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C A N C E R

Power-law growth models explain incidences and sizes 
of pancreatic cancer precursor lesions and confirm 
spatial genomic findings
Ashley L. Kiemen1,2*, Pei-Hsun Wu3, Alicia M. Braxton4, Toby C. Cornish5, Ralph H. Hruban1,2,  
Laura D. Wood1,2, Denis Wirtz3,1,2, David Zwicker6*

Pancreatic ductal adenocarcinoma is a rare but lethal cancer. Recent evidence suggests that pancreatic intraepi-
thelial neoplasia (PanIN), a microscopic precursor lesion that gives rise to pancreatic cancer, is larger and more 
prevalent than previously believed. Better understanding of the growth-law dynamics of PanINs may improve 
our ability to understand how a miniscule fraction makes the transition to invasive cancer. Here, using three-
dimensional tissue mapping, we analyzed >1000 PanINs and found that lesion size is distributed according 
to a power law. Our data suggest that in bulk, PanIN size can be predicted by general growth behavior without 
consideration for the heterogeneity of the pancreatic microenvironment or an individual’s age, history, or lifestyle. 
Our models suggest that intraductal spread and fusing of lesions drive our observed size distribution. This analysis 
lays the groundwork for future mathematical modeling efforts integrating PanIN incidence, morphology, and 
molecular features to understand tumorigenesis and demonstrates the utility of combining experimental mea-
surement with dynamic modeling in understanding tumorigenesis.

INTRODUCTION
Pancreatic ductal adenocarcinoma (PDAC), though rare, is predicted 
to be the second leading cause of cancer-related deaths in the United 
States by 2030 (1–3). A major hurdle in confronting this aggressive 
disease is that there is no effective screening test for PDAC or its 
precursor lesions (4). As such, PDAC is often diagnosed late when 
distant metastases are present and few clinical options remain. Only 
15% of patients present with localized disease at the time of diagno-
sis (1). Improved understanding of the early development of pancre-
atic cancer is a necessary first step to developing effective screening 
tools. Most PDACs are believed to develop from microscopic pre-
cursor lesions called pancreatic intraepithelial neoplasia (PanIN, 
Fig. 1) (5). Study of PanIN is uniquely complicated due to its small 
size: PanIN lesions in most cases cannot be seen through noninva-
sive diagnostic imaging such as computed tomography, magnetic 
resonance imaging, and endoscopic ultrasound (6). PanINs are 
primarily studied in surgically resected tissues, and techniques for 
three-dimensional (3D) mapping of dense tissues at cellular resolu-
tion enable quantitative assessment of PanINs and the pancreatic 
microenvironment in histological images (7–13). Recent works uti-
lizing a large cohort of 3D reconstructed human pancreata revealed 
that the pancreata of some individuals contain hundreds of PanIN 
lesions (14).

This number contrasts with the relative rarity of PDAC and sug-
gests that most PanIN lesions will never progress to cancer in a person’s 
lifetime. The mechanism governing this extensive PanIN initiation and 
growth in human tissues is poorly understood.

The gold standard for understanding the true incidence and mor-
phology of biological structures is direct measurement of 3D struc-
ture in human tissues. However, this approach has some limitations. 
In animal modeling, researchers maintain direct control over disease 
progression to pair structural metrics with temporal information. 
Such control does not exist in studies of human disease, where static 
time points of disease progression are generated through specimens 
taken from surgical resections—these samples are precious, albeit 
rarely longitudinal. Thus, while we can construct large cohorts 
containing structural information from hundreds of PanIN lesions, 
we cannot directly measure the “age” of these precursors or observe 
their dynamic behavior. Here, we utilize a cohort containing metrics 
from >1000 spatially resolved, 3D PanIN lesions mapped from serial 
histological sections of pancreatic tissues resected from 48 individuals 
to present potential growth dynamics of PanINs. Some of these 
samples contain spatially resolved DNA sequencing data describing 
the somatic mutations of spatially separate PanINs, providing addi-
tional information about their history and inter-relation.

Because PanIN growth cannot be observed directly, we use 
dynamic modeling to predict suitable growth laws by comparing the 
resulting size distributions to our experimental size data. This ap-
proach allows us to identify fundamental processes contributing to 
growth. In particular, the spatially resolved genomics information 
suggests that intraductal spread of PanIN lesions, as well as multiple 
PanIN lesions fusing together to create large, highly branched struc-
tures might be important (14). In the following, we first analyze the 
experimental data in detail and then build successively more com-
plex models to explain the observed lesion size distribution.

RESULTS
PanIN sizes exhibit a broad distribution
The CODA methodology (15) was successfully used to map PanIN 
lesions in human pancreas tissues (Fig. 2). CODA enables automatic, 
nonlinear registration of serial histological sections and deep learning 
segmentation of pancreas microanatomy for quantification of PanIN 
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size and morphology in 3D space, here performed at a resolution of 
12 μm. From each sample, we compiled patient demographic infor-
mation along with number and size of PanIN lesions per 3D recon-
structed surgically resected pancreas sample. Using these data, a 
range of PanIN sizes and morphologies was found (Fig. 3A). A total 
of 48 thick slabs of human pancreas tissue were assessed (Fig. 3B). 
The mean sample volume was 1.83 cm3 (median: 1.87 cm3, range: 
0.31 to 3.62 cm3). Samples contained an average of 21.8 spatially 
separate PanIN lesions (median: 18.5, range: 4 to 92). PanIN vol-
umes were highly variable within this cohort. The smallest PanIN 
was 9 × 10−5 mm3, occupying part of a small, intercalated duct, and 
the largest PanIN was 24.7 mm3, occupying most of the pancreatic 
ductal system of the sampled region. The average PanIN volume was 

0.27 mm3 (median: 0.01 mm3). The PanIN structure was similarly 
highly variable, with small PanIN lesions occupying short regions of 
single duct branches, and the larger PanIN lesions appearing highly 
branched, with extension in the pancreatic ducts and into surround-
ing acinar lobules. Figure 3C displays PanIN densities per sample, 
calculated as number of PanIN per cubic centimeter of tissue.

The variability of PanIN size is visualized in the histogram shown 
in Fig. 3D using logarithmic scaling. This representation of the data 
suggests that PanIN size is distributed according to a power law with 
a fitted exponent of −1.7 (correlation coefficient 0.96, with 95% con-
fidence intervals 0.89 and 0.98), which implies that PanINs are over-
whelmingly small. However, this power law cannot explain the 
occurrence of the largest PanIN (blue dots in the lower right of 

Fig. 1. Pancreatic tumorigenesis as visualized in histological sections. Pancreatic ductal adenocarcinoma (PDAC) develops from histologically recognizable precursor 
lesions called pancreatic intraepithelial neoplasms (PanINs). Shown here are histological examples of (left) a histologically normal duct, (center) PanIN, and (right) invasive 
cancer. Scale bar, 0.5 mm.

Fig. 2. CODA 3D reconstruction of pancreatic microanatomy. (A) CODA starts with serial histological sectioning of formalin-fixed, paraffin-embedded human pancreas 
samples. All, or a subset, of sections are stained with hematoxylin and eosin (H&E) and digitized. (B) A deep learning semantic segmentation algorithm was used to 
segment nine tissue components in the H&E images. (C) A nonlinear image registration algorithm was used to align the serial images into a digital volume. (D) Registered, 
segmented images were used to create visual and quantifiable maps of the pancreas microanatomy. Scale bars, 1 cm (black) and 2 mm (gray).
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Fig. 3D). We hypothesize that this poor fit at large volumes may 
be due to the merging of multiple PanIN lesions into exceptionally 
large structures, as suggested by our previous genetic work (14). A 
precise quantification of very large PanIN is challenging due to the 
limited number sampled, and this information is further concealed 
because histograms generally rely on binning of the data. To circum-
vent this problem, we instead represent the data using a comple-
mentary cumulative distribution function (CCDF), S(V), which 
gives the fraction of observed PanINs with a volume larger than V 
(see Fig. 3, E to G). The precise shape of S(V) carries more information 

about the distribution of PanIN size than the histogram, because it 
does not require binning. For instance, it reveals that PanINs below 
Vmin = 0.001 mm3 are rarely detected, so we disregarded data below 
this size in our analysis. PanINs larger than this size must have been 
initiated sometime in the past and grown over the course of the 
days, months, or years leading up to the time of pancreatic surgical 
resection. Consequently, the size distribution described by the 
CCDF contains information about the history of the sample. Using 
the CCDF, we compared PanIN density across three demographic 
factors to show that no significant difference in PanIN content exists 

Fig. 3. Observed PanIN sizes exhibit a broad distribution. (A) PanINs were found in a range of volumes, with a minimum PanIN volume of 9 × 10–3 mm3 and a maximum 
PanIN volume of 24.7 mm3. (B) Tables displaying total number of pancreas samples reconstructed, number of PanIN found, patient demographics, and detailed 3D sample 
information. (C) Bar graph displaying number of PanINs identified per cubic centimeter of pancreas tissue for 48 grossly normal slabs of human tissue. Minimum of 
1.4 PanIN per cubic centimeter of tissue and maximum of 31.1 PanIN per cubic centimeter of tissue. (D) Histogram of PanIN volumes, plotted at logarithmic scale. 
(E to G) Cumulative distribution function of PanIN volumes, displaying number of PanIN identified per cubic centimeter of pancreas tissue compared across age, location 
of surgical resection, and sex. All nonsignificant (P > 0.05).
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as a function of patient age (Fig. 3E), sex (Fig. 3F), or location of 
surgical resection within this cohort (Fig. 3G), consistent with pre-
vious findings (14). Instead, we hypothesize that the size distribu-
tion is shaped by the way in which PanINs grow.

A power-law growth law explains size 
distribution qualitatively
PanIN growth is a complex, poorly understood process, which is 
likely affected by the pancreatic microenvironment (interactions of 
cells harboring somatic mutations with stromal cells and pancreatic 
digestive enzymes) and an individual’s age, family history, and life-
style. However, our comparative analysis suggests that, in this co-
hort, age (Fig. 3E), sex (Fig. 3F), and the location of surgical resection 
(tissue taken from the pancreatic head versus tail, Fig. 3G) do not 
significantly affect the size or incidence of PanINs. It is thus plausi-
ble that the overall features of PanIN size distribution are less sensi-
tive to such details and are rather shaped by general growth behavior. 
For instance, PanINs could grow according to their present size 
(quantified by their volume V), proportionally to their surface area 
(which scales as V2/3 if the shape varies little), or only along the in-
ner lining of the pancreatic ducts in which they are, by definition, 
contained. In the last case, growth would be independent of the vol-
ume V, which can be captured as a growth rate proportional to V0. 
Together, the PanIN growth rate of all these alternatives can be sum-
marized by a power law

which quantifies how the PanIN volume V changes over time t. 
Here, Vmin = 0.001 mm3 is the cutoff volume, k quantifies the growth 
rate, and α denotes the growth exponent distinguishing different 
modes of growth; α = 1, ⅔,0 correspond to the three alternative 
modes discussed above, but in principle all values of α are permis-
sible. Figure 4 (A and B) visualizes the strong influence of the expo-
nent α on PanIN volume as a function of time.

The observed size distribution depends not only on how indi-
vidual lesions grow but also on when they were initiated. To capture 
this, we describe a collection of many lesions with individual vol-
umes Vi. We start without any PanIN at t = 0 and add new PanIN 

with an initiation rate density j, which quantifies the number of le-
sions initiated per year per cubic centimeter of pancreas tissue. Con-
sequently, the PanIN count N for a sample of volume VS evolves as

Together, Eqs.  1 and 2 describe how the PanIN count N and the 
volumes Vi of each individual PanIN evolve over time. In particular, 
we can then quantify the CCDF S(V) at the sample age T.

To explore suitable growth exponents α, we start by analyzing the 
simplest scenario where PanINs are initiated at a constant rate j, and 
each PanIN grows independently according to Eq.  1. In this sce-
nario, the PanIN count N grows linearly with time, N(t) = jVSt. The 
predicted size distribution of PanIN volumes V after a finite time T 
retains the strong dependence on α (see Fig. 4, C and D). We next 
compare the predictions of the power-law growth model to the ob-
served distribution S(V). Figure 4E shows two fits of this model in-
volving either the entire range of data (green line) or only small 
PanINs (blue line). This shows that the power-law growth model 
explains the distribution of smaller PanIN lesions reasonably well, 
but cannot account for the entire size distribution. This might be 
expected, because larger PanINs may not simply grow, but may also 
merge with other PanINs, which is not reflected in the current mod-
el. Nevertheless, the fit of the model to smaller PanINs suggests that 
PanINs grow proportionally to their volume or ever more rapidly 
because the model with α > 1 best explains the data. In contrast, the 
deviation of the distributions for large volumes stems from (i) many 
more small PanINs than our simple model predicts or (ii) more ex-
ceedingly large PanINs than our model predicts. Consequently, not 
only variability in PanIN initiation but also seeding of new PanIN 
and merging of older PanIN lesions could explain these deviations. 
We will show that these scenarios are all plausible, but lead to very 
different dynamics, which could be discriminated experimentally.

Growth law predicts PanIN initiation times
A core assumption of the first analysis above was that the PanIN 
initiation rate j was constant in time. We cannot directly test this 
assumption using our data, which were collected from individuals 
who underwent surgical resection for a pancreatic abnormality such 
as cancer (which primarily occurs in older populations). However, 
it is generally accepted that PanINs are more common in older 

�tV = kVmin

(

V

Vmin

)α

(1)

�tN = j VS (2)

Fig. 4. Simple growth PanIN growth model explains size distribution qualitatively. (A) PanIN volume V as a function of time t predicted by the power-law growth 
model given by Eq. 1 for various growth exponents α and identical growth rate k. (B) V(t) reaching the same volume at t = T for various α. (C) CCDF S(V) of PanIN volumes 
predicted by the power-law growth model for a given growth rate k and various α. (D) S(V) with identical maximal volume Vmax = 100 mm3 for various α. (E) Comparison 
of observed (black line; same data as Fig. 3F) and predicted (green and blue lines) size distributions S(V). Parameters α and Vmax of the power-law growth model were 
obtained by fitting over all volumes (green data, χ2 = 0.054) or over the indicated range (blue data, χ2 = 0.018). (F) Smoothed PanIN initiation rate density j as a function 
of age inferred using the power-law growth model and the observed PanIN sizes for various α. Shaded area indicates confidence interval of width j ∕

√

N , where N is the 
number of PanINs for that year. The samples’ ages are summarized by the gray histogram. (A to F) Additional parameters: Vmin = 0.001 mm3.
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individuals and that the somatic genetic events that give rise to 
PanINs accumulate as we age (16–18). To quantify the PanIN initia-
tion rate indirectly, we use Eq. 1 to predict when a PanIN measured 
at volume V must have been initiated (with a volume Vmin) relative 
to the age T of the sample. For simplicity, we use the same growth 
rate k for all PanINs, chosen minimally such that no PanINs are 
older than the age of the patient at the time of pancreatic resection. 
Together, this allows us to predict the initiation rate density j (the 
number of PanINs initiated in a given year per cubic centimeter of 
pancreas tissue) as a function of time. Figure 4F shows that a fairly 
constant initiation rate density requires super-exponential growth 
(α ≈ 1.2, green data), consistent with our result above. In contrast, 
exponential (α ≈ 1, teal data) or sub-exponential (α < 1, violet data) 
growth requires strongly increasing initiation rates, e.g., new PanINs 
must appear more frequently in older samples. To get a deeper 
insight into the connection between initiation rate density j  and 
growth exponent α, we next discuss two concrete realizations that 
can cause these different behaviors.

PanIN seeding could explain increasing initiation rates
Increased PanIN initiation rates could potentially be explained by 
seeding, where some neoplastic cells detach from a PanIN lesion, 
travel within the lumen of the duct, and initiate a new PanIN that is 
physically separate from the parent PanIN lesion (see Fig.  5A). 
Experimental evidence confirms the possibility of intraductal 
spread, as DNA sequencing has shown that adjacent, spatially sepa-
rate PanIN sometimes harbor a similar profile of somatic mutations 
(14, 19). To see whether this explanation is feasible, we extend the 

power-law growth model given by Eqs. 1 and 2 to include seeding. 
For simplicity, we assume that the volume of a PanIN does not 
change when it seeds a new one, essentially assuming V ≫ Vmin. 
Seeding can then be captured by the modified initiation rate density

where j0 is a constant de novo initiation rate density, a quantifies the 
strength of seeding from each of the N existing PanINs of volumes 
{Vi}, and γ is an exponent describing how the seeding depends on 
the size of the parent PanIN: A constant rate corresponds to γ = 0, 
whereas γ = 1  implies seeding proportional to the volume of the 
PanIN, and fractional values describe scenarios between these two 
extremes. Note that the second term in Eq. 3 is proportional to the 
PanIN count N, causing an autocatalytic increase in the number of 
PanIN, similar to how metastasis can themselves metastasize and 
drastically increase the number of metastatic foci.

We simulate a population of PanINs for various choices of the 
five parameters (k, α, j0, a, and γ) of the PanIN seeding model to 
compare the resulting size distribution to the measured data. Note 
that two of the five parameters, namely, α and γ, distinguish qualita-
tively different scenarios, whereas the other three parameters 
determine the quantitative behavior. To capture this, we analyze the 
model for various pairs (α, γ) and determine the remaining param-
eters using a fit to the experimental data. Using χ2 to quantify the good-
ness of fit, we can then judge which pair (α, γ) provides the best 
description of the experimental data. Figure 5B shows that the 

j(t) = j0 +
a

VS

N(t)
∑

i=1

[

Vi(t)

Vmin

]γ

(3)

Fig. 5. Seeding and merging models can explain observed size distribution quantitatively. These models combine the simple growth described by Eq. 1 with spon-
taneous seeding of daughters from older PanINs (A to D) or merging of two PanINs (E to H). (B) Mean squared deviation χ2 as a function of the growth exponent α and 
seeding exponent γ indicates that seeding model with α ≈ 0.75 can explain the observed data. (C) Comparison of the PanIN size distribution S(V) of the seeding model 
(blue line; α = 0.75, γ = 0.83) to the observed data (black line). The parameters in the inset refer to a sample of volume VS = 100 cm3 simulated for T = 65 years. (D) 
Predicted PanIN count N as a function of age t. Inset shows the number of seeded PanINs as a function of t indicating an exponential increase. (F) χ2 as a function of α and 
the merging exponent β indicates that the merging model with α ≈ 1.2 and β ≈ 0.1 can explain the observed data. (G) Comparison of S(V) of the merging model (blue line; 
α = 1.2, β = 0.1; shaded area indicates STD for n = 32 repetitions) to the observed data (black line). (H) Predicted N as a function of t suggests N ∼ t. Inset shows the number 
of merged PanINs as a function of age t.
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seeding exponent γ influences χ2 only weakly, whereas the growth 
exponent α is strongly constrained by the data. This analysis now 
suggests that PanINs grow sub-exponentially (0.6 < α < 0.9) in con-
trast to the simpler model without seeding. In any case, the direct 
comparison of the theoretical prediction with experimental mea-
surements shown in Fig. 5C indicates that seeding can account for 
the observed data quantitatively. In essence, seeding from existing 
PanINs leads to an exponentially increasing initiation rate density j 
(see Fig. 5D), which is consistent with Fig. 4E and accounts for the 
many observed small PanIN lesions.

PanIN merging could explain frequent large PanINs
Merging events, where two PanINs grow so large that they touch 
and merge with each other within the effected duct, are a second 
alternative for a process that affects the size distribution (see Fig. 5E). 
Experimental evidence supports the existence of polyclonal PanIN 
lesions, as DNA sequencing has shown that large, highly branched 
PanIN lesions can contain multiple distinct localized somatic muta-
tions in the same initiating driver gene (14). Instead of describing 
the intricate details of spatial PanIN growth, we also capture this 
behavior by extending the power-law growth model given by Eqs. 1 
and 2. The main idea is that the probability that two PanINs meet and 
merge is roughly inversely proportional to sample volume VS and 
might also depend on their individual volumes V1 and V2. We thus 
merge two PanINs stochastically with rate K(V1, V2), which we 
model as a power law

where b determines the merging rate, whereas β encodes the size 
dependence: For β = 0, the merging rate is independent of PanIN 
size, whereas, for instance, β = 2/3 implies a rate that scales with 
the surface area of both PanINs. This merging model is similar to 
Smoluchowski’s coagulation model, which describes merging clus-
ters like liquid droplets (20, 21). For simplicity, we consider a con-
stant initiation rate density j0 of de novo formation of PanINs. The 
model is inherently stochastic, so we simulate multiple samples and 
collect all PanIN volumes at the final time to compare their distri-
bution to the experimentally measured one. Because we replace 
two merging PanINs by a single one with the total volume V1 + V2, 
this model leads to fewer but larger PanINs over time, which could 
explain the higher-than-expected portion of large PanINs that 
we observe.

The PanIN merging model has five parameters (k, α, j0, q, and β), 
where α and β distinguish qualitatively different growth scenarios, 
whereas k, j0, and q set quantitative rates. We thus again fit the rates 
by minimizing χ2 as a function of the parameter pair (α, β). Fig-
ure 5F indicates that there is an optimal region for these two param-
eters, although it is less sharply defined than in the seeding model. 
The best fit occurs for super-exponential growth (α ≈ 1.2) and a 
merging rate that is roughly constant (β ≈ 0.1), although larger 
merging exponents are also plausible. Figure 5G shows that the best 
fit can indeed explain the observed size distribution, but there is ap-
preciable uncertainty, particularly for the larger PanINs with worse 
statistics. In any case, merging of PanINs happens predominantly 
for larger volumes, leading to even larger PanINs, implying that 
PanIN count decreases with time (see Fig. 5H) and the size distribu-
tion becomes skewed toward larger sizes.

Seeding and merging model predict different PanIN 
counts over time
The seeding and the merging model can both explain the experi-
mentally observed PanIN size distribution. However, the reasons 
are fundamentally different: The seeding model exhibits a strongly 
increasing initiation rate, resulting in more small PanINs than the 
simple power-law growth model predicts. Conversely, the merging 
model leads to an excess of large PanINs even for a constant initia-
tion rate. Crucially, both models account for the deviation between 
the power-law growth model and the observed data that we identi-
fied in Fig. 4E. Clearly, the combination of both models could also 
explain the observed experimental data of PanIN sizes. However, 
both models make distinct predictions for the number N of PanINs 
as a function of time: The seeding model yields exponentially in-
creasing N (Fig. 5D), due to the exponential increase in the initia-
tion rate, whereas the merging model predicts even fewer PanINs 
than in the basic growth model due to merger events (Fig. 5H). This 
difference also explains why the seeding model predicts a lower 
growth exponent (α ≈ 0.75) than the merger model (α ≈ 1.2), which 
is consistent with our observations in Fig.  4F that a smaller α 
coincides with strongly increasing initiation rates. Together, the two 
models could thus be distinguished, and their relative contribution 
could be quantified, if PanINs were identified in much young-
er samples.

DISCUSSION
Here, we show that simple growth models can describe experimen-
tally observed size distributions in human pancreatic precancer in-
cidence and volume, whereas the age, sex, and location seem to have 
a weak influence. We demonstrate that there are two general models 
of lesion growth that can lead to the experimentally measured size 
distribution: (i) sub-exponential lesion growth with exponentially 
increasing initiation rate, e.g., due to discontinuous intraductal 
spread, and (ii) exponential lesion growth with significant merging 
of larger lesions, e.g., fused polyclonal PanIN lesions. Both models 
fit experimentally collected genomic data—likely, a combination of 
the two models is true [this is studied in related fields as coagulation-
fragmentation processes (22)].

Although both mechanisms lead to the same measured PanIN 
size distribution at their endpoints, the dynamics of the two are 
very different. This is apparent in the predicted de novo initiation 
rate densities j0, which differ by more than two orders of magni-
tude (Fig. 5, C and G), the number of lesions as a function of time 
(Fig. 5, D and H), and in the lesion size distribution as a function 
of time (fig. S1). The PanIN seeding model exhibits sub-exponential 
growth of individual PanIN lesions, but the number of PanINs 
grow exponentially because more PanINs can, in turn, seed more 
PanINs. Conversely, the PanIN merging model requires super-
exponential growth of individual PanIN lesions, but the number of 
PanIN lesions actually decreases over time as multiple PanIN com-
bine into one. Because we do not observe significant differences in 
PanIN counts between two age groups (Fig.  3D), the merging 
model might explain real PanIN growth more accurately. Howev-
er, reality might be best described by a combination of seeding, 
merging, and a time-dependent de novo initiation rate density. 
More detailed data, particularly from samples from younger indi-
viduals, are needed to quantify the relative contributions of these 
different processes.

K(V1,V2) =
b

VS

(

V1V2

V 2
min

)β

(4)
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We note several limitations of our study. As we analyze all 
PanINs from all 3D samples reconstructed, our PanIN volumetric 
data were biased by non-fully contained lesions (PanIN that were 
cut at the boundaries and should thus be larger than we measure). If 
we were to analyze only the fully contained PanIN, we would lose all 
the largest lesions, shifting our distribution. In the future, larger 
sample volumes could circumvent this problem. Because of these 
challenges, the numbers obtained from the model should be inter-
preted carefully. However, the general relations between initiation, 
merging, and the growth exponent would still hold. In addition, as 
the volumetric PanIN data generated by CODA was limited by the 
resolution of the histological staining schema thickness [4-μm-thick 
serial sections with every third section stained with hematoxylin 
and eosin (H&E)] (14), the resolution of the experimental data ana-
lyzed here was 12 μm by 12 μm by 12 μm, which may have limited 
our ability to accurately measure the smallest PanIN lesions. Last, as 
the pancreas samples analyzed here were collected during surgical 
resections for pancreatic abnormalities, the incidence and size of le-
sions reported here may not fully represent the general population 
(as most of our samples came from older individuals, and there is an 
association between age, pancreatic cancer, and PanIN incidence). 
Future work modeling the growth properties of PanIN as measured 
from pancreata lacking any abnormality and samples from younger 
individuals is important for correcting this bias. Last, in this study, 
we assume that all PanINs grow at the same rate. As knowledge of 
precursor lesions is constantly evolving, it is highly possible that 
more nuanced information will reveal different growth rates for 
PanIN from different populations [such as PanINs in individuals 
with mutations that put them at high risk for development of 
pancreatic cancer (BRCA) or high-grade PanIN] grow at different 
rates. However, we believe that it was a reasonable assumption that 
all low-grade PanINs grow at similar rates given the genetic simi-
larities between all low-grade PanINs, which are primarily driven by 
KRAS hotspot mutations (23–25).

Our model gives a general overview for how precancerous le-
sions could evolve. More detailed experimental data, such as high-
resolution spatial genetic information for both very small PanIN 
lesions and very large PanIN lesions, would be valuable to measure 
seeding and merging rates directly. Similarly, more data on PanIN 
sizes and shapes from samples of various ages could be used to di-
rectly test different growth models of individual PanIN, e.g., wheth-
er they grow in 2D sheets along the pancreatic ducts or have some 
3D leeway to expand their volume in all directions (for example, 
into the lumen of the ducts or into the acinar lobules), which will 
likely also depend on PanIN size. If such data become available, our 
model can serve as a basis for developing more detailed models that 
describe PanIN in the actual physical space provided by the pancre-
atic ducts. Moreover, our generic approach to describing lesion 
growth is likely transferable to other lesion types, including other 
common cancer precursors in the fallopian tubes or esophagus. 
Differences and similarities between different precancerous lesions 
could then unveil universal principles of how cancers originate.

MATERIALS AND METHODS
Experiments
Generation of a 3D human pancreas tissue cohort
The 3D pancreas maps used here were previously described in a work 
mapping the prevalence and spatially resolved genomic properties of 

pancreatic cancer precursor lesions (14). Briefly, thick slabs of grossly 
normal human pancreas tissue were collected from 48 individuals 
who underwent surgical resection at the Johns Hopkins Hospital for 
pancreatic abnormalities including PDAC, well-differentiated pan-
creatic neuroendocrine tumors, metastatic disease of non-pancreatic 
origin, and non-malignant pathologies. Tissue was formalin-fixed, 
paraffin-embedded (FFPE), and serially sectioned at a thickness of 
4 μm. Every third section was stained with H&E and digitized at 
20× magnification, for a lateral (xy) resolution of 0.5 μm per pixel 
and an axial (z) resolution of 12 μm. CODA (Fig. 2), a recently de-
veloped tool for 3D reconstruction of serially sectioned tissues (15), 
was used to register the serial images and segment nine pancreatic 
microanatomical structures on the serial H&E images at a reduced 
resolution of 2 μm: PanIN, normal pancreatic ducts, pancreatic aci-
ni, islets of Langerhans, vasculature, nerves, fat, lymph nodes, and 
stroma to an accuracy of 96.6% (14). Resulting models were fully 
visualizable and quantifiable. Spatially distinct PanINs identified 
using CODA were validated through inspection of corresponding 
histology, and parameters including number of PanIN lesions per 
cubic centimeter of pancreas tissue, lesion size, cellularity, and as-
pect ratio were obtained.

Power-law growth model
The power-law growth model given by Eq. 1 in Results with initial 
condition V(t = 0) = Vmin results in the growth curve

for α ≠ 1, and V(t) = Vminekt for α = 1, where we use Vmin = 
0.001 mm3. The maximal PanIN size in a sample of age T is thus 
Vmax = V(T), which is achieved when the PanIN is initiated at t = 0. 
Assuming a constant PanIN initiation rate density j, the distribution 
of PanIN sizes can be expressed by the CCDF after duration T, 
which reads

for α ≠ 1, and S(V) = ln (Vmax/V)/ ln (Vmax/Vmin) for α = 1. These 
expressions do not depend on j because the distribution is normal-
ized, S(Vmin) = 1. To compare the power-law growth model to ob-
served data, we predict the distribution S(V) for each individual 
sample, taking its age T into account. The overall distribution, 
determined by averaging weighted by sample volume, then only 
depends on the parameters k and α. We determine these parame-
ters by minimizing the squared difference between the predicted 
and measured S(V) using the Levenberg-Marquardt algorithm 
(in Fig. 4E).

Inverting the growth curve V(t) allows us to determine the dura-
tion it takes for a PanIN to grow to the observed volume V, so we 
can predict when a PanIN must have been initiated for a given k and 
α. Choosing the minimal plausible value for k (such that PanINs 
must have originated after t = 0) as well as pooling observed data by 
years and weighing them with the inverse sample volume, we pre-
dict the number Ni of PanINs that were initiated in year i per unit 
volume of the sample. These discretized data are smoothed with a 
Gaussian filter of width 5 years to generate Fig. 4F.

V (t) = Vmin[1+kt(1−α)]
1

1−α

S(V ) =
1 −

(

Vmax

V

)α−1

1 −
(

Vmax

Vmin

)α−1
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Simulating extended models
We simulate the seeding model by explicitly propagating forward in 
time a collection of PanIN sizes {Vi}. For each step, we first use Eq. 3 
(see Results) to determine the average waiting time Δt until a new 
PanIN is initiated and then grow all PanINs for this duration accord-
ing to the power-law growth curve given above. We quantify the re-
sulting distribution Spred(V) from the final volumes after time T.

In contrast, we simulate the merging model using a fixed time 
step Δt = 0.01 y. During each step, we first grow all PanINs accord-
ing to the power-law growth given by Eq. 1, then randomly choose 
M of the Npairs = N(N − 1)/2 possible PanIN pairs for an attempted 
merge, and lastly initiate new PanIN with the constant initiation rate 
j0. The merge is performed stochastically, i.e., when Pij > ξ, where Pij 
= Δt · Npairs K(Vi, Vj)/M with K(V1, V2) given by Eq. 4, and ξ is a 
random number chosen uniformly between 0 and 1. Here, M is a 
control parameter, which is chosen minimally while still obeying Pij 
< 1. While initiation is still implemented deterministically, merging 
is done stochastically; thus, we obtain the respective distribution 
Spred(V) from an average of eight independent runs. In all cases, we 
run simulations for T = 65 y, the median age of the patients ana-
lyzed. The volume VS of the model sample does not affect results and 
we chose VS = 100 cm3 to get adequate statistics.

Fitting of simulated models
To fit the predictions of the models described above to the ob-
served data Sobs(V), we minimize the logarithmically scaled mean 
squared deviation

where the CCDFs S(V) are evaluated in 64 logarithmically distrib-
uted intervals between Vmin and the maximally observed volume; 
thus, Si = P(V > Vi) gives the fraction of PanIN with a volume above 
Vi. We minimize χ2 by adapting the model parameters using the dif-
ferential evolution algorithm (26) over eight independent repeti-
tions, each with 2048 steps (in Fig. 5).

Supplementary Materials
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Sections S1 to S3
Fig. S1
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