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Unifying fragmented perspectives with
additive deep learning for high-
dimensional models from partial faceted
datasets
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Biological systems are complex networks where measurable functions emerge from interactions
among thousands of components. Many studies aim to link biological function with molecular
elements, yet quantifying their contributions simultaneously remains challenging, especially at the
single-cell level. We propose a machine-learning approach that integrates faceted data subsets to
reconstruct a complete view of the system using conditional distributions. We develop both
polynomial regression and neural network models, validated with two examples: a mechanical spring
network under external forces and an 8-dimensional biological network involving the senescence
marker P53, using single-cell data. Our results demonstrate successful system reconstruction from
partial datasets, with predictive accuracy improving as more variables are measured. This approach
offers a systematicmethod to integrate fragmented experimental data, enabling unbiased and holistic
modeling of complex biological functions.

As told through centuries, the “Blind Men and the Elephant" is a fable of
blind individuals attempting to comprehend the appearance and nature of
an elephant by independent exploration (Fig. 1a). Each individual has
limited information and understanding, acquired through independent
experience. However, by sharing, comparing, and synthesizing their
experiences, the group cangain amore comprehensive understandingof the
elephant as awhole. Similarly, biological systems are complexnetworkswith
thousands of interacting molecular components1–3. Biological function and
dysfunction are often emergent properties of these complex networks. It can
be challenging to quantify the contributions of all variables to the biological
function simultaneously,making it difficult to obtain a full understandingof
the system. More often, a subset of variables is measured and quantified,
obtaining a projection (or facet) of the relationship between the biological
output and the underlying variable. Therefore, just as in the “BlindMen and
the Elephant" example, it is desirable to reconstruct the full relationship
between the biological output and all the underlying variables from many
sets of faceted data.

With advancements in machine learning (ML) and artificial intelli-
gence (AI), there are now many methods that can predict outcomes from

complex high dimensional data4–7. However, in a typical biological experi-
ment, the full space of underlying variables is rarely measured. Here we
present a machine learning-based method to reconstruct the complete
biological network from faceted data sets. The method allows for incre-
mental improvement of the learned network and is a systematic method of
obtaining the global predictive model from multiple independent mea-
surements and observations. When new hidden variables are discovered,
newmeasurements canbe added to the existingmodel to improve themodel
and predictions.

The basic biological unit is a single cell. Each cell is characterized by its
proteome, genetic material, and other components such as lipids, small
molecules, ions, and so on. Therefore, the underlying variable that describes
the single cell,x = (x1, x2, x3,… ), is a highdimensional vector, where xi is the
quantity of the i-th component.Theminimal number variables that define x
is theproteomecomposition, or thenumber of expressedproteins in the cell,
since given the same genetic sequence, the proteome composition should
determine the number of smallmolecules, lipid, ionic contents of the cell, as
well as post-translationally modified forms of proteins. However, proteome
composition itself probably does not fully specify biological function, since
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environmental chemical8,9, mechanical10,11, and electrical variables12 also
contribute. Therefore, x minimally will contain the expression levels of all
genes and environmental variables.

If x is defined as the expression levels of genes, then the distribution of
x, ρ(x), is often referred to a ‘gene network’13,14. In the context of gene
regulatory networks, the discussions in our paper also apply (SeeExample 2:
P53 network).

At the simplest level, a particular biological function/observable, F, is a
function of the underlying variable: F(x). For example, F could be the cell
size, the cell cycle length, the growth rate, or the cell migration speed, which
should be measured at the single-cell level. This is because much of recent
work has demonstrated that there is additional complexity and phenotypic
variation, even for isogenic cells15,16. The reasons for this are complex and
could encompass epigenetic mechanisms and cellular memory17,18. There-
fore, F(x) is a complex mapping from biological variables to biological
function. It should be noted that recent advancements in AI and machine
learning in fact has solved the high dimensional regression problem. If the
data forF(x) is available, thenAI cannowuseneural networks or other types
of methods that maps biological variables to biological function. The pro-
blem, therefore, is not the lack of methods to find F(x). The problem is the
lack of multi-dimensional methods that obtain data for all relevant x, and
measure F simultaneously at the single-cell level.

Thus, the function F(x) is difficult to learn in an unbiased way, and
there are no systematic efforts to map F for major biological problems of
interest. In most experiments, such as flow cytometry or Western blot
experiments, only a few of the xi out of thousands are quantified in a
meaningful way. Moreover, it is typical that each researcher measures a
different subset of xi’s, and therefore studies a particular ‘facet’ of the pro-
blem, precisely the problem identified in the “blind men" story. The global
picture is generally missing. There have been extensive studies in the ML
field on system reconstruction from partial data sets based on eigenvectors
of the system19,20.However, it is desirable to have amethod that can combine
data from all individual facets, and progressively arrive at a global picture.

There are now an increasing number of experimental methods
to quantify cell components (e.g., RNAseq21,22, protein secretome23 and

morphological data24,25) at the single-cell level. For example, single-cell
RNAseq quantifies RNA at the genome-wide level. However, mRNA levels
do not easily translate to proteomic composition26–28, and no biological
observable,F, is typicallymeasured at the single cell level during sequencing.
On the other hand, methods such as flow cytometry, Western blots, and
immunohistochemistry allow one to examine a handful of proteins at a
quantitative level, but it is generally difficult to examine biological function
or observables at the single-cell level. There are now highly accurate
methods tomeasure cell size, cell contractility, and cell cycle at the single-cell
level. It remains to be seen if single-cell methods can be combined with
single-cell measurements to produce truly predictive models of biological
function.

In this paper, we first describe the general idea of faceted learning based
onmultiple data subsets of the same problem.We then illustrate themethod
using machine learning models based on polynomial regression and neural
networks, respectively. Two concrete examples are discussed: A mechanical
spring network system and a small biological network including the cellular
senescence marker P53. The full system is successfully reconstructed from
faceted data for both problems. Interestingly, we find that the mechanism
regulating P53 level is the same for cells in different growth conditions. The
only difference is the underlying proteome distribution of network compo-
nents. Our method separates the regulatory network that governs p53 level
and the intrinsic distribution of the input variables. The polynomial regres-
sion model also allows us to explore mechanistic aspects of the network,
whether components of the network act synergistically or antagonistically.
We also discuss the additive property of the faceted approach, where the
model accuracy increases with an increasing number of simultaneously
measured variables (dimension of subsets). Our approach provides a novel
method utilizing conditional distribution to integrate different pieces of
information to reconstruct complex high-dimensional biological systems.

Reconstructing the systems model from facets of
probability distributions: statement of the problem
Weconsider a systemdescribedby the function y = F(x;θ),whereθ is a setof
model parameters. For simplicity, we assume that y is a one-dimensional
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Fig. 1 | Overview of the problem and proposed machine learning framework for
biological network reconstruction. Schematic illustration of the problem and the
proposedmachine learning framework. aBlindmen and the elephant problem. Each
observer measures a facet of the problem, and therefore receives a biased view.
Combining data from all observers will generate a full model. bAbiological function
is a mapping from cell components to an observable, or output. c Biological network
model reconstruction from mapping of data distribution functions. The original

data is the joint probability distributions of partial input and output. We dissect the
joint distributions into several consecutive conditional distributions and directly fit
the conditional distribution to obtain model parameters. d Data structure in the
faceted learning procedure. l faceted data sets are collected, each containing only
partial dimensions of the input x and output y. Each data set containsM data points,
with N =M × l total data points.
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output and x is ad-dimensional input vector (e.g., for the systemof a cell, cell
volume is a function of protein content and kinase activity) (Fig. 1b). In
experiments, we assume only p(p < d) variables of x and biological output y
can be measured simultaneously. In general, p > 1, which provides infor-
mation about the correlation among different input variables (x). It is also
possible to perform multiple measurements to obtain different subsets of
variables (x, y). Note that data-driven methods of manifold learning using
principal component analysis (PCA) for learningmodels of (x, y) have been
investigated extensively29,30. Here we take these available methods as given.

Experimental measurements will generate probability distributions of
(x, y). In the biological context, each instance of (x, y) arises froma single cell,
andmany cells are typicallymeasured in a single experiment. Therefore, the
mean biological output is

hFi ¼
Z

dxFðxÞρðxÞ ð1Þ

We assume that it is possible to eventually measure the d × d covariance
matrix of x and the mean value of the input variable x, denoted by Σ and μ,
respectively.We denote all the d input variables as a universal setU = {x1, x2,
. . . , xd}. Assume that eachmeasurement includes p input variables, and we
denote the simultaneously measured variables as Si, which is a subset of U.

There are in total ns¼
d
p

� �
different subsets (i < ns) and i is the index of

measurements. In principle,we canperformmeasurements over all possible
subsets. However, for simplicity, in the following discussion, we partitionU
into l = d/p subsets and only use these l subsets for system reconstruction.
The subsets are denoted by Si (i ≤ l) and satisfy: ∪ l

i¼1Si ¼ U; Si \ Sj ¼ ;.
For each subset Si, let S0i ¼ UnSi be the complement. Assume we have l sets
of experimental data covering thewhole setas describedabove andeachdata
set is composed ofM data points: (xi,α, yi,α) (i ≤ l, α ≤M). Here xi is a vector
containing all variables in subset Si, and the subscript α is the index of the
data point. yi,α is the output variable corresponding to xi,α. Similarly, we
define xi0 as a vector containing all variables in the complementary set S0i.
These data sets arel-facets of the full system (Fig. 1d). We desire to

approximate the full model of the system by y ¼ ~FðxÞ from these l sets of
partial data and the measured statistical information of input variables.

We wish to reconstruct the full system model from the conditional
probability distributions of output variables with fixed input variables. For
each data set (xi, yi), we have the conditional distribution

f iðyjxiÞ ¼
R
ρðx; yÞdxi0R
ρXðxÞdxi0

: ð2Þ

Here fi is the conditional probability of variable y given fixed xi, ρ(x, y) is
the joint probability distribution of x, y of the full system and ρ is the joint
probability distribution of only x. ρ(x, y) contains information for both the
distribution of underlying variables (x) and the dependence of y on x. In
principle, once the joint distribution of x, y is obtained, we know the
mapping between x and y. However, the full distribution ρ is never
explicitly measured in experiments. Only the facets, or ρiðxiÞ ¼R
ρXðxÞdxi0 and fi are measured in experiments. By minimizing the dif-

ference between the predicted conditional distribution (f̂ i) and true dis-
tribution obtained from experimental data (fi), we can obtain the best
model parameters θ (Fig. 1c):

θ ¼ argmin
θ

Xl
i¼1

Z
½f iðyjxiÞ � f̂ iðyjxi; θÞ�

2
dxi

 !
ð3Þ

where fi is the measured conditional distribution for the i-th partial (facet)
data and f̂ i is the predicted distribution fromourmodel. This represents the
most unbiasedmodel regression that includes all facets of the problem. One
may also weigh the facets by their statistical confidence, or data quality,

which is easily done in Eq. (3). In the following discussion, variables with
hats imply predicted values based on assumed models.

Performing regression for the complete probability distribution func-
tion is sometimes not practical because the conditional distribution fi(y∣xi) is
generally not analytic. We also would like to use deep learning and neural
networks to parameterize the model. One possibility is to use the mean and
the variance to approximate thedistribution andminimize thedifferences in
these two quantities with respect to model parameters, θ. This procedure
is exact for systems with normally distributed data. The conditional
expectation and variance are defined as: Li = ∫ yfi(y∣xi)dy and
Vi ¼

R ðy � LiÞ2f iðyjxiÞdy. In practice, since we can not obtain an analy-
tical expression of the conditional distribution fi(y∣xi), we compute the
predicted expectation and variance in terms of x based on the assumed
model for output y (ŷ ¼ F̂ðx; θÞ) and conditional distributionofXi0 whenXi

is fixed (ρiðxi0 jxiÞ). Specifically, for each data set (xi, yi), we integrate the
output function F(x) over all the unknown variables xi0 with conditional
probability distribution to get the conditional expectation and denote it by
L̂iðxiÞ. Moreover, we calculate the variance over all the unknown variables
(xi0 ) while the known variables (xi) are fixed and denote it by V̂ iðxiÞ. The
prediction accuracy can be improved by including higher order moments.
The conditional expectation and variance are related to faceted data as:

L̂iðxi; θÞ ¼
Z

F̂ðx; θÞρiðxi0 jxiÞdxi0 ð4Þ

V̂ iðxi; θÞ ¼
Z

½F̂ðx; θÞ � LiðxiÞ�
2
ρiðxi0 jxiÞdxi0 ð5Þ

From the experimental data, we divide the independent variables xi in each
set of data into ni consecutive bins and for each bin [xi,k, xi,k+ dx] (k ≤ ni),
we calculate themean valueLi(xi,k) and varianceVi(xi,k). The loss function is
defined in the square error form as:

U ¼
Xl
i¼1

XM
α¼1

½ðLiðxi;αÞ � L̂iðxi;αÞÞ
2 þ ðViðxi;αÞ � V̂ iðxi;αÞÞ

2�: ð6Þ

The framework outlined above requires knowledge about the dis-
tribution of input variables x. For many biological examples, the data are
concentrated around the mean value and are close to the normal distribu-
tion. In our analysis, we first standardize the input and output data by
~x ¼ Σ�1=2 � ðx � μÞ, where μ is the mean value of the sample and Σ is the
covariancematrix. After standardization, themean value becomes zero and
the covariance matrix becomes the identity matrix. Therefore, the correla-
tion between variables in ρ(x) is removed in the transformed variables. For
simplicity, in the following analysis, we assume that the variables are already
standardized and follow the normal distribution x ~ N(0, 1) and drop the
tilde label if not specified. The underlying distribution is then

ρ̂ðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞd

q e�
1
2~x

T I�1~x
ð7Þ

where I is identity matrix after the standardization.
The Gaussian assumption for ρ(x) is convenient for analytic manip-

ulation, but in general the assumption is not valid. Amore general approach
is to use a Gaussian mixture model31,32, where we assume the probability
distribution of x is the sum of several Gaussians:

ρ̂ðxÞ ¼
X
N

aNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞdjΣj

q e�
1
2ðx�μN ÞTΣ�1

N ðx�μN Þ ð8Þ

where (aN,μN,ΣN) are theweights andparameters of theN-thGaussian.The
Gaussian parameters can be optimizedwith respect to themeasured faceted
distributions. Specifically, for each measured facet xi, there is a marginal

https://doi.org/10.1038/s44341-025-00009-3 Article

npj Biological Physics and Mechanics |             (2025) 2:5 3

www.nature.com/npjbiolphysmech


distribution ρ(xi). We use several Gaussian functions to fit ρ(xi) with
parameters ðaNi

; μNi
;ΣNi

Þ:

ρ̂iðxiÞ ¼
X
Ni

aNiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞpjΣj

p e�
1
2ðx�μNi

ÞTΣ�1
Ni
ðx�μNi

Þ ð9Þ

Since correlation information is removed in the normalized data, we can
roughly assume that each measuring set is independent of others. We can
then approximate the joint distribution of x as the product of the fitted
marginal distributions of each faceted data set: ρ̂ðxÞ ¼ Πl

i¼1ρ̂iðxiÞ.

Analytical case: polynomial models based on
partial data
For illustration purposes, we examine a polynomial model based on nor-
mally distributed data. The results are analytic, and therefore easily
obtained. Also, due to the concentrated property of many different kinds of
data, we can sometimes approximate the output function using Taylor
expansion up to the second order as:

F̂ðxÞ ¼ F0 þ
Xd
α¼1

F0
αxα þ

1
2

Xd
α¼1

Xd
β¼1

F00
αβxαxβ ð10Þ

From the Gaussian assumption, it is possible to compute the conditional
mean value and variance explicitly. For each set of data, the conditional
distribution of unknown variables when fixing the known variables also
obeys normal distribution: ρðxi0 jxiÞ ¼ Nð�μðiÞ; �ΣðiÞÞ, where �μ and �Σ are
defined as follows: We first rearrange the d-dimensional column vector x
as: x ¼ ðxTi0 ; xTi Þ

T
and accordingly, Σ is arranged as follows (μ is a null-

vector):

Σ ¼ Σi0i0 Σi0i

Σii0 Σii

� �
ð11Þ

Then �μðiÞ and �ΣðiÞ can be expressed as:

�μðiÞ ¼ Σi0i � Σii
�1 � xi ð12Þ

�ΣðiÞ ¼ Σi0i0 � Σi0i � Σ�1
ii � Σii0 ð13Þ

Based on the conditional distribution, the mean output value when
fixing xi is calculated as:

L̂iðxiÞ ¼
Z

F̂ðxÞf iðxi0 jxiÞdxi0

ð14Þ

¼
Z

F0 þ
Xd
α¼1

F0
αxα þ

1
2

Xd
α¼1

Xd
β¼1

F00
αβxαxβ

0
@

1
Af̂ iðxi0 jxiÞdxi0 ð15Þ

¼ F0 þ
Xd
α¼1

F0
αM

ðiÞ
α þ 1

2

Xd
α¼1

Xd
β¼1

F00
αβ CðiÞ

αβ þMðiÞ
α MðiÞ

β

� �
ð16Þ

where the matrices C(i) andM(i) are as follows:

CðiÞ ¼
�ΣðiÞ
11 0 �ΣðiÞ

12

0 0 0
�ΣðiÞ
21 0 �ΣðiÞ

22

0
B@

1
CA;MðkÞ ¼

�μðiÞ1
xi
�μðiÞ2

0
B@

1
CA; ð17Þ

The positions of �ΣðiÞ
11; �Σ

ðiÞ
12; �Σ

ðiÞ
21; �Σ

ðiÞ
22; �μ

ðiÞ
1 ; �μðiÞ2 are determined by the indices of

xi0 in the full vector x. Similarly, the positions (columns and rows) of the
inserted zeros in C(i) and xi in M(i) correspond to the measured variable

indices (xi). Furthermore, the variance of the predicted output value when
fixing xi. We first calculate the first four moments of the variable xi0 :

EðxαÞ ¼ MðiÞ
α ð18Þ

EðxαxβÞ ¼ CðiÞ
αβ þMðiÞ

α MðiÞ
β ð19Þ

EðxαxβxγÞ ¼ MðiÞ
α CðiÞ

βγ þMðiÞ
β CðiÞ

αγ þMðiÞ
γ CðiÞ

αβ þMðiÞ
α MðiÞ

β MðiÞ
γ ð20Þ

EðxαxβxγxνÞ ¼ CðiÞ
αβC

ðiÞ
γν þ CðiÞ

αγC
ðiÞ
βν þ CðiÞ

ανC
ðiÞ
βγ þMðiÞ

α M
ðiÞ
β CðiÞ

γν

þMðiÞ
α MðiÞ

γ C
ðiÞ
βν þMðiÞ

α M
ðiÞ
ν C

ðiÞ
βγ þMðiÞ

β M
ðiÞ
γ CðiÞ

αν

þMðiÞ
β MðiÞ

ν C
ðiÞ
αγ þMðiÞ

γ MðiÞ
ν CðiÞ

αβ þMðiÞ
α MðiÞ

β MðiÞ
γ M

ðiÞ
ν

ð21Þ

For convenience, themoments are denoted as: Eα, Eαβ, Eαβγ and Eαβγν.With
these identities, the variance is:

V̂ iðxiÞ ¼ F2
0 þ 2F0

Pd
α¼1

ðF0
αEα þ 1

2

Pd
β¼1

F00
αβEαβÞ

" #

þPd
α¼1

Pd
β¼1

F0
αF

0
βEαβ þ 1

2

Pd
γ¼1

ðF0
βF

00
αγ þ F0

αF
00
βγÞEαβγ

"

þ 1
4

Pd
γ¼1

Pd
ν¼1

F00
αγF

00
βνEαβγν

#
� L̂iðxiÞ2

ð22Þ

Substituting Eqs. (16) and (22) into the loss function (6) andminimizing via
simulated annealing method, we can obtain the optimal model parameters,
which reconstruct the full system from partial experimental data.

Note that the polynomial model up to the second order in the under-
lying variables represents a model with pair-wise interaction of biological
components. The components can either enhance or suppress each other's
contribution to the biological function. This particular case can be considered
as a representation of typical signaling network diagrams, although the
interactions of the components are generally nonlinear. Pair-wise nonlinear
interactions are generally not covered by the polynomial expansion.

Deep learning neural network models based on
partial data
Although the polynomial regression method can perform well around the
mean, it is not suitable for complexmodels, especially in regions far from the
mean. Neural networks and deep learning models have been proven
effective for capturing general complexmodels. The basic idea is the same as
polynomial regression except that the output function F̂ðxÞ is approximated
by an iterated function which depends on the structure of the neural net-
work. Ineach layer, thenode values are linearlymapped to thenext layer and
processed by the activation function (Here we use ReLu as the activation
function) (Fig. 2a). We use the same loss function as Eq. (6). However, we
cannot obtain analytic expressions for the conditional mean value and
variance in the neural network model. Therefore, we use Monte Carlo
sampling to compute these two quantities.

Our neural network has nH layers and in the kth layer, there are nk
nodes. For each hidden layer, the node values zk are provided by the node
values in the previous layer by:

zk ¼ g½Wkzk�1 þ bk�; ð23Þ

Where g(x) is the activation function (ReLu function), taking the
form: g(u) =max(0, u). The output layer node values are given by:
zk =Wkzk−1 + bk. Therefore, the final output value will be several
iterations of this linear transform and the model parameters are the
coefficients Wk and bk (k ≤ nH + 1). To obtain the conditional mean
and variance value based on the neural network model, corre-
sponding to each measuring set, we sample nsp data from the fitted
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conditional distribution ρiðxi0 jxiÞ when xi is fixed. A nice property of
the Gaussian model (Gaussian mixture model) is that the conditional
probability density function is also Gaussian (Gaussian mixture
model). For each x, we can obtain the predicted value of y according to
the neural network. From the samples, we can get the conditional
mean and variance values of y when xi is fixed. Since the loss function
(Eq. (6)) cannot be expressed explicitly, gradient-based methods are
not applicable. Therefore, we still use the simulated annealing
method to minimize the loss function with respect to model
parameters Wk and bk.

As in the “blindmenandelephantproblem", eachexperimentgenerates
partial knowledge of the problem. However, after combining the informa-
tion fragments together, a more complete picture of the system is obtained.
Similarly, With more and more facets collected, we are closer to the ground
truth of the model. We also expect a difference in prediction when each
measuring set has a different number of variables or variable combinations
(e.g., each measuring set contains only 2 or 3 variables) (Fig. 2b). When
increasing thenumber of variables in the facet, the prediction shouldbecome
more accurate. The limit of this process is when all variables are measured
and fitted simultaneously, which should give the most accurate prediction.

Example 1: Spring network
As an example of a complex multi-dimensional system, we examine a
networked system of springs, which can be thought of as a phenomen-
ological example of a highly connected biological network. We implement
our machine learning method on a two dimensional 8-node spring system.
Therefore, the system appears simple but because interactions between
nodes are nonlinear, the response can be complex. Based on partial data

measurements, we can reconstruct the complete force-deformation
response function of this network.

Figure 3a shows the configuration of the spring network with forces
exerted on all nodes. Nodes are connected by linear springs, whose stiff-
nesses are denoted by a 8 × 8 symmetric matrixKwhere Kuv is the stiffness
of the spring betweennodesu and v. The rest lengths are denoted bymatrix l
where luv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxu � xvj2

p
is the length between nodes u and v. Nodes 1 and

5 are fixed to prevent overall translation and rotation. The spring system is
subjected to random force P and has a corresponding displacement matrix
δX. Both P and δX are 8 × 2 matrices, where the uth row denotes the hor-
izontal and vertical component of node u. Due to the constraints at nodes 1
and5, thefirst andfifth rowsof δX arefixed tobe 0.WeassumeP is normally
distributed:Puv~N(0, 0.02) andwewant to predict the displacementmatrix
δX = h(P) as a function of forces P. In our calculation, the vertical dis-
placement of node 2 (δX22) is the output. The input vector is the twelve
components of the forces exerted on the six free nodes, which is arranged as:
x = (P21, P31, P41, P61, P71, P81, P22, P32, P42, P62, P72, P82).

To implement the algorithmdescribed above,wefirst generate training
data with only partial information. We generate N1 8 × 2 force matrices as
the input of the training data andN2 forcematrices as testing data, in which
every force component obeys a normal distribution: N(0, 0.02). For each of
the force matrix, we calculate the 8 × 2 deformation matrix δX by mini-
mizing the total potential energy. The minimization is achieved by the
gradientdescentmethodand the initial displacements are randomly chosen,
which is evenly distributed between (−0.05, 0.05). TheN1 training data are
evenly partitioned into 12 subgroups, which is equal to the dimension of the
forces. For each subgroup i, weuse oneof the force components (Pi) together
with the vertical displacement of node 2 (δX22). We apply both the

Fig. 3 | Schematic representation of the 8-Node
spring network system under random forces.
Schematic representation of the 8-node spring net-
work system subjected to random forces.
a Configuration of the 8-node spring network sys-
tem. Random forces are exerted on each node,
generating displacements. The applied forces follow
the normal distribution P ~N(0, 0.02). Node 1 and 5
are fixed to prevent translation and rigid body
rotation. The model input are forces on different
nodes (P) and the model output is the vertical dis-
placement of node 2 (δX22). b Joint probability dis-
tribution of vertical (P22) and horizontal force (P21)
components at node 2. cDeformed configuration of
the 8-node spring network system and the dis-
placement of each node.dProbability distribution of
the vertical displacement of node 2.

Force
(a)

(b)

(c)

(d)

1

2 3 4

5

678

Fig. 2 | Schematics of neural network architecture
and additive property in faceted learning. Sche-
matics of the neural network architecture and the
additive property of ourmachine learning approach.
a Structure of the deep learning neural network
model. b Illustration of the additive process in
faceted learning. There are two dimensions in the
“additive" notion: First, increase of known input
variable number; second, increase of simultaneously
measured variable number in one measurement.
Both ways increase prediction accuracy.

(b)(a)

simultaneously measured 
variable number
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polynomial regression and neural network methods on these 12 data sets
(Fig. 4). In the neural network implementation, the network has 2 hidden
layers and each layer has 20 nodes. The activation function is the ReLu
function as described above. In both polynomial regression and neural
network algorithms, the loss function is minimized by simulated
annealing33, where at each minimization step, all the parameters are per-
turbed randomlywithin the range of 0.05. The initial temperatureT0 is set to
be 105 and at each step, the temperature is reduced to 95%. The mini-
mization process is stopped when the maximum step (imax = 50,000) is
reached. When approximating the conditional expectation and variance of
output variable by Monte Carlo method, the sample size is set to be:
nsample = 60,000.

Figure 4 shows the predicted results of both polynomial regression
(a–d) and neural network (e–h). Figure 4a, e show the predicted and true
δX22 when changing horizontal and vertical forces (P21 and P22) applied on
node 2 while other force components are zeros. For both polynomial
regression and neural network approaches, the predicted surface fits well
with the true surface. Figure 4b, c, f, and g show the predicted and true values
of mean and variance of δX22 calculated in each bin of P22 (including both
training and testing data). These are direct quantities that are minimized in
the loss function. True and predicted displacements are evaluated for test
data sets and plotted in Fig. 4d, h. The scatter points are well aligned around
the diagonal, which implies accurate prediction.

Example 2: P53 network
In this section, we implement our algorithm on a small biological network
involving the expression of the senescencemarker P53. The data is obtained
using the single-cell proteomic method of 34. We choose 8 molecules as
inputs and the output is single-cell expression level of P53 (Fig. 5a). The goal
is to construct a predictive model of P53 expression as a function of 8 other
single-cell properties while only utilizing faceted information. Note that we
measure the proteome level of 8 molecules for each single cell, therefore we
have the full 8-dimensional data.

The data are obtained for cells in four conditions: control, quiescent,
cells treated with 50 μM Bleomycin and 250 nM Doxorubicin. The raw
distributions of all variables are shown in Fig. 5a. We standardized the data
in each condition by the mean value and covariance matrix in the corre-
sponding condition. We then remove outliers via GESD method35. The
processedproteomeexpressiondata is bimodal because cells are either inG1
or G2 phase of the cell cycle. For better accuracy, we use the Gaussian
mixture model which consists of the sum of two Gaussian distributions,

representing cells inG1andG2, tofit themarginal distributionof each input
variable. The joint distribution is approximated by the product of the 8
Gaussian mixture models (Fig. 5b, c):

f̂ ðx1; x2; :::; x8Þ ¼
Y8
i¼1

X2
j¼1

πijNðμij; σ ijÞ
 !

ð24Þ

Similar to the spring system example, we first divide the data in each
condition as training (80%) and testing sets (20%). The training data are
evenly partitioned into eight subgroups. In the ith subgroup, only xi and P53
intensity are used. In the neural network implementation, the network has 2
hidden layers and each layer has 20 nodes. The activation function is the
ReLu function. In both polynomial regression and neural network algo-
rithms, the loss function is minimized by simulated annealing methods,
where at eachminimization step, all the parameters are perturbed randomly
within the range of ±0.05. The initial temperature T0 is set to be 10

5 and at
each step, the temperature is reduced to 95%. The minimization process is
stopped when the maximum step (imax = 50,000) is reached. When
approximating the conditional expectation and variance of output variable
by Monte Carlo method, the sample size is set to be: nsample = 60,000.

Figure 6 shows the predicted results for both polynomial regression
(a–d) andneural network (e–h) for cells in the control condition. Figure6a, e
show predicted P53 when Dapi and LaminB1 content change while others
are fixed to zero. All data are standardized as described in the previous
section. Plots of mean and variance values vs. LaminB1 are shown in (Fig.
6b, c, f, g). True and predicted P53 content evaluated at both the testing data
sets are plotted in Fig. 6d, h. The scatter points arewell aligned around y = x.

It is also of great interest to examine ourmodel predictions for different
cell culture conditions. Quiescent and senescent cells generally have dif-
ferent cell cycle distributions, leading to different G1/G2 cell proportions
(Fig. 5a). However, the mapping between the standardized input variables
andP53 is the sameacrossdifferent cell conditions (Fig. 7).Hereweexamine
the model trained by data in the control condition, and utilize the trained
model to predict P53 content in quiescent condition (Fig. 7b) and senescent
conditions (Fig. 7c, d). We also show the results of a full neural network
trained by data in the same condition. Note, in our method, the standar-
dization procedure removes the correlation among the independent vari-
ables and the function F we learn only describes the mapping between the
processed uncorrelated data, and doesn’t include mutual information
among the independent variables. In reality, the true function (mapping
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Fig. 4 | Polynomial and neural networkmodel predictions for the spring network
system. Polynomial and neural network model results for the spring network sys-
tem. a Joint probability distribution of node 2 vertical displacement (δX22) and node
2 vertical force component (P22). b Projection result of mean vertical displacement

dependent on vertical force on node 2. c variance of vertical displacement dependent
on vertical force on node 2. d Comparison between true and predicted values of the
testing data set. e–h Corresponding prediction results by neural network.
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Ftrue) should combine both the intrinsic function of uncorrelated data (F)
and the correlation information (Σ).

Our model also provides information on which variables contribute
most to P53 content and can also illustrate the synergistic and antagonistic
effects of several molecules on P53. This can be analyzed via the polynomial
model. The linear coefficients F0

i mean the effect of a singlemolecule on P53
while the quadratic coefficients F00

ij represents the synergistic/antagonistic
effects. For cells in the control condition, for example, LaminB1 and
HMGB1 contribute most to P53 content and we can see clearly synergistic
effects of HMGB1 and B-actin on P53, and antagonistic effects of HMGB1
andF-actin (Fig. 8) onP53.We can also apply themethod to other variables,
which finally leads to the complete network structure reconstruction with
both first-order (correlation) and higher-order information (synergistic/
antagonistic effects).

Additive property of the faceted learning
Asmentioned before, faceted learning has an additive process, duringwhich
the prediction accuracy is increased with an increasing number of simul-
taneously used variables in one set of measurements.

To examine this, we increase the number of variables in each mea-
suring set (e.g., from measuring one force component to measuring two
force components simultaneously), and the prediction becomes more
accurate (Fig. 9). The limit of this additive process is measuring all the
variables simultaneously, which is the typical regression problem.

Discussion and conclusion
In this work, we develop amethod that reconstructs the complete picture of
a system from partial data sets. Each data set only contains part of the input
variables and the output variable. This is the essence of the Blind men and

p53
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Cell-cycle arrest
Senescence

DNA repair

Standardized
BrdU

(a) (b)
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Fig. 5 | Diagram of the 8-dimensional biological network featuring the senes-
cence marker P53. Schematics of the 8-dimensional biological network involving
the senescencemarker P53. aThe examined proteome of the P53 network. The input
data are expressions of the 8 molecules measured in the single cell experiment and
the output is the P53 expression. The probability distribution of all variables are
show in 4 different cell conditions: 1. control; 2. quiescent; 3. treated with 50 μM

Bleomycin; 4. treated with 200 nM doxorubicin. Cells in different conditions show
different proteome distributions because they have different cell cycle distributions.
b Joint probability distribution of Dapi and LaminB1 for senescent cells treated with
50 μM Bleomycin. c Joint probability distribution of Dapi and LaminB1 for stan-
dardized data of senescent cells treated with 50 μMBleomycin. The contour lines are
from the Gaussian mixture model used to describe the probability distribution.
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Fig. 7 | Testing of the control condition-trained
model on different cell conditions. Testing of the
model trained by data in control condition on other
cell conditions. a Test on control condition (condi-
tion 1). b Test on quiescent cell data (condition 2).
c Test on data from cells treated with 50 μM Bleo-
mycin (condition 3). d Test on data from cells
treated with 200 nM Doxorubycin (condition 4). In
all the results, the model trained by data in control
condition provides satisfactory accuracy compared
to the full neural network and this means that the
intrinsic mapping between standardized input and
standardized P53 content remains invariant across
different cell conditions. The only difference among
different conditions is the probability distribution.
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Trained by condition 1, full data

Trained by condition 1, faceted data
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Trained by condition 1, faceted data
Trained by condition 4, full data

Fig. 8 | Influence of other components on P53:
linear andquadratic coefficients of the polynomial
regression model. Linear and quadratic coefficients
of the polynomial regression model of the P53 data.
a Linear coefficients. LaminB1 and HMGB1 con-
tribute most to P53 content. b Quadratic coeffi-
cients. There is obvious synergistic effects of
HMGB1 and P16 and antagonistic effects of
HMGB1 and F-actin on P53.
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Fig. 9 | Illustration of the additive property of
our model. Additive property: increase of simulta-
neously measured variable number improves the
prediction accuracy. a, c P53 network data.
b, d Spring network data.
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elephant problem,where each person only knows partial information about
the elephant. However, exchanging information among each other helps
better understand the system. Ingeneral,we abstract the system information
from the conditional distribution of the output variable when partial input
variables arefixed. By assuming somemodels for the system equation, we fit
the true distribution with model parameters. Both polynomial regression
and neural network methods are applied and compared. For normally
distributed input variables, we canwell approximate the output distribution
by onlymean value and variance value. Byminimizing the loss function that
contains the mean squared errors of both mean and variance of output
values, we can obtain the predictive model that reconstructs the complete
system.

It is possible to use the toolbox developed in ML to optimize data
regression. It is alsopossible tominimize adifferent set of objective functions
for the ML training process. For instance, Stein’s method36,37 provides a
convenient way of quantifying the difference between different probability
distributions, which can be incorporated into our loss function to improve
the training accuracy. These improvements can be made depending on the
specifics of the problems at hand.Othermethods of network reconstruction
also can be applied. One possible problem is the uniqueness of the model
from faceted data. We have not explored this angle in this paper, but it is
likely thatmultiple networks canproduce the same set of data, as othershave
noted38,39.

We implement our method on both a mechanical system (spring
network) and a small biological network (P53 network). Both polynomial
and neural network methods are examined. 2D and 1D projection results
are compared between true data and prediction. Finally, we examine the
additive property of the learning process. By increasing the number of
known variables and the number of simultaneouslymeasured variables, the
prediction accuracy is gradually increased.

Our proposed method can be applied to high-dimensional data,
including single-cell proteomics data. The resultingmodel function y = F(x)
represents the genome-wide unbiased model of a particular biological
function. As long as measurements can be made for the output y and
underlying variable xi, themodel can be systematically improved. Since real
biological functions are complex emergent properties of a highly connected
network, our method represents a systematic and unbiased way of recon-
structing the network. Moreover, our approach also allows us to examine
cells that are rare in the population of cells, and look for how these cells
generate biological function. Since cell heterogeneity and entropy are
increased in diseased contexts such as cancer40, our approach can reveal how
the network is perturbed in these diseased contexts. With the increasing
quality of single-cell data sets, the predictions will be more accurate and
useful. What is clear presently, however, is that there is a lack of single-cell
high dimensional data or concerted efforts to obtain faceted data that
connect biological function with the underlying proteome. If these data sets
are available, then our procedure proposed here, combined with machine
learning andAImethods, can be implemented in a straightforwardmanner,
and truly predictivemodels can be obtained.New technological innovations
for single-cell measurements and systematic data-gathering efforts are
needed to achieve this next-level era of quantitative biology.

Data availability
The datasets used and analyzed during the current study are available from
the corresponding author on reasonable request.

Code availability
The underlying code for this study is available in Github and can be
accessed via this link: https://github.com/sxslabjhu/Additive-learning.
MATLABⓇ2021b was used for the simulations.
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