothesis that multiple KRAS mutations reflect
polyclonal origin, we reconstructed the evolutionary history of two
PanINs with multiple KRAS mutations using PICTograph? (Fig. 6a,b).
PICTograph is a Bayesian hierarchical model for building clone trees
from multi-region sequencing data. By modelling uncertainty in assign-
ing mutations, PICTograph can visualize the most probable ancestral
relationships between subclones. To ensure inclusion of passenger
mutations from each clone, we analysed the PanINs whose multiple
KRAS mutations exceeded our WES threshold for mutation calling
(10%). In both clone trees, every KRAS mutation delineated a distinct
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clone that shared no somatic mutations with other clones. The lack
of common neoplastic ancestor indicates that each KRAS mutation
represents a genetically independent clone. We also observed that
between some regions of the same PanIN, the variant allele frequen-
cies (VAFs) of different KRAS alleles had reciprocal relationships.
For example, in PanIN B of slab 92, G12V has the highest VAF (24%)
among KRAS mutations in region 2, in contrast to a lower G12D (5%).
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e, Differential spatial distribution of G12 mutations mapped within PanIN A by
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slide per G12 mutant probe was analysed for the two regionsindicated with
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Region 3 showstheinverse: the highest VAF is for G12D (22%) and G12V
(2%) is minimal (Fig. 5¢). Thisimplies that neither KRASmutant canbea
subclonal descendent of the other, furthering the likelihood that they
occur inindependent clones.

To further confirm that distinct KRAS mutations occurred in dif-
ferent populations, we mapped the spatial location of KRAS-mutant
cells in each PanIN by KRAS G12 point mutation-specific RNA in situ
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hybridization (ISH). We interrogated one to two regions per slab with
individual BaseScope ISH probes for G12D, G12V, G12R and G12C.
BaseScope probes discriminate between single-nucleotide substitu-
tions with very high specificity, as shown in previous in situ muta-
tion detection and subclone mapping studies in formalin-fixed and
paraffin-embedded (FFPE) cancer tissue?. Quantification of ISH signal
ineach PanIN confirmed the mutations identified via microdissection
and sequencing (Fig. 6¢,d and Extended Data Fig. 8). Within individual
PanINs with multiple KRAS mutations identified by sequencing, the
spatial distributions of different KRAS-mutant probes had very little
overlap, asillustrated by PanIN A of slab 92: whereas G12R was the pre-
dominanttargetinseveral places, another areainstead had prominent
G12D signal (Fig. 6e). Other parts lacked pronounced labelling for all
assayed G12 probes, which we speculate are sites of the two differ-
ent KRAS Q61H mutations also detected in NGS (Fig. 6¢). Mapping
these areas onto the CODA model revealed them as distant branches
in 3D despite their apparent proximity in 2D slides. Similar patterns
of differentially localized mutation signals were also apparent in the
multi-KRAS PanINs B and D of slab 92. Together, evolutionary and
in situ analyses favour a polyclonal origin for PanINs with multiple
KRAS mutations. Of note, our ISH results did not support mutant KRAS
expressionin histologically normal ductal epithelium. Where normal
ductal cells were found contiguous with PanIN, we observed a steep
decreasein mutant probe signal at the PanIN-normal duct boundary.
ISH labelling for all mutant probes in normal ducts was on par with
tissue background levels, despite robust labelling for the universal
KRAS probe (Fig. 6d and Extended Data Fig. 9). This sharp contrast
with the prominent mutant KRAS signal in the immediately adjacent
PanINsindicates that histologically normal ductal cells do not harbour
KRAS mutations.

Discussion

Although PanINs are the most common precursors to PDAC, their small
size hasimpeded extensive study of their prevalence, spatial landscape,
and genetic heterogeneity. Our 3D methodology enabled quantitative
analysis of PanINs in human pancreatic tissue. Our results demonstrate
that anintact adult human pancreas can contain hundreds of PanINs.
Thishighburdenis particularly striking considering the relatively low
incidence of pancreatic cancer, suggesting thatindividual PanINs have
extremely low risks of progression. These results have importantimpli-
cations for early detection and intervention to prevent pancreatic
cancer. Several possibilities could explain this profusion of PanINs,
including some predisposing event in the pancreas that encouraged
PanIN development, or an initial PanIN that potentiated the devel-
opment of subsequent PanINs. Our current data cannot favour any
one scenario, and the mechanism driving multifocal PanIN initiation
remains animportant future question. Notably, our in situ assessment
of mutant KRAS did not provide evidence for KRAS mutations in his-
tologically normal epithelial cells, though additional analyses using
sensitive mutation detection techniques in fresh tissue samples are
necessary to confirm this finding.

Suchabundance of precancers in the pancreas runs counter to pre-
cancers in other frequently studied organs. For example, although
colonic adenomas can also be multifocal lesions, typically fewer
than five adenomas are identified throughout the entire colon in the
absence of inherited cancer predisposition syndromes® . However,
colonic adenomas are initiated by bi-allelic tumour suppressor gene
loss whereas PanINs are initiated by mono-allelic oncogene activation.
Inthisrespect, acquired naevi of the skin, possible melanoma precur-
sors initiated by mono-allelic oncogene mutation, may be more simi-
lar to PanINs?*7%, Yet despite skin lesions being readily accessible for
quantification, the average individual is reported to have only 10-60
benign naevi*’*%, These relatively low precursor burdens contrast with
our extrapolated PanIN numbers in the hundreds. If the high burden
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of pancreatic precancer is truly unique, our findings may call for new
paradigms in early pancreatic neoplasia. However, such questions of
organ-specific differencesin tumorigenesis cannot be settled without
comprehensive 3D assessment of precancer burden and multifocal-
ity in other organs. We envision that our workflow, in which CODA is
integrated with genetic analysis, will facilitate future 3D analyses of
microscopic precursor lesions in various organs. Moreover, our meth-
odology can be further expanded to incorporate high-dimensional
spatial profiling platforms, enabling transcriptomic and proteomic
assessment of precancers and their microenvironment.

Using our 3D genomic mapping approach, weidentified substantial
intra-PanIN heterogeneity of driver and passenger gene mutations,
including seven PanINs with multiple KRAS mutations. Because KRAS
hotspot mutations occur early in PanIN development, multiple KRAS
mutations inonelesion suggests a polyclonal origin. We provide mul-
tiple lines of evidence that support this polyclonality—both compu-
tational evolutionary reconstruction and in situ detection of KRAS
hotspot mutationsindicate that distinct KRAS mutations occur in differ-
entcell populations. Polyclonality has also been described in pancreatic
IPMNs, in which multiple KRAS mutations delineated independent
clones within the same precancerous cyst®. In pancreatic neoplasia,
intralesional heterogeneity of driver gene mutations appearstobe a
feature of precursor lesions, whereas a single KRAS mutation is almost
universal in PDAC, even in distant metastases™ . Notably, the distri-
bution of KRAS hotspot mutations found in PanINs resembled those
reportedin PDAC (Extended DataFig. 4), suggesting that selection for
KRAS hotspot mutations occurs at PanIN initiation, not progression®.
Although the phenotype providing the critical advantage for KRAS
mutantsin early tumorigenesis remains unclear*’, our data affirmthe
widespread expansion of KRAS-mutant clones throughout otherwise
normal pancreas in humans.

Although this study illuminates the multifocality and genetic het-
erogeneity of human PaniINs, there are limitations to our cohort. First,
grossly normal tissue collected during tumour resections may not rep-
resent truly ‘normal’ pancreas. Nevertheless, the majority of patients
underwentresection of neoplasmsthat did notinvolve the ductal sys-
tem, whichmay better reflect PanIN burden and genetic featuresinthe
general population. Similarly, our patient age range (mean 66, range
45-87) also does not represent the general population, which may
account for the lack of correlation between age and PanIN burden in
our cohort, contrary to other reports*. Assessment of PanIN burdenin
non-diseased pancreataacross the age spectrumis animportant future
direction. Whereas 38 slabs were 3D modelled, integrated 3D genomic
analysis was limited to 8 slabs. Yet with multi-region processing, the
resultant 99 NGS samples yielded unprecedented resolution of the
mutational landscape of 37 discrete PanINs. Of these, 34 PanINs con-
tained only LG dysplasia, in accordance with the higher prevalence of
LG PanINs than HG PanINsinrandomly sampled pancreata*. Although
one of our PanINs suggests a role for TP53 mutation, a dedicated HG
PanIN cohortis necessary toinvestigate molecular alterations driving
PanIN progression. Finally, genetic origins could not be resolved fora
few PanINs owing to insufficient DNA quantities, a persisting challenge
for sequencing very small precancers.

As one of the most extensive studies of human PanINs to date, we
provide new insightsinto early pancreatic tumorigenesis. Quantitative
3D modelling revealed asurprising abundance of anatomically distinct
PanINs. Our powerful integration of 3D modelling and genome analysis
demonstrated that most PanINs are truly multifocal lesions arising from
independent clones, and thatintraductal spread of LG PanINsisarare
phenomenon. Our meticulous multi-region sequencing approach also
unveiled rich genetic heterogeneity withinindividual PanINs, including
multiple KRAS mutations suggestive of intra-lesion polyclonality. These
findings lay a foundation for future investigations towards mecha-
nisms underlying PanIN multifocality and risk stratification of PanIN
progression. Together, our work describes the remarkable spatial and



genetic multifocality of human PanINs and underscores the necessity
ofintegrating 3D microanatomy to accurately resolve genetic origins.
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Methods

Specimen acquisition

Thisstudy was approved by the Institutional Review Board at The Johns
Hopkins Hospital, and informed consent was obtained from all patients.
Thick slabs of grossly normal pancreatic tissue were collected from
surgical pancreatectomy specimens and consecutively assigned a slab
number. For 3D modelling, acohort was selected to investigate PanINs
arisingin otherwise histologically normal blocks of pancreatic paren-
chyma. Following histologic review by an expert pancreatic pathologist,
slabs containing significant fibrosis, atrophy or PDAC in the analysed
tissue slab were excluded. In addition, slabs with a diagnosis of IPMN
were excluded due to the histological similarities between PanIN and
IPMN and the propensity of IPMN to involve smaller ducts, complicat-
ing the reliable distinction of the two precursor lesions’. With these
criteria, we selected 38 slabs of pancreas tissue from 38 patients for 3D
anatomical modelling. Twelve of these patients had PDAC elsewherein
their pancreas. The remaining 26 patients had other pancreatic or small
intestinal neoplasms elsewhere in their resection specimens, including
pancreatic neuroendocrine tumours, serous cystadenomas, distal com-
mon bile duct adenocarcinomas, metastatic carcinomas from other
organ sites, mucinous cystic neoplasms, tubulovillous adenomas of
the duodenum, ampullary tumours and lymphoepithelial cysts (Sup-
plementary Table 1).

A separate cohort of grossly normal pancreatic tissue slabs under-
went combined anatomic and genomic analyses. Because of the
unique sectioning scheme (details below) used for 3D modelling and
NGS, which included large numbers of specialized membrane slides
for microdissection, inclusion criteria for this cohort were based on
the first histologic slide cut from the surface of each slab, which was
assessed prior to full sectioning. Specifically, PanIN was to be present,
and PDAC and significant fibrosis were to be absent on the first slide
sectioned. Any patients with a clinical diagnosis of IPMN were excluded.
Usingthese criteria, 8 additional slabs of tissue were selected from eight
patients for 3D modelling and NGS—these patients did not overlap with
the 38 patients analysed by anatomic modelling only. Three of these
eight patients had a pathological diagnosis of PDAC elsewhere in their
pancreas. The remaining five of the eight patients had neoplasms not
affecting the pancreatic ductal system, including well-differentiated
pancreatic neuroendocrine tumours (2), serous cystadenoma (1), distal
common bile duct adenocarcinoma (1) and colon cancer metastatic
to the pancreas (1).

Sample processing

Each of the 46 slabs of collected tissue were processed as for FFPE,
followed by complete serial sectioning at 5 um. Every third slide was
stained with H&E and digitized at 20x magnification for 3D modelling.
As previously described, skipping staining on two out of every three
slides does not lead to any significant loss in microanatomical informa-
tion’®. Sample processing yielded amean of 1,288 slides per block (range
679-1,703) and mean tissue volume of 2.03 cm? (range 0.94-3.62 cm?).
AllPanIN lesions present on every 50th slide were manually annotated
using AperioImageScopeto verify accuracy of the generated 3D mod-
els'®. For the eight slabs undergoing NGS, every third slide was cut onto
membrane slides (Zeiss Membrane Slide 1.0 PEN; Carl Zeiss) for laser
capture microdissection (LCM).

3Dreconstruction of serially sectioned H&E sections of human
pancreas

Usingthe previously validated method CODA, we converted the serially
sectioned histological slides of human pancreas tissue into digital 3D
maps of pancreas microanatomy for all 46 slabs™. In brief, the CODA
workflow can be split into four steps: image registration, single-cell
detection, tissue segmentation, and 3D visualization. For a pair of
images, the registration maximizes the 2D cross-correlation of pixel

intensity toalign allimages and correct for tissue rotation, translation,
folding, splitting and stretching. A cell-detection algorithmis used to
quantify the cellularity of components via detection of 2D intensity
peaks in the haematoxylin channel of the H&E images. Deep learning
is next used to create microanatomical labels from the histological
images. The trained algorithm was used to label, to aresolution of 2 pm,
8 microanatomical structures in histological images of the pancreas:
islets of Langerhans, normal ductal epithelium, vasculature, fat, acinar
tissue, extracellular matrix (ECM), PanIN and PDAC. By combining the
cell detection and the tissue-level semantic segmentation, we esti-
mated the tissue type of all cells in the 3D samples. Samples contain-
ing regions of cancer or lymph nodes were labelled using a separate
modeltrained to additionally recognize these components. Theimage
registration, cell detection and tissue segmentation are integrated to
create 3D reconstructions of pancreas microanatomy at large scale (up
to multi-cm®), while maintaining single-cell resolution.

All 46 thick slabs of pancreas tissue were reconstructed using CODA.
The 3D datasets used for quantification and visualizations were sub-
sampled from the classified resolution of 2 pum per pixel per image to
anisometricresolution of12 x 12 x 12 um. The cell-detection algorithm
and tissue-level deep learning segmentation were validated indepen-
dently. The cell-detection algorithm was validated through comparison
of automatic cell counts to manually generated nuclear coordinates
by two independent researchers on five regions of randomly selected
images. Cell-detection parameters were adjusted until to maximize
the precision and recall obtained for each validation image (see per
image precision and recall compared to two sets of manually generated
coordinates in Extended Data Fig. 1a). Overall, we achieved an aver-
age 90.2% precision and 92.0% recall for the five images. For the deep
learning, all available annotated images were collected: 90% of images
were used for training and 10% of images were used as anindependent
testing set of model accuracy across unseen images in the analysed
cohort. Models were deemed acceptable when they achieved >90% per
class precision andrecall on the independent testing images. Per class
accuracy, precision, and recall are presented in Extended Data Fig. 1b.

Validation of PanIN detection in samples

Allobjects labelled as PanIN by the segmentation algorithm were post-
processed to ensure that no non-neoplastic regions were counted as
PanIN.In the 3D volume matrix saved at a resolution of 12 x 12 x 12 pm?,
objects of fewer than 20 voxels and objects present on fewer than three
histological sections were eliminated. The histology of all remaining
objects was manually assessed to determine whether they were PanIN.
The 3D bounding box of each object was determined. The regions of
the serial H&E images contained in this bounding box were extracted
from the registered 5x magnification image stack and were saved as
aseparate image stack (Supplementary Video 1). These stacks were
manually viewed using FIJI ImageJ*%. A matrix was created in Micro-
soft Excel containing the PanIN identifier (Iabelled A to Z), and the
true determined label of the region. All regions determined to be false
positive PanIN labelling during manual validation were corrected in
the 3D matrices. False negatives were assessed through comparison
ofthe deep learning labelled structures to manual pathologist-guided
annotations of neoplastic tissue on onein every 50 sections throughout
the samples.

Colour-coded labelling of connected regions of PanIN in 2D H&E
images

For the eight slabs that were assessed by the combined 3D anatomic
and genomic analyses, videos with exhaustive, colour-coded anno-
tations of PanIN lesions were created using the 3D tissue models so
that connected regions of each PanIN could be efficiently identified,
microdissected, and collected in separate vials for genomic analysis.
For this purpose, PanIN labels were collected from the digital 3D tis-
sue matrix. Independent (that is, discontinuous in 3D) PanINs were



sorted from largest to smallest, and the ten largest PanIN lesions were
assigned distinct colours (largest PanIN assigned pink, second largest
PanlIN assigned light blue, third largest PanIN assigned yellow and so
on) for easy visualization. For samples with more than ten identified
PanIN lesions, the eleventh through the smallest were assigned the
same colour (olive green), as these PanIN were too small to be micro-
dissected and sequenced. Next, we determined which PanIN lesions
were present in each z plane of the 3D structure. For each plane, the
S5xregistered H&E image was loaded into MATLAB 2021b. An outline of
theregions of each PanIN presentin that plane was digitally thickened
and was overlaid on the H&E image in the correct location and in the
colour assigned to that PanIN. This process created an H&E image with
colour outlines marking all PanIN lesions in the section, highlighting
connectivity and relative size. These 5x images were saved separately
as jpgfiles, and together as a lower-resolution stacked video (Sup-
plementary Video 2).

Calculation of 3D structural features of PanIN lesions

The 3D digital tissue matrices that defined tissue types and cell coor-
dinates were used to calculate arange of tissue properties. Each PanIN
lesion was separately identified using MATLAB 2021b. By summing
the number of voxels in each separate PanIN lesion (and converting
from voxel tomm?), the volume of each PanIN lesion was obtained. The
volume of a PanIN was defined as the volume of the neoplastic cells,
excluding the luminawithin the glands. The Regionprops3 command
in MATLAB 2021b was used to determine the length of the primary
axes containing each PanIN. Through dot multiplication of the PanIN
ID matrix with the matrix containing the cell coordinates, the number
of cellsineach PanIN could be calculated. Cell counts generated from
the 2D histological sections were extrapolated to 3D space using a
previously developed technique based on cell-type-dependent nuclear
measurements, as well as the thickness and spacing of the histological
slides™. This approach used the following equation:

3T
Cp= Z Z Cimage
images subtypes €T + Dsubtype

where C,;, = total number of cells in 3D space, ¥ ;yges = sum across all
images in a pancreas slab, 3 ;.. = sSum across all tissue types clas-
sified in the H&E images, C,,. = total number of cells of one tissue
subtype in a single H&E image, T = thickness of a single histological
image, Dg,ryp. = mean measured diameter of each tissue subtype in H&E
images. Finally, the cell density of each PanIN lesion was determined
by dividing the number of cells of each lesion by its volume. The total
volume, cellularity, and cell density of all other tissue components
were similarly calculated using the 3D tissue and cell matrices. The
percentage of PanIN cellsin the ductal system was calculated for each
sample by dividing the total number of PanIN cells by the sum of the
total number of PanIN and normal ductal epithelial cells.

Laser capture microdissection

For NGS, membrane slides from 8 of the 46 tissue slabs were depar-
affinized in xylenes for 5 min, and dehydrated with 100%, 95% and 70%
ethanol for 1 min each. Slides were stained with crystal violet (Sigma
Aldrich; diluted 1:4 in 70% ethanol) for 30 s and dehydrated by ascend-
ing ethanol solutions. The stained slides were microdissected the same
day. For genetic analyses assessing intra-and inter-PanIN heterogeneity,
eachslabwasdividedinto five regions of equal size along the zaxis. On
average, tissue slabs spanned 778 slides (range 500-1,000) and each
region covered 146 slides (range 100-200) (Supplementary Table 3).
Each spatially unconnected PanINlesionidentified in the correspond-
ing 3D models was microdissected (Leica LMD7000 instrument) into
a separate collection tube (autoclaved 0.5 ml Qubit Assay Tubes,
Invitrogen) for each region. Spatially distinct PanIN lesions and PDAC
on H&E images were annotated by CODA in colours corresponding to

3D models; these annotated images were used to guide microdissection
of distinct lesions into separate collection tubes. LG and HG compo-
nents of PanIN lesions were isolated separately by microdissection,
as was any PDAC identified in the tissue. Matched control samples
from each patient were obtained from clinical archives for sequencing,
including matched normal tissue (duodenum or spleen) and matched
PDAC. For matched control samples, one 5 pum section was cutonto a
regular slide, deparaffinized as described above, and scraped into a
collection tube utilizing a sterile razor blade.

Determining sample purity

To validate the neoplastic purity of the sequenced PanIN samples,
image analysis was performed to determine the percentage of microdis-
sected cells constituting PanIN and non-PanIN tissue. Digital images of
stained membrane slides were created before and after microdissection
(‘pre-LCM’ and ‘post-LCM’ images, respectively). These images were
registered to the adjacent H&E slideimage. The pre-LCM image was used
to determine the cropped region within the adjacent H&E image that
was analysed. The post-LCM image allowed for precise determination
of theirregularly shaped region microdissected from the slide. After
identifying the precise area that was microdissected, the H&E image
was segmented and the number of PanIN cell nuclei and non-PanlIN cell
nuclei were quantified. The neoplastic purity of the microdissected
sample was determined by dividing the number of PanIN cells by the
total number of cells within the microdissected area.

DNA extraction and quantification

DNA was extracted using the QIAamp DNA FFPE Tissue Kit (Qiagen)
following the manufacturer’s recommendations with the following
modifications: after overnight digestion, samples were sheared to
200-350-bp fragments using the Covaris S220 Sonicator (Covaris). Sub-
sequently, 10 pl of proteinase Kwas added and samples were digested
for1hat56 °Cbefore resuming manufacturer-provided protocol. DNA
quantity and fragment size were quantified using an Agilent Bioanalyzer
(Agilent) according to the manufacturer’srecommendations. Sample
processing was the same for matched normal tissue and matched PDAC
tissue. Samples were stored at —20 °C until library preparation.

Library preparation and targeted sequencing

All PanIN regions that yielded at least 10 ng of DNA in the 8 slabs used
for combined 3D anatomic and genomic analysis were assessed by tar-
geted NGS using a custom panel. The commercially available ClearSeq
Comprehensive Cancer (Agilent) targeted panel was selected. Using
Agilent SureDesign software, we customized the panel toinduce baits
for coding regions of additional genesimportant for pancreatic cancer
development. Intotal, the panel covered 154 well-characterized cancer
driver genes, including all major drivers of pancreatic ductal neoplasia
(Supplementary Table 3). DNA (10-200 ng) was utilized per sample for
library preparation, following the manufacturer’s protocol (SureSe-
lectXT HS2 DNAKkit; Agilent). Barcoded individual samples were pooled
following the manufacturer’s recommendations and sequenced on a
MiSeq (Illumina) generating 2 x 150 base-paired reads.

Targeted sequencing analysis

Sequencing data were processed by following The Genome Analysis
Toolkit (GATK) Best Practices Pipeline**. FASTQ reads were converted
toanunmapped BAM file and adapter sequences were marked. FASTQ
reads were aligned to the human reference genome GRCh38 (GATK
resource bundle 4.2.0.0) using Burrows-Wheeler aligner (BWA) MEM
software (version 0.7.15) and merged with the unmapped BAM file*.
The raw mapped reads were then marked for duplicate reads and
underwent base quality score recalibration (GATK resource bundle
4.2.0.0). Mutect2 (GATK resource bundle 4.2.0.0) was used to call
somatic SNVs and indels*. A panel of normals (PON) was created using
targeted sequencing data from the eight matched normal samples.
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Next, Mutect2 was run for each tumour sample with its matched nor-
mal and the PON using default settings. All somatic mutations were
annotated with OpenCRAVAT (version 2.2.1). Somatic mutations were
subsequently filtered with the following criteria: tumour sample cover-
age >15X; normal sample coverage >10X; tumour frequency >0.05; =5
distinct reads supporting the mutation in tumour sample; normal fre-
quency <0.05. Variants were filtered to remove all noncoding variants
andvariants presentinany normal sample, while retaining coding SNVs,
indels, and splice site variants. Mutations meeting these criteria were
used for downstream analysis. Candidate mutations were confirmed
orrejected viavisualinspectionin Integrated Genome Viewer (IGV ver-
sion 2.14.1)*¢. The positions of KRAS hotspot mutations (codons 12,13
and 61) were visually inspected in all samples and included if VAF > 1%
and >3 distinct reads supported the mutation.

WES and analysis

Inthe eight slabs used for combined 3D anatomic and genomic analysis,
PanINregions with sufficient DNA were analysed by WES in addition to
targeted sequencing. Mutation capsule (MC) technology was applied
to profile a FFPE DNA sample with both hybridization-based exome
sequencing and amplification-based deep sequencing, as recently
described®. Approximately 200 ng of the previously fragmented DNA
was subjected to end-repair, dA-tailing, and ligation to a customized
adapter with random DNA barcodes as a unique identifier (UID) tag®.
The ligation product was amplified through 10 reaction cycles to
generate a whole genome library (MC library) using NEBNext Ultra Il
DNA library Prep Kit for lllumina (New England Biolabs) and 750 ng
MC library was used for exome enrichment. The exome region of the
whole genome libraries was enriched with the Agilent SureSelectXT
Human All Exon Kit V6 (Agilent; Santa Clara, CA) for slabs 98-155. The
PanIN samples of slab 92 were enriched with mixed probes of Agilent
SureSelectXT Human All Exon Kit and an Agilent SureSelectXT Custom
Kit (Agilent, 5190-4842) targeting 825 genes, including KRAS. All librar-
ieswere sequenced onthe NovaSeq 6000 Sequencing System (Illumina)
with 2 x150-bp paired-end reads. FASTQ files were preprocessed to
remove the adapter sequences?. The low-quality reads were subse-
quently removed using Trimmomatic (v0.36). FASTQreads were aligned
tothe humanreference genome hg38 using Burrows-Wheeler aligner
(BWA) MEM software (version 0.7.15) for both tumour and matched
normal samples. Mutect2 (GATK resource bundle 4.2.0.0) was used to
call somatic variants between the tumour-normal pairs, as well as the
tumour-only samples against aPON, utilizing default parameters®. The
somatic mutations were filtered according to the following criteria:
(1) the variant coverage in tumour sample was 215X, the VAF 20.10 and
>7 distinct reads supporting the mutation in tumour sample; (2) the cor-
responding variant coverage in normal sample >10X, the VAF <0.05. All
somatic mutations were then annotated with vef2maf-1.6.19. Noncoding
variants and variants presentin matched normal werefiltered, retain-
ing coding SNVs and indels and splice site variants. Mutations meeting
these criteria were used for downstream analysis. Candidate muta-
tions were confirmed or rejected via visual inspection in Integrated
Genome Viewer (IGV version 2.14.1)*¢. The positions of KRAS hotspot
mutations (codons 12,13 and 61) were visually inspected in all samples
andincludedif VAF >1% and >3 distinct reads supported the mutation.

Subclonal Architecture Reconstruction

For PanIN regions with multiple KRAS hotspot mutations in WES (slab
92, PanINs A and B), subclonal architecture reconstruction was per-
formed with PICTograph software (version1.2.0.1)*. Mutations meeting
thefollowing criteriawere included in PICTograph analysis: (1) the vari-
ant coverage in tumour sample was >15X, the VAF >0.10 and >7 distinct
reads supporting the mutationintumour sample; (2) the corresponding
variant coverage in normal sample 210X, the VAF <0.05. PICTograph
uses a Bayesian hierarchical model and Markov chain Monte Carlo
(MCMC) sampling to jointly infer subclones and cancer cell fractions

(CCFs), based on VAF, sample purity, and copy number. Evolutionary
trees are built withamodified version of the Gabow-Myers algorithm
and scored with the SCHISM tree fitness function*”**, MCMC chains
were run with 10,000 iterations and burn-in of 1,000. To eliminate
single-mutation clusters, the one box parameter was set to TRUE; the
number of clusters k was set to 4 for slab 92 PanIN A and to 3 for slab 92
PanIN B. Purity was estimated by as described above. CNVkit (version
0.9.10) was used to construct a copy number profile for each PanIN
region®. Integer copy numbers, adjusted with tumour purity for each
PanIN region, were generated using the call function in CNVKkit.

Mutational signatures analysis

Mutational signatures were extracted with SigProfiler tools*®2 A total
of 674 SNVs from WES with VAF of at least 10% in all 52 sequenced PanIN
regionswereincluded in the analysis. Al SNVs were converted to match
the positive strand in the human reference genome GRCh38.p14 (acces-
sion number GCA_000001405.29) with a custom script. SNVs were
thenformattedinto ICGC format. SigProfilerMatrixGenerator (version
1.2.17) was used to generate the input matrix for downstream analysis
withreference genome GRCh38 and default parameters™. SigProfiler-
Extractor (version1.1.21) was then used to extract the mutational signa-
tures of the SBS96 matrix with default parameters®2. The seed for the
runis 65692168255168492169046446239068017399.

Somatic copy number alteration analysis

WES datawere analysed using CNVKit (version 0.9.9) toidentify somatic
copy number aberrationsin precursor and tumour samples*. The depth
of coverage in targeted (exons) and off-target (intronic or intergenic)
regions were corrected to account for factorsincluding size, GC compo-
sition, mappability and spacing. In each sample, the resulting coverage
was thennormalized with respect to areference panel consisting of the
eight matched normal samples. Next, circular binary segmentation was
appliedtoidentify genomic regions at aconstant relative copy number
levelin each sample®®. To capture large-scale copy number changes, the
segmental copy number profile of each sample (normal, precursor, or
tumour) was then summarized as an array of chromosome arm-level
relative copy number values. Given the limited number of matched
normal samples (n = 8), we processed another cohort of 14 normal sam-
ples previously sequenced by our group following the steps above and
defined acomposite normal panel (n = 22) by adding this new set to the
matched normals from the main cohort*. The chromosome arm-level
relative copy number levels in each precursor or tumour lesion were
normalized using the mean and standard deviation in the composite
panel of normals to derive arm-level copy number z-scores. For the nor-
malsamples, the leave-one-out setup is used to calculate the arm-level
z-scores. Copy number data were visualized using R version 3.6.

KRAS G12 point mutation-specific RNA ISH

KRAS G12 point mutation-specific RNA ISH was performed for the eight
NGS slabs. Using CODA 3D models as a guide, consecutive unstained
FFPEtissueslides from one zregion per slab were selected forinclusion
of multiple PanIN areas. For three cases (slabs 92,116 and 117) where NGS
detected PanINs with multiple KRAS mutations, slides were selected
fromtwo zregions. Slides from all 11 regions from 8 slabs were evaluated
with BaseScope paired double-Z oligonucleotide probes targeting the
following single base-pair substitutions in human KRAS (NM_033360.3
region 191-232nt): p.G12D c.G35>A, p.G12R ¢.G34>C, p.G12V c.G35>T.
Slides fromone case (Slab104) were also probed for p.G12C c.G34>T.In
additiontostandard positive (PPIB) and negative (dapB) control probes,
one slide from each slab was also assayed for total KRAS expression
with areference probe targeting aninvariant sequence (NM_033360.3
region 89-120nt) in KRAS. Manufacturer catalogue numbers for the
aforementioned probes are as follows: 705518, 705548, 705558, 705508
and 1084358-C1 (Advanced Cell Diagnostics). The BaseScope Red LS
ISH assay (Advanced Cell Diagnostics) was performed as previously
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described®. In brief, FFPE slides underwent deparaffinization, tar-
getretrieval, and protease pre-treatment according to manufacturer
guidelines. Following 1zz probe hybridization (2 hat 40 °C) and signal
amplification with the LS BaseScope ReagentKit (Advanced Cell Diag-
nostics), slides wereincubated with Fast Red, counterstained with 50%
haematoxylin, then mounted in VectaMount (Vector Laboratories).
For quantitative analysis, slides were scanned at 40x magnification
brightfield with a Hamamatsu Nanozoomer S360 (Hamamatsu) or
a 3DHistech Panoramic Scan Digital Slide Scanner (3DHistech) and
annotated in Omero (Web version 5.17.0; Glencoe Software) and NDP.
view2 (version 2.9.29; Hamamatsu). Each PanIN was measured for
cross-sectional area and assessed for red punctate ISH signals by a
blinded investigator. ISH signal frequency was calculated as number
of puncta/section area (in um?). To account for varying levels of back-
ground probe labelling, values were normalized by the mean signal
frequency measured in tenislets of Langerhans within each slide.

Targeted sequencing of KRAS mutations

Ultra-deep sequencing of the KRAS hotspot positions was performed on
the PanIN regions analysed by WES. MClibrary (200 ng) was used to pro-
file KRAS mutations with deep sequencing, as previously described?.
In brief, the target regions were amplified together with the DNA
barcode (UID) in the adapter of the MC library for nine cycles using a
target-specific primer and a primer matching the universal sequencein
the adapter. A second round of 14 cycles of PCR with one pair of nested
primers matching the adapter and the target region was used to further
enrichthetargetregionand add the llluminasequencing adapter. The
amplified libraries were sequenced onthe NovaSeq 6000 Sequencing
System (Illumina) using 2x 150-bp paired-end reads. The target regions
were analysed to confirm the mutation status as previously described.
Inbrief, the FASTQ file were preprocessed to extract UID tags®*>*®. The
residual Illumina adapter sequences and low-quality reads were sub-
sequently removed using Trimmomatic (v0.36). The cleaned reads were
mapped to the human reference genome GRCh37 (accession number
GCA_000001405.1) using BWA software (BWA, v0.7.15)>°. BAM files
were locally realigned and the base quality scores were recalibrated
using Genome Analysis Toolkit (GATK, v3.1). The mpileup command
inSAMtools (v0.1.16) was used to identify SNVs and indels”. To ensure
accuracy, the reads with the same UID tag were grouped into a UID
family. If more than 80% of reads in a UID family harboured the same
variant and it contained at least two reads, the UID family was defined
as an effective unique identifier family (EUID family). The prevalence
of each mutation was calculated by dividing the number of mutant
EUID families by the total number of the mutant and wild type EUID
families. Candidate variants were annotated with the VEP (v83) and
Oncotator (version1.5.0.0)%*°, The criteria we adopted for retaining a
somatic mutationwas thatithad anallele fraction of 1% and >7 UID. The
retained mutations were verified manually using IGV (version 2.14.1)*.

Pancreas CT

Anindependent group of 807 individuals who were candidates for renal
donation were scanned as a part of their routine care. These images
were obtained. Patients were scanned on a dual-source Multidetec-
tor Computed Tomography (MDCT) scanner (Somatom Definition,
Somatom Definition Flash, or Somatom Force, Siemens Healthineers),
ora64-MDCT scanner (Somatom Sensation 64, Siemens Healthineers).
Patients wereinjected with100-120 mliohexol (Omnipaque, GE Health-
care) at an injection rate of 4-5 ml s™. Scan protocols were custom-
ized for each patient to minimize dose and included a tube voltage
of 100-120 kVp, effective tube current-exposure time product of
250-300 mAs, and pitch of 0.6-0.8. The collimationwas 128 x 0.6 mm
or 192 x 0.6 mm for the dual-source scanner and 64 x 0.6 mm for the
64-MDCT scanner. Arterial phase imaging was performed with fixed
delay or bolus triggering, usually between 30 and 35 s after injection,
and venous phase imaging was performed at 60-70 s. Allimages were

reconstructed into thin (0.75-mm slice thickness and 0.5-mm incre-
ment) slices. The 3D volume of the pancreas was manually segmented
by four trained researchers using commercial segmentation software
(Velocity version 4.1, Varian Medical Systems), under the supervision
of3abdominal radiologists each withbetween 5and 35 years of experi-
ence. Thex, yand zdimensions of each voxel containing pancreas was
determined and summed to calculated the total pancreas volume for
each scan. The volume of pancreas was then calculated by counting
the number of voxels containing pancreas first and then converting
this number into the unit of volume according to the voxel spacing
of CT scans. To extrapolate the number of PanINs in the whole pan-
creas, prior distributions for the pancreas volume inwomen and men
werefirst defined asnormall(77.51,17.82) and normal 2 (94.18,20.74),
respectively. The extrapolated number of PanINs for an individual in
this study was found by multiplying the empirically observed PanIN
burden by arandom ordinate from the prior distribution. Sampling
10,000 random ordinates and multiplying each by the observed bur-
den, we obtained a predictive distribution for whole-pancreas PanIN
numbers. A 95% credibleinterval for this distribution was derived from
the 2.5 and 97.5% quantiles.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

WES data are available viadbGAP under accession number phs003549.
vl.pl as allowed by the Institutional Review Board based on patient
consent. Owing to their large file size (TB scale per slab), raw tissue data
willbe available from the corresponding authors uponrequest. Source
dataare provided with this paper.

Code availability

The 3D rendering software used in this Article is available on GitHub
at https://github.com/ashleylk/CODA.
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Extended DataFig.1|Validation of CODA segmentation. A. H&E cell
detection true positives (TP), false positives (FP), false negatives (FN), precision,
andrecall compared to manual annotations by two individuals. B. Confusion
matrix detailing performance of semantic segmentation algorithmin labelling
pancreatic microanatomy in H&E stained tissue images.
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Slab 18

Extended DataFig.2| CODA-rendered 3D models for tissue slabs analyzed. Blue represents normal pancreatic ducts; spatially separate PanINs are indicated
withdistinct colors.
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G. Correlation of percent PanIN cells (x-axis) to percent normal ductal cells
(y-axis). Each point represents atissueslab. H. Correlation of percent PanIN
cells (x-axis) to percent cellsin ECM (y-axis). l. Correlation of percent PanIN cells
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Universal KRAS

Extended DataFig.9|Representativeimages of mutantand total KRAS and adjacent normal ductal cells, with consecutive H&E-stained tissue section.
RNAISH staining in histologically normal ductal epithelial cells adjacent B. Universal KRAS reference ISH probe staining of same PanIN and adjacent
toPanIN. A.KRAS G12R mutant RNAISH probe staining (red puncta) ina PanIN normal ductal cells, with corresponding H&E image. Scale bars =50 pum.
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