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SUMMARY
This study introduces a new imaging, spatial transcriptomics (ST), and single-cell RNA-sequencing
integration pipeline to characterize neoplastic cell state transitions during tumorigenesis. We applied a
semi-supervised analysis pipeline to examine premalignant pancreatic intraepithelial neoplasias (PanINs)
that can develop into pancreatic ductal adenocarcinoma (PDAC). Their strict diagnosis on formalin-fixed
and paraffin-embedded (FFPE) samples limited the single-cell characterization of human PanINs within their
microenvironment.We leveragewhole transcriptome FFPEST to enable the study of a rare cohort ofmatched
low-grade (LG) and high-grade (HG) PanIN lesions to track progression and map cellular phenotypes relative
to single-cell PDAC datasets. We demonstrate that cancer-associated fibroblasts (CAFs), including antigen-
presenting CAFs, are located close to PanINs. We further observed a transition from CAF-related inflamma-
tory signaling to cellular proliferation during PanIN progression. We validate these findings with single-cell
high-dimensional imaging proteomics and transcriptomics technologies. Altogether, our semi-supervised
learning framework for spatial multi-omics has broad applicability across cancer types to decipher the
spatiotemporal dynamics of carcinogenesis.
INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) and spatial molecular

technologies have enabled unprecedented characterization of

the molecular and cellular pathways that comprise the tumor

microenvironment (TME).1,2 This has had a particularly profound

impact on the understanding of the complex immunosuppres-

sive pancreatic ductal adenocarcinoma (PDAC) TME and its

role in cancer progression and therapeutic resistance.3–7 Further
Ce
All rights are reserved, including those
characterization of premalignancies is critical to delineate the

evolutionary mechanisms of malignant transformations, the

impact of the complex microenvironment on facilitating carcino-

genesis, and the development of nearly universal therapeutic

resistance in PDAC. Among the multiple histologically distinct

premalignant lesions of the pancreas that potentially progress

to PDAC, pancreatic intraepithelial neoplasia (PanIN) is the

most frequent and well studied.8,9 PanINs therefore provide

the opportunity to characterize some of these evolutionary
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processes in PDAC. Because the diagnosis of PanINs is

restricted to formalin-fixed and paraffin-embedded (FFPE)

tissue, the studies on the comprehensive characterization of

molecular and cellular phenotypes of these atypical cells, and

on the other cell types in the surrounding microenvironment,

are rare and limited to bulk, target-based, and cell type-focused

sequencing.

Whole transcriptome spatial transcriptomics (ST) combines

gene expression profiling with spatial information tomap themo-

lecular and cellular landscape of cancer.2 By analyzing gene

expression within the tissue spatial context, it is possible to

examine tumor heterogeneity and intercellular interactions in

the microenvironment. The development of an ST technology

that can be performed on FFPE samples opens the opportunity

to profile PanIN lesions and the adjacent microenvironment.

Computational methods to discover the cellular and molecular

changes in the evolution of the TME are an essential component

of ST analysis and are being actively developed alongside the

experimental approaches.2 One drawback in ST data is the

lack of single-cell resolution.

Evenafter transcriptional profilesare isolated, relatingcomputa-

tionally estimated temporal changes in cellular phenotypes to

molecular markers of those phenotypes and their impact on the

dynamics of tumor progression remains a challenge. Performing

this analysis requires identifying spots associatedwith cell groups

of interest (e.g., from normal, low-grade [LG], and high-grade [HG]

PanIN) from which to infer cell state transitions. In principle, clus-

tering or other unsupervised learning analysis of gene expression

profiles from the ST data can identify these spots for this analysis.

However, the lack of single-cell resolution of the ST technologies

can limit the accuracy of these analyses. One solution to this prob-

lem is the use of spot deconvolution algorithms to estimate the cell

types that are represented in each spatial spot for robust data

analysis and interpretation.Many of these deconvolutionmethods

estimate cell type proportions per spot using a scRNA-seq refer-

ence that was generated from the same tissue or disease type

for this deconvolution.10,11 Although these methods provide

robust estimates, they are not suited for populations of cells that

are rare and are not applicable for diseases that cannot beprofiled

with dissociation-based single-cell technologies (e.g., PanIN

cells). Recently, a few methods have been developed to perform

spot deconvolution and cell type classification based on imaging

analysis. In FFPE ST, the possibility of staining and imaging the

sections before library preparations allows pathological examina-

tion of cell morphologies to automate single-cell resolved cell type

classification and deconvolution of ST data. Machine learning

methods have been developed to integrate cell morphology and

perform cell classification that will be integrated within ST coordi-

nates toprovide theproportionofeachspecificcell type inaspatial

spot or enhance the accuracy of clustering.12,13 However, gene

expression signatures are still required to identify cellular features

of interest before the analysis. While these unsupervised learning

methods are powerful, leveraging pathology expertise for cellular

labeling can enhance spot and region selection for more refined

analyses of gene expression changes within specific cellular

phenotypes.The laborious,manualannotation for theseworkflows

requires an automated and accurate manner to increase

robustness of biological findings from integrated imaging and

ST data.
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In this study, we demonstrate that three-fold integration

with ST, new imaging analysis technologies, and single-cell

PDAC atlases provides the opportunity to analyze the dynamic

cellular transitions that are associated with different stages of

PDAC progression. We present the ST analysis of 14 PanIN

lesions from 9 patients, including 5 rarely diagnosed HG PanIN

lesions. To analyze the data and overcome the computational

limitations to ST analysis, we built a method for three-way inte-

gration of imaging, ST, and scRNA-seq data to automate cellular

labeling of spots for subsequent supervised and unsupervised

learning of transcriptional changes during disease progression

in specific cell groups of interest. First, we adapt the recently

developed machine learning method, CODA,14 that automati-

cally identifies and annotates cells in the pancreatic microenvi-

ronment to provide cell annotations for ST spots. The resulting

gene expression analysis of the epithelial cells (normal and

PanIN) and the surrounding cells within the microenvironment

revealed that PanINs already express specific transcriptional

signatures (e.g., classical subtype) of invasive carcinoma and

the presence of fibroblasts resembling cancer-associated fibro-

blast (CAF) subtypes found within the PDAC TME. Second,

multi-omics integration with a reference scRNA-seq atlas of

PDAC,15 using the transfer learning method ProjectR,16,17 found

that a CAF-associated inflammatory and EMT (epithelial mesen-

chymal transition) pattern gradually decreases during PDAC in-

vasion and is associated with a compensatory increase in prolif-

eration pathways in PDAC carcinogenesis. These approaches

further enabled the design of custom panels for proteomics

and transcriptomics spatial technologies for confirmation of

these findings with single-cell resolution and creation of a spatial

multi-omics reference of PanINs. In summary, our experimental

and computational pipeline for imaging analysis andmulti-omics

integration is broadly applicable to analysis of cancer progres-

sion in different tumor types.

RESULTS

ST applied to FFPE specimens captures preneoplastic
pancreatic tissue architecture
To identify the cellular and molecular features of PanIN that are

still present in PDAC, we applied a whole transcriptome FFPE

ST protocol to profile a cohort of human PanIN samples and

developed a semi-supervised computational pipeline to perform

spot deconvolution and integration with a scRNA-seq PDAC

reference dataset (Figure 1A). The first step of this pipeline is

to assign broad cell type labels to spots at a single-cell resolution

from imaging using CODA, a machine learning approach initially

trained to identify and classify pancreatic cell types based on

their morphologies. The second part of our pipeline leverages

transfer learning, using ProjectR, to relate transcriptional

patterns from a scRNA-seq PDAC reference to quantify how

transcriptional changes in our PanIN dataset relate to changes

in advanced-stage cancer (Figure 1A).

In this study, we apply ST profiling to a test cohort of paired LG

and HG PanINs diagnosed in the same patients (4 patients’ spec-

imens, total numberof PanIN lesions= 8) and toa validationcohort

of 7 PanINs (5 patients, 6 LG, and 1 HG lesions). In total, we per-

formed ST profiling of 15 PanIN lesions (10 LG and 5 HG). Of

note, HG PanIN lesions are rarely diagnosed due to their



Figure 1. ST analysis of FFPE PanIN

(A) Pancreatic cancer surgical specimens in FFPE were examined, and the regions containing FFPE pancreatic intraepithelial neoplasia (PanIN) lesions were

identified for scoring using a 5 mm skin biopsy punch and sectioning onto the spatial transcriptomics (ST) slide. The stained images were used for machine

(legend continued on next page)
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challenging differential diagnosis of colonization of the duct by the

invasive carcinoma from the HG atypia of these premalignant

lesions, making the characterization of even this small number of

humanHG lesions a valuable reference resource for future studies.

Initial total RNA quality check indicated that all samples presented

high levels ofRNAdegradation (RIN�2) butwith a high concentra-

tionof200bpfragments (DV200R50%)compatiblewith theFFPE

ST platform. Following ST data generation, preprocessing, and

quality check, 14 out of the 15 samples (7 from the paired cohort

and 7 from the validation cohort; 9 LG and 5 HG) had sufficiently

high-quality data for subsequent analysis.

The ST data from our PanIN cohort provides combined stained

imaging and transcriptomics profiling from the same section

(Figures 1B, 1C, S1A, and S1B). PanINs are thought to be an inter-

mediate state between the healthy pancreas tissueandPDACand

require pathology examination as the diagnosis is based on

morphological identification of the atypical epithelial cells. There-

fore, it can be anticipated that the tissues will contain a combina-

tion of cell types and histological structures from both states (e.g.,

ductal cells, acinar cells, neoplastic cells, fibroblasts, acinar cells,

islets, immune cells, etc.).18We characterized the cellular distribu-

tion of PanINs and surrounding pancreas tissue by first applying

unsupervised clustering to the ST profiling data. The clustering

generated a total of 15 spatially resolved gene expression clusters

(Figures 1C and S2–S9). Similar to single-cell analysis, we anno-

tated the clusters through differential expression analysis to iden-

tify marker genes associated with each cluster (Figure S2). Using

this strategy, for example, we annotated one specific cluster to

PanIN based on the expression of TFF1, MUC5AC, TFF2,

MUC6, and CTSE; while another specific cluster, expressing

LCN2, GPX2, TCN1, KRT8, and ANXA4, was annotated to normal

ducts. Based on other cell type-specific markers, we were able to

annotate 4 fibroblast clusters, 2 immune cell clusters, 4 acini clus-

ters, 2 pancreatic islet clusters, 1 smooth muscle cluster, and 1

neural cell cluster (Figures S2–S9). The spatial distribution of the

gene expression clusters recapitulated the overall histological ar-

chitecture of the samples. The distribution of the normal and

neoplastic spots identified from clustering matches the initial pa-

thology identification of these cell types andwas further confirmed

by pathology examination. Almost all the gene expression spatial

clusters extend beyond the histological boundaries observed in

the stained sections into the adjacent cells (i.e., the same spatially

resolved gene expression cluster mapped to regions of distinct

cell types) (Figure S10A). This extended signal, or bleeding, could

be a result of technical artifacts in the ST technology leading to the

detection of marker genes of one cell type in the space (spot) of

the adjacent distinct cell type.19 This observation combined with

the lack of single-cell resolution of the ST data led us to hypothe-

size that incorporating the cellular labels obtained from imaging

analysis into our gene expression analysis could enhance the

robustness of the phenotypic characterization of those cells.
learning analysis for cell type identification and spatial spots deconvolution. Th

findings were validated with single-cell resolved transcriptomics and proteomics

(B) Discovery cohort stained sections were used for pathology examination and

(C) The unsupervised clustering of the spatial transcriptomics data identified gene

stained sections.

(D) Cell types indicated in the legend were defined automatically from cellular mor

thereby refining cellular annotations obtained from clustering alone.
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The first step of our new analysis pipeline aims to annotate

broad cell types of spots in the ST data, leveraging the matched

stained imaging for the FFPE-based ST platform. Several

methods overcome these observed limitations of the ST data

through spot deconvolution with reference scRNA-seq data.10,11

However, no scRNA-seq reference is available for human

PanINs due to the diagnosis in FFPE clinical blocks. Recent

computational work with joint analysis of histology features and

transcription can serve as powerful alternatives.12,13 We sought

to enhance these approaches by incorporating expert patholog-

ical knowledge of cellular labels to delineate relevant cellular fea-

tures of pancreatic precancer from the ST sections imaging. To

focus our transcriptional analysis on the transition from normal

through PanIN progression and the structures of the microenvi-

ronment, we applied the machine learning method CODA to the

stained images of the ST sections to automatically classify the

pancreatic cells. CODA is an imaging-based analysis approach

that uses deep learning semantic segmentation to identify

different cell types that have been trained specifically for the hu-

man pancreas, precancer, and cancer (acinar cells, islets of Lang-

erhans, fibroblasts, adipocytes, endothelial cells, ductal cells, and

neoplastic cells).14 In this study, we integrated CODA to the ST

analysis to obtain automated cell type annotation combined

with ST spots deconvolution (Figures 1D and S1C). In contrast

to the clustering analysis, imaging cell type annotations using

CODA are at single-cell resolution and, through integration with

the ST spots coordinates and dimensions, enable a true estimate

of the true proportion of cell types within each ST spot for robust

gene expression analysis (Figure S10B). To avoid unwanted bias

in the comparisons between normal duct and PanIN clusters,

we selected spots that were quantified as representing at least

70%of a unique cell type. Using this threshold for all the cell types,

wewere able to increase cell type purity from�25% to�90%and

from�45% to�95% for normal duct and PanIN clusters, respec-

tively, for example (Figure S10C). This enables supervised

analysis, defining marker genes through differential expression

analysis of spots annotated with known cellular features in

pancreatic precancer. We also observe elevated expression of

cluster-specific marker genes, such as CTSE, INS, and PRSS1

in PanIN and islet clusters, respectively (Figure S10D). This obser-

vation highlights the importance of spot annotation with machine

learning (CODA) prior to differential expression analysis or more

advanced multi-omics integration to single-cell reference data-

sets, as demonstrated through our subsequent analyses of the

PanIN microenvironment and progression.

PanIN-associated fibroblasts are a heterogeneous
population composed of the same subtypes detected in
invasive PDAC
The integration of imaging analysis and ST data provided the

unique opportunity to examine the fibroblast population adjacent
e ST analysis was integrated with an invasive cancer single-cell dataset. The

.

identification of PanINs and other pancreatic histological regions.

expression clusters whose location resembles the distribution observed in the

phologies of the stained sections using the machine learning approach CODA,
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to PanIN. While CODA broadly annotates stromal cells, the

PDAC TME is enriched with a heterogeneous population of

CAFs. They have been classified into three subtypes based on

transcriptional profiles, myofibroblastic CAFs (myCAFs), inflam-

matory CAFs (iCAFs), and antigen-presenting CAFs (apCAFs),

and can play dual roles by inhibiting or inducing PDAC progres-

sion.20–23 CAFs exert a tumorigenic role by providingmetabolites

for tumor cell survival, stimulating cell growth pathways through

paracrine signaling, and creating an immunosuppressive micro-

environment.24 However, a tumor-suppressing CAF-enriched

TME can reduce essential nutrients required for tumor progres-

sion and differentiation, while the same CAFs can be functionally

repolarized to release chemokines that will recruit immune cells

into the tumor.24

MyCAFs and iCAFs have previously been observed in pancre-

atic premalignant lesions in murine models that recapitulate

PDAC development, suggesting that they arise early during

tumorigenesis.25,26 Nevertheless, their presence was not previ-

ously described in human premalignant lesions of the pancreas.

Here, we leveraged our computational analysis approach to

isolate stromal cells in the ST data and further classify these cells

from the ST data using established gene markers22 to map the

distribution of myCAFs and iCAFs in the human PanIN microen-

vironment. In our cohort, the density of stromal cells inferred

fromCODA varied but were observed adjacent to each premalig-

nant lesion (Figure 1D, pink annotated regions). The further inte-

gration of CODA annotations with the ST transcriptional profiles

(Figure 2A) showed that a CAF common signature (panCAF) is

consistently expressed across the collagen-rich regions anno-

tated by CODA (Figures 2B and S11A, orange and red spots).

The expression of myCAF (Figures 2C and S11B) and iCAF

(Figures 2D and S11C) markers was detected in all samples

overlapping with the regions where panCAFs are present. The

presence of a recently described subtype of apCAFs was also

investigated using the transcriptional data in our cohort. The ap-

CAFswere first identified by scRNA-seq in a PDACmousemodel

and were shown to express major histocompatibility complex

(MHC)-II genes and present antigens to CD4+ T in vitro, acti-

vating their suppressive capability.22 In our study, expression

of the apCAF signature was detected in all samples in the Visium

ST data (Figures 2E and S11D).

Since CODA does not have resolution to annotate immune

cells because of their limited size and scant cytoplasm, and

ST does not provide single-cell resolution, the discrimination

of apCAFs from CD45+ immune cells (Figures 2F and S11E)

was performed using other spatial approaches with single-

cell resolution. The validation of the ST findings was per-

formed using imaging ST in situ RNA hybridization (Xenium,

103 Genomics), with a panel to detect 380 transcripts that

include epithelial, immune, and CAF markers (Table S1). In

contrast to Visium, Xenium provides single-cell resolution us-

ing cell segmentation determined by nucleus staining (as

described in STAR Methods) and was performed on 3 PanIN

lesions from the paired cohort (PanIN-HG1, PanIN-HG2, and

PanIN-HG3) that had the premalignant lesions still present

on the FFPE blocks. With this technology, transcripts are de-

tected using probes that, after binding to their targets, are

conjugated with fluorophores that then are detected, counted,

and mapped to each cell identified by a series of multiple
scans. This targeted ST approach also recapitulates the sam-

ple’s architecture, similar to what was observed with the tran-

scriptome wide ST clustering (Figure 3A). Epithelial cells

(normal and PanIN), myCAFs, iCAFs, and apCAFs were all

detected among the cells spatially profiled with single-cell

resolution (Figures 3A and 3B). With Xenium, it was possible

to confirm apCAFs in proximity to PanIN lesions (Figures 3A

and 3B). The apCAFs were annotated based on module

scores of apCAF marker genes and the absence of expression

of CD45 (PTPRC) (Figure 3C). The module score strategy was

used due to the broad expression of MHC II gene markers

(Figures 3D and 3E). Among all the cells in the tissue seg-

ments profiled (Figure 3F), apCAFs were found to comprise

up to 13.9% of the cells detected (Figure 3G). We also verified

that the apCAFs co-localize with CD4+ T cells in the regions

just adjacent to the PanINs (Figure S12), strong evidence for

the interaction between these cell types.

We further sought to confirm the presence of apCAFs using a

single-cell resolved proteomics approach. To do so, we per-

formed additional multiplex proteomics analysis of the PanIN

samples from the paired cohort with imaging mass cytometry

(IMC) using a customized antibody panel (Table S2) that was

specifically developed to identify the different CAF subtypes

(myCAF, iCAF, and apCAF) in PDAC. The proteomics analysis

with IMC corroborates the in situ gene expression data, showing

cellular co-localization of CAF marker proteins with MHC II pro-

teins. The presence of apCAFs was confirmed in all 5 samples

(PanIN-LG1, PanIN-HG1, PanIN-LG2, PanIN-HG2, and PanIN-

HG3) profiled by the concomitant expression of panCAFmarkers

(alpha-smooth muscle actin [SMA] and vimentin [VIM]) and MHC

II proteins (CD74 and HLA-DR) (Figures 3F and 3G). The pres-

ence of apCAFs is not restricted to the PanIN neighbor regions

(PanIN region [a], Figures 3F and 3G), but they are also found

in regions of fibrosis further from the premalignant lesions

(fibrosis region [b], Figures 3F and 3G). For a more accurate

quantification of the CAF in the IMC regions of interest, CAFs

were identified through the expression of COL, SMA, VIM, and

PDPN (Figure 3J). Due to the broad presence of collagen that

is detected by the expression of COL, the CAF detection was

refined by the co-expression of the panCAF markers and DNA

(Figures 3K and 3L). Subsequently, the apCAFs were identified

as cells expressing panCAF markers + DNA + CD74 (Figure 3M),

panCAF markers + DNA + HLADR (Figure 3N), and panCAF

markers + DNA + CD74 + HLADR (Figure 3O). The apCAFs

expressing only CD74 represent 0.28% to 6.33% of all CAFs de-

tected, apCAFs expressing only HLADR are 0.50% to 5.56% of

the CAFs, and apCAFs expressing both MHC II markers are rare,

comprising 0.08% to 1.39% of the CAFs identified (Figure 3P).

To determine apCAFs presence the areas with aggregates of im-

mune cells were excluded from the quantifications (Figure 3P)

The IMC data confirm the presence of apCAF in areas associ-

ated with PanIN and the low frequency of these modulatory

cells. The markers used for CAF classification are provided in

Table S3.

Altogether, these results demonstrate that the different

subtypes of CAFs that are present in PDAC can be detected

surrounding PanIN lesions, including the new class of apCAFs,

suggesting that the TME modulation by these cells occurs early

in pancreas tumorigenesis.
Cell Systems 15, 753–769, August 21, 2024 757



Figure 2. Spatial distribution of PDAC CAF subtypes in the discovery cohort

(A–D) (A) Cancer-associated fibroblast (CAF) localization was mapped using panCAF markers, (B) myofibroblastic-CAF markers, (C) inflammatory-CAF markers,

and (D) antigen presenting-CAF markers.

(E) CD45 expression was examined to identify regions where CAFs and immune cells were co-localized.
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ST identifies expression of both PDAC classical subtype
and CSC signatures in PanINs
PanIN lesions can develop into invasive PDAC. To identify PDAC

features that can be detected during the premalignant stage, we

leveraged the automated cell type annotation from CODA with

cluster-based annotations to classify spots to all pancreatic
758 Cell Systems 15, 753–769, August 21, 2024
cell types using a cut-off of 70%. For example, a spot was clas-

sified epithelial (normal or PanIN) if CODA quantified that in that

coordinate >70%of the cells were epithelial (Figure 4A). Next, we

characterized PanIN cell heterogeneity relative to the estab-

lished classical and basal-like PDAC subtypes.27 We found

that 13 (6 in the test cohort and 7 in the validation cohort) out



Figure 3. Confirmation of apCAF population using single-cell transcriptomics and proteomics

(A) Xenium clusters spatial distribution from a panel to detect 380 genes recapitulate the sample (PanIN-HG3) architecture. Cells identified as epithelial cells

(yellow), PanIN (red), and CAF subtypes apCAF (green), iCAF (orange), and myCAF (blue) are highlighted.

(legend continued on next page)
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of 14 PanINs express the PDAC classical subtype signature

(Figures 4B and S13A). The basal-like signature is not expressed

in any of the premalignant lesions (Figures 4C and S13B). This

observation supports the hypothesis that PDACs arise with a

classical phenotype and acquire the basal-like phenotype

upon progression and accumulation of molecular aberrations.28

Further studies to determine the classical subtype markers that

are critical for the transformation of PanIN into PDAC are neces-

sary to drive the development of early therapeutic interventions

and early detection tests to improve patients’ survival.

Only one HG PanIN sample from the paired cohort (PanIN-

HG3) expressed neither the classical nor the basal-like signa-

tures (Figures 4A, 4B, S12A, and S12B). Thus, we hypothesized

that this sample expresses a third transcriptional phenotype.

PDAC progression, resistance to therapies, and immune evasion

are partially associated with the presence of PDAC cells ex-

pressing cancer stem cell (CSC) markers.29 We verified the

expression of CSC markers among the PanINs in the paired

and validation cohorts. The only sample with a significantly

high expression of CSC markers is the one that did not express

the classical or the basal-like PDAC signatures (Figure 4D). The

presence of cells with stemness features suggests that some

mechanisms of resistance to therapies arise early in PDAC

progression.

Differential expression analysis between PanINs and
normal ducts identifies gradual increase of TFF1
expression during PanIN progression limited to the
classical phenotype
To further define the molecular features of PanINs, we merged

spots from all samples CODA annotated as normal and PanIN

ducts for each patient. Differential expression was performed

to identify gene expression changes across each patient’s pre-

malignant lesions. A total of 118 genes are differentially ex-

pressed in PanINs relative to normal ducts in the paired cohort

(Figure 4E), and their expression pattern discriminated PanINs

from normal ducts among the different samples (Figure 4F).

Among the top 20 up-regulated genes in the premalignant le-

sions of the paired cohort, only 5 genes (TM4SF1, CYP2S1,

CD55, FER1L6, and PSCA) had no known role in pancreas

tumorigenesis, suggesting that FFPE ST analysis is robust and

corroborates previous gene expression analyses in PanINs.30–32

The differential expression analysis of the validation cohort also

identified sets of genes that discriminate normal ducts from

PanIN lesions with common genes aberrantly expressed be-
(B) The HG PanIN is surrounded by a heterogeneous population of cells, including

of CD45 (PTPRC) expression, and elevated module scores for marker genes of a

(C) The apCAFs were annotated as cells with high apCAF signature module scor

(D and E) (D) Expression of the MHC II gene HLA-DRA and (E) of the CAF marke

(F) UMAP representing epithelial, PanIN, panCAF, myCAF, iCAF, and apCAF acr

(G) Percent composition of cell types in each sample that was profiled with Xeni

(H) Representative image of the pancreas with pancreatic intraepithelial neoplas

(I) Representative images of the pancreaswith PanIN (top row) and fibrosis (bottom

HLA-DR (green), CD74 (red), and pancytokeratin (PanCK, white) are shown.

(J) CAF detection in the IMC regions of interest was quantified by the expression

(K and L) DNA presence was used to exclude areas of collagen only from CAFs.

(M–O) (M) CD74 expression, (N) HLADR expression, and (O) CD74 and HLA-DR

(P) Proportion of apCAFs among the CAFs detected within the multiple regions o

(Q) Area enriched for CAFs (marked in red) used to measure the frequency of ap
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tween the two PanIN cohorts (Figures S13C and S12D). Pathway

analysis from the differentially expressed genes in the paired

cohort indicates enrichment for MYC and oxidative phosphory-

lation pathway mediators. Both signaling pathways have been

previously shown to be up-regulated in PanINs and PDAC,

particularly in association with progression from premalignancy

to invasive cancer, metastasis development, and resistance to

therapy33–35 (Figure S14).

Although predominantly consisting of the classical subtype,

the differential expression analysis highlighted the inter-sample

heterogeneity with only one differentially expressed gene

showing up-regulation in all classical samples (TFF1). TFF1 is

known to be overexpressed in PanINs and PDACs, and its pro-

tein levels have been suggested as a potential early detection

marker found in bodily fluids. In in vitro cell culture models, the

secreted form of TFF1 was shown to increase PDAC and stellate

cell motility without a significant impact on cancer cells prolifer-

ation.36 Since stellate cells are considered one of the precursors

to some PDAC CAF subtypes,24,37 it is possible that TFF1 is one

of the mediators of intercellular interactions among PanIN and

PDAC cells and CAFs. One interesting observation is that the

sample expressing the CSCmarkers signature does not express

high levels of TFF1. In contrast to all the other PanIN lesions, this

sample lacks expression of classical subtype signature, leading

us to hypothesize that the stemness phenotype is independent

of TFF1 expression (Figure S15).

The characterization of multiple ducts, including those across

stages of PanIN differentiation (mixed ducts), allows us to

trace the cellular changes associated with PanIN progression.

Additionally, ST analysis provides the ability to visualize the pre-

neoplastic differentiation stages and concomitantly map the

respective gene expression level changes (Figure 5A). We there-

fore compared expression changes between lesions classified

as LG or HG based on their morphology. Since CODA cannot

discriminate between LG and HG PanIN, the differential diag-

nosis was performed by pathology experts (KF, JWL, ET, and

LWD) (Figures 5B–5D). Using the pathological PanIN classifica-

tion, we identified one mixed duct (PanIN-HG2) containing

normal ductal cells as well as LG and HG PanIN cells (Figure 5E).

We expanded our differential expression analysis study to un-

cover additional gene expression changes across PanIN stages.

This analysis identified five other genes (MUCL3, C19orf33,

TSPAN1, SCD, and ACTB) that were up-regulated in HG lesions

relative to LG lesions (Figure S16). In addition, the level of

expression of MUCL3 and TSPAN1 gradually increased from
apCAFs. The apCAFs were identified based a panCAFmodule score, absence

pCAFs.

e.

r LUM co-localize with regions of apCAF high module scores.

oss the three samples analyzed with Xenium.

um.

ia (PanIN) and fibrosis. Regions with PanIN (a) and fibrosis (b) are highlighted.

row). H&E and imagemass cytometry images of SMA and vimentin (VIM, blue),

of panCAF markers (COL, SMA, VIM, and PDPN).

concomitant expression identified the apCAFs.

f interested profiled.

CAFs, excluding immune-rich regions.



Figure 4. PanINs transcriptional features

(A and B) (A) Six out of seven PanINs (black circles) expressed markers that characterize the classical subtype of pancreatic cancer, while (B) the basal-like

signature was not expressed by any of the premalignant lesions.

(C) The only sample that is neither classical nor basal-like expresses cancer stem cell (CSC) markers.

(D and E) (D) Differential expression analysis identified genes whose up-regulation (blue dots) or down-regulation (red dots) in PanINs, relative to normal ducts,

discriminate preneoplastic from normal cells (E).
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normal ducts through LG and HG lesions (Figures 5F and 5G).

The same pattern was observed for TFF1, which was found to

be up-regulated in the PanIN expressing the classical PDAC

genes. This gradual change in expression is best visualized in

one of the PanIN samples in which a single duct presents a

mix of normal, LG, and HG cells (Figure 5H).

Changes in PanIN progression map to transitions in
malignancy in PDAC
The examination of othermolecular alterations that are present in

PanINs and conserved in PDACs could provide new knowledge

about the early transcriptional events of pancreatic carcinogen-

esis and the mechanisms driving the continuous development

into invasive cancer. Our combined set of public domain

scRNA-seq PDAC datasets38 provides a cohort of over 61 sam-
ples that include true normal epithelial, tumor-adjacent normal

epithelial, and PDAC cells. Although cells in this scRNA-seq

data are from advanced PDAC tumors, we hypothesize that

comparison of the transcriptional changes between normal

and PanIN spots to the scRNA-seq data could quantify the

persistence of the premalignant changes in PDAC or which fea-

tures found in invasive tumors are detected in PanINs.Moreover,

it is possible that the scRNA-seq data contain unlabeled PanIN

cells from adjacent lesions to the tumor processed during disso-

ciation. Therefore, integrative analysis between the ST data and

scRNA-seq could further identify these cells to confirm molecu-

lar changes observed across grades of PanIN differentiation in

an independent, large-scale reference atlas. Therefore, further

computational methods for multi-omics integration of our ST

data of PanINs and scRNA-seq data in PDAC can supplement
Cell Systems 15, 753–769, August 21, 2024 761



Figure 5. Identification of transcriptional changes associated with PanIN differentiation grade

(A–D) (A) Workflow of CODA annotations to facilitate heterogeneity detection. (B) Normal ducts, (C) low-grade (LG), and (D) high-grade (HG) pancreatic intra-

epithelial neoplasias (PanINs) are morphologically distinct and can be classified by pathology examination.

(E–H) (E) As amodel for PanIN progression, a mixed pancreatic duct containing normal, LG, and HG cells was used to better visualize changes in expression. Top

genes from the differential expression analysis, (F) MUCL3, (G) TSPAN1, and (H) TFF1, show gradual increase from normal through LG until HG progression.
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our analysis of molecular changes in the epithelial cells that

underly carcinogenesis (Figure 6A).

We used the scRNA-seq data of 25,442 epithelial ductal cells

from 61 biospecimens collated from six previously published

PDAC scRNA-seq datasets to enable tumor progression anal-

ysis (Figure S17A). The uniformmanifold approximation and pro-

jection (UMAP) analysis of these cells identifies a phenotypic

switch between true normal epithelial cells, tumor-adjacent

normal cells, and within malignant epithelial cells, supporting

our hypothesis that these datasets likely contain unannotated

PanIN cells. Using this dataset, we verified that TFF1 expression

increases between normal epithelial cells, in tumor-adjacent

normal epithelial cells, and again further increases in a subset

of malignant PDAC cells (Figure S17B), mirroring the stage-spe-

cific increase in its expression observed in PanIN cells. This

integrative analysis further supports the association of this

gene with PanIN and invasive PDAC progression. TFF1 expres-

sion is almost undetectable in normal ductal cells. Surprisingly,

the normal ductal cells adjacent to tumor cells express low levels

of TFF1, suggesting that the transcriptionally normal surrounding

ducts are already programmed toward a premalignant state.
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To further delineate the molecular transitions malignant

epithelial cells undergo, our complementary study of the PDAC

scRNA-seq data applied the Bayesian non-negative matrix

factorization method CoGAPS39,40 to learn transcriptional pat-

terns that delineate transitions in the epithelial cells.38 In this

study, we integrated the patterns learned from the scRNA-seq

data with our ST dataset to determine the extent to which they

represent stage-related transitions in the transformation from

PanIN to PDAC. To enable the integrative analysis between ST

and scRNA-seq data, we adapted our transfer learning approach

ProjectR16,17 to spatial data integration by projecting the pat-

terns learned in the scRNA-seq data onto the epithelial spots

from the ST data (N = 240 spots; normal = 93, LG = 48, HG =

99). Among the patterns projected from the atlas onto the ST

data, a pattern enriched with genes involved in KRAS signaling

and proliferation (pattern 2) showed marked increase of pattern

weights from normal epithelium through LG and HG PanINs

(Figures 6B–6D and S17C). Increased proliferation during

tumorigenesis involving the pathways contributing to pattern 2

corroborates previously reported studies showing up-regulation

of pancreatic oncogenic signaling pathways in premalignancy
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Figure 6. Integration of PanIN ST data with invasive pancreatic cancer scRNA-seq using transfer learning

(A) The deconvolved ST data, after CODA annotation and quantification of cell types per spot, was used to integrate PanIN analysis with that of scRNA-seq from

human PDAC and subsequent validation with Xenium.

(B) The PDAC pattern 2 (proliferation) identified as highly expressed in PDAC cells from the atlas.

(C and D) The PDAC pattern 2 shows gradual increase from normal ductal cells through LG to HG PanINs.

(E) The PDAC pattern 7 (inflammation) presents decreased expression in PDAC cells relative to normal epithelium from the atlas.

(F and G) The opposite as observed with pattern 2, pattern 7 (inflammatory) decreases in PanINs relative to normal cells.

(H) In the Xenium data, the visualization of a mixed duct (normal + PanIN) highlights the trend between the PDAC patterns.

(I and J) (I) The projection of PDAC pattern 2 in the mixed duct and of the (J) PDAC pattern 7 confirmed the expression of both patterns using single-cell tran-

scriptomics with RNA in situ hybridization and the switch of cells that express one pattern or the other.
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initiation and progression.41,42 Pattern 7, representing a com-

bined inflammatory and EMT state associated with CAF density

(Figures 6E and S17D),38 is enriched in normal ductal cells and

dissipates with the development of early-stage PDAC and pro-

gression to advanced cancer. Pattern 7 also showed decreasing

levels over the course of progression from normal cells to PanIN

(independent of the differentiation grade), as demonstrated by

the increase in the number of spots with low projected weights

(Figures 6F and 6G). This same shift between PDAC patterns 2

and 7 remains when the data is projected within the ST spots

that have been classified as normal, LG, and HG by pathologists

(Figures S18A–S18D), which retains more spots with low epithe-

lial purity than the CODA classification.

We sought to validate the cellular features at a single-cell level.

The Xenium panel was customized to include pattern marker

genes from patterns 2 and 7 (10 genes and 103 genes, respec-

tively). First, we sought to validate that our transfer learning

approach could also be applied to quantify the occurrence of

these patterns defined from scRNA-seq data in Xenium despite

the reduced number of features. To test the robustness of trans-

fer learning, we projected the 8 PDAC patterns learned by
CoGAPS on the epithelial cells in the PDAC scRNA-seq data

only for the 362 genes in common between Xenium and the

PDAC scRNA-seq data. Spearman correlations were calculated

for each pattern between the original PDAC pattern weights and

the new PanIN projected weights. The most highly correlated

projected weights with original pattern weights were pattern 5

(R = 0.84, p < 2.2e�16), pattern 7 (R = 0.83, p < 2.2e�16), and

pattern 2 (R = 0.83, p < 2.2e�16). We attribute this high correla-

tion to the panel design selected from pattern marker genes,

designed specifically to delineate these phenotypes, demon-

strating the potential robustness of transfer learning analysis

from scRNA-seq to Xenium. Subsequently, we applied ProjectR

to identify the PDAC patterns 2 and 7 in the Xenium data. This

analysis supports the same trends observed in the ST Visium

data with a tradeoff between patterns 2 and 7 during PanIN pro-

gression, and that is even more evident when observing these

changes within sample PanIN-HG2 mixed duct (Figures 6H–

6J), corroborating and further refining the inferred phenotypic

changes in the scRNA-seq data of PDAC.

While the transfer learning analysis enables us to relate pheno-

typic changes between normal and tumor cells to PanIN
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progression, we hypothesized that our ability to identify specific

LG and HG lesions through ST could refine these epithelial tran-

sitions. Therefore, we performed further CoGAPS analysis on the

epithelial (normal and PanIN) ST spots annotated by CODA to

compare with the patterns learned from the scRNA-seq PDAC

atlas. We discover a pattern (ST pattern 3) that increases pro-

gressively from normal duct to LG through HG PanIN (Fig-

ure S19A) and is similar to the PDAC pattern 2 in terms of en-

riched pathways and projected distribution in the scRNA-seq

data (Figures S19B and S19C). We also uncovered three pat-

terns with the opposite trend (Figure S19A). Pathway analysis re-

veals these patterns are characterized by genes associated with

EMT and inflammation (Figure S19B). Two of these patterns (ST

patterns 2 and 5) show partial overlap with PDAC pattern 7

derived from the atlas (Figure S19C). The ST pattern 2 represents

an EMT-enriched pattern, while ST pattern 5 is enriched for in-

flammatory-related genes. These data demonstrate that these

ST patterns represent distinct components of the inflamma-

tory/EMT signature captured by PDAC pattern 7, and that they

both show relative attenuation in HG PanIN compared with

normal duct (ST patterns 2 and 5) and LG PanIN (ST pattern 5

only) (Figures S18A and S18B). Overall, when performed on the

PanINs, CoGAPS recovers a gene signature similar to prolifera-

tive PDAC pattern 2 and separately recovers the inflammatory

(ST pattern 5) and EMT (ST pattern 2) signatures represented

by PDAC pattern 7.

The integration of PanIN ST data and the single-cell PDAC

data provides further evidence that during PDAC initiation, as

PanIN lesions develop to the invasive state, there is a contin-

uous increase in proliferation capability in combination with

loss of inflammatory signaling in epithelial cells that is poten-

tially driving an immunosuppressive TME or tumor immune

evasion. While these findings have to be further validated,

this analysis demonstrates the potential of using transfer

learning to integrate spatial and single-cell multi-omics data-

sets generated through different experimental approaches

and custom panel designs.

DISCUSSION

ST technologies are uncovering new molecular and intercellular

interactions that provide insights into how these complex

signaling networks mediate cancer development and progres-

sion.2 In this study, we applied an FFPE compatible ST

approach43 to profile a novel cohort of PanIN samples progress-

ing from LG to HG lesions. An independent cohort with the same

technology, additional single-cell resolution spatial proteomics

and imaging transcriptomics profiling, and independent

scRNA-seq data of PDAC tumors are used for validation. Our

study aimed to uncover the cellular and molecular features

potentially associated with the progression from premalignan-

cies to invasive PDAC. For these analyses, we introduced a

new imaging, spatial multi-omics, and scRNA-seq integration

analysis pipeline to infer phenotypic transitions in carcinogen-

esis. The major innovation of this pipeline is leveraging two ma-

chine learning methods for integrative analysis across imaging,

ST profiles, and scRNA-seq data to automatically infer spots

associated with disease-relevant cellular features in the stained

imaging in the ST analysis pipeline.
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The first machine learning method, CODA,14 enabled the

automated assignment of cell types to ST spots using single-

cell resolution to classify the cells in each sample based on the

imaging of the each ST section. In contrast to other recent inte-

gration methods that perform purely unsupervised co-clustering

of morphology and gene expression for deconvolution, like Star-

fysh and iSTAR,12,13 CODA was specifically trained to embed

pathological knowledge to automatically annotate cell types in

pancreatic precancer.44 Unlike computational spot deconvolu-

tion methods that rely on prior knowledge about the molecular

features of cell types, such as gene expression signatures

(e.g., BayesPrism and RCTD),10,45 our artificial intelligence

method for cellular purification requires no prior reference mo-

lecular atlas. This is particularly useful when studying histologic

features that are difficult to confidently annotate in scRNA-Seq

data, such as PanIN and other premalignancies that are molec-

ularly similar to PDAC. Additionally, purifying transcriptomic

groups by morphology eliminates the selection bias introduced

by predetermined molecular features, and thus preserves

within-group heterogeneity and facilitates the study of poorly

characterized transcriptomic features. This imaging and ST

analysis integration facilitated accurate assignment of cell types,

selection of spots using cell purity as a threshold for downstream

gene expression analysis, providing a framework for future semi-

supervised ST deconvolution methods that incorporate expert

pathological knowledge for analysis.

The second machine learning method on our pipeline enables

inference of cell state transitions and their relation to reference

scRNA-seq data to delineate the molecular mechanisms of

PDAC carcinogenesis. Annotating spots to known cellular fea-

tures from the stained section enables us to significantly improve

the overall purity to enhance even differential expression anal-

ysis and unsupervised non-negativematrix factorization analysis

comparing the molecular changes between normal and PanIN

ducts. While focused on epithelial cells, we also applied this im-

aging enhancement to refine gene expression signatures of

pancreatic islets and stromal cells. Beyond these comparative

analyses, we sought to further determine which dynamic

phenotypic transitions in these cells remain in advanced PDAC

and if candidate PanIN cells from tumor-adjacent lesions can

be identified in reference scRNA-seq data from dissociated tis-

sue. Therefore, the second computational method in our new

ST analysis pipeline, ProjectR,16,17 allowed the integration of

scRNA-seq from invasive PDACs with ST data from PanINs to

relate themechanisms associated with PDAC initiation to subse-

quent progression. While this study is focused on PanIN pro-

gression, this pipeline could enable important future work

leveraging different datasets of the distinct pancreatic precursor

lesions to compare transcriptional programs and identify the

mechanisms of progression into invasive PDAC. Although this

study focused on epithelial cells, our combined data-integration

pipeline is applicable to any cell type shared between CODA

annotations and scRNA-seq data and provides a broader

multi-omics framework for the study of carcinogenesis in

different tissue types.

Applying our combined experimental and computational

approach to PanIN samples, we observed for the first time the

presence of CAFs and the different subtypes (myCAF, iCAF,

and apCAF) in premalignant human lesions. These subtypes
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were only previously described in PDAC in humans.20,22 Our

quantification of apCAFs by ST detected that as many as

13.9% of cells in a section containing PanIN expressed apCAF

signature genes and no CD45. Protein validation by IMC

confirmed the presence of these apCAFs in proximity to PanIN

at lower frequency. Of note, the IMC data were generated using

a panel that was specifically designed to detect pancreatic asso-

ciated fibroblasts and CAFs, limiting the detection of cell types,

and the proportion of apCAFs can only be determined relative to

the total CAFs present in the regions profiled. In general, CAFs

are themost abundant cell type in the PDAC TME and are known

to influence tumor cell behavior and to create an immunosup-

pressive environment.46 The presence of these regulatory cells

in human pancreatic premalignant lesions is not well described,

but our findings suggest that CAF-induced TME remodeling is an

early event with a durable impact on PDAC development. In a

recent publication, Carpenter et al. used ST to profile PanIN

diagnosed in normal pancreatic tissue collected from healthy or-

gan donors and observed that the fibroblasts adjacent to the

healthy-associated PanINs are transcriptionally different from

healthy pancreas fibroblasts and PDAC-associated CAFs, but

with similar heterogeneity observed in the latest.47 This suggests

that even in patients without PDAC, the healthy microenviron-

ment adjacent to the PanINs is already being reshaped, the

same way we observed in our PDAC-associated samples.

Further studies are necessary to examine the specific interac-

tions driven by the different CAF subtypes, how they modulate

premalignant cells, and other cellular components of the PDAC

TME. Such knowledge is critical to guide the development of

new therapeutic interventions that inhibit or revert CAF onco-

genic and immunosuppressive activity with the goal of intercept-

ing PDAC development.

ST analysis of the PanINs also identified transcriptional sig-

natures that are known to be associated with PDAC pheno-

types. PDACs are classified into classical and basal-like

transcriptional subtypes.27 Classical PDACs present a better

prognosis and represent most tumor cells found in early-stage

cancers before patients receive treatment. This supports the

hypothesis that all PDAC initially develops from the classical

phenotype, and there is a diverging point during the tumorigen-

esis in which some cells will differentiate into the basal-like

phenotype. This classical to basal-like transition is usually

expanded by chemotherapy as resistance develops.27,28

Further supporting this hypothesis, is the fact that the PanIN le-

sions spatially profiled in this study and by Carpenter et al.47

only express the classical signature. In our cohort, there was

only one sample that could not be classified as classical or

basal-like but that expressed a CSC signature. CSCs drive

aggressive disease, and their presence is associated with

resistance to therapies, local recurrence, and development of

metastasis.48–50 The presence of cells expressing CSC

markers in PanINs was previously described in a mouse model

that mimics PDAC development51 and in human samples,52 but

little is known about the mechanisms leading to CSC genes up-

regulation and their role in PanIN initiation and development.

Our observation that this stemness signature is not seen in

cells expressing the classical subtype suggests that atypical

cells with stemness features are a rare, distinct population

that arises in early premalignant stages and that these cases
will potentially present with distinct behavior and response to

the current therapies. Further investigation in a larger cohort

is needed to determine the frequency of this rare stem cell-

related mechanism of progression, the pathways driven by

stemness, and how these cells are interacting with the CAFs

and other cells in the TME to modulate PDAC biology. Our

study is the first to our knowledge to observe CSC markers ex-

pressed by a PanIN lesion, but we note that a recent multi-

omics study found a population of CD133+ iCAFs that express

CSC markers, but these markers were not observed in PDAC.53

The presence of CSCs and CAFs in PanINs suggests that the

features associated with resistance to therapies in PDAC arise

early during tumorigenesis. As mentioned previously, further

oriented studies are necessary to determine how the interac-

tions between these cell types can modulate additional fea-

tures of resistance to therapies and progression of PDACs.

Differential expression analysis of the ST data shows that LG

and HG PanINs are transcriptionally similar. Among the few

genes differentially expressed between these two PanIN grades,

TFF1, frequently overexpressed in PanIN, demonstrated gradual

increase during PanIN progression, but little is known about its

role in tumorigenesis. As mentioned previously, secreted TFF1

could be involved in tumor cell interactions with CAFs36,54 Tran-

scriptional differences were also detected between healthy

pancreas PanINs and tumor associate PanINs by Carpenter

et al.47 A few similarities between PanINs in healthy pancreas

and tumor-associated PanINs that were commonwith our study,

such as the overexpression TFF1. The authors suggest that this

latest observation suggests that increased levels of TFF1 are

a feature of PanINs that are lost during the progression to

PDAC since they showed that TFF1 expression is rare in PDAC

cells. However, further integrative analysis is needed to make

this direct comparison between PanIN progression and

advanced PDAC.

Fully relating these atypical cell state transitions inferred in ST

data to cancer progression requires relating these transcriptional

states across the transition, from normal epithelial through pre-

malignancy to malignant PDAC cells. We demonstrate that

transfer learning approaches developed to integrate different da-

tasets can be extended to relate spatial data frompremalignancy

to reference scRNA-seq data. With this integrative analysis

approach to relate mechanisms in advanced PDAC carcinogen-

esis to premalignancy, we observe that unsupervised learning

analysis directly on the epithelial spots in our ST Visium data

more specifically separates EMT and inflammatory signaling as

two distinct cellular phenotypes in PanIN progression. Still, this

two-stage computational approach integrating imaging and ST

data of PanINs with scRNA-seq data of PDAC tumors enabled

us to identify a transition from inflammatory signaling in

neoplastic cells from LG PanIN to cellular proliferation in later

stages of carcinogenesis. In our complementary single-cell atlas

study that identifies this inflammatory signaling, we further corre-

lated this transition with CAF abundance and validated the ability

of CAFs to promote this signaling in a novel human organoid co-

culture model.38

Although we used a limited sample number with an initial total

of 14 PanINs (9 LG and 5 HG), we were able to corroborate pre-

vious findings related to PanINs and discover features that are

common to invasive PDAC. Due to the small size of this cohort,
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the findings cannot be extrapolated or generalized for clinical im-

plications, but we are reassured that our cohorts recapitulate

many of the well-characterized features of PanIN since these

two cohorts (paired and validation) were prepared at different

times using different versions of the commercial reagents and

preprocessing software. The paired cohort (3 LG and 4 HG

PanIN) was prepared, and the data were preprocessed using

prototype reagents and software, while the validation cohort

(6 LG and 1 HG PanIN) used more recent versions of both. In

this scenario, the replicability of the findings between both co-

horts is another certification that the findings of the ST analyses

are robust. Another limitation is the lack of single-cell resolution

from the ST platform (Visium). Although we were able to

dramatically increase average spot purity by integrating Visium

with CODA, our unbiased clustering and differential expression

results may still contain artifacts originating from undesired

intra-spot cell type mixture. However, using additional high-

dimensional spatial single-cell transcriptomics (Xenium) and

proteomics (IMC), we were able to validate the presence of spe-

cific cell types, mainly of apCAFs, that are critical for PDAC

biology. These combined spatial multi-omics datasets enabled

us to characterize the microenvironment in which PanINs

develop and showed for the first time the presence of CAFs

surrounding human PanINs and their impact on neoplastic cell

signaling. Further analysis of the transcriptomics and proteomics

spatial single-cell datasets could uncover new cellular and

molecular features of CAF and premalignancy interactions. Our

cohort included samples with varying stromal and acinar cell

composition, but we did not observe correlations between

PanIN transcriptional profiles with the adjacent cell types due

to the limited size. To examine if the CAFs surrounding the

PanINs remodel the premalignant microenvironment and influ-

ence premalignancy progression, a larger cohort with a more

stringent selection criteria would be better suited. Patients’

clinical features and outcomes (e.g., tumor stage, metastasis,

response to therapies) would be critical to unveil the conse-

quences of CAF-PanIN (or PDAC) interactions in PDAC tumori-

genesis. Such a specific cohort would allow correlative analysis

between clinico-pathological features and TME composition.

Nonetheless, we demonstrate that multi-omics analysis enabled

by FFPE ST, imaging data analysis, and scRNA-seq data lead to

a model that allows the investigation of molecular features that

are present in premalignancies and invasive carcinomas of the

pancreas. Moreover, this novel hybrid experimental and robust

computational pipeline provides broadly applicable tools to

create a molecular and cellular model of the pathways that un-

derlie carcinogenesis from multi-modal data spanning distinct

high-dimensional transcriptomics and spatial molecular technol-

ogies. Our pipeline will facilitate analyses of future datasets

aiming to characterize transcriptional changes that are selected

based on grade of differentiation to better understand the mech-

anisms of tumorigenesis in different tissues.
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15. Guinn, S., Kinny-Köster, B., Tandurella, J.A., Mitchell, J.T., Sidiropoulos,

D.N., Loth, M., Lyman, M.R., Pucsek, A.B., Zabransky, D.J., Lee,

J.W., et al. (2024). Transfer Learning Reveals Cancer-Associated

Fibroblasts Are Associated with Epithelial-Mesenchymal Transition and

Inflammation in Cancer Cells in Pancreatic Ductal Adenocarcinoma.

Cancer Res. 84, 1517–1533. https://doi.org/10.1158/0008-5472.CAN-

23-1660.

16. Sharma, G., Colantuoni, C., Goff, L.A., Fertig, E.J., and Stein-O’Brien, G.

(2020). projectR: an R/Bioconductor package for transfer learning via

PCA, NMF, correlation and clustering. Bioinformatics 36, 3592–3593.

https://doi.org/10.1093/bioinformatics/btaa183.

17. Stein-O’Brien, G.L., Clark, B.S., Sherman, T., Zibetti, C., Hu, Q., Sealfon,

R., Liu, S., Qian, J., Colantuoni, C., Blackshaw, S., et al. (2019).

Decomposing Cell Identity for Transfer Learning across Cellular

Measurements, Platforms, Tissues, and Species. Cell Syst. 8, 395–

411.e8. https://doi.org/10.1016/j.cels.2019.04.004.

18. Hruban, R.H., Goggins,M., Parsons, J., and Kern, S.E. (2000). Progression

model for pancreatic cancer. Clin. Cancer Res. 6, 2969–2972.

19. Ni, Z., Prasad, A., Chen, S., Halberg, R.B., Arkin, L.M., Drolet, B.A.,

Newton, M.A., and Kendziorski, C. (2022). SpotClean adjusts for spot

swapping in spatial transcriptomics data. Nat. Commun. 13, 2971.

https://doi.org/10.1038/s41467-022-30587-y.
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Conjugated IMC antibodies N/A All information on clones, companies,

dilution factors, etc are included in

Table S2.

Chemicals, peptides, and recombinant proteins
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Xylene, Histological Grade Milipore Sigma Catalog #534056
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Bluing reagent Dako Catalog #CS70230-2

Eosin Y-solution, Alcoholic Milipore Sigma Catalog #HT110116

Tris 1M, pH 7.0, RNase-free Thermo Fisher Scientific Catalog #AM9850G

PBS 1x, pH 7.4 Corning Catalog #21-040-CV

Tween 20 Thermo Fisher Scientific Catalog #28320

KAPA SYBR FAST qPCR Master Mix (2X) KAPA Biosystems Catalog #KK4600

SPRIselect Reagent Beckman Coulter Catalog #B23318

Ethyl Alcohol, Pure (200 proof, anhydrous) Millipore Sigma Catalog #E7023-500ML

Potassium Hydroxide Solution, 8M Millipore Sigma Catalog # P4494-50ML

Qiagen Buffer EB Qiagen Catalog # 19086

Glycerol solution Milipore Sigma 49781

Hydrochloric acid solution, 0.1N Fisher Chemical SA54-1

TE buffer (pH9.0) N/A N/A

Sodium dodecyl sulfate solution Milipore Sigma Catalog #71736-500ML

SSC Buffer 20x, Concentrate Milipore Sigma Catalog #S6639-1L

Critical commercial assays

RNeasy extraction kit Qiagen Catalog #73504

Bioanalyzer RNA 6000 Pico Kit Agilent Catalog #5067-1513

High Sensitivity DNA Kit Agilent Catalog #5067-4626

Visium Spatial for FFPE Gene Expression

Kit, Human Transcriptome, 16 rxns

10x Genomics Catalog #1000336

Dual Index Kit TS Set A, 96 rxns 10x Genomics Catalog #1—251

Software and algorithms

NDP Scan v3.4 Hamamatsu N/A

Space Ranger 10x Genomics N/A

Seurat N/A N/A

CODA N/A N/A

CoGAPS N/A N/A

ProjectR N/A N/A

Other

Epredia HM 355S Automatic Microtome Fisher Scientific Catalog #23-900-672

Epredia MX35 Premier Disposable

Microtome Blades, Low Profile

Fisher Scientific Catalog #3052835

DNA LoBind Tubes, 1.5mL Eppendorf Catalog #022431021

TempAssure PCR 8-tube strip USA Scientific Catalog #1402-4700

MicroAmp Fast Optical 48-well

reaction plate

Thermo Fisher Scientific Catalog #4375816

48-well Optical Adhesive Film Thermo Fisher Scientific Catalog #4375323
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REAGENT or RESOURCE SOURCE IDENTIFIER

Coplin jars VWR Catalog #100500-232

Coverslips Fisher Scientific Catalog #12-544-EP

2100 Bioanalyzer Agilent Catalog # G2939BA

10x Genomics Accessories (Thermocycler

Adaptor, Visium Spatial Imaging Test Slide,

10x Magnetic Separator, Slide

Alignment Tool)

10x Genomics Catalog #1000194

C1000 Touch Thermal Cycler Bio-Rad Catalog #1851197

Veriti 96-Well Thermal Cycler Thermo Fisher Scientific Catalog #4375786

NanoZoomer-XR Hamamatsu Catalog #L12225-01

Deposited data and code

Processed PanI spatial transcriptomics This paper GEO: GSE254829

High resolution images for CODA analysis This paper Zenodo: doi: https://doi.org/10.5281/

zenodo.11243954

Imaging mass cytometry data This paper Zenodo: doi: https://doi.org/10.5281/

zenodo.11243954

Code for spatial transcriptomics This paper Zenodo: doi: https://doi.org/10.5281/

zenodo.11478317

Code for CODA analysis This paper Zenodo: doi: https://doi.org/10.5281/

zenodo.11477585
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by lead contact, Luciane Ka-

gohara (ltsukam1@jhmi.edu).

Materials availability
This study did not generate new materials.

Data and code availability
d Data: There are restrictions to the availability of sequencing data. This is a retrospective cohort, and it is not possible to consent

these patients with historic samples, particularly those with highly aggressive and rapidly lethal disease. As such, the IRB has

requested that we do not publicly share the raw sequencing data from each patient. The data is securely stored within a

Johns Hopkins University patient data system. The sequencing data reported in this paper will be shared by the lead contact

(Dr. Luciane T. Kagohara – ltsukam1@jhmi.edu) upon request. The data is only available through collaboration following

approval of the lead contact and Johns Hopkins University IRB. The processed data from spatial transcriptomics experiments

(Visium and Xenium) are deposited in the Gene Expression Omnibus (GEO) (GEO: GSE254829). The high resolution images

used for CODA machine learning cell type annotations and the IMC data are deposited in Zenodo (Zenodo: doi: https://doi.

org/10.5281/zenodo.11243954).

d Code: The code for the spatial transcriptomis analyses are available at Zenodo https://zenodo.org/records/11478318 (Zenodo:

doi: https://doi.org/10.5281/zenodo.11478317) and for CODA analysis at https://zenodo.org/records/11477585 (Zenodo: doi:

https://doi.org/10.5281/zenodo.11477585).

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

FFPE pancreatic ductal adenocarcinoma (PDAC) surgical specimens collected from 2016 to 2020 were examined by experienced

pathologists (KF, JWL, ET and LWD) and PanINs present in the specimens were marked and classified as low- and high-grade by

experienced pathologists. Only PanIN lesions with a unanimous diagnosis and grading were included in the study. The samples

were obtained from the Johns Hopkins University School of Medicine Department of Pathology archives under Institutional Review

Board approval (IRB00274690) under a waiver of consent. Samples were distributed into two cohorts: test (PanIN-LG1, PanIN-HG1,

PanIN-LG2, PanIN-HG2, PanIN-LG3, PanIN-HG3, PanIN-HG4) and validation (PanIN-R-LG1, PanIN-R-LG2, PanIN-R-LG3, PanIN-

R-LG4, PanIN-R-LG5, PanIN-R-HG1, PanIN-R-LG6). For ST analysis, new sections were prepared onto the ST slides and stained
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prior to sequencing library preparations. The test cohort sections were stained with hematoxylin and the validation cohort with he-

matoxylin and eosin (H&E). Pathology revisions of the test cohort were performed by KF, LDW and JWL; while the revisions for the

validation cohort were done by ET, LDW and JWL.

METHOD DETAILS

RNA quality control
All samples selected for the study had their RNA quality checked prior to the ST slides preparation. Total RNAwas isolated from 20um

sections of each sample using the RNase FFPE kit (Qiagen), following manufacturer’s instructions. RNA quality was measured using

the DV200 assay on the Bioanalyzer (Agilent) to determine the proportion of fragments with �200bp in the sample. RNA quality was

considered good if DV200 > 50%.

Spatial transcriptomics slide preparation
The ST data was generated using the commercial platform Visium FFPE (10x Genomics). The slides are designed to accommodate a

total of 4 sections with a maximum size of 6.5 x 6.5 mm.We used amanual method for minimal manipulation of the FFPE blocks from

clinical specimens to fit the 6.5x6.5 mmdedicated areas of the ST slides (Visium, 10x Genomics). Briefly, for the specimens that were

larger than the designated regions of the Visium slides, we gently scored the surface of FFPE clinical blocks to isolate the area con-

taining PanINs for profiling in the limited area of the Visium slide (Figure 1A).We scored the selected sample area containing the PanIN

using skin punches of 5mm in diameter. The skin punches were used directly on the FFPE blocks to delimit the area of interest, so

when the blockwas sectioned in themicrotome the PanIN containing region was detached from the rest of the section and could then

be placed in the ST capture area of the slides (Figure 1A). A 5 mm section from each sample with 5mm in diameter was used for the ST

analysis. Upon preparation, the slides were incubated at 42oC and then stored in a desiccator until use.

Spatial transcriptomics data generation
Using the Visium FFPE (10x Genomics) platform and following manufacturer’s validated protocol the samples were deparaffinized,

stained with hematoxylin (discovery cohort) or H&E (validation cohort), and scanned using the Nanozoomer scanner (Hamamatsu) at

40x magnification. Human probe hybridization was performed overnight at 50oC. Following probe ligation, the RNA was digested,

and the tissue was permeabilized for the release, capture, and extension of the probes. The designated area for each sample is

covered by probes containing oligo-d(T) that capture the probes by a poly-A tail sequence present in the probe sequence. The

sequencing library preparations were performed as instructed by the manufacturer using the extended probes as the template.

All libraries were sequenced with a depth of at least 50,000 reads per spot (minimum of �250 millions per sample) at the

NovaSeq (Illumina). The Visium Human Transcriptome Probe Set v1.0 contains probes to 19,144 genes and after computational pre-

processing (filtering for probes off-target activity) provides gene expression information for 17,943 genes.

Cell type annotation using transfer learning from stained imaging
Seven microanatomical components of human pancreas tissue were multi-labelled using a semantic segmentation workflow. The

seven components recognized were (1) islets of Langerhans, (2) normal ductal epithelium, (3) vasculature, (4) fat, (5) acinar tissue,

(6) collagen, and (7) pancreatic intraepithelial neoplasia (PanIN). Briefly, fifty examples of each tissue type were manually annotated

using Aperio ImageScope. Half of the newly generated annotations were used in the training dataset for the convolutional neural

network and the other half were used as an independent testing dataset to evaluatemodel performance. The testing dataset revealed

an overall accuracy of 94.0% in classification of tissues in the TMAs. Following training, the tissue images were segmented to to tiles

of 1mm each.

Nuclear coordinates were generated via the detection of two-dimensional hematoxylin or H&E intensity peaks. Briefly, the TMA

images were down sampled to 1 mm/pixel resolution. To adapt CODA to the hematoxylin only stained images (test cohort), the color

image was converted to greyscale. No changes were necessary for the H&E stained sections (validation cohort). The image was

smoothed using a Gaussian filter and two-dimensional intensity peaks with minimum radii of 2mm were identified as nuclear

coordinates.

Registration of ST data with cell type annotations
The low-resolution image used for the Visium pre-processing with Space Ranger was registered to the high-resolution tissue image

used for microanatomical measurements to integrate the two workflows. The registration utilized the fiducial markers present on the

ST glass slide to estimate the registration scale factor and translation. As registration was performed on two scans of identical tissue

sections, it was assumed that rotation was not necessary. Here, the low-resolution imagewas registered to the high-resolution image

(rather than the other way round) so that the scale factor was always greater than 1 and ensuring that the 1 mm resolution of the tissue

micro annotations was preserved. First, the fiducial markers in each pair of images were segmented by identification of small,

nonwhite objects surrounding the larger TMAs. Nonwhite objects were determined to be pixels with red-green-blue standard

deviations greater than 6 in 8-bit space. These objects were morphologically closed and very small noise (<50 pixels) were removed.

The fiducial markers were then determined to be objects in the image within 20% of the median object size (as many fiducial

markers existed for each corresponding tissue image). This process resulted in fiducial image masks for the high-resolution and
e3 Cell Systems 15, 753–769.e1–e5, August 21, 2024
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low-resolution tissue images. With these masks, four possible registrations were calculated to account for the situation where the

Visium analysis was performed on the tissue image rotated at a 0-, 90-, 180-, or 270-degree angle. For each registration, the corner

fiducial markers of the low-resolution image were rescaled and translated to minimize the Euclidean distance to the fiducial markers

of the high-resolution image. Of the four registration results, the registration resulting in the greatest Jaccard coefficient between the

high-resolution and low-resolution fiducial masks was chosen. For the eight TMAs, the average Jaccard coefficient of the fiducial

masks was 0.94.

The registration information used to overlay the low-resolution tissue image to the high-resolution tissue imagewas used to convert

the coordinates corresponding to the location of the Visium assessment in the low-resolution image into the high-resolution images

coordinate system. Once the Visium coordinates were registered to the high-resolution image, the generated tissue microanatomy

composition and cellularity were calculated for regions within 25mm of each coordinate. For each Visium coordinate, pixels in the

micro-anatomically labelled mask image within 25mm of that coordinate were extracted. Tissue composition was determined by

analyzing the % of each classified tissue type within that dot. The cellularity of each dot was determined by counting the number

of nuclear coordinates within 25mm of each Visium coordinate. Cellular identity was estimated by determining the microanatomical

label at each coordinate where a nucleus was detected (a nucleus detected in the same pixel where the semantic segmentation

model detected normal ductal epithelium was labelled an epithelial cell).

Spatial transcriptomics data analysis of PanIN samples
Sequencing data was processed using the Space Ranger software (10x Genomics) for demultiplexing and FASTQ conversion of

barcodes and reads data, alignment of barcodes to the stained tissue image, and generation of read counts matrices. The

processed sequencing data were inputs for the analyses using the Seurat software.55–58 Data preprocessing with Seurat involved

initial visualization of the counts onto the tissue image to discriminate technical variance from histological variance (e.g.: collagen

enriched regions present lower cellularity that reflects in low counts). The filtered data was normalized using the SCTransform

approach that uses a negative binomial method to preserve biological relevant changes while filtering out technical artifacts.

Following normalization, data from all slides were merged and batch correction was performed with Harmony from harmony_0.1.0.

Unsupervised clustering was subsequently performed on the harmony reduction using the Louvain algorithm as implemented by

Seurat.55–58

Louvain clusters were annotated using the overlap of CODA annotations and quantifications per spot with well-characterized

marker genes. Neoplastic and ductal epithelium groups were generated through selecting spots from the respective Louvain cluster

that were estimated to be greater than or equal to 70% of the respective cell type on CODA. The data dimensionality was reduced

using PCA for clustering and in tissue visualization of the transcriptional clusters. Unsupervised clustering was performed based on

the most variable features (genes). Differential gene expression analysis of normal ducts and PanINs, and low and high grade lesions

were performed using the MAST test59 as implemented by Seurat. For comparisons performed across different slides, the slide was

assigned as a latent variable and the matrix was prepared using PrepSCTFindMarkers to account for the multiple SCT models.

Pathway analysis was performed using GSEA v4.2.1.60,61 High- and low-grade PanIN spots were subset from the neoplastic Louvain

cluster by pathologists (KF, JWL, LT and LWD) annotation using a custom-made Shiny app derived from the SpatialDimPlot function

in Seurat. Violin plots, spatial plots, were generated in Seurat. Volcano plots were generated in ggplot2.62 Heatmaps were generated

using ComplexHeatmap.63

High-dimensional RNA in situ hybridization (Xenium, 10x Genomics)
The high-dimensional RNA in situ hybridization was performed at 10x Genomics facilities following manufacturer’s instructions.

Xenium was performed on 3 samples from the paired cohort (PanIN-HG1, PanIN-HG2 and PanIN-HG3) with PanIN lesions available

in same area profiled with Visium. The sections were placed on the Xenium slides and deparaffinized and decrosslinked for optimal

probe hybridization. The probes that hybridized to transcripts in the sample were ligated, amplified and conjugated to fluorescent

probes in the Xenium Analyzer. The fluorescence captured by the device was preprocessed for visualization using the Xenium

Explorer software. Finally, the sections were stained with hematoxylin and eosin and scanned. The data was analyzed using Seurat,

following similar steps as described above for the Visium analysis. Briefly, the outputs from Xenium analyzer served as input for

Seurat. Briefly, after Xenium data quality check (visualization of transcripts detected distribution in the tissue), the data was normal-

ized (SCTransform) and we performed unsupervised clustering. Each sample was analyzed individually. Individual cells were deter-

mined by the Xenium Explorer cell segmentation algorithm. Xenium cell segmentation is an automated process that uses neural

network for nuclear segmentation. The DAPI staining signal captured during the imaging is used to generate a segmentation

mask. The detected nuclear boundaries are expanded by 15um in all directions and cell boundaries and transcripts are assigned

to that detected cell. The detected cells were classified based on known cell type markers included in the panel. To annotate

CAF subtypes, amodule score was applied for pan-CAFmarker genes (FAP, LUM, DCN, COL1A1). The distribution of module scores

among all cells was modeled as a mixture of 3 gaussian distributions using mixtools v2.0.0. Cells were annotated as CAFs if they had

a CAF module score greater than the threshold set at one standard deviation below the mean of the third component gaussian dis-

tribution (threshold value: 0.362) and no expression of PTPRC (CD45). Among cells annotated as CAFs, cells were annotated as CAF

subtypes using module scores for each type (apCAF: CD74, HLA-DRA, HLA-DPA1, HLA-DQA1, SLPI; iCAF: CXCL1, CXCL2, CCL2,

LMNA, HAS1, HAS2; myCAF: TAGLN, MYL9, TPM2, MMP11, HOPX, TWIST1, SOX4). Cells were annotated as a CAF subtype based

on the highest CAF subtype module score greater than 0. Cells with no module scores above 0 were typed as general ‘‘CAF’’. CD4
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T cells were annotated by gating of cells not annotated as epithelial, PanIN, or CAFs for concurrent non-zero expression of PTPRC,

CD4, and at least one gene encoding CD3 proteins (CD3D, CD3E, or CD3G).

The Xenium gene panel included a total of 380 genes. This panel was outlined using a commercial panel of 280 genes designed for

breast cancer. The large majority of the genes are markers for cell types found in different cancer types (epithelial, immune, stromal

and endothelial cells). Then, we customized additional 100 genes that were selected from our Visium analysis and include highly ex-

pressed genes in PanIN, and genes from Pattern 2 and 7 (Table S1).

Imaging Mass Cytometry Data Analysis
Immunohistochemical staining was performed with mass cytometry antibodies. The TMA slides were first baked at 60�C for 2 hours,

dewaxed in xylene, then rehydrated in an alcohol gradient. The slides were incubated in Antigen Retrieval Agent pH 9 (Agilent�
S2367) at 96�C for 30 minutes then blocked with 3% BSA in PBS in RT for 45 minutes. The antibody cocktail listed in Table S2

was prepared at optimized dilutions and used to stain the slides at 4�C overnight. All custom antibodies were prepared to a concen-

tration of 0.25 to 0.5mg/mL and were titrated empirically. Cell-ID� Intercalator-Ir (Standard Biotools PN 201192A) was used for DNA

labelling and Ruthenium tetroxide 0.5% Aqueous Solution (Electron Microscopy Sciences PN 20700-05) was used as counterstain.

Images were acquired using the Hyperion Imaging System (Standard BioTools) at the Johns Hopkins Mass Cytometry Facility. Upon

image acquisition, representative images were visualized and generated through MCD� Viewer (Standard BioTools).

Images were acquired with a Hyperion Imaging System (Standard BioTools) at the Johns Hopkins Mass Cytometry Facility.

Through MCD Viewer� (Standard BioTools), multi-layered ome.tiff image stacks were generated and loaded in HALO 3.6. With

HALO 3.6, the Area Quantification FL v2.3.4 algorithm was optimized visually and manually thresholded to quantify the positive

area of IMC markers Smooth Muscle Actin (SMA), Vimentin (VIM), Collagen (COL), Podoplanin (PDPN), CD74, and HLA-DR. To

mark all CAFs, a combination of SMA+VIM+COL+PDPN and DNA was used. The Area Quantification FL v2.3.4 algorithm was

also utilized to subset CAFs into phenotypes positive for CD74, HLA-DR, and CD74+HLADR+. To calculate the density of CAF phe-

notypes, ruthenium counterstain was quantified for tissue area normalization and DNAwas quantified for nuclear area normalization.

CAF phenotypeswere also obtained as percentages over the total CAF population. The resulting data was visualized usingGraphPad

Prism v10.1.2.

Transfer learning to relate ST data from PanIN to a scRNA-seq atlas of Pancreatic Ductal Adenocarcinoma
We obtained scRNA-seq data for pancreatic epithelial cells from an atlas of 29 tumor samples and 14 non-cancerous samples

collated from Peng et al. and Steele et al. as described in Guinn et al.15 We inferred cellular phenotypes in the epithelial cells using

CoGAPS (R, version 3.5.8)39,40 to infer 8 patterns on the log transformed expression values. Pattern annotation was based on

overrepresentation analysis of patternMarker genes identified by CoGAPS (R, version 3.9.5)64 and Molecular Signatures Database

Hallmark gene sets (version 7.5.1)65 using the R package fgsea (version 1.18.0).60 TFF1 expression was measured as log-normalized

counts. Uniformmanifold approximation and projection (UMAP) plots weremade usingmonocle3 (version 1.0.0).66–71 UMAP plots for

epithelial cells from the scRNA-seq PDAC data were made with cells colored by epithelial cell type, log normalized TFF1 expression,

and Pattern 2, 5, 7 weights.

PanIN ST data was subset to spots annotated as epithelial by CODA (N = 240 spots; normal = 93, low-grade = 48, high-grade = 99).

CoGAPS patterns learned from normal and tumor cells in the PDAC scRNA-seq data were projected onto scaled SCT expression

values from epithelial ST spots using ProjectR (version 1.8.0).16,17 Projected pattern weights were plotted as violin plots using Seurat

(version 4.1.0). Mean pattern weights were compared across epithelial lesion grades using Wilcoxon rank-sum tests within ggpubr

(version 0.4.0). UMAP plots of ST spots and overlayed plots of ST spots colored by epithelial type, log normalized TFF1 expression,

and projected Pattern 2, 5, 7 weights over tissue slices were prepared using Seurat (version 4.1.0). Conversely, CoGAPS patterns

learned from the scaled SCT expression values of PanIN ST data were plotted as violin plots using Seurat (version 4.1.0). Pattern

weights were compared across epithelial lesion grades using Wilcoxon rank-sum tests within ggpubr (version 0.4.0). Patterns

were projected onto the scRNA-Seq atlas using ProjectR (version 1.8.0).
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