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SUMMARY

This study introduces a new imaging, spatial transcriptomics (ST), and single-cell RNA-sequencing
integration pipeline to characterize neoplastic cell state transitions during tumorigenesis. We applied a
semi-supervised analysis pipeline to examine premalignant pancreatic intraepithelial neoplasias (PanINs)
that can develop into pancreatic ductal adenocarcinoma (PDAC). Their strict diagnosis on formalin-fixed
and paraffin-embedded (FFPE) samples limited the single-cell characterization of human PanINs within their
microenvironment. We leverage whole transcriptome FFPE ST to enable the study of a rare cohort of matched
low-grade (LG) and high-grade (HG) PanIN lesions to track progression and map cellular phenotypes relative
to single-cell PDAC datasets. We demonstrate that cancer-associated fibroblasts (CAFs), including antigen-
presenting CAFs, are located close to PanINs. We further observed a transition from CAF-related inflamma-
tory signaling to cellular proliferation during PanIN progression. We validate these findings with single-cell
high-dimensional imaging proteomics and transcriptomics technologies. Altogether, our semi-supervised
learning framework for spatial multi-omics has broad applicability across cancer types to decipher the
spatiotemporal dynamics of carcinogenesis.

INTRODUCTION characterization of premalignancies is critical to delineate the

evolutionary mechanisms of malignant transformations, the

Single-cell RNA sequencing (scRNA-seq) and spatial molecular
technologies have enabled unprecedented characterization of
the molecular and cellular pathways that comprise the tumor
microenvironment (TME)."® This has had a particularly profound
impact on the understanding of the complex immunosuppres-
sive pancreatic ductal adenocarcinoma (PDAC) TME and its
role in cancer progression and therapeutic resistance.®>” Further
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impact of the complex microenvironment on facilitating carcino-
genesis, and the development of nearly universal therapeutic
resistance in PDAC. Among the multiple histologically distinct
premalignant lesions of the pancreas that potentially progress
to PDAC, pancreatic intraepithelial neoplasia (PaniIN) is the
most frequent and well studied.®° PanINs therefore provide
the opportunity to characterize some of these evolutionary
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processes in PDAC. Because the diagnosis of PanINs is
restricted to formalin-fixed and paraffin-embedded (FFPE)
tissue, the studies on the comprehensive characterization of
molecular and cellular phenotypes of these atypical cells, and
on the other cell types in the surrounding microenvironment,
are rare and limited to bulk, target-based, and cell type-focused
sequencing.

Whole transcriptome spatial transcriptomics (ST) combines
gene expression profiling with spatial information to map the mo-
lecular and cellular landscape of cancer.” By analyzing gene
expression within the tissue spatial context, it is possible to
examine tumor heterogeneity and intercellular interactions in
the microenvironment. The development of an ST technology
that can be performed on FFPE samples opens the opportunity
to profile PanIN lesions and the adjacent microenvironment.
Computational methods to discover the cellular and molecular
changes in the evolution of the TME are an essential component
of ST analysis and are being actively developed alongside the
experimental approaches.” One drawback in ST data is the
lack of single-cell resolution.

Even after transcriptional profiles are isolated, relating computa-
tionally estimated temporal changes in cellular phenotypes to
molecular markers of those phenotypes and their impact on the
dynamics of tumor progression remains a challenge. Performing
this analysis requires identifying spots associated with cell groups
of interest (e.g., from normal, low-grade [LG], and high-grade [HG]
PanIN) from which to infer cell state transitions. In principle, clus-
tering or other unsupervised learning analysis of gene expression
profiles from the ST data can identify these spots for this analysis.
However, the lack of single-cell resolution of the ST technologies
can limit the accuracy of these analyses. One solution to this prob-
lem is the use of spot deconvolution algorithms to estimate the cell
types that are represented in each spatial spot for robust data
analysis and interpretation. Many of these deconvolution methods
estimate cell type proportions per spot using a scRNA-seq refer-
ence that was generated from the same tissue or disease type
for this deconvolution.'®"" Although these methods provide
robust estimates, they are not suited for populations of cells that
are rare and are not applicable for diseases that cannot be profiled
with dissociation-based single-cell technologies (e.g., PanIN
cells). Recently, a few methods have been developed to perform
spot deconvolution and cell type classification based on imaging
analysis. In FFPE ST, the possibility of staining and imaging the
sections before library preparations allows pathological examina-
tion of cell morphologies to automate single-cell resolved cell type
classification and deconvolution of ST data. Machine learning
methods have been developed to integrate cell morphology and
perform cell classification that will be integrated within ST coordi-
nates to provide the proportion of each specific cell type ina spatial
spot or enhance the accuracy of clustering.'>'® However, gene
expression signatures are still required to identify cellular features
of interest before the analysis. While these unsupervised learning
methods are powerful, leveraging pathology expertise for cellular
labeling can enhance spot and region selection for more refined
analyses of gene expression changes within specific cellular
phenotypes. The laborious, manual annotation for these workflows
requires an automated and accurate manner to increase
robustness of biological findings from integrated imaging and
ST data.
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In this study, we demonstrate that three-fold integration
with ST, new imaging analysis technologies, and single-cell
PDAC atlases provides the opportunity to analyze the dynamic
cellular transitions that are associated with different stages of
PDAC progression. We present the ST analysis of 14 PanIN
lesions from 9 patients, including 5 rarely diagnosed HG PanIN
lesions. To analyze the data and overcome the computational
limitations to ST analysis, we built a method for three-way inte-
gration of imaging, ST, and scRNA-seq data to automate cellular
labeling of spots for subsequent supervised and unsupervised
learning of transcriptional changes during disease progression
in specific cell groups of interest. First, we adapt the recently
developed machine learning method, CODA,"* that automati-
cally identifies and annotates cells in the pancreatic microenvi-
ronment to provide cell annotations for ST spots. The resulting
gene expression analysis of the epithelial cells (normal and
PanIN) and the surrounding cells within the microenvironment
revealed that PanINs already express specific transcriptional
signatures (e.g., classical subtype) of invasive carcinoma and
the presence of fibroblasts resembling cancer-associated fibro-
blast (CAF) subtypes found within the PDAC TME. Second,
multi-omics integration with a reference scRNA-seq atlas of
PDAC,® using the transfer learning method ProjectR,'®'” found
that a CAF-associated inflammatory and EMT (epithelial mesen-
chymal transition) pattern gradually decreases during PDAC in-
vasion and is associated with a compensatory increase in prolif-
eration pathways in PDAC carcinogenesis. These approaches
further enabled the design of custom panels for proteomics
and transcriptomics spatial technologies for confirmation of
these findings with single-cell resolution and creation of a spatial
multi-omics reference of PanINs. In summary, our experimental
and computational pipeline for imaging analysis and multi-omics
integration is broadly applicable to analysis of cancer progres-
sion in different tumor types.

RESULTS

ST applied to FFPE specimens captures preneoplastic
pancreatic tissue architecture

To identify the cellular and molecular features of PanIN that are
still present in PDAC, we applied a whole transcriptome FFPE
ST protocol to profile a cohort of human PanIN samples and
developed a semi-supervised computational pipeline to perform
spot deconvolution and integration with a scRNA-seq PDAC
reference dataset (Figure 1A). The first step of this pipeline is
to assign broad cell type labels to spots at a single-cell resolution
from imaging using CODA, a machine learning approach initially
trained to identify and classify pancreatic cell types based on
their morphologies. The second part of our pipeline leverages
transfer learning, using ProjectR, to relate transcriptional
patterns from a scRNA-seq PDAC reference to quantify how
transcriptional changes in our PanIN dataset relate to changes
in advanced-stage cancer (Figure 1A).

In this study, we apply ST profiling to a test cohort of paired LG
and HG PanlINs diagnosed in the same patients (4 patients’ spec-
imens, total number of PanIN lesions = 8) and to a validation cohort
of 7 PanINs (5 patients, 6 LG, and 1 HG lesions). In total, we per-
formed ST profiling of 15 PanIN lesions (10 LG and 5 HG). Of
note, HG PanIN lesions are rarely diagnosed due to their
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Figure 1. ST analysis of FFPE PanIN
(A) Pancreatic cancer surgical specimens in FFPE were examined, and the regions containing FFPE pancreatic intraepithelial neoplasia (PanIN) lesions were
identified for scoring using a 5 mm skin biopsy punch and sectioning onto the spatial transcriptomics (ST) slide. The stained images were used for machine
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challenging differential diagnosis of colonization of the duct by the
invasive carcinoma from the HG atypia of these premalignant
lesions, making the characterization of even this small number of
human HG lesions a valuable reference resource for future studies.
Initial total RNA quality check indicated that all samples presented
high levels of RNA degradation (RIN ~2) but with a high concentra-
tion of 200 bp fragments (DV200 > 50%) compatible with the FFPE
ST platform. Following ST data generation, preprocessing, and
quality check, 14 out of the 15 samples (7 from the paired cohort
and 7 from the validation cohort; 9 LG and 5 HG) had sufficiently
high-quality data for subsequent analysis.

The ST data from our PanIN cohort provides combined stained
imaging and transcriptomics profiling from the same section
(Figures 1B, 1C, S1A, and S1B). PanINs are thought to be an inter-
mediate state between the healthy pancreas tissue and PDAC and
require pathology examination as the diagnosis is based on
morphological identification of the atypical epithelial cells. There-
fore, it can be anticipated that the tissues will contain a combina-
tion of cell types and histological structures from both states (e.g.,
ductal cells, acinar cells, neoplastic cells, fibroblasts, acinar cells,
islets, immune cells, etc:,.).1 & We characterized the cellular distribu-
tion of PanINs and surrounding pancreas tissue by first applying
unsupervised clustering to the ST profiling data. The clustering
generated a total of 15 spatially resolved gene expression clusters
(Figures 1C and S2-S9). Similar to single-cell analysis, we anno-
tated the clusters through differential expression analysis to iden-
tify marker genes associated with each cluster (Figure S2). Using
this strategy, for example, we annotated one specific cluster to
PanIN based on the expression of TFF1, MUC5AC, TFF2,
MUCS6, and CTSE; while another specific cluster, expressing
LCN2, GPX2, TCN1, KRT8, and ANXA4, was annotated to normal
ducts. Based on other cell type-specific markers, we were able to
annotate 4 fibroblast clusters, 2 immune cell clusters, 4 acini clus-
ters, 2 pancreatic islet clusters, 1 smooth muscle cluster, and 1
neural cell cluster (Figures S2-S9). The spatial distribution of the
gene expression clusters recapitulated the overall histological ar-
chitecture of the samples. The distribution of the normal and
neoplastic spots identified from clustering matches the initial pa-
thology identification of these cell types and was further confirmed
by pathology examination. Almost all the gene expression spatial
clusters extend beyond the histological boundaries observed in
the stained sections into the adjacent cells (i.e., the same spatially
resolved gene expression cluster mapped to regions of distinct
cell types) (Figure S10A). This extended signal, or bleeding, could
be aresult of technical artifacts in the ST technology leading to the
detection of marker genes of one cell type in the space (spot) of
the adjacent distinct cell type.'® This observation combined with
the lack of single-cell resolution of the ST data led us to hypothe-
size that incorporating the cellular labels obtained from imaging
analysis into our gene expression analysis could enhance the
robustness of the phenotypic characterization of those cells.

Cell Systems

The first step of our new analysis pipeline aims to annotate
broad cell types of spots in the ST data, leveraging the matched
stained imaging for the FFPE-based ST platform. Several
methods overcome these observed limitations of the ST data
through spot deconvolution with reference scRNA-seq data.'®""
However, no scRNA-seq reference is available for human
PanINs due to the diagnosis in FFPE clinical blocks. Recent
computational work with joint analysis of histology features and
transcription can serve as powerful alternatives.'”'® We sought
to enhance these approaches by incorporating expert patholog-
ical knowledge of cellular labels to delineate relevant cellular fea-
tures of pancreatic precancer from the ST sections imaging. To
focus our transcriptional analysis on the transition from normal
through PanIN progression and the structures of the microenvi-
ronment, we applied the machine learning method CODA to the
stained images of the ST sections to automatically classify the
pancreatic cells. CODA is an imaging-based analysis approach
that uses deep learning semantic segmentation to identify
different cell types that have been trained specifically for the hu-
man pancreas, precancer, and cancer (acinar cells, islets of Lang-
erhans, fibroblasts, adipocytes, endothelial cells, ductal cells, and
neoplastic cells).'* In this study, we integrated CODA to the ST
analysis to obtain automated cell type annotation combined
with ST spots deconvolution (Figures 1D and S1C). In contrast
to the clustering analysis, imaging cell type annotations using
CODA are at single-cell resolution and, through integration with
the ST spots coordinates and dimensions, enable a true estimate
of the true proportion of cell types within each ST spot for robust
gene expression analysis (Figure S10B). To avoid unwanted bias
in the comparisons between normal duct and PanIN clusters,
we selected spots that were quantified as representing at least
70% of a unique cell type. Using this threshold for all the cell types,
we were able to increase cell type purity from ~25% to ~90% and
from ~45% to ~95% for normal duct and PanIN clusters, respec-
tively, for example (Figure S10C). This enables supervised
analysis, defining marker genes through differential expression
analysis of spots annotated with known cellular features in
pancreatic precancer. We also observe elevated expression of
cluster-specific marker genes, such as CTSE, INS, and PRSS1
in PanIN and islet clusters, respectively (Figure S10D). This obser-
vation highlights the importance of spot annotation with machine
learning (CODA) prior to differential expression analysis or more
advanced multi-omics integration to single-cell reference data-
sets, as demonstrated through our subsequent analyses of the
PanIN microenvironment and progression.

PaniN-associated fibroblasts are a heterogeneous
population composed of the same subtypes detected in
invasive PDAC

The integration of imaging analysis and ST data provided the
unigue opportunity to examine the fibroblast population adjacent

learning analysis for cell type identification and spatial spots deconvolution. The ST analysis was integrated with an invasive cancer single-cell dataset. The
findings were validated with single-cell resolved transcriptomics and proteomics.

(B) Discovery cohort stained sections were used for pathology examination and identification of PanINs and other pancreatic histological regions.

(C) The unsupervised clustering of the spatial transcriptomics data identified gene expression clusters whose location resembles the distribution observed in the

stained sections.

(D) Cell types indicated in the legend were defined automatically from cellular morphologies of the stained sections using the machine learning approach CODA,

thereby refining cellular annotations obtained from clustering alone.

756 Cell Systems 15, 753-769, August 21, 2024



Cell Systems

to PanIN. While CODA broadly annotates stromal cells, the
PDAC TME is enriched with a heterogeneous population of
CAFs. They have been classified into three subtypes based on
transcriptional profiles, myofibroblastic CAFs (myCAFs), inflam-
matory CAFs (iCAFs), and antigen-presenting CAFs (apCAFs),
and can play dual roles by inhibiting or inducing PDAC progres-
sion.?°"?° CAFs exert a tumorigenic role by providing metabolites
for tumor cell survival, stimulating cell growth pathways through
paracrine signaling, and creating an immunosuppressive micro-
environment.”* However, a tumor-suppressing CAF-enriched
TME can reduce essential nutrients required for tumor progres-
sion and differentiation, while the same CAFs can be functionally
repolarized to release chemokines that will recruit immune cells
into the tumor.?*

MyCAFs and iCAFs have previously been observed in pancre-
atic premalignant lesions in murine models that recapitulate
PDAC development, suggesting that they arise early during
tumorigenesis.?*>*® Nevertheless, their presence was not previ-
ously described in human premalignant lesions of the pancreas.
Here, we leveraged our computational analysis approach to
isolate stromal cells in the ST data and further classify these cells
from the ST data using established gene markers®® to map the
distribution of myCAFs and iCAFs in the human PanIN microen-
vironment. In our cohort, the density of stromal cells inferred
from CODA varied but were observed adjacent to each premalig-
nant lesion (Figure 1D, pink annotated regions). The further inte-
gration of CODA annotations with the ST transcriptional profiles
(Figure 2A) showed that a CAF common signature (panCAF) is
consistently expressed across the collagen-rich regions anno-
tated by CODA (Figures 2B and S11A, orange and red spots).
The expression of myCAF (Figures 2C and S11B) and iCAF
(Figures 2D and S11C) markers was detected in all samples
overlapping with the regions where panCAFs are present. The
presence of a recently described subtype of apCAFs was also
investigated using the transcriptional data in our cohort. The ap-
CAFs were first identified by scRNA-seq in a PDAC mouse model
and were shown to express major histocompatibility complex
(MHC)-Il genes and present antigens to CD4" T in vitro, acti-
vating their suppressive capability.?” In our study, expression
of the apCAF signature was detected in all samples in the Visium
ST data (Figures 2E and S11D).

Since CODA does not have resolution to annotate immune
cells because of their limited size and scant cytoplasm, and
ST does not provide single-cell resolution, the discrimination
of apCAFs from CD45+ immune cells (Figures 2F and S11E)
was performed using other spatial approaches with single-
cell resolution. The validation of the ST findings was per-
formed using imaging ST in situ RNA hybridization (Xenium,
10x Genomics), with a panel to detect 380 transcripts that
include epithelial, immune, and CAF markers (Table S1). In
contrast to Visium, Xenium provides single-cell resolution us-
ing cell segmentation determined by nucleus staining (as
described in STAR Methods) and was performed on 3 PanIN
lesions from the paired cohort (PanIN-HG1, PanIN-HG2, and
PanIN-HG3) that had the premalignant lesions still present
on the FFPE blocks. With this technology, transcripts are de-
tected using probes that, after binding to their targets, are
conjugated with fluorophores that then are detected, counted,
and mapped to each cell identified by a series of multiple

¢ CellP’ress

scans. This targeted ST approach also recapitulates the sam-
ple’s architecture, similar to what was observed with the tran-
scriptome wide ST clustering (Figure 3A). Epithelial cells
(normal and PanIN), myCAFs, iCAFs, and apCAFs were all
detected among the cells spatially profiled with single-cell
resolution (Figures 3A and 3B). With Xenium, it was possible
to confirm apCAFs in proximity to PanIN lesions (Figures 3A
and 3B). The apCAFs were annotated based on module
scores of apCAF marker genes and the absence of expression
of CD45 (PTPRC) (Figure 3C). The module score strategy was
used due to the broad expression of MHC Il gene markers
(Figures 3D and 3E). Among all the cells in the tissue seg-
ments profiled (Figure 3F), apCAFs were found to comprise
up to 13.9% of the cells detected (Figure 3G). We also verified
that the apCAFs co-localize with CD4+ T cells in the regions
just adjacent to the PanINs (Figure S12), strong evidence for
the interaction between these cell types.

We further sought to confirm the presence of apCAFs using a
single-cell resolved proteomics approach. To do so, we per-
formed additional multiplex proteomics analysis of the PanIN
samples from the paired cohort with imaging mass cytometry
(IMC) using a customized antibody panel (Table S2) that was
specifically developed to identify the different CAF subtypes
(myCAF, iCAF, and apCAF) in PDAC. The proteomics analysis
with IMC corroborates the in situ gene expression data, showing
cellular co-localization of CAF marker proteins with MHC Il pro-
teins. The presence of apCAFs was confirmed in all 5 samples
(PanIN-LG1, PanIN-HG1, PanIN-LG2, PanIN-HG2, and PanIN-
HGB3) profiled by the concomitant expression of panCAF markers
(alpha-smooth muscle actin [SMA] and vimentin [VIM]) and MHC
Il proteins (CD74 and HLA-DR) (Figures 3F and 3G). The pres-
ence of apCAFs is not restricted to the PanIN neighbor regions
(PanIN region [a], Figures 3F and 3G), but they are also found
in regions of fibrosis further from the premalignant lesions
(fibrosis region [b], Figures 3F and 3G). For a more accurate
quantification of the CAF in the IMC regions of interest, CAFs
were identified through the expression of COL, SMA, VIM, and
PDPN (Figure 3J). Due to the broad presence of collagen that
is detected by the expression of COL, the CAF detection was
refined by the co-expression of the panCAF markers and DNA
(Figures 3K and 3L). Subsequently, the apCAFs were identified
as cells expressing panCAF markers + DNA + CD74 (Figure 3M),
panCAF markers + DNA + HLADR (Figure 3N), and panCAF
markers + DNA + CD74 + HLADR (Figure 30). The apCAFs
expressing only CD74 represent 0.28% to 6.33% of all CAFs de-
tected, apCAFs expressing only HLADR are 0.50% to 5.56% of
the CAFs, and apCAFs expressing both MHC Il markers are rare,
comprising 0.08% to 1.39% of the CAFs identified (Figure 3P).
To determine apCAFs presence the areas with aggregates of im-
mune cells were excluded from the quantifications (Figure 3P)
The IMC data confirm the presence of apCAF in areas associ-
ated with PanIN and the low frequency of these modulatory
cells. The markers used for CAF classification are provided in
Table S3.

Altogether, these results demonstrate that the different
subtypes of CAFs that are present in PDAC can be detected
surrounding PanIN lesions, including the new class of apCAFs,
suggesting that the TME modulation by these cells occurs early
in pancreas tumorigenesis.

Cell Systems 15, 753-769, August 21, 2024 757
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Figure 2. Spatial distribution of PDAC CAF subtypes in the discovery cohort

(A-D) (A) Cancer-associated fibroblast (CAF) localization was mapped using panCAF markers, (B) myofibroblastic-CAF markers, (C) inflammatory-CAF markers,
and (D) antigen presenting-CAF markers.

(E) CD45 expression was examined to identify regions where CAFs and immune cells were co-localized.

ST identifies expression of both PDAC classical subtype cell types using a cut-off of 70%. For example, a spot was clas-
and CSC signatures in PanINs sified epithelial (normal or PanIN) if CODA quantified that in that
PanlN lesions can develop into invasive PDAC. To identify PDAC  coordinate >70% of the cells were epithelial (Figure 4A). Next, we
features that can be detected during the premalignant stage, we  characterized PanIN cell heterogeneity relative to the estab-
leveraged the automated cell type annotation from CODA with  lished classical and basal-like PDAC subtypes.”” We found
cluster-based annotations to classify spots to all pancreatic that 13 (6 in the test cohort and 7 in the validation cohort) out
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of 14 PanINs express the PDAC classical subtype signature
(Figures 4B and S13A). The basal-like signature is not expressed
in any of the premalignant lesions (Figures 4C and S13B). This
observation supports the hypothesis that PDACs arise with a
classical phenotype and acquire the basal-like phenotype
upon progression and accumulation of molecular aberrations.”®
Further studies to determine the classical subtype markers that
are critical for the transformation of PanIN into PDAC are neces-
sary to drive the development of early therapeutic interventions
and early detection tests to improve patients’ survival.

Only one HG PanIN sample from the paired cohort (PanIN-
HG3) expressed neither the classical nor the basal-like signa-
tures (Figures 4A, 4B, S12A, and S12B). Thus, we hypothesized
that this sample expresses a third transcriptional phenotype.
PDAC progression, resistance to therapies, and immune evasion
are partially associated with the presence of PDAC cells ex-
pressing cancer stem cell (CSC) markers.”® We verified the
expression of CSC markers among the PanINs in the paired
and validation cohorts. The only sample with a significantly
high expression of CSC markers is the one that did not express
the classical or the basal-like PDAC signatures (Figure 4D). The
presence of cells with stemness features suggests that some
mechanisms of resistance to therapies arise early in PDAC
progression.

Differential expression analysis between PanIiNs and
normal ducts identifies gradual increase of TFF1
expression during PanIN progression limited to the
classical phenotype

To further define the molecular features of PanINs, we merged
spots from all samples CODA annotated as normal and PanIN
ducts for each patient. Differential expression was performed
to identify gene expression changes across each patient’s pre-
malignant lesions. A total of 118 genes are differentially ex-
pressed in PanINs relative to normal ducts in the paired cohort
(Figure 4E), and their expression pattern discriminated PanINs
from normal ducts among the different samples (Figure 4F).
Among the top 20 up-regulated genes in the premalignant le-
sions of the paired cohort, only 5 genes (TM4SF1, CYP2S1,
CD55, FER1L6, and PSCA) had no known role in pancreas
tumorigenesis, suggesting that FFPE ST analysis is robust and
corroborates previous gene expression analyses in PanINs.*%%?
The differential expression analysis of the validation cohort also
identified sets of genes that discriminate normal ducts from
PanIN lesions with common genes aberrantly expressed be-
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tween the two PanlIN cohorts (Figures S13C and S12D). Pathway
analysis from the differentially expressed genes in the paired
cohort indicates enrichment for MYC and oxidative phosphory-
lation pathway mediators. Both signaling pathways have been
previously shown to be up-regulated in PaniNs and PDAC,
particularly in association with progression from premalignancy
to invasive cancer, metastasis development, and resistance to
therapy®*° (Figure S14).

Although predominantly consisting of the classical subtype,
the differential expression analysis highlighted the inter-sample
heterogeneity with only one differentially expressed gene
showing up-regulation in all classical samples (TFF1). TFF1 is
known to be overexpressed in PanINs and PDACs, and its pro-
tein levels have been suggested as a potential early detection
marker found in bodily fluids. In in vitro cell culture models, the
secreted form of TFF1 was shown to increase PDAC and stellate
cell motility without a significant impact on cancer cells prolifer-
ation.®® Since stellate cells are considered one of the precursors
to some PDAC CAF subtypes,”**’ it is possible that TFF7 is one
of the mediators of intercellular interactions among PanIN and
PDAC cells and CAFs. One interesting observation is that the
sample expressing the CSC markers signature does not express
high levels of TFF1. In contrast to all the other PanIN lesions, this
sample lacks expression of classical subtype signature, leading
us to hypothesize that the stemness phenotype is independent
of TFF1 expression (Figure S15).

The characterization of multiple ducts, including those across
stages of PanIN differentiation (mixed ducts), allows us to
trace the cellular changes associated with PanIN progression.
Additionally, ST analysis provides the ability to visualize the pre-
neoplastic differentiation stages and concomitantly map the
respective gene expression level changes (Figure 5A). We there-
fore compared expression changes between lesions classified
as LG or HG based on their morphology. Since CODA cannot
discriminate between LG and HG PanIN, the differential diag-
nosis was performed by pathology experts (KF, JWL, ET, and
LWD) (Figures 5B-5D). Using the pathological PanIN classifica-
tion, we identified one mixed duct (PanIN-HG2) containing
normal ductal cells as well as LG and HG PanlIN cells (Figure 5E).

We expanded our differential expression analysis study to un-
cover additional gene expression changes across PanlIN stages.
This analysis identified five other genes (MUCL3, C190rf33,
TSPANT1, SCD, and ACTB) that were up-regulated in HG lesions
relative to LG lesions (Figure S16). In addition, the level of
expression of MUCL3 and TSPAN1 gradually increased from

(B) The HG PanlN is surrounded by a heterogeneous population of cells, including apCAFs. The apCAFs were identified based a panCAF module score, absence
of CD45 (PTPRC) expression, and elevated module scores for marker genes of apCAFs.

(C) The apCAFs were annotated as cells with high apCAF signature module score.

(D and E) (D) Expression of the MHC Il gene HLA-DRA and (E) of the CAF marker LUM co-localize with regions of apCAF high module scores.

(F) UMAP representing epithelial, PanIN, panCAF, myCAF, iCAF, and apCAF across the three samples analyzed with Xenium.

(G) Percent composition of cell types in each sample that was profiled with Xenium.

(H) Representative image of the pancreas with pancreatic intraepithelial neoplasia (PanIN) and fibrosis. Regions with PanIN (a) and fibrosis (b) are highlighted.
(l) Representative images of the pancreas with PanIN (top row) and fibrosis (bottom row). H&E and image mass cytometry images of SMA and vimentin (VIM, blue),

HLA-DR (green), CD74 (red), and pancytokeratin (PanCK, white) are shown.

(J) CAF detection in the IMC regions of interest was quantified by the expression of panCAF markers (COL, SMA, VIM, and PDPN).

(K'and L) DNA presence was used to exclude areas of collagen only from CAFs.

(M-0) (M) CD74 expression, (N) HLADR expression, and (O) CD74 and HLA-DR concomitant expression identified the apCAFs.
(P) Proportion of apCAFs among the CAFs detected within the multiple regions of interested profiled.
(Q) Area enriched for CAFs (marked in red) used to measure the frequency of apCAFs, excluding immune-rich regions.
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Classical genes: BTNLS, FAM3D, ATAD4, AGR3, CTSE, LOC400573, LYZ, TFF2, TFF1, ANXA10, LGALS4, PLA2G10, CEACAMS, VSIG2, TSPANS,
ST6GALNACT, AGR2, TFF3, CYP3A7, MYO1A, CLRN3, KRT20, CDH17, SPINK4, REG4

®

Basal genes: VGLL, UCA1, ST00A2, LY6D, SPRR3, SPRR1B, LEMD1, KRT15, CTSL2, DHRS9, AREG, CST6, SERPINB3, KRT6C, KRT6A,
SERPINB4, FAM83A, SCEL, FGFBP1, KRT7, KRT17, GPR87, TNS4, SLC2A1, ANXA8L2
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(A and B) (A) Six out of seven PanINs (black circles) expressed markers that characterize the classical subtype of pancreatic cancer, while (B) the basal-like

signature was not expressed by any of the premalignant lesions.

(C) The only sample that is neither classical nor basal-like expresses cancer stem cell (CSC) markers.
(D and E) (D) Differential expression analysis identified genes whose up-regulation (blue dots) or down-regulation (red dots) in PanINs, relative to normal ducts,

discriminate preneoplastic from normal cells (E).

normal ducts through LG and HG lesions (Figures 5F and 5G).
The same pattern was observed for TFF1, which was found to
be up-regulated in the PanIN expressing the classical PDAC
genes. This gradual change in expression is best visualized in
one of the PanIN samples in which a single duct presents a
mix of normal, LG, and HG cells (Figure 5H).

Changes in PanIN progression map to transitions in
malignancy in PDAC

The examination of other molecular alterations that are present in
PanINs and conserved in PDACs could provide new knowledge
about the early transcriptional events of pancreatic carcinogen-
esis and the mechanisms driving the continuous development
into invasive cancer. Our combined set of public domain
scRNA-seq PDAC datasets® provides a cohort of over 61 sam-

ples that include true normal epithelial, tumor-adjacent normal
epithelial, and PDAC cells. Although cells in this scRNA-seq
data are from advanced PDAC tumors, we hypothesize that
comparison of the transcriptional changes between normal
and PanIN spots to the scRNA-seq data could quantify the
persistence of the premalignant changes in PDAC or which fea-
tures found in invasive tumors are detected in PanINs. Moreover,
it is possible that the scRNA-seq data contain unlabeled PanIN
cells from adjacent lesions to the tumor processed during disso-
ciation. Therefore, integrative analysis between the ST data and
scRNA-seq could further identify these cells to confirm molecu-
lar changes observed across grades of PanIN differentiation in
an independent, large-scale reference atlas. Therefore, further
computational methods for multi-omics integration of our ST
data of PanINs and scRNA-seq data in PDAC can supplement
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Figure 5. Identification of transcriptional changes associated with PanIN differentiation grade

(A-D) (A) Workflow of CODA annotations to facilitate heterogeneity detection. (B) Normal ducts, (C) low-grade (LG), and (D) high-grade (HG) pancreatic intra-
epithelial neoplasias (PanINs) are morphologically distinct and can be classified by pathology examination.

(E-H) (E) As a model for PanIN progression, a mixed pancreatic duct containing normal, LG, and HG cells was used to better visualize changes in expression. Top
genes from the differential expression analysis, (F) MUCL3, (G) TSPAN1, and (H) TFF1, show gradual increase from normal through LG until HG progression.

our analysis of molecular changes in the epithelial cells that
underly carcinogenesis (Figure 6A).

We used the scRNA-seq data of 25,442 epithelial ductal cells
from 61 biospecimens collated from six previously published
PDAC scRNA-seq datasets to enable tumor progression anal-
ysis (Figure S17A). The uniform manifold approximation and pro-
jection (UMAP) analysis of these cells identifies a phenotypic
switch between true normal epithelial cells, tumor-adjacent
normal cells, and within malignant epithelial cells, supporting
our hypothesis that these datasets likely contain unannotated
PanlN cells. Using this dataset, we verified that TFF1 expression
increases between normal epithelial cells, in tumor-adjacent
normal epithelial cells, and again further increases in a subset
of malignant PDAC cells (Figure S17B), mirroring the stage-spe-
cific increase in its expression observed in PanIN cells. This
integrative analysis further supports the association of this
gene with PanIN and invasive PDAC progression. TFF1 expres-
sion is almost undetectable in normal ductal cells. Surprisingly,
the normal ductal cells adjacent to tumor cells express low levels
of TFF1, suggesting that the transcriptionally normal surrounding
ducts are already programmed toward a premalignant state.
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To further delineate the molecular transitions malignant
epithelial cells undergo, our complementary study of the PDAC
scRNA-seq data applied the Bayesian non-negative matrix
factorization method CoGAPS*%“C to learn transcriptional pat-
terns that delineate transitions in the epithelial cells.*® In this
study, we integrated the patterns learned from the scRNA-seq
data with our ST dataset to determine the extent to which they
represent stage-related transitions in the transformation from
PanIN to PDAC. To enable the integrative analysis between ST
and scRNA-seq data, we adapted our transfer learning approach
ProjectR'®"” to spatial data integration by projecting the pat-
terns learned in the scRNA-seq data onto the epithelial spots
from the ST data (N = 240 spots; normal = 93, LG = 48, HG =
99). Among the patterns projected from the atlas onto the ST
data, a pattern enriched with genes involved in KRAS signaling
and proliferation (pattern 2) showed marked increase of pattern
weights from normal epithelium through LG and HG PanINs
(Figures 6B-6D and S17C). Increased proliferation during
tumorigenesis involving the pathways contributing to pattern 2
corroborates previously reported studies showing up-regulation
of pancreatic oncogenic signaling pathways in premalignancy
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Figure 6. Integration of PanIN ST data with invasive pancreatic cancer scRNA-seq using transfer learning
(A) The deconvolved ST data, after CODA annotation and quantification of cell types per spot, was used to integrate PanIN analysis with that of scRNA-seq from

human PDAC and subsequent validation with Xenium.

(B) The PDAC pattern 2 (proliferation) identified as highly expressed in PDAC cells from the atlas.
C and D) The PDAC pattern 2 shows gradual increase from normal ductal cells through LG to HG PanlINs.
E) The PDAC pattern 7 (inflammation) presents decreased expression in PDAC cells relative to normal epithelium from the atlas.

H) In the Xenium data, the visualization of a mixed duct (normal + PanlIN) highlights the trend between the PDAC patterns.

(
(
(F and G) The opposite as observed with pattern 2, pattern 7 (inflammatory) decreases in PanINs relative to normal cells.
(
(

I and J) (l) The projection of PDAC pattern 2 in the mixed duct and of the (J) PDAC pattern 7 confirmed the expression of both patterns using single-cell tran-
scriptomics with RNA in situ hybridization and the switch of cells that express one pattern or the other.

initiation and progression.*'**? Pattern 7, representing a com-
bined inflammatory and EMT state associated with CAF density
(Figures 6E and S17D),*® is enriched in normal ductal cells and
dissipates with the development of early-stage PDAC and pro-
gression to advanced cancer. Pattern 7 also showed decreasing
levels over the course of progression from normal cells to PanIN
(independent of the differentiation grade), as demonstrated by
the increase in the number of spots with low projected weights
(Figures 6F and 6G). This same shift between PDAC patterns 2
and 7 remains when the data is projected within the ST spots
that have been classified as normal, LG, and HG by pathologists
(Figures S18A-S18D), which retains more spots with low epithe-
lial purity than the CODA classification.

We sought to validate the cellular features at a single-cell level.
The Xenium panel was customized to include pattern marker
genes from patterns 2 and 7 (10 genes and 103 genes, respec-
tively). First, we sought to validate that our transfer learning
approach could also be applied to quantify the occurrence of
these patterns defined from scRNA-seq data in Xenium despite
the reduced number of features. To test the robustness of trans-
fer learning, we projected the 8 PDAC patterns learned by

CoGAPS on the epithelial cells in the PDAC scRNA-seq data
only for the 362 genes in common between Xenium and the
PDAC scRNA-seq data. Spearman correlations were calculated
for each pattern between the original PDAC pattern weights and
the new PanIN projected weights. The most highly correlated
projected weights with original pattern weights were pattern 5
(R=0.84, p <2.2e—16), pattern 7 (R = 0.83, p < 2.2e—16), and
pattern 2 (R = 0.83, p < 2.2e—16). We attribute this high correla-
tion to the panel design selected from pattern marker genes,
designed specifically to delineate these phenotypes, demon-
strating the potential robustness of transfer learning analysis
from scRNA-seq to Xenium. Subsequently, we applied ProjectR
to identify the PDAC patterns 2 and 7 in the Xenium data. This
analysis supports the same trends observed in the ST Visium
data with a tradeoff between patterns 2 and 7 during PanIN pro-
gression, and that is even more evident when observing these
changes within sample PanIN-HG2 mixed duct (Figures 6H-
6J), corroborating and further refining the inferred phenotypic
changes in the scRNA-seq data of PDAC.

While the transfer learning analysis enables us to relate pheno-
typic changes between normal and tumor cells to PanIN
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progression, we hypothesized that our ability to identify specific
LG and HG lesions through ST could refine these epithelial tran-
sitions. Therefore, we performed further CoOGAPS analysis on the
epithelial (normal and PanIN) ST spots annotated by CODA to
compare with the patterns learned from the scRNA-seq PDAC
atlas. We discover a pattern (ST pattern 3) that increases pro-
gressively from normal duct to LG through HG PanIN (Fig-
ure S19A) and is similar to the PDAC pattern 2 in terms of en-
riched pathways and projected distribution in the scRNA-seq
data (Figures S19B and S19C). We also uncovered three pat-
terns with the opposite trend (Figure S19A). Pathway analysis re-
veals these patterns are characterized by genes associated with
EMT and inflammation (Figure S19B). Two of these patterns (ST
patterns 2 and 5) show partial overlap with PDAC pattern 7
derived from the atlas (Figure S19C). The ST pattern 2 represents
an EMT-enriched pattern, while ST pattern 5 is enriched for in-
flammatory-related genes. These data demonstrate that these
ST patterns represent distinct components of the inflamma-
tory/EMT signature captured by PDAC pattern 7, and that they
both show relative attenuation in HG PanIN compared with
normal duct (ST patterns 2 and 5) and LG PanIN (ST pattern 5
only) (Figures S18A and S18B). Overall, when performed on the
PanINs, CoGAPS recovers a gene signature similar to prolifera-
tive PDAC pattern 2 and separately recovers the inflammatory
(ST pattern 5) and EMT (ST pattern 2) signatures represented
by PDAC pattern 7.

The integration of PanIN ST data and the single-cell PDAC
data provides further evidence that during PDAC initiation, as
PanIN lesions develop to the invasive state, there is a contin-
uous increase in proliferation capability in combination with
loss of inflammatory signaling in epithelial cells that is poten-
tially driving an immunosuppressive TME or tumor immune
evasion. While these findings have to be further validated,
this analysis demonstrates the potential of using transfer
learning to integrate spatial and single-cell multi-omics data-
sets generated through different experimental approaches
and custom panel designs.

DISCUSSION

ST technologies are uncovering new molecular and intercellular
interactions that provide insights into how these complex
signaling networks mediate cancer development and progres-
sion.? In this study, we applied an FFPE compatible ST
approach® to profile a novel cohort of PanIN samples progress-
ing from LG to HG lesions. An independent cohort with the same
technology, additional single-cell resolution spatial proteomics
and imaging transcriptomics profiling, and independent
scRNA-seq data of PDAC tumors are used for validation. Our
study aimed to uncover the cellular and molecular features
potentially associated with the progression from premalignan-
cies to invasive PDAC. For these analyses, we introduced a
new imaging, spatial multi-omics, and scRNA-seq integration
analysis pipeline to infer phenotypic transitions in carcinogen-
esis. The major innovation of this pipeline is leveraging two ma-
chine learning methods for integrative analysis across imaging,
ST profiles, and scRNA-seq data to automatically infer spots
associated with disease-relevant cellular features in the stained
imaging in the ST analysis pipeline.
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The first machine learning method, CODA,'* enabled the
automated assignment of cell types to ST spots using single-
cell resolution to classify the cells in each sample based on the
imaging of the each ST section. In contrast to other recent inte-
gration methods that perform purely unsupervised co-clustering
of morphology and gene expression for deconvolution, like Star-
fysh and iSTAR,'>'® CODA was specifically trained to embed
pathological knowledge to automatically annotate cell types in
pancreatic precancer.** Unlike computational spot deconvolu-
tion methods that rely on prior knowledge about the molecular
features of cell types, such as gene expression signatures
(e.g., BayesPrism and RCTD),'®*° our artificial intelligence
method for cellular purification requires no prior reference mo-
lecular atlas. This is particularly useful when studying histologic
features that are difficult to confidently annotate in scRNA-Seq
data, such as PanIN and other premalignancies that are molec-
ularly similar to PDAC. Additionally, purifying transcriptomic
groups by morphology eliminates the selection bias introduced
by predetermined molecular features, and thus preserves
within-group heterogeneity and facilitates the study of poorly
characterized transcriptomic features. This imaging and ST
analysis integration facilitated accurate assignment of cell types,
selection of spots using cell purity as a threshold for downstream
gene expression analysis, providing a framework for future semi-
supervised ST deconvolution methods that incorporate expert
pathological knowledge for analysis.

The second machine learning method on our pipeline enables
inference of cell state transitions and their relation to reference
scRNA-seq data to delineate the molecular mechanisms of
PDAC carcinogenesis. Annotating spots to known cellular fea-
tures from the stained section enables us to significantly improve
the overall purity to enhance even differential expression anal-
ysis and unsupervised non-negative matrix factorization analysis
comparing the molecular changes between normal and PanIN
ducts. While focused on epithelial cells, we also applied this im-
aging enhancement to refine gene expression signatures of
pancreatic islets and stromal cells. Beyond these comparative
analyses, we sought to further determine which dynamic
phenotypic transitions in these cells remain in advanced PDAC
and if candidate PanIN cells from tumor-adjacent lesions can
be identified in reference scRNA-seq data from dissociated tis-
sue. Therefore, the second computational method in our new
ST analysis pipeline, ProjectR,'®'” allowed the integration of
scRNA-seq from invasive PDACs with ST data from PanINs to
relate the mechanisms associated with PDAC initiation to subse-
quent progression. While this study is focused on PanIN pro-
gression, this pipeline could enable important future work
leveraging different datasets of the distinct pancreatic precursor
lesions to compare transcriptional programs and identify the
mechanisms of progression into invasive PDAC. Although this
study focused on epithelial cells, our combined data-integration
pipeline is applicable to any cell type shared between CODA
annotations and scRNA-seq data and provides a broader
multi-omics framework for the study of carcinogenesis in
different tissue types.

Applying our combined experimental and computational
approach to PanIN samples, we observed for the first time the
presence of CAFs and the different subtypes (myCAF, iCAF,
and apCAF) in premalignant human lesions. These subtypes
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were only previously described in PDAC in humans.?>?* Our
quantification of apCAFs by ST detected that as many as
13.9% of cells in a section containing PanIN expressed apCAF
signature genes and no CD45. Protein validation by IMC
confirmed the presence of these apCAFs in proximity to PanIN
at lower frequency. Of note, the IMC data were generated using
a panel that was specifically designed to detect pancreatic asso-
ciated fibroblasts and CAFs, limiting the detection of cell types,
and the proportion of apCAFs can only be determined relative to
the total CAFs present in the regions profiled. In general, CAFs
are the most abundant cell type in the PDAC TME and are known
to influence tumor cell behavior and to create an immunosup-
pressive environment.*® The presence of these regulatory cells
in human pancreatic premalignant lesions is not well described,
but our findings suggest that CAF-induced TME remodeling is an
early event with a durable impact on PDAC development. In a
recent publication, Carpenter et al. used ST to profile PanIN
diagnosed in normal pancreatic tissue collected from healthy or-
gan donors and observed that the fibroblasts adjacent to the
healthy-associated PanINs are transcriptionally different from
healthy pancreas fibroblasts and PDAC-associated CAFs, but
with similar heterogeneity observed in the latest.”” This suggests
that even in patients without PDAC, the healthy microenviron-
ment adjacent to the PanINs is already being reshaped, the
same way we observed in our PDAC-associated samples.
Further studies are necessary to examine the specific interac-
tions driven by the different CAF subtypes, how they modulate
premalignant cells, and other cellular components of the PDAC
TME. Such knowledge is critical to guide the development of
new therapeutic interventions that inhibit or revert CAF onco-
genic and immunosuppressive activity with the goal of intercept-
ing PDAC development.

ST analysis of the PanINs also identified transcriptional sig-
natures that are known to be associated with PDAC pheno-
types. PDACs are classified into classical and basal-like
transcriptional subtypes.?” Classical PDACs present a better
prognosis and represent most tumor cells found in early-stage
cancers before patients receive treatment. This supports the
hypothesis that all PDAC initially develops from the classical
phenotype, and there is a diverging point during the tumorigen-
esis in which some cells will differentiate into the basal-like
phenotype. This classical to basal-like transition is usually
expanded by chemotherapy as resistance develops.”’*®
Further supporting this hypothesis, is the fact that the PanIN le-
sions spatially profiled in this study and by Carpenter et al.*’
only express the classical signature. In our cohort, there was
only one sample that could not be classified as classical or
basal-like but that expressed a CSC signature. CSCs drive
aggressive disease, and their presence is associated with
resistance to therapies, local recurrence, and development of
metastasis.’®°° The presence of cells expressing CSC
markers in PanINs was previously described in a mouse model
that mimics PDAC development®’ and in human samples,®” but
little is known about the mechanisms leading to CSC genes up-
regulation and their role in PanIN initiation and development.
Our observation that this stemness signature is not seen in
cells expressing the classical subtype suggests that atypical
cells with stemness features are a rare, distinct population
that arises in early premalignant stages and that these cases
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will potentially present with distinct behavior and response to
the current therapies. Further investigation in a larger cohort
is needed to determine the frequency of this rare stem cell-
related mechanism of progression, the pathways driven by
stemness, and how these cells are interacting with the CAFs
and other cells in the TME to modulate PDAC biology. Our
study is the first to our knowledge to observe CSC markers ex-
pressed by a PanIN lesion, but we note that a recent multi-
omics study found a population of CD133+ iCAFs that express
CSC markers, but these markers were not observed in PDAC.>®
The presence of CSCs and CAFs in PanINs suggests that the
features associated with resistance to therapies in PDAC arise
early during tumorigenesis. As mentioned previously, further
oriented studies are necessary to determine how the interac-
tions between these cell types can modulate additional fea-
tures of resistance to therapies and progression of PDACs.

Differential expression analysis of the ST data shows that LG
and HG PaniINs are transcriptionally similar. Among the few
genes differentially expressed between these two PanIN grades,
TFF1, frequently overexpressed in PanIN, demonstrated gradual
increase during PanIN progression, but little is known about its
role in tumorigenesis. As mentioned previously, secreted TFF1
could be involved in tumor cell interactions with CAFs®®>* Tran-
scriptional differences were also detected between healthy
pancreas PanINs and tumor associate PanINs by Carpenter
et al.*” A few similarities between PanINs in healthy pancreas
and tumor-associated PanINs that were common with our study,
such as the overexpression TFF1. The authors suggest that this
latest observation suggests that increased levels of TFF1 are
a feature of PanINs that are lost during the progression to
PDAC since they showed that TFF1 expression is rare in PDAC
cells. However, further integrative analysis is needed to make
this direct comparison between PanIN progression and
advanced PDAC.

Fully relating these atypical cell state transitions inferred in ST
data to cancer progression requires relating these transcriptional
states across the transition, from normal epithelial through pre-
malignancy to malignant PDAC cells. We demonstrate that
transfer learning approaches developed to integrate different da-
tasets can be extended to relate spatial data from premalignancy
to reference scRNA-seq data. With this integrative analysis
approach to relate mechanisms in advanced PDAC carcinogen-
esis to premalignancy, we observe that unsupervised learning
analysis directly on the epithelial spots in our ST Visium data
more specifically separates EMT and inflammatory signaling as
two distinct cellular phenotypes in PanIN progression. Still, this
two-stage computational approach integrating imaging and ST
data of PanINs with scRNA-seq data of PDAC tumors enabled
us to identify a transition from inflammatory signaling in
neoplastic cells from LG PanIN to cellular proliferation in later
stages of carcinogenesis. In our complementary single-cell atlas
study that identifies this inflammatory signaling, we further corre-
lated this transition with CAF abundance and validated the ability
of CAFs to promote this signaling in a novel human organoid co-
culture model.*®

Although we used a limited sample number with an initial total
of 14 PanINs (9 LG and 5 HG), we were able to corroborate pre-
vious findings related to PanINs and discover features that are
common to invasive PDAC. Due to the small size of this cohort,
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the findings cannot be extrapolated or generalized for clinical im-
plications, but we are reassured that our cohorts recapitulate
many of the well-characterized features of PanIN since these
two cohorts (paired and validation) were prepared at different
times using different versions of the commercial reagents and
preprocessing software. The paired cohort (3 LG and 4 HG
PanIN) was prepared, and the data were preprocessed using
prototype reagents and software, while the validation cohort
(6 LG and 1 HG PanIN) used more recent versions of both. In
this scenario, the replicability of the findings between both co-
horts is another certification that the findings of the ST analyses
are robust. Another limitation is the lack of single-cell resolution
from the ST platform (Visium). Although we were able to
dramatically increase average spot purity by integrating Visium
with CODA, our unbiased clustering and differential expression
results may still contain artifacts originating from undesired
intra-spot cell type mixture. However, using additional high-
dimensional spatial single-cell transcriptomics (Xenium) and
proteomics (IMC), we were able to validate the presence of spe-
cific cell types, mainly of apCAFs, that are critical for PDAC
biology. These combined spatial multi-omics datasets enabled
us to characterize the microenvironment in which PanINs
develop and showed for the first time the presence of CAFs
surrounding human PanINs and their impact on neoplastic cell
signaling. Further analysis of the transcriptomics and proteomics
spatial single-cell datasets could uncover new cellular and
molecular features of CAF and premalignancy interactions. Our
cohort included samples with varying stromal and acinar cell
composition, but we did not observe correlations between
PanIN transcriptional profiles with the adjacent cell types due
to the limited size. To examine if the CAFs surrounding the
PanINs remodel the premalignant microenvironment and influ-
ence premalignancy progression, a larger cohort with a more
stringent selection criteria would be better suited. Patients’
clinical features and outcomes (e.g., tumor stage, metastasis,
response to therapies) would be critical to unveil the conse-
quences of CAF-PanIN (or PDAC) interactions in PDAC tumori-
genesis. Such a specific cohort would allow correlative analysis
between clinico-pathological features and TME composition.
Nonetheless, we demonstrate that multi-omics analysis enabled
by FFPE ST, imaging data analysis, and scRNA-seq data lead to
a model that allows the investigation of molecular features that
are present in premalignancies and invasive carcinomas of the
pancreas. Moreover, this novel hybrid experimental and robust
computational pipeline provides broadly applicable tools to
create a molecular and cellular model of the pathways that un-
derlie carcinogenesis from multi-modal data spanning distinct
high-dimensional transcriptomics and spatial molecular technol-
ogies. Our pipeline will facilitate analyses of future datasets
aiming to characterize transcriptional changes that are selected
based on grade of differentiation to better understand the mech-
anisms of tumorigenesis in different tissues.

STARXMETHODS

Detailed methods are provided in the online version of this paper and include
the following:

o KEY RESOURCES TABLE
o RESOURCE AVAILABILITY
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RNA quality control
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Spatial transcriptomics data generation
Cell type annotation using transfer learning from stained imaging
Registration of ST data with cell type annotations
Spatial transcriptomics data analysis of PanIN samples
High-dimensional RNA in situ hybridization (Xenium, 10x Genomics)
Imaging Mass Cytometry Data Analysis
Transfer learning to relate ST data from PanIN to a scRNA-seq atlas
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Conjugated IMC antibodies N/A All information on clones, companies,
dilution factors, etc are included in
Table S2.

Chemicals, peptides, and recombinant proteins

Molecular biology grade water Corning Catalog #46-000-Cl

Xylene, Histological Grade Milipore Sigma Catalog #534056

Hematoxylin Solution, Mayer’s Milipore Sigma Catalog #MHS16

Bluing reagent Dako Catalog #CS70230-2

Eosin Y-solution, Alcoholic Milipore Sigma Catalog #HT110116

Tris 1M, pH 7.0, RNase-free

PBS 1x, pH 7.4

Tween 20

KAPA SYBR FAST gPCR Master Mix (2X)
SPRIselect Reagent

Thermo Fisher Scientific
Corning

Thermo Fisher Scientific
KAPA Biosystems
Beckman Coulter

Catalog #AM9850G
Catalog #21-040-CV
Catalog #28320
Catalog #KK4600
Catalog #B23318

Ethyl Alcohol, Pure (200 proof, anhydrous) Millipore Sigma Catalog #E7023-500ML
Potassium Hydroxide Solution, 8M Millipore Sigma Catalog # P4494-50ML
Qiagen Buffer EB Qiagen Catalog # 19086
Glycerol solution Milipore Sigma 49781

Hydrochloric acid solution, 0.1N Fisher Chemical SA54-1

TE buffer (pH9.0) N/A N/A

Sodium dodecyl sulfate solution Milipore Sigma Catalog #71736-500ML
SSC Buffer 20x, Concentrate Milipore Sigma Catalog #S6639-1L
Critical commercial assays

RNeasy extraction kit Qiagen Catalog #73504
Bioanalyzer RNA 6000 Pico Kit Agilent Catalog #5067-1513
High Sensitivity DNA Kit Agilent Catalog #5067-4626

Visium Spatial for FFPE Gene Expression
Kit, Human Transcriptome, 16 rxns

Dual Index Kit TS Set A, 96 rxns

10x Genomics

10x Genomics

Catalog #1000336

Catalog #1—251

Software and algorithms

NDP Scan v3.4 Hamamatsu N/A
Space Ranger 10x Genomics N/A
Seurat N/A N/A
CODA N/A N/A
CoGAPS N/A N/A
ProjectR N/A N/A
Other

Epredia HM 355S Automatic Microtome

Epredia MX35 Premier Disposable
Microtome Blades, Low Profile

DNA LoBind Tubes, 1.5mL
TempAssure PCR 8-tube strip

MicroAmp Fast Optical 48-well
reaction plate

48-well Optical Adhesive Film

Fisher Scientific
Fisher Scientific

Eppendorf
USA Scientific
Thermo Fisher Scientific

Thermo Fisher Scientific
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Catalog #23-900-672
Catalog #3052835

Catalog #022431021
Catalog #1402-4700
Catalog #4375816

Catalog #4375323
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Coplin jars VWR Catalog #100500-232
Coverslips Fisher Scientific Catalog #12-544-EP
2100 Bioanalyzer Agilent Catalog # G2939BA
10x Genomics Accessories (Thermocycler 10x Genomics Catalog #1000194

Adaptor, Visium Spatial Imaging Test Slide,
10x Magnetic Separator, Slide
Alignment Tool)

C1000 Touch Thermal Cycler Bio-Rad Catalog #1851197

Veriti 96-Well Thermal Cycler Thermo Fisher Scientific Catalog #4375786

NanoZoomer-XR Hamamatsu Catalog #1.12225-01

Deposited data and code

Processed Panl spatial transcriptomics This paper GEO: GSE254829

High resolution images for CODA analysis This paper Zenodo: doi: https://doi.org/10.5281/
zenodo.11243954

Imaging mass cytometry data This paper Zenodo: doi: https://doi.org/10.5281/
zenodo.11243954

Code for spatial transcriptomics This paper Zenodo: doi: https://doi.org/10.5281/
zenodo.11478317

Code for CODA analysis This paper Zenodo: doi: https://doi.org/10.5281/

zenodo.11477585

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by lead contact, Luciane Ka-
gohara (ltsukam1@jhmi.edu).

Materials availability
This study did not generate new materials.

Data and code availability

o Data: There are restrictions to the availability of sequencing data. This is a retrospective cohort, and it is not possible to consent
these patients with historic samples, particularly those with highly aggressive and rapidly lethal disease. As such, the IRB has
requested that we do not publicly share the raw sequencing data from each patient. The data is securely stored within a
Johns Hopkins University patient data system. The sequencing data reported in this paper will be shared by the lead contact
(Dr. Luciane T. Kagohara - Itsukam1@jhmi.edu) upon request. The data is only available through collaboration following
approval of the lead contact and Johns Hopkins University IRB. The processed data from spatial transcriptomics experiments
(Visium and Xenium) are deposited in the Gene Expression Omnibus (GEO) (GEO: GSE254829). The high resolution images
used for CODA machine learning cell type annotations and the IMC data are deposited in Zenodo (Zenodo: doi: https://doi.
org/10.5281/zenodo.11243954).

® Code: The code for the spatial transcriptomis analyses are available at Zenodo https://zenodo.org/records/11478318 (Zenodo:
doi: https://doi.org/10.5281/zenodo.11478317) and for CODA analysis at https://zenodo.org/records/11477585 (Zenodo: doi:
https://doi.org/10.5281/zenodo.11477585).

® Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

FFPE pancreatic ductal adenocarcinoma (PDAC) surgical specimens collected from 2016 to 2020 were examined by experienced
pathologists (KF, JWL, ET and LWD) and PanINs present in the specimens were marked and classified as low- and high-grade by
experienced pathologists. Only PanIN lesions with a unanimous diagnosis and grading were included in the study. The samples
were obtained from the Johns Hopkins University School of Medicine Department of Pathology archives under Institutional Review
Board approval (IRB00274690) under a waiver of consent. Samples were distributed into two cohorts: test (PanIN-LG1, PanIN-HG1,
PanIN-LG2, PanIN-HG2, PanIN-LG3, PanIN-HG3, PanIN-HG4) and validation (PanIN-R-LG1, PanIN-R-LG2, PanIN-R-LGS, PanIN-
R-LG4, PanIN-R-LG5, PanIN-R-HG1, PanIN-R-LG®6). For ST analysis, new sections were prepared onto the ST slides and stained
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prior to sequencing library preparations. The test cohort sections were stained with hematoxylin and the validation cohort with he-
matoxylin and eosin (H&E). Pathology revisions of the test cohort were performed by KF, LDW and JWL; while the revisions for the
validation cohort were done by ET, LDW and JWL.

METHOD DETAILS

RNA quality control

All samples selected for the study had their RNA quality checked prior to the ST slides preparation. Total RNA was isolated from 20um
sections of each sample using the RNase FFPE kit (Qiagen), following manufacturer’s instructions. RNA quality was measured using
the DV200 assay on the Bioanalyzer (Agilent) to determine the proportion of fragments with ~200bp in the sample. RNA quality was
considered good if DV200 > 50%.

Spatial transcriptomics slide preparation

The ST data was generated using the commercial platform Visium FFPE (10x Genomics). The slides are designed to accommodate a
total of 4 sections with a maximum size of 6.5 x 6.5 mm. We used a manual method for minimal manipulation of the FFPE blocks from
clinical specimens to fit the 6.5x6.5 mm dedicated areas of the ST slides (Visium, 10x Genomics). Briefly, for the specimens that were
larger than the designated regions of the Visium slides, we gently scored the surface of FFPE clinical blocks to isolate the area con-
taining PanlINs for profiling in the limited area of the Visium slide (Figure 1A). We scored the selected sample area containing the PanIN
using skin punches of 5mm in diameter. The skin punches were used directly on the FFPE blocks to delimit the area of interest, so
when the block was sectioned in the microtome the PanIN containing region was detached from the rest of the section and could then
be placed in the ST capture area of the slides (Figure 1A). A5 um section from each sample with 5mm in diameter was used for the ST
analysis. Upon preparation, the slides were incubated at 42°C and then stored in a desiccator until use.

Spatial transcriptomics data generation

Using the Visium FFPE (10x Genomics) platform and following manufacturer’s validated protocol the samples were deparaffinized,
stained with hematoxylin (discovery cohort) or H&E (validation cohort), and scanned using the Nanozoomer scanner (Hamamatsu) at
40x magnification. Human probe hybridization was performed overnight at 50°C. Following probe ligation, the RNA was digested,
and the tissue was permeabilized for the release, capture, and extension of the probes. The designated area for each sample is
covered by probes containing oligo-d(T) that capture the probes by a poly-A tail sequence present in the probe sequence. The
sequencing library preparations were performed as instructed by the manufacturer using the extended probes as the template.
All libraries were sequenced with a depth of at least 50,000 reads per spot (minimum of ~250 millions per sample) at the
NovaSeq (lllumina). The Visium Human Transcriptome Probe Set v1.0 contains probes to 19,144 genes and after computational pre-
processing (filtering for probes off-target activity) provides gene expression information for 17,943 genes.

Cell type annotation using transfer learning from stained imaging

Seven microanatomical components of human pancreas tissue were multi-labelled using a semantic segmentation workflow. The
seven components recognized were (1) islets of Langerhans, (2) normal ductal epithelium, (3) vasculature, (4) fat, (5) acinar tissue,
(6) collagen, and (7) pancreatic intraepithelial neoplasia (PanIN). Briefly, fifty examples of each tissue type were manually annotated
using Aperio ImageScope. Half of the newly generated annotations were used in the training dataset for the convolutional neural
network and the other half were used as an independent testing dataset to evaluate model performance. The testing dataset revealed
an overall accuracy of 94.0% in classification of tissues in the TMAs. Following training, the tissue images were segmented to to tiles
of 1um each.

Nuclear coordinates were generated via the detection of two-dimensional hematoxylin or H&E intensity peaks. Briefly, the TMA
images were down sampled to 1 um/pixel resolution. To adapt CODA to the hematoxylin only stained images (test cohort), the color
image was converted to greyscale. No changes were necessary for the H&E stained sections (validation cohort). The image was
smoothed using a Gaussian filter and two-dimensional intensity peaks with minimum radii of 2um were identified as nuclear
coordinates.

Registration of ST data with cell type annotations

The low-resolution image used for the Visium pre-processing with Space Ranger was registered to the high-resolution tissue image
used for microanatomical measurements to integrate the two workflows. The registration utilized the fiducial markers present on the
ST glass slide to estimate the registration scale factor and translation. As registration was performed on two scans of identical tissue
sections, it was assumed that rotation was not necessary. Here, the low-resolution image was registered to the high-resolution image
(rather than the other way round) so that the scale factor was always greater than 1 and ensuring that the 1 um resolution of the tissue
micro annotations was preserved. First, the fiducial markers in each pair of images were segmented by identification of small,
nonwhite objects surrounding the larger TMAs. Nonwhite objects were determined to be pixels with red-green-blue standard
deviations greater than 6 in 8-bit space. These objects were morphologically closed and very small noise (<50 pixels) were removed.
The fiducial markers were then determined to be objects in the image within 20% of the median object size (as many fiducial
markers existed for each corresponding tissue image). This process resulted in fiducial image masks for the high-resolution and
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low-resolution tissue images. With these masks, four possible registrations were calculated to account for the situation where the
Visium analysis was performed on the tissue image rotated at a 0-, 90-, 180-, or 270-degree angle. For each registration, the corner
fiducial markers of the low-resolution image were rescaled and translated to minimize the Euclidean distance to the fiducial markers
of the high-resolution image. Of the four registration results, the registration resulting in the greatest Jaccard coefficient between the
high-resolution and low-resolution fiducial masks was chosen. For the eight TMAs, the average Jaccard coefficient of the fiducial
masks was 0.94.

The registration information used to overlay the low-resolution tissue image to the high-resolution tissue image was used to convert
the coordinates corresponding to the location of the Visium assessment in the low-resolution image into the high-resolution images
coordinate system. Once the Visium coordinates were registered to the high-resolution image, the generated tissue microanatomy
composition and cellularity were calculated for regions within 25um of each coordinate. For each Visium coordinate, pixels in the
micro-anatomically labelled mask image within 25um of that coordinate were extracted. Tissue composition was determined by
analyzing the % of each classified tissue type within that dot. The cellularity of each dot was determined by counting the number
of nuclear coordinates within 25um of each Visium coordinate. Cellular identity was estimated by determining the microanatomical
label at each coordinate where a nucleus was detected (a nucleus detected in the same pixel where the semantic segmentation
model detected normal ductal epithelium was labelled an epithelial cell).

Spatial transcriptomics data analysis of PanIN samples
Sequencing data was processed using the Space Ranger software (10x Genomics) for demultiplexing and FASTQ conversion of
barcodes and reads data, alignment of barcodes to the stained tissue image, and generation of read counts matrices. The
processed sequencing data were inputs for the analyses using the Seurat software.®>~°® Data preprocessing with Seurat involved
initial visualization of the counts onto the tissue image to discriminate technical variance from histological variance (e.g.: collagen
enriched regions present lower cellularity that reflects in low counts). The filtered data was normalized using the SCTransform
approach that uses a negative binomial method to preserve biological relevant changes while filtering out technical artifacts.
Following normalization, data from all slides were merged and batch correction was performed with Harmony from harmony_0.1.0.
Unsupervised clustering was subsequently performed on the harmony reduction using the Louvain algorithm as implemented by
Seurat.>>°®

Louvain clusters were annotated using the overlap of CODA annotations and quantifications per spot with well-characterized
marker genes. Neoplastic and ductal epithelium groups were generated through selecting spots from the respective Louvain cluster
that were estimated to be greater than or equal to 70% of the respective cell type on CODA. The data dimensionality was reduced
using PCA for clustering and in tissue visualization of the transcriptional clusters. Unsupervised clustering was performed based on
the most variable features (genes). Differential gene expression analysis of normal ducts and PanINs, and low and high grade lesions
were performed using the MAST test®® as implemented by Seurat. For comparisons performed across different slides, the slide was
assigned as a latent variable and the matrix was prepared using PrepSCTFindMarkers to account for the multiple SCT models.
Pathway analysis was performed using GSEA v4.2.1.°%5" High- and low-grade PanIN spots were subset from the neoplastic Louvain
cluster by pathologists (KF, JWL, LT and LWD) annotation using a custom-made Shiny app derived from the SpatialDimPlot function
in Seurat. Violin plots, spatial plots, were generated in Seurat. Volcano plots were generated in ggplot2.°? Heatmaps were generated
using ComplexHeatmap.®®

High-dimensional RNA in situ hybridization (Xenium, 10x Genomics)

The high-dimensional RNA in situ hybridization was performed at 10x Genomics facilities following manufacturer’s instructions.
Xenium was performed on 3 samples from the paired cohort (PanIN-HG1, PanIN-HG2 and PanIN-HG3) with PanIN lesions available
in same area profiled with Visium. The sections were placed on the Xenium slides and deparaffinized and decrosslinked for optimal
probe hybridization. The probes that hybridized to transcripts in the sample were ligated, amplified and conjugated to fluorescent
probes in the Xenium Analyzer. The fluorescence captured by the device was preprocessed for visualization using the Xenium
Explorer software. Finally, the sections were stained with hematoxylin and eosin and scanned. The data was analyzed using Seurat,
following similar steps as described above for the Visium analysis. Briefly, the outputs from Xenium analyzer served as input for
Seurat. Briefly, after Xenium data quality check (visualization of transcripts detected distribution in the tissue), the data was normal-
ized (SCTransform) and we performed unsupervised clustering. Each sample was analyzed individually. Individual cells were deter-
mined by the Xenium Explorer cell segmentation algorithm. Xenium cell segmentation is an automated process that uses neural
network for nuclear segmentation. The DAPI staining signal captured during the imaging is used to generate a segmentation
mask. The detected nuclear boundaries are expanded by 15um in all directions and cell boundaries and transcripts are assigned
to that detected cell. The detected cells were classified based on known cell type markers included in the panel. To annotate
CAF subtypes, a module score was applied for pan-CAF marker genes (FAP, LUM, DCN, COL1A1). The distribution of module scores
among all cells was modeled as a mixture of 3 gaussian distributions using mixtools v2.0.0. Cells were annotated as CAFs if they had
a CAF module score greater than the threshold set at one standard deviation below the mean of the third component gaussian dis-
tribution (threshold value: 0.362) and no expression of PTPRC (CD45). Among cells annotated as CAFs, cells were annotated as CAF
subtypes using module scores for each type (apCAF: CD74, HLA-DRA, HLA-DPA1, HLA-DQAT1, SLPI; iCAF: CXCL1, CXCL2, CCL2,
LMNA, HAS1, HAS2; myCAF: TAGLN, MYL9, TPM2, MMP11, HOPX, TWIST1, SOX4). Cells were annotated as a CAF subtype based
on the highest CAF subtype module score greater than 0. Cells with no module scores above 0 were typed as general “CAF”. CD4
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T cells were annotated by gating of cells not annotated as epithelial, PanIN, or CAFs for concurrent non-zero expression of PTPRC,
CD4, and at least one gene encoding CD3 proteins (CD3D, CD3E, or CD3G).

The Xenium gene panel included a total of 380 genes. This panel was outlined using a commercial panel of 280 genes designed for
breast cancer. The large majority of the genes are markers for cell types found in different cancer types (epithelial, immune, stromal
and endothelial cells). Then, we customized additional 100 genes that were selected from our Visium analysis and include highly ex-
pressed genes in PanIN, and genes from Pattern 2 and 7 (Table S1).

Imaging Mass Cytometry Data Analysis

Immunohistochemical staining was performed with mass cytometry antibodies. The TMA slides were first baked at 60°C for 2 hours,
dewaxed in xylene, then rehydrated in an alcohol gradient. The slides were incubated in Antigen Retrieval Agent pH 9 (Agilent®
S2367) at 96°C for 30 minutes then blocked with 3% BSA in PBS in RT for 45 minutes. The antibody cocktail listed in Table S2
was prepared at optimized dilutions and used to stain the slides at 4°C overnight. All custom antibodies were prepared to a concen-
tration of 0.25 to 0.5mg/mL and were titrated empirically. Cell-ID™ Intercalator-Ir (Standard Biotools PN 201192A) was used for DNA
labelling and Ruthenium tetroxide 0.5% Aqueous Solution (Electron Microscopy Sciences PN 20700-05) was used as counterstain.
Images were acquired using the Hyperion Imaging System (Standard BioTools) at the Johns Hopkins Mass Cytometry Facility. Upon
image acquisition, representative images were visualized and generated through MCD™ Viewer (Standard BioTools).

Images were acquired with a Hyperion Imaging System (Standard BioTools) at the Johns Hopkins Mass Cytometry Facility.
Through MCD Viewer™ (Standard BioTools), multi-layered ome.tiff image stacks were generated and loaded in HALO 3.6. With
HALO 3.6, the Area Quantification FL v2.3.4 algorithm was optimized visually and manually thresholded to quantify the positive
area of IMC markers Smooth Muscle Actin (SMA), Vimentin (VIM), Collagen (COL), Podoplanin (PDPN), CD74, and HLA-DR. To
mark all CAFs, a combination of SMA+VIM+COL+PDPN and DNA was used. The Area Quantification FL v2.3.4 algorithm was
also utilized to subset CAFs into phenotypes positive for CD74, HLA-DR, and CD74+HLADR+. To calculate the density of CAF phe-
notypes, ruthenium counterstain was quantified for tissue area normalization and DNA was quantified for nuclear area normalization.
CAF phenotypes were also obtained as percentages over the total CAF population. The resulting data was visualized using GraphPad
Prism v10.1.2.

Transfer learning to relate ST data from PanIN to a scRNA-seq atlas of Pancreatic Ductal Adenocarcinoma

We obtained scRNA-seq data for pancreatic epithelial cells from an atlas of 29 tumor samples and 14 non-cancerous samples
collated from Peng et al. and Steele et al. as described in Guinn et al.’® We inferred cellular phenotypes in the epithelial cells using
CoGAPS (R, version 3.5.8)°%%C to infer 8 patterns on the log transformed expression values. Pattern annotation was based on
overrepresentation analysis of patternMarker genes identified by CoGAPS (R, version 3.9.5)° and Molecular Signatures Database
Hallmark gene sets (version 7.5.1)°° using the R package fgsea (version 1.18.0).°° TFF1 expression was measured as log-normalized
counts. Uniform manifold approximation and projection (UMAP) plots were made using monocle3 (version 1.0.0).°°~"" UMAP plots for
epithelial cells from the scRNA-seq PDAC data were made with cells colored by epithelial cell type, log normalized TFF1 expression,
and Pattern 2, 5, 7 weights.

PanIN ST data was subset to spots annotated as epithelial by CODA (N = 240 spots; normal = 93, low-grade = 48, high-grade = 99).
CoGAPS patterns learned from normal and tumor cells in the PDAC scRNA-seq data were projected onto scaled SCT expression
values from epithelial ST spots using ProjectR (version 1.8.0).'"” Projected pattern weights were plotted as violin plots using Seurat
(version 4.1.0). Mean pattern weights were compared across epithelial lesion grades using Wilcoxon rank-sum tests within ggpubr
(version 0.4.0). UMAP plots of ST spots and overlayed plots of ST spots colored by epithelial type, log normalized TFF1 expression,
and projected Pattern 2, 5, 7 weights over tissue slices were prepared using Seurat (version 4.1.0). Conversely, CoOGAPS patterns
learned from the scaled SCT expression values of PanIN ST data were plotted as violin plots using Seurat (version 4.1.0). Pattern
weights were compared across epithelial lesion grades using Wilcoxon rank-sum tests within ggpubr (version 0.4.0). Patterns
were projected onto the scRNA-Seq atlas using ProjectR (version 1.8.0).
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