Check for
updates

SCIENCE ADVANCES | RESEARCH ARTICLE
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Power-law growth models explain incidences and sizes
of pancreatic cancer precursor lesions and confirm

spatial genomic findings
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Pancreatic ductal adenocarcinoma is a rare but lethal cancer. Recent evidence suggests that pancreatic intraepi-
thelial neoplasia (PanIN), a microscopic precursor lesion that gives rise to pancreatic cancer, is larger and more

Copyright © 2024 e
Authors, some rights
reserved; exclusive
licensee American
Association for the
Advancement of
Science. No claim to
original U.S.
Government Works.
Distributed under a
Creative Commons
Attribution
NonCommercial
License 4.0 (CC BY-NC).

prevalent than previously believed. Better understanding of the growth-law dynamics of PanINs may improve
our ability to understand how a miniscule fraction makes the transition to invasive cancer. Here, using three-
dimensional tissue mapping, we analyzed >1000 PanINs and found that lesion size is distributed according
to a power law. Our data suggest that in bulk, PaniIN size can be predicted by general growth behavior without
consideration for the heterogeneity of the pancreatic microenvironment or an individual’s age, history, or lifestyle.
Our models suggest that intraductal spread and fusing of lesions drive our observed size distribution. This analysis
lays the groundwork for future mathematical modeling efforts integrating PanIN incidence, morphology, and
molecular features to understand tumorigenesis and demonstrates the utility of combining experimental mea-

surement with dynamic modeling in understanding tumorigenesis.

INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC), though rare, is predicted
to be the second leading cause of cancer-related deaths in the United
States by 2030 (1-3). A major hurdle in confronting this aggressive
disease is that there is no effective screening test for PDAC or its
precursor lesions (4). As such, PDAC is often diagnosed late when
distant metastases are present and few clinical options remain. Only
15% of patients present with localized disease at the time of diagno-
sis (I). Improved understanding of the early development of pancre-
atic cancer is a necessary first step to developing effective screening
tools. Most PDAC:s are believed to develop from microscopic pre-
cursor lesions called pancreatic intraepithelial neoplasia (PanIN,
Fig. 1) (5). Study of PanIN is uniquely complicated due to its small
size: PanIN lesions in most cases cannot be seen through noninva-
sive diagnostic imaging such as computed tomography, magnetic
resonance imaging, and endoscopic ultrasound (6). PanINs are
primarily studied in surgically resected tissues, and techniques for
three-dimensional (3D) mapping of dense tissues at cellular resolu-
tion enable quantitative assessment of PanINs and the pancreatic
microenvironment in histological images (7-13). Recent works uti-
lizing a large cohort of 3D reconstructed human pancreata revealed
that the pancreata of some individuals contain hundreds of PanIN
lesions (14).

This number contrasts with the relative rarity of PDAC and sug-
gests that most PanIN lesions will never progress to cancer in a person’s
lifetime. The mechanism governing this extensive PanIN initiation and
growth in human tissues is poorly understood.
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The gold standard for understanding the true incidence and mor-
phology of biological structures is direct measurement of 3D struc-
ture in human tissues. However, this approach has some limitations.
In animal modeling, researchers maintain direct control over disease
progression to pair structural metrics with temporal information.
Such control does not exist in studies of human disease, where static
time points of disease progression are generated through specimens
taken from surgical resections—these samples are precious, albeit
rarely longitudinal. Thus, while we can construct large cohorts
containing structural information from hundreds of PanIN lesions,
we cannot directly measure the “age” of these precursors or observe
their dynamic behavior. Here, we utilize a cohort containing metrics
from >1000 spatially resolved, 3D PanIN lesions mapped from serial
histological sections of pancreatic tissues resected from 48 individuals
to present potential growth dynamics of PanINs. Some of these
samples contain spatially resolved DNA sequencing data describing
the somatic mutations of spatially separate PanINs, providing addi-
tional information about their history and inter-relation.

Because PanIN growth cannot be observed directly, we use
dynamic modeling to predict suitable growth laws by comparing the
resulting size distributions to our experimental size data. This ap-
proach allows us to identify fundamental processes contributing to
growth. In particular, the spatially resolved genomics information
suggests that intraductal spread of PanIN lesions, as well as multiple
PanlN lesions fusing together to create large, highly branched struc-
tures might be important (14). In the following, we first analyze the
experimental data in detail and then build successively more com-
plex models to explain the observed lesion size distribution.

RESULTS

PanlIN sizes exhibit a broad distribution

The CODA methodology (15) was successfully used to map PanIN
lesions in human pancreas tissues (Fig. 2). CODA enables automatic,
nonlinear registration of serial histological sections and deep learning
segmentation of pancreas microanatomy for quantification of PanIN
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Fig. 1. Pancreatic tumorigenesis as visualized in histological sections. Pancreatic ductal adenocarcinoma (PDAC) develops from histologically recognizable precursor
lesions called pancreatic intraepithelial neoplasms (PanINs). Shown here are histological examples of (left) a histologically normal duct, (center) PanlIN, and (right) invasive

cancer. Scale bar, 0.5 mm.
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Fig. 2. CODA 3D reconstruction of pancreatic microanatomy. (A) CODA starts with serial histological sectioning of formalin-fixed, paraffin-embedded human pancreas
samples. All, or a subset, of sections are stained with hematoxylin and eosin (H&E) and digitized. (B) A deep learning semantic segmentation algorithm was used to
segment nine tissue components in the H&E images. (C) A nonlinear image registration algorithm was used to align the serial images into a digital volume. (D) Registered,
segmented images were used to create visual and quantifiable maps of the pancreas microanatomy. Scale bars, 1 cm (black) and 2 mm (gray).

size and morphology in 3D space, here performed at a resolution of
12 pm. From each sample, we compiled patient demographic infor-
mation along with number and size of PanIN lesions per 3D recon-
structed surgically resected pancreas sample. Using these data, a
range of PanIN sizes and morphologies was found (Fig. 3A). A total
of 48 thick slabs of human pancreas tissue were assessed (Fig. 3B).
The mean sample volume was 1.83 cm® (median: 1.87 cm”, range:
0.31 to 3.62 cm’). Samples contained an average of 21.8 spatially
separate PanIN lesions (median: 18.5, range: 4 to 92). PanIN vol-
umes were highly variable within this cohort. The smallest PanIN
was 9 X 107> mm”, occupying part of a small, intercalated duct, and
the largest PanIN was 24.7 mm’, occupying most of the pancreatic
ductal system of the sampled region. The average PanIN volume was
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0.27 mm® (median: 0.01 mm?). The PanIN structure was similarly
highly variable, with small PanIN lesions occupying short regions of
single duct branches, and the larger PanIN lesions appearing highly
branched, with extension in the pancreatic ducts and into surround-
ing acinar lobules. Figure 3C displays PanIN densities per sample,
calculated as number of PanIN per cubic centimeter of tissue.

The variability of PanIN size is visualized in the histogram shown
in Fig. 3D using logarithmic scaling. This representation of the data
suggests that PanIN size is distributed according to a power law with
a fitted exponent of —1.7 (correlation coefficient 0.96, with 95% con-
fidence intervals 0.89 and 0.98), which implies that PanINs are over-
whelmingly small. However, this power law cannot explain the
occurrence of the largest PanIN (blue dots in the lower right of
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Maximum PanIN volume: 24.7 mm3

Minimum PanlIN volume: 9 x 10-5 mm?
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Fig. 3. Observed PanIN sizes exhibit a broad distribution. (A) PanINs were found in a range of volumes, with a minimum PanIN volume of 9 x 107> mm?®and a maximum
PanIN volume of 24.7 mm?>. (B) Tables displaying total number of pancreas samples reconstructed, number of PanIN found, patient demographics, and detailed 3D sample
information. (C) Bar graph displaying number of PanINs identified per cubic centimeter of pancreas tissue for 48 grossly normal slabs of human tissue. Minimum of
1.4 PanIN per cubic centimeter of tissue and maximum of 31.1 PanIN per cubic centimeter of tissue. (D) Histogram of PanIN volumes, plotted at logarithmic scale.
(E to G) Cumulative distribution function of PanIN volumes, displaying number of PanIN identified per cubic centimeter of pancreas tissue compared across age, location
of surgical resection, and sex. All nonsignificant (P > 0.05).

Fig. 3D). We hypothesize that this poor fit at large volumes may
be due to the merging of multiple PanIN lesions into exceptionally
large structures, as suggested by our previous genetic work (14). A
precise quantification of very large PanIN is challenging due to the
limited number sampled, and this information is further concealed
because histograms generally rely on binning of the data. To circum-
vent this problem, we instead represent the data using a comple-
mentary cumulative distribution function (CCDEF), S(V), which
gives the fraction of observed PanINs with a volume larger than V'
(see Fig. 3, E to G). The precise shape of S(V) carries more information

about the distribution of PanIN size than the histogram, because it
does not require binning. For instance, it reveals that PanINs below
Vinin = 0.001 mm° are rarely detected, so we disregarded data below
this size in our analysis. PanINs larger than this size must have been
initiated sometime in the past and grown over the course of the
days, months, or years leading up to the time of pancreatic surgical
resection. Consequently, the size distribution described by the
CCDF contains information about the history of the sample. Using
the CCDE we compared PanIN density across three demographic
factors to show that no significant difference in PanIN content exists
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as a function of patient age (Fig. 3E), sex (Fig. 3F), or location of
surgical resection within this cohort (Fig. 3G), consistent with pre-
vious findings (14). Instead, we hypothesize that the size distribu-
tion is shaped by the way in which PanINs grow.

A power-law growth law explains size

distribution qualitatively

PanIN growth is a complex, poorly understood process, which is
likely affected by the pancreatic microenvironment (interactions of
cells harboring somatic mutations with stromal cells and pancreatic
digestive enzymes) and an individual’s age, family history, and life-
style. However, our comparative analysis suggests that, in this co-
hort, age (Fig. 3E), sex (Fig. 3F), and the location of surgical resection
(tissue taken from the pancreatic head versus tail, Fig. 3G) do not
significantly affect the size or incidence of PanINs. It is thus plausi-
ble that the overall features of PanIN size distribution are less sensi-
tive to such details and are rather shaped by general growth behavior.
For instance, PanINs could grow according to their present size
(quantified by their volume V), proportionally to their surface area
(which scales as V?* if the shape varies little), or only along the in-
ner lining of the pancreatic ducts in which they are, by definition,
contained. In the last case, growth would be independent of the vol-
ume V, which can be captured as a growth rate proportional to V°.
Together, the PanIN growth rate of all these alternatives can be sum-
marized by a power law

o
atv=kvmm< 14 )
V in

m!

1)

which quantifies how the PanIN volume V changes over time t.
Here, Vypin = 0.001 mm? is the cutoff volume, k quantifies the growth
rate, and o denotes the growth exponent distinguishing different
modes of growth; o = 1, 2,0 correspond to the three alternative
modes discussed above, but in principle all values of a are permis-
sible. Figure 4 (A and B) visualizes the strong influence of the expo-
nent o on PanIN volume as a function of time.

The observed size distribution depends not only on how indi-
vidual lesions grow but also on when they were initiated. To capture
this, we describe a collection of many lesions with individual vol-
umes V;. We start without any PanIN at f = 0 and add new PanIN

with an initiation rate density j, which quantifies the number of le-
sions initiated per year per cubic centimeter of pancreas tissue. Con-
sequently, the PanIN count N for a sample of volume Vg evolves as

o,N=jV; 2)

Together, Eqs. 1 and 2 describe how the PanIN count N and the
volumes V; of each individual PanIN evolve over time. In particular,
we can then quantify the CCDF S(V) at the sample age T.

To explore suitable growth exponents a, we start by analyzing the
simplest scenario where PanINs are initiated at a constant rate j, and
each PanIN grows independently according to Eq. 1. In this sce-
nario, the PanIN count N grows linearly with time, N(f) = jVst. The
predicted size distribution of PanIN volumes V after a finite time T'
retains the strong dependence on a (see Fig. 4, C and D). We next
compare the predictions of the power-law growth model to the ob-
served distribution S(V). Figure 4E shows two fits of this model in-
volving either the entire range of data (green line) or only small
PanINs (blue line). This shows that the power-law growth model
explains the distribution of smaller PanIN lesions reasonably well,
but cannot account for the entire size distribution. This might be
expected, because larger PanINs may not simply grow, but may also
merge with other PanINs, which is not reflected in the current mod-
el. Nevertheless, the fit of the model to smaller PanINs suggests that
PanINs grow proportionally to their volume or ever more rapidly
because the model with a > 1 best explains the data. In contrast, the
deviation of the distributions for large volumes stems from (i) many
more small PanINs than our simple model predicts or (ii) more ex-
ceedingly large PanINs than our model predicts. Consequently, not
only variability in PanIN initiation but also seeding of new PanIN
and merging of older PanIN lesions could explain these deviations.
We will show that these scenarios are all plausible, but lead to very
different dynamics, which could be discriminated experimentally.

Growth law predicts PanIN initiation times

A core assumption of the first analysis above was that the PanIN
initiation rate j was constant in time. We cannot directly test this
assumption using our data, which were collected from individuals
who underwent surgical resection for a pancreatic abnormality such
as cancer (which primarily occurs in older populations). However,
it is generally accepted that PanINs are more common in older
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Fig. 4. Simple growth PanIN growth model explains size distribution qualitatively. (A) PanIN volume V as a function of time t predicted by the power-law growth
model given by Eq. 1 for various growth exponents o and identical growth rate k. (B) V(t) reaching the same volume at t = T for various a. (C) CCDF S(V) of PanIN volumes
predicted by the power-law growth model for a given growth rate k and various a. (D) S(V) with identical maximal volume Vyax = 100 mm? for various . (E) Comparison
of observed (black line; same data as Fig. 3F) and predicted (green and blue lines) size distributions S(V). Parameters o and Vpax of the power-law growth model were
obtained by fitting over all volumes (green data, ¥ = 0.054) or over the indicated range (blue data, > = 0.018). (F) Smoothed PanIN initiation rate density j as a function
of age inferred using the power-law growth model and the observed PanlIN sizes for various «. Shaded area indicates confidence interval of width j / \/N, where N is the
number of PaniNs for that year. The samples’ ages are summarized by the gray histogram. (A to F) Additional parameters: Vimin = 0.001 mm?>,
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individuals and that the somatic genetic events that give rise to
PanINs accumulate as we age (16-18). To quantify the PanIN initia-
tion rate indirectly, we use Eq. 1 to predict when a PanIN measured
at volume V must have been initiated (with a volume V,;,) relative
to the age T of the sample. For simplicity, we use the same growth
rate k for all PanINs, chosen minimally such that no PanINs are
older than the age of the patient at the time of pancreatic resection.
Together, this allows us to predict the initiation rate density j (the
number of PanINs initiated in a given year per cubic centimeter of
pancreas tissue) as a function of time. Figure 4F shows that a fairly
constant initiation rate density requires super-exponential growth
(a0 = 1.2, green data), consistent with our result above. In contrast,
exponential (o & 1, teal data) or sub-exponential (x < 1, violet data)
growth requires strongly increasing initiation rates, e.g., new PanINs
must appear more frequently in older samples. To get a deeper
insight into the connection between initiation rate density j and
growth exponent a, we next discuss two concrete realizations that
can cause these different behaviors.

PanIN seeding could explain increasing initiation rates

Increased PanlIN initiation rates could potentially be explained by
seeding, where some neoplastic cells detach from a PanIN lesion,
travel within the lumen of the duct, and initiate a new PanIN that is
physically separate from the parent PanIN lesion (see Fig. 5A).
Experimental evidence confirms the possibility of intraductal
spread, as DNA sequencing has shown that adjacent, spatially sepa-
rate PanIN sometimes harbor a similar profile of somatic mutations
(14, 19). To see whether this explanation is feasible, we extend the

. 25
X 20
. 15
. 10
: 5
0

0.25 0.50 0.75 1.00
Growth exponent «

>
w
5

A mother PaniN...

o
®

o
o

Rate o< V7

o
IS

Seeding exponent ~

o
[N}

Mean squared deviation x?

PanlIN seeding model

...seeds a daugther

o
o

N
o

Two PanlNs...

Hm
m
o -
o o

PanIN merging model
<
o
]
o
R
<
=
S
Merging exponent 3
o
H
3

Mean squared deviation x?

o

o
—
o

-
o

©
¥}
o

..merge into one

o
o
o

0.0 0.5 1.0
Growth exponent a

power-law growth model given by Eqs. 1 and 2 to include seeding.
For simplicity, we assume that the volume of a PanIN does not
change when it seeds a new one, essentially assuming V > V.
Seeding can then be captured by the modified initiation rate density

O =i+ 2|5 3)

i=1 min

a ”[V_w]

where jj is a constant de novo initiation rate density, a quantifies the
strength of seeding from each of the N existing PanINs of volumes
{Vi}, and y is an exponent describing how the seeding depends on
the size of the parent PanIN: A constant rate corresponds to y = 0,
whereas y = 1 implies seeding proportional to the volume of the
PanlN, and fractional values describe scenarios between these two
extremes. Note that the second term in Eq. 3 is proportional to the
PanIN count N, causing an autocatalytic increase in the number of
PanlN, similar to how metastasis can themselves metastasize and
drastically increase the number of metastatic foci.

We simulate a population of PanINs for various choices of the
five parameters (k, o, jo, a, and y) of the PanIN seeding model to
compare the resulting size distribution to the measured data. Note
that two of the five parameters, namely, o and vy, distinguish qualita-
tively different scenarios, whereas the other three parameters
determine the quantitative behavior. To capture this, we analyze the
model for various pairs (a, y) and determine the remaining param-
eters using a fit to the experimental data. Using % to quantify the good-
ness of fit, we can then judge which pair (a, y) provides the best
description of the experimental data. Figure 5B shows that the
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Fig. 5. Seeding and merging models can explain observed size distribution quantitatively. These models combine the simple growth described by Eq. 1 with spon-
taneous seeding of daughters from older PanINs (A to D) or merging of two PanINs (E to H). (B) Mean squared deviation 2 as a function of the growth exponent « and
seeding exponent y indicates that seeding model with a ~ 0.75 can explain the observed data. (C) Comparison of the PanlIN size distribution S(V) of the seeding model
(blue line; @ = 0.75, y = 0.83) to the observed data (black line). The parameters in the inset refer to a sample of volume Vs = 100 cm? simulated for T = 65 years. (D)
Predicted PanIN count N as a function of age t. Inset shows the number of seeded PaniNs as a function of t indicating an exponential increase. (F) x° as a function of « and
the merging exponent f indicates that the merging model with « ~ 1.2 and p ~ 0.1 can explain the observed data. (G) Comparison of S(V) of the merging model (blue line;
a=1.2,=0.1; shaded area indicates STD for n = 32 repetitions) to the observed data (black line). (H) Predicted N as a function of t suggests N ~ t. Inset shows the number

of merged PanINs as a function of age t.
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seeding exponent y influences y* only weakly, whereas the growth
exponent « is strongly constrained by the data. This analysis now
suggests that PanINs grow sub-exponentially (0.6 < a < 0.9) in con-
trast to the simpler model without seeding. In any case, the direct
comparison of the theoretical prediction with experimental mea-
surements shown in Fig. 5C indicates that seeding can account for
the observed data quantitatively. In essence, seeding from existing
PanINs leads to an exponentially increasing initiation rate density j
(see Fig. 5D), which is consistent with Fig. 4E and accounts for the
many observed small PanIN lesions.

PanIN merging could explain frequent large PanINs

Merging events, where two PanINs grow so large that they touch
and merge with each other within the effected duct, are a second
alternative for a process that affects the size distribution (see Fig. 5E).
Experimental evidence supports the existence of polyclonal PanIN
lesions, as DNA sequencing has shown that large, highly branched
PanIN lesions can contain multiple distinct localized somatic muta-
tions in the same initiating driver gene (14). Instead of describing
the intricate details of spatial PanIN growth, we also capture this
behavior by extending the power-law growth model given by Egs. 1
and 2. The main idea is that the probability that two PanINs meet and
merge is roughly inversely proportional to sample volume Vs and
might also depend on their individual volumes V; and V,. We thus
merge two PanINs stochastically with rate K(V;, V3), which we
model as a power law

p
b (VY
K(V,,V,))=—
(l 2) VS(VZ

min

(4)

where b determines the merging rate, whereas f encodes the size
dependence: For p = 0, the merging rate is independent of PanIN
size, whereas, for instance, § = 2/3 implies a rate that scales with
the surface area of both PanINs. This merging model is similar to
Smoluchowski’s coagulation model, which describes merging clus-
ters like liquid droplets (20, 21). For simplicity, we consider a con-
stant initiation rate density j, of de novo formation of PanINs. The
model is inherently stochastic, so we simulate multiple samples and
collect all PanIN volumes at the final time to compare their distri-
bution to the experimentally measured one. Because we replace
two merging PanINs by a single one with the total volume V; + V5,
this model leads to fewer but larger PanINs over time, which could
explain the higher-than-expected portion of large PanINs that
we observe.

The PanIN merging model has five parameters (k, a, jo, ¢, and f),
where o and f distinguish qualitatively different growth scenarios,
whereas k, jo, and g set quantitative rates. We thus again fit the rates
by minimizing ¥~ as a function of the parameter pair (o, ). Fig-
ure 5F indicates that there is an optimal region for these two param-
eters, although it is less sharply defined than in the seeding model.
The best fit occurs for super-exponential growth (o = 1.2) and a
merging rate that is roughly constant ( &~ 0.1), although larger
merging exponents are also plausible. Figure 5G shows that the best
fit can indeed explain the observed size distribution, but there is ap-
preciable uncertainty, particularly for the larger PanINs with worse
statistics. In any case, merging of PanINs happens predominantly
for larger volumes, leading to even larger PanINs, implying that
PanIN count decreases with time (see Fig. 5H) and the size distribu-
tion becomes skewed toward larger sizes.

Kiemen et al., Sci. Adv. 10, eado5103 (2024) 26 July 2024

Seeding and merging model predict different PanIN

counts over time

The seeding and the merging model can both explain the experi-
mentally observed PanIN size distribution. However, the reasons
are fundamentally different: The seeding model exhibits a strongly
increasing initiation rate, resulting in more small PanINs than the
simple power-law growth model predicts. Conversely, the merging
model leads to an excess of large PanINs even for a constant initia-
tion rate. Crucially, both models account for the deviation between
the power-law growth model and the observed data that we identi-
fied in Fig. 4E. Clearly, the combination of both models could also
explain the observed experimental data of PanIN sizes. However,
both models make distinct predictions for the number N of PanINs
as a function of time: The seeding model yields exponentially in-
creasing N (Fig. 5D), due to the exponential increase in the initia-
tion rate, whereas the merging model predicts even fewer PanINs
than in the basic growth model due to merger events (Fig. 5H). This
difference also explains why the seeding model predicts a lower
growth exponent (o = 0.75) than the merger model (a & 1.2), which
is consistent with our observations in Fig. 4F that a smaller «
coincides with strongly increasing initiation rates. Together, the two
models could thus be distinguished, and their relative contribution
could be quantified, if PanINs were identified in much young-
er samples.

DISCUSSION

Here, we show that simple growth models can describe experimen-
tally observed size distributions in human pancreatic precancer in-
cidence and volume, whereas the age, sex, and location seem to have
a weak influence. We demonstrate that there are two general models
of lesion growth that can lead to the experimentally measured size
distribution: (i) sub-exponential lesion growth with exponentially
increasing initiation rate, e.g., due to discontinuous intraductal
spread, and (ii) exponential lesion growth with significant merging
of larger lesions, e.g., fused polyclonal PanIN lesions. Both models
fit experimentally collected genomic data—likely, a combination of
the two models is true [this is studied in related fields as coagulation-
fragmentation processes (22)].

Although both mechanisms lead to the same measured PanIN
size distribution at their endpoints, the dynamics of the two are
very different. This is apparent in the predicted de novo initiation
rate densities jo, which differ by more than two orders of magni-
tude (Fig. 5, C and G), the number of lesions as a function of time
(Fig. 5, D and H), and in the lesion size distribution as a function
of time (fig. S1). The PanIN seeding model exhibits sub-exponential
growth of individual PanIN lesions, but the number of PanINs
grow exponentially because more PanINs can, in turn, seed more
PanINs. Conversely, the PanIN merging model requires super-
exponential growth of individual PanIN lesions, but the number of
PanlIN lesions actually decreases over time as multiple PanIN com-
bine into one. Because we do not observe significant differences in
PanIN counts between two age groups (Fig. 3D), the merging
model might explain real PanIN growth more accurately. Howev-
er, reality might be best described by a combination of seeding,
merging, and a time-dependent de novo initiation rate density.
More detailed data, particularly from samples from younger indi-
viduals, are needed to quantify the relative contributions of these
different processes.
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We note several limitations of our study. As we analyze all
PanINs from all 3D samples reconstructed, our PanIN volumetric
data were biased by non-fully contained lesions (PanIN that were
cut at the boundaries and should thus be larger than we measure). If
we were to analyze only the fully contained PanIN, we would lose all
the largest lesions, shifting our distribution. In the future, larger
sample volumes could circumvent this problem. Because of these
challenges, the numbers obtained from the model should be inter-
preted carefully. However, the general relations between initiation,
merging, and the growth exponent would still hold. In addition, as
the volumetric PanIN data generated by CODA was limited by the
resolution of the histological staining schema thickness [4-pm-thick
serial sections with every third section stained with hematoxylin
and eosin (H&E)] (14), the resolution of the experimental data ana-
lyzed here was 12 pm by 12 pm by 12 pm, which may have limited
our ability to accurately measure the smallest PanIN lesions. Last, as
the pancreas samples analyzed here were collected during surgical
resections for pancreatic abnormalities, the incidence and size of le-
sions reported here may not fully represent the general population
(as most of our samples came from older individuals, and there is an
association between age, pancreatic cancer, and PanIN incidence).
Future work modeling the growth properties of PanIN as measured
from pancreata lacking any abnormality and samples from younger
individuals is important for correcting this bias. Last, in this study,
we assume that all PanINs grow at the same rate. As knowledge of
precursor lesions is constantly evolving, it is highly possible that
more nuanced information will reveal different growth rates for
PanIN from different populations [such as PanINs in individuals
with mutations that put them at high risk for development of
pancreatic cancer (BRCA) or high-grade PanIN] grow at different
rates. However, we believe that it was a reasonable assumption that
all low-grade PanINs grow at similar rates given the genetic simi-
larities between all low-grade PanINs, which are primarily driven by
KRAS hotspot mutations (23-25).

Our model gives a general overview for how precancerous le-
sions could evolve. More detailed experimental data, such as high-
resolution spatial genetic information for both very small PanIN
lesions and very large PanIN lesions, would be valuable to measure
seeding and merging rates directly. Similarly, more data on PanIN
sizes and shapes from samples of various ages could be used to di-
rectly test different growth models of individual PanlIN, e.g., wheth-
er they grow in 2D sheets along the pancreatic ducts or have some
3D leeway to expand their volume in all directions (for example,
into the lumen of the ducts or into the acinar lobules), which will
likely also depend on PanlN size. If such data become available, our
model can serve as a basis for developing more detailed models that
describe PanIN in the actual physical space provided by the pancre-
atic ducts. Moreover, our generic approach to describing lesion
growth is likely transferable to other lesion types, including other
common cancer precursors in the fallopian tubes or esophagus.
Differences and similarities between different precancerous lesions
could then unveil universal principles of how cancers originate.

MATERIALS AND METHODS

Experiments

Generation of a 3D human pancreas tissue cohort

The 3D pancreas maps used here were previously described in a work
mapping the prevalence and spatially resolved genomic properties of
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pancreatic cancer precursor lesions (14). Briefly, thick slabs of grossly
normal human pancreas tissue were collected from 48 individuals
who underwent surgical resection at the Johns Hopkins Hospital for
pancreatic abnormalities including PDAC, well-differentiated pan-
creatic neuroendocrine tumors, metastatic disease of non-pancreatic
origin, and non-malignant pathologies. Tissue was formalin-fixed,
paraffin-embedded (FFPE), and serially sectioned at a thickness of
4 pm. Every third section was stained with H&E and digitized at
20x magnification, for a lateral (xy) resolution of 0.5 pm per pixel
and an axial (z) resolution of 12 pm. CODA (Fig. 2), a recently de-
veloped tool for 3D reconstruction of serially sectioned tissues (15),
was used to register the serial images and segment nine pancreatic
microanatomical structures on the serial H&E images at a reduced
resolution of 2 pm: PanIN, normal pancreatic ducts, pancreatic aci-
ni, islets of Langerhans, vasculature, nerves, fat, lymph nodes, and
stroma to an accuracy of 96.6% (14). Resulting models were fully
visualizable and quantifiable. Spatially distinct PanINs identified
using CODA were validated through inspection of corresponding
histology, and parameters including number of PanIN lesions per
cubic centimeter of pancreas tissue, lesion size, cellularity, and as-
pect ratio were obtained.

Power-law growth model
The power-law growth model given by Eq. 1 in Results with initial
condition V(t = 0) = Vy;, results in the growth curve

V() = Vo [1+kt(1 — )]

for « # 1, and V(t) = Vminek’ for o« = 1, where we use Vi, =
0.001 mm®. The maximal PanIN size in a sample of age T is thus
Vimax = V(T), which is achieved when the PanIN is initiated at t = 0.
Assuming a constant PanIN initiation rate density j, the distribution
of PanIN sizes can be expressed by the CCDF after duration T,

which reads
oa—1
1— (Vmax )
%

o—1
Vv,
1 (2
Vinin

fora# 1, and S(V) = In (Vipa/ V)/ In (Viax/ Vimin) for o = 1. These
expressions do not depend on j because the distribution is normal-
ized, S(Vinin) = 1. To compare the power-law growth model to ob-
served data, we predict the distribution S(V) for each individual
sample, taking its age T into account. The overall distribution,
determined by averaging weighted by sample volume, then only
depends on the parameters k and a. We determine these parame-
ters by minimizing the squared difference between the predicted
and measured S(V) using the Levenberg-Marquardt algorithm
(in Fig. 4E).

Inverting the growth curve V(t) allows us to determine the dura-
tion it takes for a PanIN to grow to the observed volume V, so we
can predict when a PanIN must have been initiated for a given k and
a. Choosing the minimal plausible value for k (such that PanINs
must have originated after t = 0) as well as pooling observed data by
years and weighing them with the inverse sample volume, we pre-
dict the number N; of PanINs that were initiated in year i per unit
volume of the sample. These discretized data are smoothed with a
Gaussian filter of width 5 years to generate Fig. 4F.
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Simulating extended models

We simulate the seeding model by explicitly propagating forward in
time a collection of PanIN sizes {V}. For each step, we first use Eq. 3
(see Results) to determine the average waiting time At until a new
PanlIN is initiated and then grow all PanINs for this duration accord-
ing to the power-law growth curve given above. We quantify the re-
sulting distribution SP4(V) from the final volumes after time T.

In contrast, we simulate the merging model using a fixed time
step At = 0.01 y. During each step, we first grow all PanINs accord-
ing to the power-law growth given by Eq. 1, then randomly choose
M of the Npairs = N(N — 1)/2 possible PanIN pairs for an attempted
merge, and lastly initiate new PanIN with the constant initiation rate
jo. The merge is performed stochastically, i.e., when P; > &, where P;;
= At - Npairs K(V;, V;)/M with K(V3, V) given by Eq. 4, and £ is a
random number chosen uniformly between 0 and 1. Here, M is a
control parameter, which is chosen minimally while still obeying P;;
< 1. While initiation is still implemented deterministically, merging
is done stochastically; thus, we obtain the respective distribution
§Pd(V) from an average of eight independent runs. In all cases, we
run simulations for T = 65 y, the median age of the patients ana-
lyzed. The volume Vs of the model sample does not affect results and
we chose Vs = 100 cm” to get adequate statistics.

Fitting of simulated models

To fit the predictions of the models described above to the ob-
served data $°**(V), we minimize the logarithmically scaled mean
squared deviation

64 Sobs 2
i3 [
d
i | S

1

where the CCDFs S(V) are evaluated in 64 logarithmically distrib-
uted intervals between Vi, and the maximally observed volume;
thus, S; = P(V > V) gives the fraction of PanIN with a volume above
Vi. We minimize y* by adapting the model parameters using the dif-
ferential evolution algorithm (26) over eight independent repeti-
tions, each with 2048 steps (in Fig. 5).

Supplementary Materials
This PDF file includes:

Sections S1to S3

Fig. S1
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