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3D genomic mapping reveals multifocality 
of human pancreatic precancers
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Pancreatic intraepithelial neoplasias (PanINs) are the most common precursors  
of pancreatic cancer, but their small size and inaccessibility in humans make them 
challenging to study1. Critically, the number, dimensions and connectivity of human 
PanINs remain largely unknown, precluding important insights into early cancer 
development. Here, we provide a microanatomical survey of human PanINs by 
analysing 46 large samples of grossly normal human pancreas with a machine-learning 
pipeline for quantitative 3D histological reconstruction at single-cell resolution.  
To elucidate genetic relationships between and within PanINs, we developed a 
workflow in which 3D modelling guides multi-region microdissection and targeted 
and whole-exome sequencing. From these samples, we calculated a mean burden  
of 13 PanINs per cm3 and extrapolated that the normal intact adult pancreas harbours 
hundreds of PanINs, almost all with oncogenic KRAS hotspot mutations. We found that 
most PanINs originate as independent clones with distinct somatic mutation profiles. 
Some spatially continuous PanINs were found to contain multiple KRAS mutations; 
computational and in situ analyses demonstrated that different KRAS mutations 
localize to distinct cell subpopulations within these neoplasms, indicating their 
polyclonal origins. The extensive multifocality and genetic heterogeneity of PanINs 
raises important questions about mechanisms that drive precancer initiation and 
confer differential progression risk in the human pancreas. This detailed 3D genomic 
mapping of molecular alterations in human PanINs provides an empirical foundation 
for early detection and rational interception of pancreatic cancer.

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy 
that is frequently diagnosed at an advanced stage, leading to a 5-year 
survival rate2,3 of 11%. PDAC arises from noninvasive precursor lesions, 
most commonly PanINs, which are curable if detected and treated  
early1. PanINs are challenging to study; owing to their small size  
(by definition less than 0.5 cm in a standard histological section), they 
cannot be grossly identified4,5. So far, studies of human PanINs have 
evaluated discrete slides of sectioned pancreatic tissue6–9. Although 
this 2D approach may identify parts of PanINs, their total numbers, 

size, shape or connectivity within tissue cannot be fully appreciated, 
precluding full understanding of the earliest steps of pancreatic tumo-
rigenesis. A more complete assessment of these features necessitates  
3D analysis of larger slabs of tissue. We recently reported CODA,  
a machine-learning pipeline for 3D image analysis that can gener-
ate quantifiable models of large tissues with single-cell resolution10.  
Using CODA, we are able to quantify the number and connectivity 
of PanINs through systematic evaluation of large pieces of human 
pancreatic tissue.
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The accumulation of somatic mutations drives the initiation and pro-
gression of PanINs1. These include hotspot mutations in the oncogene 
KRAS, which are found in more than 90% of invasive pancreatic cancers 
and are thought to initiate pancreatic ductal neoplasia, as well as less 
prevalent inactivating mutations in tumour suppressor genes such as 
CDKN2A and TP531,6,11–14. In intraductal papillary mucinous neoplasms 
(IPMNs), the larger noninvasive cystic precursors to PDAC, multi-region 
next-generation sequencing (NGS) has demonstrated driver gene muta-
tions to be heterogeneous, attesting to complex clonal evolution15–17. By 
contrast, driver gene heterogeneity has not been identified in examined 
primary PDACs or metastases18,19. Assessment of genetic heterogeneity 
in PanINs requires integration of 3D modelling and genetic analysis, so 
that spatially distinct PanINs can be exhaustively identified and then 
separately sequenced.

This study describes the 3D microanatomy, cellular features and 
somatic genetic alterations of human PanINs. We generated 3D models 
from a large cohort of grossly normal, surgically resected human pan-
creatic tissue slabs using CODA. We also created a workflow for mapping 
genetic variation across 3D microanatomy by integrating CODA with 
multi-region targeted and whole-exome sequencing (WES), enabling 
rigorous evaluation of both intra-PanIN and inter-PanIN genetic het-
erogeneity. Together, our data reveal a marked multifocality of PanINs 
and elucidate their complex molecular origins.

Normal pancreas contains many PanINs
We first used CODA to determine the size, shape and number of PanINs  
in the human pancreas in 3D at single-cell resolution (Fig. 1 and 
Extended Data Fig. 1). Thirty-eight slabs of grossly normal pancreatic 
tissue were obtained from surgical pancreatectomy specimens, includ-
ing 12 to resect PDAC and 26 to resect other neoplasms not involving 
the pancreatic ductal system (Supplementary Table 1). We examined 

a mean of 1,288 slides per slab (range 679–1,703) and mean tissue 
volume of 2.03 cm3 (range 0.94–3.62 cm3) (Supplementary Table 2). 
Thirty-six slabs contained exclusively low-grade (LG) PanINs, and two 
slabs included PanINs with regions of high-grade (HG) dysplasia.

Pancreatic ducts were 3D-rendered for each slab to visualize the 
spatial distribution of PanINs and normal ductal epithelium (Fig. 2a 
and Extended Data Fig. 2). Across 38 slabs, 889 spatially separate 
PanINs were modelled, with a median of 21 PanINs per slab (range 4–92)  
(Supplementary Table 2). PanINs contained a median of 3,515 cells, a 
mean of 95,021 cells, and a range of 26–7,239,369 cells. Most PanINs 
(764 out of 889 (86%)) contained fewer than 100,000 cells; 266 (30% 
of PanINs) contained fewer than 1,000 cells (Fig. 2b,c). Nine slabs (23%) 
had one or more large PanINs exceeding 1,000,000 cells, and no slab 
contained more than 3 PanINs of this size. The two PanINs with HG 
dysplasia occupied the largest volumes in their respective slabs, with 
cell counts exceeding 200,000 cells (Supplementary Table 2). The 
vast majority of PanINs (91%) measured less than 0.5 cm in the largest 
dimension, in keeping with the histopathological definition of PanINs 
on 2D sections5. We next quantified the normal ductal cells in each slab 
to calculate the percentage of neoplastic cells within the ductal epi-
thelium. We found that a median of 30% of ductal epithelial cells were 
neoplastic PanIN cells (range 0.2–75%) (Fig. 2d). Although individual 
PanINs remained small, their cumulative presence occupied more than 
a quarter of the ductal system in most cases.

The mean overall PanIN burden, calculated as the number of PanINs 
per slab divided by tissue volume, was 13 PanINs per cm3 with a range 
of 1 to 31 PanINs per cm3 (Fig. 2e). Although not statistically signifi-
cant, this metric was greater in patients with PDAC elsewhere in their 
pancreas compared to those with non-ductal disease (Extended 
Data Fig. 3a). No statistically significant differences in PanIN burden 
were observed on the basis of sex, age or location of collected tissue 
(Extended Data Fig. 3b–d). The percentage of the ductal system affected 
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by PanIN and the number of PanIN cells were similarly higher in patients 
with PDAC compared to those with non-ductal disease (Extended Data 
Fig. 3e,f). When relative proportions of cell types constituting a tissue 
slab were compared, PanIN cells were significantly correlated to normal 
ductal cells (P = 0.0015) and cells in the extracellular matrix (P < 0.001) 
(Extended Data Fig. 3g,h). There was a significant inverse correlation 
between the relative proportions of PanIN cells and of acinar cells 
(P < 0.001), but no correlation with either fat or islet cells (Extended 
Data Fig. 3i–l). Together, these data suggest that PanIN is associated 
with fibrosis and acinar cell dropout, but further work is required to 
determine causality. One possibility is that inflammation predisposes 
to PanIN and also results in fibrosis and acinar cell dropout; another 
possibility is that obstruction of pancreatic ducts by PanINs leads to 
fibrosis and atrophy.

The above calculations are likely to represent maximum PanIN bur-
dens, as they include all modelled PanINs regardless of their extension 
beyond the sampled slab. Of the 889 PanINs modelled, 592 were com-
pletely enclosed within the analysed tissue, whereas 297 were tran-
sected by a sample edge (Supplementary Table 2). The 592 completely 
contained PanINs represent the minimum number of histologically 
separate PanINs in our cohort. When only these PanINs are considered, 
we find a mean of 15 independent PanINs per slab (range 3–64) (Fig. 2e), 
leading to a more conservative mean PanIN burden of 9 PanINs per cm3 
(range 1–26 PanINs per cm3).

From these values, we extrapolated the potential PanIN burden 
of an intact human pancreas. As whole-pancreas volumes for the 3D 
tissue modelling cohort were unknown, we first determined normal 
pancreas volumes from the computed tomography (CT) scans of 
807 kidney donors without known pancreatic abnormalities (female, 
77.51 cm3 ± 17.82 cm3; male, 94.18 cm3 ± 20.74 cm3 (mean ± s.d.)). All CT 
scans were confirmed to be radiographically normal without evidence 
of neoplasia. We used these values to estimate sex-specific normal prior 
distributions for non-neoplastic whole-pancreas volume, from which 
10,000 random deviates were sampled and multiplied by PanIN burdens 
obtained from our 3D tissue modelling cohort. This generated a prior 
predictive distribution for extrapolated whole-pancreas PanIN burden 
in each patient. Our approach led to median extrapolated estimates 
of 1,021 PanINs (range 138–2,406) for a whole female pancreas and 
998 PanINs (range 131–2,902) for a whole male pancreas (Fig. 2f and 
Supplementary Table 2). The higher estimated burden in the female 
pancreas mirrors the higher female PanIN burden within our 3D tissue 
modelling cohort (median 7.80 enclosed PanINs per cm3 in females 
versus 6.68 enclosed PanINs per cm3 in males). Even the lowest PanIN 
burden in our tissue cohort led to an estimate in excess of 100 PanINs 
per whole pancreas, underscoring the unexpectedly large number of 
PanINs in grossly normal pancreata.

CODA-guided NGS enables 3D genomics
Our 3D reconstructions revealed a high multifocality of PanINs within 
human pancreata. However, anatomical analysis alone cannot distin-
guish whether these spatially unconnected PanINs arose independently 
or via intraductal spread of a single PanIN. To assess clonal relationships 
and genetic heterogeneity between and within PanINs, we integrated 
our 3D anatomic workflow with multi-region DNA sequencing in eight 
additional specimens of grossly normal pancreas. Despite smaller 
average specimen size (mean volume 0.91 cm3), the mean overall PanIN 
burden (15 PanINs per cm3) was similar to that of the previous cohort. 
These 8 slabs overall yielded 109 spatially separate PanINs (median 10 
per slab, range 4–43; Supplementary Table 2), of which 37 were of suf-
ficient size for individual microdissection and NGS. Slabs were divided 
into five vertical regions along the z axis, and every region in each PanIN 
was microdissected and collected separately. Although most PanINs 
(34 out of 37) had only LG dysplasia, three PanINs that also contained 
HG dysplasia had their LG and HG areas isolated separately. We also 

microdissected regions of PDAC that were identified deep within two 
slabs (Supplementary Table 3). In total, we sequenced 99 regions from 
37 PanINs as well as 5 regions of PDAC using a custom targeted NGS 
panel of 154 established cancer driver genes, including all major known 
drivers of pancreatic ductal neoplasia (Supplementary Table 3 and 
Supplementary Videos 3–10).

The mean distinct coverage for all targeted sequencing samples 
was 221x. Among PanINs, single-nucleotide variants (SNVs) and/or  
small insertion–deletion mutations (indels) were identified in well- 
characterized pancreatic driver genes KRAS (36 out of 37), GNAS (5 out 
of 37), RNF43 (2 out of 37), TP53 (1 out of 37), and KDM6A (1 out of 37). 
Less prevalent somatic mutations were also identified in ERBB4 (1 out  
of 37), RET (1 out of 37), ATRX (1 out of 37), STK11 (1 out of 37), NF1 (2 out 
of 37), FLT3 (1 out of 37) and FGFR3 (2 out of 37). Each PanIN had between 
one and four somatic mutations identified from the targeted panel, 
and the two PDACs contained three to five somatic mutations. KRAS 
was the most commonly mutated gene, with all but one PanIN harbour-
ing a mutation (36 out of 37 PanINs; 97%), consistent with previous  
studies6,13,20 (Supplementary Table 3). Six PanINs harboured KRAS 
p.Q61H mutations (16%), whereas 31 (86%) had at least one mutation 
in codon 12 (19 KRAS p.G12D; 15 KRAS p.G12V; 5 KRAS p.G12R; and 1 
KRAS p.G12C; Extended Data Fig. 4a,b). Fifty-four per cent of PanINs 
contained only somatic mutations in KRAS in the targeted sequencing 
analysis, with no other gene mutated in the panel.

When sufficient amounts of DNA remained, we complemented our 
targeted sequencing data with multi-region WES and ultra-deep muta-
tion capsule sequencing of KRAS hotspots21,22. In total, 57 samples from 
24 lesions (20 exclusively LG, 2 with LG and HG dysplasia and 2 PDAC) 
were analysed further (Supplementary Tables 4 and 5). For cases asso-
ciated with a PDAC diagnosis, we analysed an additional PDAC sample 
obtained from archival tissue blocks to examine relationships between 
the analysed PanINs and co-occurring cancer. The mean distinct WES 
coverage was 392x (Supplementary Table 5). Between 1 and 4 exomes 
were analysed per PanIN, with a mean of 13 somatic mutations detected 
per region. We observed a trend for increasing mutation burden from 
LG PanIN to HG PanIN to PDAC, with a significantly greater burden in 
PDAC compared with LG PanINs (Extended Data Fig. 4c).

To characterize patterns of somatic mutations in PanINs, we com-
bined 674 SNVs from 52 WES samples representing 22 distinct PanINs 
for mutational signature analysis. The number of signatures to be 
extracted was tested with values between 1 and 25, and the suggested 
number of de novo signatures by SigProfilerExtracter was 1. This single 
de novo signature was decomposed into two COSMIC signatures, SBS1 
(28.62%) and SBS5 (71.38%). Both SBS1 and SBS5 are clock-like signatures 
that have been reported in normal cells and neoplastic cells of many 
cancer types23,24. SBS5 was previously identified in normal pancreatic 
ductal and acinar cells. However, normal pancreatic cells have also been 
previously reported to harbour SBS18 (damage by reactive oxygen 
species) and SBS40 (unknown aetiology), signatures not observed in 
our PanIN samples23. In addition to SBS1, mutational signatures such 
as SBS2 and SBS13 (APOBEC activity), SBS3 (defective homologous 
recombination DNA damage repair), SBS17A/B and SBS40 (unknown 
aetiology) and SBS18 (damage by reactive oxygen species) have been 
identified in PDAC24. The mutational signatures of our PanINs overlap 
with both normal pancreatic tissue and PDAC, but the absence of multi-
ple PDAC-associated signatures, especially those linked to DNA damage 
and APOBEC activity, suggest that distinct mutational processes may 
drive early and late stages of pancreatic tumorigenesis.

Copy number analysis was performed for all WES samples. In PanINs, 
copy number gains and losses were rare. Multiple PanINs in slab 92 
had gain of chromosome 8p, whereas loss of chromosome 18p was 
identified in PanINs from slabs 92 and 117 (Extended Data Fig. 5). Gain 
of chromosome 1q was present in two different PanINs containing 
both LG and HG components (slab 92 PanIN D and slab 104 PanIN D; 
Extended Data Fig. 5), with the highest gain in the HG component of slab 
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104. All other copy number alterations were limited to single PanINs. 
Of note, the HG component of PanIN D in slab 92 harboured loss of 
TP53-containing chromosome 17p as well as a point mutation in TP53, 
indicating bi-allelic alteration of this key tumour suppressor gene. In 
contrast to the PanIN samples, all PDAC samples contained numerous 
copy number gains and losses, consistent with previous studies25–27. The 
progression from a relatively low number of copy number alterations 
in LG PanINs to increasing prevalence in HG PanIN and PDAC suggests 
that such alterations occur later in carcinogenesis.

PanINs arise via distinct genetic events
All eight pancreatic tissue slabs that underwent 3D genomic analysis 
contained multiple spatially unconnected PanINs. With our unique 
experimental approach, comparison of somatic mutations between 
these PanINs can delineate their shared or independent clonal ori-
gin (Figs. 3 and 4 and Extended Data Figs. 6 and 7). For example, 
multi-region targeted sequencing showed a distinct KRAS hotspot 
mutation for each of the four histologically separate PanINs in slab 

104 (Fig. 3a), with no additional shared mutations in the targeted panel 
(Fig. 3b). In the two PanINs (C and D) with both LG and HG dysplasia, the 
LG and HG components within a PanIN shared the same KRAS hotspot 
mutation, whereas mutations were not shared between discontinuous 
PanINs regardless of shared grade of dysplasia. Overall, our results 
suggested that spatially distinct PanINs arose independently.

With few driver gene mutations in PanINs, drawing robust conclu-
sions from targeted sequencing can be challenging. We therefore com-
pared WES data for 7 samples from 3 PanINs in slab 104. Although we 
identified a mean of 19 somatic mutations per PanIN, none were shared 
between lesions that were spatially separate. By contrast, contiguous 
regions within a single PanIN shared on average 14 somatic mutations, 
indicating a common clonal origin. Slab 104 also contained a small 
focus of PDAC that we analysed by targeted and exome sequencing. 
Whereas its KRAS mutation was shared with PanIN D, the PDAC also 
harboured unshared somatic mutations in CDKN2A, TP53 and SMAD4. 
PanIN D also had an exclusive ERBB4 mutation that was absent in the 
PDAC. We hypothesized that PanIN D and PDAC in slab 104 were inde-
pendent neoplasms that shared a common KRAS hotspot mutation by 
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separately for each tissue slab. Error bars correspond to 95% credible intervals 
of the predictive distribution of the whole-pancreas PanIN numbers.



Nature  |  www.nature.com  |  5

chance. The WES data, which showed no common somatic mutations 
between PanIN D and PDAC other than the KRAS hotspot, confirmed 
our hypothesis of distinct clonal origins (Fig. 3c).

In general, most PanINs appear to represent independent clones. 
Among the cohort, another five PanINs shared no genetic alterations 
with any other PanIN within the same slabs (Figs. 3–5). Six PanINs shared 
only their KRAS hotspot mutations, with numerous unshared mutations 
in WES, which we interpret as independent PanINs acquiring common 
hotspot mutations by chance (Fig. 5 and Extended Data Fig. 7e–h). Even 

when multiple spatially distinct PanINs existed in close proximity, their 
mutations reflected independent origins. In addition, whenever LG and 
HG dysplasia constituted a single PanIN, they shared driver and pas-
senger gene mutations, indicating HG PanINs arose from contiguous LG 
PanIN (Figs. 3 and 5). Across all three HG PanINs, only one HG-to-LG dif-
ference in driver gene mutation was detected—a clonal TP53 mutation 
in a HG PanIN that was found to be subclonal in its LG counterpart. This 
highlights the necessity of 3D modelling to delineate distinct lesions 
and to discern LG PanINs that are contiguous with HG dysplasia.
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mutations, with overlaps indicating shared somatic mutations. Numbers refer 
to the number of mutations in each group.
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Rare intrapancreatic spread of LG PanIN
Of the 11 unconnected PanINs in slab 98, four PanINs (F, G, H and I) that 
clustered within 4 mm of one another shared KRAS p.Q16H mutations 
(Fig. 4a–c). Notably, PanINs H and I were entirely contained, excluding 
connection of the lesions outside of the analysed tissue (Fig. 4a). We 
performed WES on PanINs F, G and H. PanINs F, G and H shared seven 
somatic mutations, although they were separated by regions of histo-
logically normal non-neoplastic pancreatic duct (Fig. 4d). Similarly, 
in slab 114, two LG PanINs (A and B) shared seven somatic mutations, 
including a KRAS hotspot mutation. They were at most 1 mm apart but 
not contiguous; PanIN B was completely contained within the slab and 
separated from PanIN A by normal non-neoplastic duct (Extended Data 
Fig. 7a–d). Although rare, our 3D genomic mapping demonstrates that 
LG PanIN cells are capable of travelling short distances within the pan-
creas, establishing physically separate but genetically related lesions 
that share multiple somatic mutations beyond oncogenic hotspots. 
Considering that PanINs are by definition limited to the ductal epithe-
lium and that all PanINs analysed in this study were found in the ductal 
system, intraductal spread of LG PanINs is the most likely explanation 
of our findings. Nonetheless, future studies could assess other possible 
routes of spread, including via the stroma or vasculature.

Some PanINs may have polyclonal origins
Separate sequencing of multiple regions within individual PanINs 
enables thorough assessment of intra-PanIN genetic heterogeneity. 
Whereas 81% of PanINs had 1 clonal KRAS mutation, 7 PanINs (19%) from 

four slabs (slabs 92, 114, 116 and 117) had multiple KRAS hotspot muta-
tions. In slab 92 (Fig. 5a), multiple KRAS mutations were found in 3 of  
the 4 PanINs. PanIN A contained 5 different KRAS hotspot mutations 
(2–4 per region); B contained 2. In PanIN D, LG regions possessed 3 
different KRAS mutations. Of note, this heterogeneity was markedly 
reduced in the HG components. We note that a TP53 p.R248W mutation 
specific to a single LG region was also present in all HG regions, demon-
strating expansion of a TP53-mutant clone at progression to HG PanIN 
(Fig. 5b). Loss of 17p was identified only in HG components of PanIN 
D in copy number analysis (Extended Data Fig. 5), further illustrating 
the alteration of TP53 with progression of this PanIN. Intra-PanIN KRAS 
mutational heterogeneity was confirmed by mutation capsule analysis 
for PanINs A and D, which revealed 5 and 4 distinct KRAS mutations, 
respectively (Fig. 5c). As in other tissue slabs, no somatic mutations 
were shared by spatially separate PanINs (Fig. 5d). Because KRAS muta-
tions are considered very early events in PanIN development, the pres-
ence of multiple KRAS mutations within a single spatially continuous 
PanIN suggests a polyclonal origin for some PanINs.

To evaluate the hypothesis that multiple KRAS mutations reflect 
polyclonal origin, we reconstructed the evolutionary history of two 
PanINs with multiple KRAS mutations using PICTograph28 (Fig. 6a,b). 
PICTograph is a Bayesian hierarchical model for building clone trees 
from multi-region sequencing data. By modelling uncertainty in assign-
ing mutations, PICTograph can visualize the most probable ancestral 
relationships between subclones. To ensure inclusion of passenger 
mutations from each clone, we analysed the PanINs whose multiple 
KRAS mutations exceeded our WES threshold for mutation calling 
(10%). In both clone trees, every KRAS mutation delineated a distinct 
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clone that shared no somatic mutations with other clones. The lack 
of common neoplastic ancestor indicates that each KRAS mutation 
represents a genetically independent clone. We also observed that 
between some regions of the same PanIN, the variant allele frequen-
cies (VAFs) of different KRAS alleles had reciprocal relationships.  
For example, in PanIN B of slab 92, G12V has the highest VAF (24%) 
among KRAS mutations in region 2, in contrast to a lower G12D (5%). 

Region 3 shows the inverse: the highest VAF is for G12D (22%) and G12V 
(2%) is minimal (Fig. 5c). This implies that neither KRAS mutant can be a 
subclonal descendent of the other, furthering the likelihood that they 
occur in independent clones.

To further confirm that distinct KRAS mutations occurred in dif-
ferent populations, we mapped the spatial location of KRAS-mutant 
cells in each PanIN by KRAS G12 point mutation-specific RNA in situ 
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hybridization (ISH). We interrogated one to two regions per slab with 
individual BaseScope ISH probes for G12D, G12V, G12R and G12C. 
BaseScope probes discriminate between single-nucleotide substitu-
tions with very high specificity, as shown in previous in situ muta-
tion detection and subclone mapping studies in formalin-fixed and 
paraffin-embedded (FFPE) cancer tissue29. Quantification of ISH signal 
in each PanIN confirmed the mutations identified via microdissection 
and sequencing (Fig. 6c,d and Extended Data Fig. 8). Within individual 
PanINs with multiple KRAS mutations identified by sequencing, the 
spatial distributions of different KRAS-mutant probes had very little 
overlap, as illustrated by PanIN A of slab 92: whereas G12R was the pre-
dominant target in several places, another area instead had prominent 
G12D signal (Fig. 6e). Other parts lacked pronounced labelling for all 
assayed G12 probes, which we speculate are sites of the two differ-
ent KRAS Q61H mutations also detected in NGS (Fig. 6c). Mapping 
these areas onto the CODA model revealed them as distant branches 
in 3D despite their apparent proximity in 2D slides. Similar patterns 
of differentially localized mutation signals were also apparent in the 
multi-KRAS PanINs B and D of slab 92. Together, evolutionary and 
in situ analyses favour a polyclonal origin for PanINs with multiple 
KRAS mutations. Of note, our ISH results did not support mutant KRAS 
expression in histologically normal ductal epithelium. Where normal 
ductal cells were found contiguous with PanIN, we observed a steep 
decrease in mutant probe signal at the PanIN-normal duct boundary. 
ISH labelling for all mutant probes in normal ducts was on par with 
tissue background levels, despite robust labelling for the universal 
KRAS probe (Fig. 6d and Extended Data Fig. 9). This sharp contrast 
with the prominent mutant KRAS signal in the immediately adjacent 
PanINs indicates that histologically normal ductal cells do not harbour 
KRAS mutations.

Discussion
Although PanINs are the most common precursors to PDAC, their small 
size has impeded extensive study of their prevalence, spatial landscape, 
and genetic heterogeneity. Our 3D methodology enabled quantitative 
analysis of PanINs in human pancreatic tissue. Our results demonstrate 
that an intact adult human pancreas can contain hundreds of PanINs. 
This high burden is particularly striking considering the relatively low 
incidence of pancreatic cancer, suggesting that individual PanINs have 
extremely low risks of progression. These results have important impli-
cations for early detection and intervention to prevent pancreatic 
cancer. Several possibilities could explain this profusion of PanINs, 
including some predisposing event in the pancreas that encouraged 
PanIN development, or an initial PanIN that potentiated the devel-
opment of subsequent PanINs. Our current data cannot favour any 
one scenario, and the mechanism driving multifocal PanIN initiation 
remains an important future question. Notably, our in situ assessment 
of mutant KRAS did not provide evidence for KRAS mutations in his-
tologically normal epithelial cells, though additional analyses using 
sensitive mutation detection techniques in fresh tissue samples are 
necessary to confirm this finding.

Such abundance of precancers in the pancreas runs counter to pre-
cancers in other frequently studied organs. For example, although 
colonic adenomas can also be multifocal lesions, typically fewer 
than five adenomas are identified throughout the entire colon in the 
absence of inherited cancer predisposition syndromes30–33. However, 
colonic adenomas are initiated by bi-allelic tumour suppressor gene 
loss whereas PanINs are initiated by mono-allelic oncogene activation. 
In this respect, acquired naevi of the skin, possible melanoma precur-
sors initiated by mono-allelic oncogene mutation, may be more simi-
lar to PanINs34–36. Yet despite skin lesions being readily accessible for 
quantification, the average individual is reported to have only 10–60 
benign naevi37,38. These relatively low precursor burdens contrast with 
our extrapolated PanIN numbers in the hundreds. If the high burden 

of pancreatic precancer is truly unique, our findings may call for new 
paradigms in early pancreatic neoplasia. However, such questions of 
organ-specific differences in tumorigenesis cannot be settled without 
comprehensive 3D assessment of precancer burden and multifocal-
ity in other organs. We envision that our workflow, in which CODA is 
integrated with genetic analysis, will facilitate future 3D analyses of 
microscopic precursor lesions in various organs. Moreover, our meth-
odology can be further expanded to incorporate high-dimensional 
spatial profiling platforms, enabling transcriptomic and proteomic 
assessment of precancers and their microenvironment.

Using our 3D genomic mapping approach, we identified substantial 
intra-PanIN heterogeneity of driver and passenger gene mutations, 
including seven PanINs with multiple KRAS mutations. Because KRAS 
hotspot mutations occur early in PanIN development, multiple KRAS 
mutations in one lesion suggests a polyclonal origin. We provide mul-
tiple lines of evidence that support this polyclonality—both compu-
tational evolutionary reconstruction and in situ detection of KRAS 
hotspot mutations indicate that distinct KRAS mutations occur in differ-
ent cell populations. Polyclonality has also been described in pancreatic 
IPMNs, in which multiple KRAS mutations delineated independent 
clones within the same precancerous cyst15. In pancreatic neoplasia, 
intralesional heterogeneity of driver gene mutations appears to be a 
feature of precursor lesions, whereas a single KRAS mutation is almost 
universal in PDAC, even in distant metastases15–19. Notably, the distri-
bution of KRAS hotspot mutations found in PanINs resembled those 
reported in PDAC (Extended Data Fig. 4), suggesting that selection for 
KRAS hotspot mutations occurs at PanIN initiation, not progression39. 
Although the phenotype providing the critical advantage for KRAS 
mutants in early tumorigenesis remains unclear40, our data affirm the 
widespread expansion of KRAS-mutant clones throughout otherwise 
normal pancreas in humans.

Although this study illuminates the multifocality and genetic het-
erogeneity of human PanINs, there are limitations to our cohort. First, 
grossly normal tissue collected during tumour resections may not rep-
resent truly ‘normal’ pancreas. Nevertheless, the majority of patients 
underwent resection of neoplasms that did not involve the ductal sys-
tem, which may better reflect PanIN burden and genetic features in the 
general population. Similarly, our patient age range (mean 66, range 
45–87) also does not represent the general population, which may 
account for the lack of correlation between age and PanIN burden in 
our cohort, contrary to other reports41. Assessment of PanIN burden in 
non-diseased pancreata across the age spectrum is an important future 
direction. Whereas 38 slabs were 3D modelled, integrated 3D genomic 
analysis was limited to 8 slabs. Yet with multi-region processing, the 
resultant 99 NGS samples yielded unprecedented resolution of the 
mutational landscape of 37 discrete PanINs. Of these, 34 PanINs con-
tained only LG dysplasia, in accordance with the higher prevalence of 
LG PanINs than HG PanINs in randomly sampled pancreata41. Although 
one of our PanINs suggests a role for TP53 mutation, a dedicated HG 
PanIN cohort is necessary to investigate molecular alterations driving 
PanIN progression. Finally, genetic origins could not be resolved for a 
few PanINs owing to insufficient DNA quantities, a persisting challenge 
for sequencing very small precancers.

As one of the most extensive studies of human PanINs to date, we 
provide new insights into early pancreatic tumorigenesis. Quantitative 
3D modelling revealed a surprising abundance of anatomically distinct 
PanINs. Our powerful integration of 3D modelling and genome analysis 
demonstrated that most PanINs are truly multifocal lesions arising from 
independent clones, and that intraductal spread of LG PanINs is a rare 
phenomenon. Our meticulous multi-region sequencing approach also 
unveiled rich genetic heterogeneity within individual PanINs, including 
multiple KRAS mutations suggestive of intra-lesion polyclonality. These 
findings lay a foundation for future investigations towards mecha-
nisms underlying PanIN multifocality and risk stratification of PanIN 
progression. Together, our work describes the remarkable spatial and 
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genetic multifocality of human PanINs and underscores the necessity 
of integrating 3D microanatomy to accurately resolve genetic origins.
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Methods

Specimen acquisition
This study was approved by the Institutional Review Board at The Johns 
Hopkins Hospital, and informed consent was obtained from all patients. 
Thick slabs of grossly normal pancreatic tissue were collected from 
surgical pancreatectomy specimens and consecutively assigned a slab 
number. For 3D modelling, a cohort was selected to investigate PanINs 
arising in otherwise histologically normal blocks of pancreatic paren-
chyma. Following histologic review by an expert pancreatic pathologist, 
slabs containing significant fibrosis, atrophy or PDAC in the analysed 
tissue slab were excluded. In addition, slabs with a diagnosis of IPMN 
were excluded due to the histological similarities between PanIN and 
IPMN and the propensity of IPMN to involve smaller ducts, complicat-
ing the reliable distinction of the two precursor lesions5. With these 
criteria, we selected 38 slabs of pancreas tissue from 38 patients for 3D 
anatomical modelling. Twelve of these patients had PDAC elsewhere in 
their pancreas. The remaining 26 patients had other pancreatic or small 
intestinal neoplasms elsewhere in their resection specimens, including 
pancreatic neuroendocrine tumours, serous cystadenomas, distal com-
mon bile duct adenocarcinomas, metastatic carcinomas from other 
organ sites, mucinous cystic neoplasms, tubulovillous adenomas of 
the duodenum, ampullary tumours and lymphoepithelial cysts (Sup-
plementary Table 1).

A separate cohort of grossly normal pancreatic tissue slabs under-
went combined anatomic and genomic analyses. Because of the 
unique sectioning scheme (details below) used for 3D modelling and 
NGS, which included large numbers of specialized membrane slides 
for microdissection, inclusion criteria for this cohort were based on 
the first histologic slide cut from the surface of each slab, which was 
assessed prior to full sectioning. Specifically, PanIN was to be present, 
and PDAC and significant fibrosis were to be absent on the first slide 
sectioned. Any patients with a clinical diagnosis of IPMN were excluded. 
Using these criteria, 8 additional slabs of tissue were selected from eight 
patients for 3D modelling and NGS—these patients did not overlap with 
the 38 patients analysed by anatomic modelling only. Three of these 
eight patients had a pathological diagnosis of PDAC elsewhere in their 
pancreas. The remaining five of the eight patients had neoplasms not 
affecting the pancreatic ductal system, including well-differentiated 
pancreatic neuroendocrine tumours (2), serous cystadenoma (1), distal 
common bile duct adenocarcinoma (1) and colon cancer metastatic 
to the pancreas (1).

Sample processing
Each of the 46 slabs of collected tissue were processed as for FFPE, 
followed by complete serial sectioning at 5 μm. Every third slide was 
stained with H&E and digitized at 20× magnification for 3D modelling. 
As previously described, skipping staining on two out of every three 
slides does not lead to any significant loss in microanatomical informa-
tion10. Sample processing yielded a mean of 1,288 slides per block (range 
679–1,703) and mean tissue volume of 2.03 cm3 (range 0.94–3.62 cm3). 
All PanIN lesions present on every 50th slide were manually annotated 
using Aperio ImageScope to verify accuracy of the generated 3D mod-
els10. For the eight slabs undergoing NGS, every third slide was cut onto 
membrane slides (Zeiss Membrane Slide 1.0 PEN; Carl Zeiss) for laser 
capture microdissection (LCM).

3D reconstruction of serially sectioned H&E sections of human 
pancreas
Using the previously validated method CODA, we converted the serially 
sectioned histological slides of human pancreas tissue into digital 3D 
maps of pancreas microanatomy for all 46 slabs10. In brief, the CODA 
workflow can be split into four steps: image registration, single-cell 
detection, tissue segmentation, and 3D visualization. For a pair of 
images, the registration maximizes the 2D cross-correlation of pixel 

intensity to align all images and correct for tissue rotation, translation, 
folding, splitting and stretching. A cell-detection algorithm is used to 
quantify the cellularity of components via detection of 2D intensity 
peaks in the haematoxylin channel of the H&E images. Deep learning 
is next used to create microanatomical labels from the histological 
images. The trained algorithm was used to label, to a resolution of 2 µm, 
8 microanatomical structures in histological images of the pancreas: 
islets of Langerhans, normal ductal epithelium, vasculature, fat, acinar 
tissue, extracellular matrix (ECM), PanIN and PDAC. By combining the 
cell detection and the tissue-level semantic segmentation, we esti-
mated the tissue type of all cells in the 3D samples. Samples contain-
ing regions of cancer or lymph nodes were labelled using a separate 
model trained to additionally recognize these components. The image 
registration, cell detection and tissue segmentation are integrated to 
create 3D reconstructions of pancreas microanatomy at large scale (up 
to multi-cm3), while maintaining single-cell resolution.

All 46 thick slabs of pancreas tissue were reconstructed using CODA. 
The 3D datasets used for quantification and visualizations were sub-
sampled from the classified resolution of 2 µm per pixel per image to 
an isometric resolution of 12 × 12 × 12 µm. The cell-detection algorithm 
and tissue-level deep learning segmentation were validated indepen-
dently. The cell-detection algorithm was validated through comparison 
of automatic cell counts to manually generated nuclear coordinates 
by two independent researchers on five regions of randomly selected 
images. Cell-detection parameters were adjusted until to maximize 
the precision and recall obtained for each validation image (see per 
image precision and recall compared to two sets of manually generated 
coordinates in Extended Data Fig. 1a). Overall, we achieved an aver-
age 90.2% precision and 92.0% recall for the five images. For the deep 
learning, all available annotated images were collected: 90% of images 
were used for training and 10% of images were used as an independent 
testing set of model accuracy across unseen images in the analysed 
cohort. Models were deemed acceptable when they achieved >90% per 
class precision and recall on the independent testing images. Per class 
accuracy, precision, and recall are presented in Extended Data Fig. 1b.

Validation of PanIN detection in samples
All objects labelled as PanIN by the segmentation algorithm were post- 
processed to ensure that no non-neoplastic regions were counted as 
PanIN. In the 3D volume matrix saved at a resolution of 12 × 12 × 12 µm3, 
objects of fewer than 20 voxels and objects present on fewer than three 
histological sections were eliminated. The histology of all remaining 
objects was manually assessed to determine whether they were PanIN. 
The 3D bounding box of each object was determined. The regions of  
the serial H&E images contained in this bounding box were extracted 
from the registered 5× magnification image stack and were saved as 
a separate image stack (Supplementary Video 1). These stacks were 
manually viewed using FIJI ImageJ42. A matrix was created in Micro-
soft Excel containing the PanIN identifier (labelled A to Z), and the 
true determined label of the region. All regions determined to be false 
positive PanIN labelling during manual validation were corrected in 
the 3D matrices. False negatives were assessed through comparison 
of the deep learning labelled structures to manual pathologist-guided 
annotations of neoplastic tissue on one in every 50 sections throughout 
the samples.

Colour-coded labelling of connected regions of PanIN in 2D H&E 
images
For the eight slabs that were assessed by the combined 3D anatomic 
and genomic analyses, videos with exhaustive, colour-coded anno-
tations of PanIN lesions were created using the 3D tissue models so 
that connected regions of each PanIN could be efficiently identified, 
microdissected, and collected in separate vials for genomic analysis. 
For this purpose, PanIN labels were collected from the digital 3D tis-
sue matrix. Independent (that is, discontinuous in 3D) PanINs were 



sorted from largest to smallest, and the ten largest PanIN lesions were 
assigned distinct colours (largest PanIN assigned pink, second largest 
PanIN assigned light blue, third largest PanIN assigned yellow and so 
on) for easy visualization. For samples with more than ten identified 
PanIN lesions, the eleventh through the smallest were assigned the 
same colour (olive green), as these PanIN were too small to be micro-
dissected and sequenced. Next, we determined which PanIN lesions 
were present in each z plane of the 3D structure. For each plane, the 
5× registered H&E image was loaded into MATLAB 2021b. An outline of 
the regions of each PanIN present in that plane was digitally thickened 
and was overlaid on the H&E image in the correct location and in the 
colour assigned to that PanIN. This process created an H&E image with 
colour outlines marking all PanIN lesions in the section, highlighting 
connectivity and relative size. These 5× images were saved separately 
as jpg files, and together as a lower-resolution stacked video (Sup-
plementary Video 2).

Calculation of 3D structural features of PanIN lesions
The 3D digital tissue matrices that defined tissue types and cell coor-
dinates were used to calculate a range of tissue properties. Each PanIN 
lesion was separately identified using MATLAB 2021b. By summing 
the number of voxels in each separate PanIN lesion (and converting 
from voxel to mm3), the volume of each PanIN lesion was obtained. The 
volume of a PanIN was defined as the volume of the neoplastic cells, 
excluding the lumina within the glands. The Regionprops3 command 
in MATLAB 2021b was used to determine the length of the primary 
axes containing each PanIN. Through dot multiplication of the PanIN 
ID matrix with the matrix containing the cell coordinates, the number 
of cells in each PanIN could be calculated. Cell counts generated from 
the 2D histological sections were extrapolated to 3D space using a 
previously developed technique based on cell-type-dependent nuclear 
measurements, as well as the thickness and spacing of the histological 
slides10. This approach used the following equation:

∑ ∑C C
T
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=
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where C3D = total number of cells in 3D space, ∑images = sum across all 
images in a pancreas slab, ∑subtypes = sum across all tissue types clas-
sified in the H&E images, Cimage = total number of cells of one tissue 
subtype in a single H&E image, T = thickness of a single histological 
image, Dsubtype = mean measured diameter of each tissue subtype in H&E 
images. Finally, the cell density of each PanIN lesion was determined 
by dividing the number of cells of each lesion by its volume. The total 
volume, cellularity, and cell density of all other tissue components 
were similarly calculated using the 3D tissue and cell matrices. The 
percentage of PanIN cells in the ductal system was calculated for each 
sample by dividing the total number of PanIN cells by the sum of the 
total number of PanIN and normal ductal epithelial cells.

Laser capture microdissection
For NGS, membrane slides from 8 of the 46 tissue slabs were depar-
affinized in xylenes for 5 min, and dehydrated with 100%, 95% and 70% 
ethanol for 1 min each. Slides were stained with crystal violet (Sigma 
Aldrich; diluted 1:4 in 70% ethanol) for 30 s and dehydrated by ascend-
ing ethanol solutions. The stained slides were microdissected the same 
day. For genetic analyses assessing intra- and inter-PanIN heterogeneity, 
each slab was divided into five regions of equal size along the z axis. On 
average, tissue slabs spanned 778 slides (range 500–1,000) and each 
region covered 146 slides (range 100–200) (Supplementary Table 3).  
Each spatially unconnected PanIN lesion identified in the correspond-
ing 3D models was microdissected (Leica LMD7000 instrument) into 
a separate collection tube (autoclaved 0.5 ml Qubit Assay Tubes,  
Invitrogen) for each region. Spatially distinct PanIN lesions and PDAC 
on H&E images were annotated by CODA in colours corresponding to  

3D models; these annotated images were used to guide microdissection 
of distinct lesions into separate collection tubes. LG and HG compo-
nents of PanIN lesions were isolated separately by microdissection, 
as was any PDAC identified in the tissue. Matched control samples 
from each patient were obtained from clinical archives for sequencing, 
including matched normal tissue (duodenum or spleen) and matched 
PDAC. For matched control samples, one 5 µm section was cut onto a 
regular slide, deparaffinized as described above, and scraped into a 
collection tube utilizing a sterile razor blade.

Determining sample purity
To validate the neoplastic purity of the sequenced PanIN samples, 
image analysis was performed to determine the percentage of microdis-
sected cells constituting PanIN and non-PanIN tissue. Digital images of 
stained membrane slides were created before and after microdissection 
(‘pre-LCM’ and ‘post-LCM’ images, respectively). These images were 
registered to the adjacent H&E slide image. The pre-LCM image was used 
to determine the cropped region within the adjacent H&E image that 
was analysed. The post-LCM image allowed for precise determination 
of the irregularly shaped region microdissected from the slide. After 
identifying the precise area that was microdissected, the H&E image 
was segmented and the number of PanIN cell nuclei and non-PanIN cell 
nuclei were quantified. The neoplastic purity of the microdissected 
sample was determined by dividing the number of PanIN cells by the 
total number of cells within the microdissected area.

DNA extraction and quantification
DNA was extracted using the QIAamp DNA FFPE Tissue Kit (Qiagen) 
following the manufacturer’s recommendations with the following 
modifications: after overnight digestion, samples were sheared to 
200–350-bp fragments using the Covaris S220 Sonicator (Covaris). Sub-
sequently, 10 μl of proteinase K was added and samples were digested 
for 1 h at 56 °C before resuming manufacturer-provided protocol. DNA 
quantity and fragment size were quantified using an Agilent Bioanalyzer 
(Agilent) according to the manufacturer’s recommendations. Sample 
processing was the same for matched normal tissue and matched PDAC 
tissue. Samples were stored at −20 °C until library preparation.

Library preparation and targeted sequencing
All PanIN regions that yielded at least 10 ng of DNA in the 8 slabs used 
for combined 3D anatomic and genomic analysis were assessed by tar-
geted NGS using a custom panel. The commercially available ClearSeq 
Comprehensive Cancer (Agilent) targeted panel was selected. Using 
Agilent SureDesign software, we customized the panel to induce baits 
for coding regions of additional genes important for pancreatic cancer 
development. In total, the panel covered 154 well-characterized cancer 
driver genes, including all major drivers of pancreatic ductal neoplasia 
(Supplementary Table 3). DNA (10–200 ng) was utilized per sample for 
library preparation, following the manufacturer’s protocol (SureSe-
lectXT HS2 DNA kit; Agilent). Barcoded individual samples were pooled 
following the manufacturer’s recommendations and sequenced on a 
MiSeq (Illumina) generating 2 × 150 base-paired reads.

Targeted sequencing analysis
Sequencing data were processed by following The Genome Analysis 
Toolkit (GATK) Best Practices Pipeline43. FASTQ reads were converted 
to an unmapped BAM file and adapter sequences were marked. FASTQ 
reads were aligned to the human reference genome GRCh38 (GATK 
resource bundle 4.2.0.0) using Burrows–Wheeler aligner (BWA) MEM 
software (version 0.7.15) and merged with the unmapped BAM file44. 
The raw mapped reads were then marked for duplicate reads and 
underwent base quality score recalibration (GATK resource bundle 
4.2.0.0). Mutect2 (GATK resource bundle 4.2.0.0) was used to call 
somatic SNVs and indels45. A panel of normals (PON) was created using 
targeted sequencing data from the eight matched normal samples. 
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Next, Mutect2 was run for each tumour sample with its matched nor-
mal and the PON using default settings. All somatic mutations were 
annotated with OpenCRAVAT (version 2.2.1). Somatic mutations were 
subsequently filtered with the following criteria: tumour sample cover-
age ≥15X; normal sample coverage ≥10X; tumour frequency ≥0.05; ≥5 
distinct reads supporting the mutation in tumour sample; normal fre-
quency <0.05. Variants were filtered to remove all noncoding variants 
and variants present in any normal sample, while retaining coding SNVs, 
indels, and splice site variants. Mutations meeting these criteria were 
used for downstream analysis. Candidate mutations were confirmed 
or rejected via visual inspection in Integrated Genome Viewer (IGV ver-
sion 2.14.1)46. The positions of KRAS hotspot mutations (codons 12, 13 
and 61) were visually inspected in all samples and included if VAF ≥ 1% 
and ≥3 distinct reads supported the mutation.

WES and analysis
In the eight slabs used for combined 3D anatomic and genomic analysis, 
PanIN regions with sufficient DNA were analysed by WES in addition to 
targeted sequencing. Mutation capsule (MC) technology was applied 
to profile a FFPE DNA sample with both hybridization-based exome 
sequencing and amplification-based deep sequencing, as recently 
described22. Approximately 200 ng of the previously fragmented DNA 
was subjected to end-repair, dA-tailing, and ligation to a customized 
adapter with random DNA barcodes as a unique identifier (UID) tag21. 
The ligation product was amplified through 10 reaction cycles to 
generate a whole genome library (MC library) using NEBNext Ultra II  
DNA library Prep Kit for Illumina (New England Biolabs) and 750 ng  
MC library was used for exome enrichment. The exome region of the 
whole genome libraries was enriched with the Agilent SureSelectXT 
Human All Exon Kit V6 (Agilent; Santa Clara, CA) for slabs 98–155. The 
PanIN samples of slab 92 were enriched with mixed probes of Agilent 
SureSelectXT Human All Exon Kit and an Agilent SureSelectXT Custom 
Kit (Agilent, 5190-4842) targeting 825 genes, including KRAS. All librar-
ies were sequenced on the NovaSeq 6000 Sequencing System (Illumina) 
with 2 × 150-bp paired-end reads. FASTQ files were preprocessed to 
remove the adapter sequences21. The low-quality reads were subse-
quently removed using Trimmomatic (v0.36). FASTQ reads were aligned 
to the human reference genome hg38 using Burrows–Wheeler aligner 
(BWA) MEM software (version 0.7.15) for both tumour and matched 
normal samples. Mutect2 (GATK resource bundle 4.2.0.0) was used to 
call somatic variants between the tumour–normal pairs, as well as the 
tumour-only samples against a PON, utilizing default parameters45. The 
somatic mutations were filtered according to the following criteria:  
(1) the variant coverage in tumour sample was ≥15X, the VAF ≥0.10 and 
≥7 distinct reads supporting the mutation in tumour sample; (2) the cor-
responding variant coverage in normal sample ≥10X, the VAF <0.05. All 
somatic mutations were then annotated with vcf2maf-1.6.19. Noncoding 
variants and variants present in matched normal were filtered, retain-
ing coding SNVs and indels and splice site variants. Mutations meeting 
these criteria were used for downstream analysis. Candidate muta-
tions were confirmed or rejected via visual inspection in Integrated 
Genome Viewer (IGV version 2.14.1)46. The positions of KRAS hotspot 
mutations (codons 12, 13 and 61) were visually inspected in all samples 
and included if VAF ≥1% and ≥3 distinct reads supported the mutation.

Subclonal Architecture Reconstruction
For PanIN regions with multiple KRAS hotspot mutations in WES (slab 
92, PanINs A and B), subclonal architecture reconstruction was per-
formed with PICTograph software (version 1.2.0.1)28. Mutations meeting 
the following criteria were included in PICTograph analysis: (1) the vari-
ant coverage in tumour sample was ≥15X, the VAF ≥0.10 and ≥7 distinct 
reads supporting the mutation in tumour sample; (2) the corresponding 
variant coverage in normal sample ≥10X, the VAF <0.05. PICTograph 
uses a Bayesian hierarchical model and Markov chain Monte Carlo 
(MCMC) sampling to jointly infer subclones and cancer cell fractions 

(CCFs), based on VAF, sample purity, and copy number. Evolutionary 
trees are built with a modified version of the Gabow–Myers algorithm 
and scored with the SCHISM tree fitness function47,48. MCMC chains 
were run with 10,000 iterations and burn-in of 1,000. To eliminate 
single-mutation clusters, the one box parameter was set to TRUE; the 
number of clusters k was set to 4 for slab 92 PanIN A and to 3 for slab 92 
PanIN B. Purity was estimated by as described above. CNVkit (version 
0.9.10) was used to construct a copy number profile for each PanIN 
region49. Integer copy numbers, adjusted with tumour purity for each 
PanIN region, were generated using the call function in CNVkit.

Mutational signatures analysis
Mutational signatures were extracted with SigProfiler tools50–52. A total 
of 674 SNVs from WES with VAF of at least 10% in all 52 sequenced PanIN 
regions were included in the analysis. All SNVs were converted to match 
the positive strand in the human reference genome GRCh38.p14 (acces-
sion number GCA_000001405.29) with a custom script. SNVs were 
then formatted into ICGC format. SigProfilerMatrixGenerator (version 
1.2.17) was used to generate the input matrix for downstream analysis 
with reference genome GRCh38 and default parameters51. SigProfiler-
Extractor (version 1.1.21) was then used to extract the mutational signa-
tures of the SBS96 matrix with default parameters52. The seed for the 
run is 65692168255168492169046446239068017399.

Somatic copy number alteration analysis
WES data were analysed using CNVKit (version 0.9.9) to identify somatic 
copy number aberrations in precursor and tumour samples49. The depth 
of coverage in targeted (exons) and off-target (intronic or intergenic) 
regions were corrected to account for factors including size, GC compo-
sition, mappability and spacing. In each sample, the resulting coverage 
was then normalized with respect to a reference panel consisting of the 
eight matched normal samples. Next, circular binary segmentation was 
applied to identify genomic regions at a constant relative copy number 
level in each sample53. To capture large-scale copy number changes, the 
segmental copy number profile of each sample (normal, precursor, or 
tumour) was then summarized as an array of chromosome arm-level 
relative copy number values. Given the limited number of matched 
normal samples (n = 8), we processed another cohort of 14 normal sam-
ples previously sequenced by our group following the steps above and 
defined a composite normal panel (n = 22) by adding this new set to the 
matched normals from the main cohort54. The chromosome arm-level 
relative copy number levels in each precursor or tumour lesion were 
normalized using the mean and standard deviation in the composite 
panel of normals to derive arm-level copy number z-scores. For the nor-
mal samples, the leave-one-out setup is used to calculate the arm-level 
z-scores. Copy number data were visualized using R version 3.6.

KRAS G12 point mutation-specific RNA ISH
KRAS G12 point mutation-specific RNA ISH was performed for the eight 
NGS slabs. Using CODA 3D models as a guide, consecutive unstained 
FFPE tissue slides from one z region per slab were selected for inclusion 
of multiple PanIN areas. For three cases (slabs 92, 116 and 117) where NGS 
detected PanINs with multiple KRAS mutations, slides were selected 
from two z regions. Slides from all 11 regions from 8 slabs were evaluated 
with BaseScope paired double-Z oligonucleotide probes targeting the 
following single base-pair substitutions in human KRAS (NM_033360.3 
region 191-232nt): p.G12D c.G35>A, p.G12R c.G34>C, p.G12V c.G35>T. 
Slides from one case (Slab 104) were also probed for p.G12C c.G34>T. In 
addition to standard positive (PPIB) and negative (dapB) control probes, 
one slide from each slab was also assayed for total KRAS expression 
with a reference probe targeting an invariant sequence (NM_033360.3 
region 89-120nt) in KRAS. Manufacturer catalogue numbers for the 
aforementioned probes are as follows: 705518, 705548, 705558, 705508 
and 1084358-C1 (Advanced Cell Diagnostics). The BaseScope Red LS 
ISH assay (Advanced Cell Diagnostics) was performed as previously 

https://www.ncbi.nlm.nih.gov/nuccore/NM_033360.3
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described29. In brief, FFPE slides underwent deparaffinization, tar-
get retrieval, and protease pre-treatment according to manufacturer 
guidelines. Following 1zz probe hybridization (2 h at 40 °C) and signal 
amplification with the LS BaseScope Reagent Kit (Advanced Cell Diag-
nostics), slides were incubated with Fast Red, counterstained with 50% 
haematoxylin, then mounted in VectaMount (Vector Laboratories).

For quantitative analysis, slides were scanned at 40× magnification 
brightfield with a Hamamatsu Nanozoomer S360 (Hamamatsu) or 
a 3DHistech Panoramic Scan Digital Slide Scanner (3DHistech) and 
annotated in Omero (Web version 5.17.0; Glencoe Software) and NDP.
view2 (version 2.9.29; Hamamatsu). Each PanIN was measured for 
cross-sectional area and assessed for red punctate ISH signals by a 
blinded investigator. ISH signal frequency was calculated as number 
of puncta/section area (in µm2). To account for varying levels of back-
ground probe labelling, values were normalized by the mean signal 
frequency measured in ten islets of Langerhans within each slide.

Targeted sequencing of KRAS mutations
Ultra-deep sequencing of the KRAS hotspot positions was performed on 
the PanIN regions analysed by WES. MC library (200 ng) was used to pro-
file KRAS mutations with deep sequencing, as previously described21. 
In brief, the target regions were amplified together with the DNA 
barcode (UID) in the adapter of the MC library for nine cycles using a 
target-specific primer and a primer matching the universal sequence in 
the adapter. A second round of 14 cycles of PCR with one pair of nested 
primers matching the adapter and the target region was used to further 
enrich the target region and add the Illumina sequencing adapter. The 
amplified libraries were sequenced on the NovaSeq 6000 Sequencing 
System (Illumina) using 2× 150-bp paired-end reads. The target regions 
were analysed to confirm the mutation status as previously described21. 
In brief, the FASTQ file were preprocessed to extract UID tags21,55,56. The 
residual Illumina adapter sequences and low-quality reads were sub
sequently removed using Trimmomatic (v0.36). The cleaned reads were 
mapped to the human reference genome GRCh37 (accession number 
GCA_000001405.1) using BWA software (BWA, v0.7.15)55. BAM files 
were locally realigned and the base quality scores were recalibrated 
using Genome Analysis Toolkit (GATK, v3.1). The mpileup command 
in SAMtools (v0.1.16) was used to identify SNVs and indels57. To ensure 
accuracy, the reads with the same UID tag were grouped into a UID 
family. If more than 80% of reads in a UID family harboured the same 
variant and it contained at least two reads, the UID family was defined 
as an effective unique identifier family (EUID family). The prevalence 
of each mutation was calculated by dividing the number of mutant 
EUID families by the total number of the mutant and wild type EUID 
families. Candidate variants were annotated with the VEP (v83) and 
Oncotator (version 1.5.0.0)58,59. The criteria we adopted for retaining a 
somatic mutation was that it had an allele fraction of ≥1% and ≥7 UID. The 
retained mutations were verified manually using IGV (version 2.14.1)46.

Pancreas CT
An independent group of 807 individuals who were candidates for renal 
donation were scanned as a part of their routine care. These images 
were obtained. Patients were scanned on a dual-source Multidetec-
tor Computed Tomography (MDCT) scanner (Somatom Definition, 
Somatom Definition Flash, or Somatom Force, Siemens Healthineers), 
or a 64-MDCT scanner (Somatom Sensation 64, Siemens Healthineers). 
Patients were injected with 100–120 ml iohexol (Omnipaque, GE Health-
care) at an injection rate of 4–5 ml s−1. Scan protocols were custom-
ized for each patient to minimize dose and included a tube voltage 
of 100–120 kVp, effective tube current–exposure time product of 
250–300 mAs, and pitch of 0.6–0.8. The collimation was 128 × 0.6 mm 
or 192 × 0.6 mm for the dual-source scanner and 64 × 0.6 mm for the 
64-MDCT scanner. Arterial phase imaging was performed with fixed 
delay or bolus triggering, usually between 30 and 35 s after injection, 
and venous phase imaging was performed at 60–70 s. All images were 

reconstructed into thin (0.75-mm slice thickness and 0.5-mm incre-
ment) slices. The 3D volume of the pancreas was manually segmented 
by four trained researchers using commercial segmentation software 
(Velocity version 4.1, Varian Medical Systems), under the supervision 
of 3 abdominal radiologists each with between 5 and 35 years of experi-
ence. The x, y and z dimensions of each voxel containing pancreas was 
determined and summed to calculated the total pancreas volume for 
each scan. The volume of pancreas was then calculated by counting 
the number of voxels containing pancreas first and then converting 
this number into the unit of volume according to the voxel spacing 
of CT scans. To extrapolate the number of PanINs in the whole pan-
creas, prior distributions for the pancreas volume in women and men 
were first defined as normal l (77.51, 17.82) and normal 2 (94.18, 20.74), 
respectively. The extrapolated number of PanINs for an individual in 
this study was found by multiplying the empirically observed PanIN 
burden by a random ordinate from the prior distribution. Sampling 
10,000 random ordinates and multiplying each by the observed bur-
den, we obtained a predictive distribution for whole-pancreas PanIN 
numbers. A 95% credible interval for this distribution was derived from 
the 2.5 and 97.5% quantiles.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
WES data are available via dbGAP under accession number phs003549.
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data are provided with this paper.
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Extended Data Fig. 1 | Validation of CODA segmentation. A. H&E cell 
detection true positives (TP), false positives (FP), false negatives (FN), precision, 
and recall compared to manual annotations by two individuals. B. Confusion 
matrix detailing performance of semantic segmentation algorithm in labelling 
pancreatic microanatomy in H&E stained tissue images.
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Extended Data Fig. 2 | CODA-rendered 3D models for tissue slabs analyzed. Blue represents normal pancreatic ducts; spatially separate PanINs are indicated 
with distinct colors.



Extended Data Fig. 3 | Quantified features from CODA-rendered 3D models 
of human pancreatic tissue slabs. A. PanIN burden stratified by disease type. 
PanINs per cm3 of analyzed tissue for each slab, not statistically significant. 
Mean with standard deviations plotted. n = 38 independent samples. B. PanIN 
burden stratified by sex. PanINs per cm3 of analyzed tissue for each slab, not 
statistically significant. Mean with standard deviations plotted. n = 38 
independent samples. C. PanIN burden stratified by location of harvested 
tissue, not statistically significant. Mean with standard deviations plotted. 
n = 38 independent samples. D. PanIN burden stratified by age, not statistically 
significant as determined by simple linear regression. E. Percent ductal system 
affected by PanIN by disease type. Percentage of neoplastic ductal cells was 
calculated for each slab, not statistically significant by two-tailed Mann-Whitney 
test. + = mean. n = 38 independent samples. Whiskers denote min-max values 

while box shows Q1–Q3 with median denoted by a line. F. Number of cells 
comprising PanINs for each slab by disease type, not statistically significant  
by two-tailed Mann-Whitney test. n = 38 independent samples. Whiskers show 
min-max values while box shows Q1–Q3 with median value denoted by a line.  
G. Correlation of percent PanIN cells (x-axis) to percent normal ductal cells 
(y-axis). Each point represents a tissue slab. H. Correlation of percent PanIN  
cells (x-axis) to percent cells in ECM (y-axis). I. Correlation of percent PanIN cells 
(x-axis) to percent acinar cells (y-axis). J. Correlation of percent PanIN cells 
(x-axis) to percent smooth muscle cells (y-axis). Correlation of percent PanIN 
cells (x-axis) to percent islet cells (y-axis). L. Correlation of percent PanIN cells 
(x-axis) to percent fat cells (y-axis). G-L. r2 and p-values calculated using the 
correlation coefficient, and grey shading represents the 95-percent confidence 
interval.
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Extended Data Fig. 4 | KRAS oncogenic hotspot mutations in PanINs 
assessed by multiregional targeted NGS of eight tissue slabs and mutation 
burden by lesion grade from WES. A. Missense mutations occur primarily  
at G12 and at lower frequencies in Q61. B. At the G12 locus, four different  
amino acid substitutions were found, with p.G12D being the most common.  

C. Number of mutations per region stratified by low grade, high grade, and 
PDAC. Mean with standard deviation plotted. p < 0.0001 when comparing 
mutations in low grade and PDAC samples; determined by Kruskal-Wallis test, 
corrected for multiple comparisons with Dunn’s test. 48 low grade PanINs,  
4 high grade PanINs, and 9 PDACs from 38 independent samples were assessed.



Extended Data Fig. 5 | Copy number aberrations in PDAC and PanINs 
analyzed by WES. A. Chromosome arm-level copy number changes 
summarized as Z-scores, shown in the precursor and matched tumor samples 
from each individual. Z-score levels falling within the observed range of the 
composite panel of normals are depicted in white (copy neutral). For values 

above or below the normal range, the distance to the maximum or minimum 
value within the normal range are reported. B-I. Chromosome arm level copy 
number aberrations in representative sample, slab 92. The blue ribbon marks 
the range of z-scores observed in the panel of normals.
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Extended Data Fig. 6 | Slabs 151, 155, 117: 3D model and NGS results.  
A-C: slab 151. A. CODA-rendered 3D model of slab 151, with multiple spatially 
distinct PanINs (color key at right). B Mutation chart with targeted sequencing 
results for slab 151. Each row represents a distinct somatic mutation. Columns 
represent PanINs, colored as in A; bars represent vertical regions within a PanIN. 
Bar color corresponds to key on right. C. Heatmap of VAFs from Mutation 
Capsule KRAS deep sequencing of for slab 151. Rows represent different KRAS 
oncogenic hotspot mutations. Columns represent PanINs, with colors 
corresponding to A. D-G: slab 155. D. CODA-rendered 3D model of grossly 
normal pancreatic tissue in slab 155, with multiple spatially distinct PanINs 
(color key at right). E. Mutation chart with targeted sequencing results for slab 
155. Each row represents a distinct somatic mutation. Columns represent 
PanINs, colored as in D; bars represent vertical regions within a PanIN. Bar color 

corresponds to key on right. F. Chow-Ruskey plot of WES results for slab 155. 
Shapes represent groups of mutations, with overlaps indicating shared somatic 
mutations. Numbers refer to the number of mutations in each group. G. Heatmap 
of VAFs from Mutation Capsule KRAS deep sequencing of slab 155. Rows 
represent different KRAS oncogenic hotspot mutations. Columns represent 
PanINs, with colors corresponding to D. H-J: slab 117. H. CODA-rendered 3D 
model of grossly normal pancreatic tissue in slab 117, with multiple spatially 
distinct PanINs (color key at right). I. Mutation chart with targeted sequencing 
results for slab 117. Each row represents a distinct somatic mutation. Columns 
represent PanINs, with colors as in H; bars represent vertical regions within a 
PanIN. Bar color corresponds to key on right. J. Heatmap of VAFs from Mutation 
Capsule KRAS deep sequencing. Rows represent different KRAS oncogenic 
hotspot mutations. Columns represent PanINs, with colors as in H.



Extended Data Fig. 7 | Slabs 114 and 116: 3D model and NGS results. A-D: slab 
114. A. CODA-rendered 3D model of grossly normal pancreatic tissue in slab 114, 
with multiple spatially distinct PanINs (color key at right). B. Mutation chart 
with targeted sequencing results for slab 114. Each row represents a distinct 
somatic mutation. Columns represent PanINs; bars represent vertical regions 
within a PanIN. Bar color corresponds to key on right. C. Chow-Ruskey plot 
summarizing WES results for slab 114. Each shape represents a group of 
mutations. Colors correspond to PanINs in A, except matched PDAC sample 
sequenced from archival clinical block (grey). Shapes represent groups of 
mutations, with overlaps indicating shared somatic mutations. Numbers refer 
to the number of mutations in each group. D. Heatmap of VAFs from Mutation 
Capsule KRAS deep sequencing of slab 114. Rows represent different KRAS 
oncogenic hotspot mutations. Columns represent PanINs, colored as in A, 
except matched PDAC sample sequenced from archival clinical block (grey). 

E-H: slab 116. E. CODA-rendered 3D model of grossly normal pancreatic  
tissue in slab 116, with multiple spatially distinct PanINs (color key at right).  
F. Mutation chart with targeted sequencing results for slab 116. Each row 
represents a distinct somatic mutation. Columns represent PanINs; bars 
represent vertical regions within a PanIN. Bar color corresponds to key on 
right. G. Chow-Ruskey plot summarizing WES results for slab 116. Each shape 
represents a group of mutations. Colors correspond to PanINs in E except 
matched PDAC sample sequenced from archival clinical block (grey). Shapes 
represent groups of mutations, with overlaps indicating shared somatic 
mutations. Numbers refer to the number of mutations in each group.  
H. Heatmap of VAFs from Mutation Capsule KRAS deep sequencing of slab 116. 
Rows represent different KRAS oncogenic hotspot mutations. Columns 
represent PanINs, except matched PDAC sample sequenced from archival 
clinical block (grey).
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Extended Data Fig. 8 | Normalized quantification of KRAS G12 point 
mutation-specific RNA ISH for each PanIN, shown with CODA-rendered 3D 
models in corresponding colors. Tissue sections from a single region in each 
following slab were analyzed for point mutations in KRAS G12. LG and HG areas 
were quantified and depicted separately when present. Corresponding VAFs 
from targeted NGS of each PanIN region shown below each column, with most 

common variant highlighted in grey. Lavender arrows mark PanIN regions 
where KRAS Q61H mutations were found in NGS. A. Slab 114. B. Slab 151. C. Slab 
155. D. Slab 104. E. Slab 98. For the following slabs containing PanINs with 
multiple KRAS mutations by NGS, tissue sections were analyzed as above from 
two regions. F. Slab 116. G. Slab 117.



Extended Data Fig. 9 | Representative images of mutant and total KRAS 
RNA ISH staining in histologically normal ductal epithelial cells adjacent 
to PanIN. A. KRAS G12R mutant RNA ISH probe staining (red puncta) in a PanIN 

and adjacent normal ductal cells, with consecutive H&E-stained tissue section. 
B. Universal KRAS reference ISH probe staining of same PanIN and adjacent 
normal ductal cells, with corresponding H&E image. Scale bars = 50 µm.
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