bioRxiv preprint doi: https://doi.org/10.1101/2025.03.31.646356; this version posted April 4, 2025. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Integration of nuclear morphology and 3D imaging to profile cellular neighborhoods
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ABSTRACT

Nuclear morphology is an indicator of cellular function and disease states, as changes in nuclear
size, shape, and texture often reflect underlying disease-related genetic, epigenetic, and
microenvironmental alterations. For disease diagnosis, nuclear segmentation performed in 2D
hematoxylin and eosin (H&E)-stained tissue sections has long represented the gold standard.
However, recent advances in three-dimensional (3D) histology, which provide a more biologically
accurate representation of the spatial heterogeneity of human microanatomy, has led to improved
understandings of disease pathology. Yet challenges remain in the development of scalable and
computationally efficient pipelines for extracting and interpreting nuclear features in 3D space. 2D
histology neglects crucial spatial information, such as 3D connectivity, morphology, and rare
events missed by sparser sampling. Here, through extension of the CODA platform, we integrate
3D imaging with nuclear segmentation to analyze nuclear morphological features in human
tissue. Analysis of 3D tissue microenvironments uncovered critical changes in 3D morphometric
heterogeneity. Additionally, it enables the spatial characterization of immune cell distribution in
relation to tissue structures, such as variations in leukocyte density near pancreatic ducts and
blood vessels of different sizes. This approach provides a more comprehensive understanding of
tissue and nuclear structures, revealing spatial patterns and interactions that are critical for

disease progression.
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INTRODUCTION

Digital pathology has revolutionized tissue analysis through high-resolution imaging and
digitization of H&E-stained slides, enabling automated cellular and subcellular analysis -1
Traditional digital pathology focuses on 2D histological images, however such images are limited
in their ability to capture the full complexity of tissue architecture and cellular composition, as
spatial information is largely lost when observations are not extended from a single plane to three
dimensions (3D) 2-26. A shift to 3D histology and analysis offers a more comprehensive view of
the cellular microenvironment, revealing morphological features and pathological changes often

missed in 2D studies 13.21.22.27,

Nuclear morphology closely mirrors cell phenotype, reflecting the functional state and
identity of cells within their microenvironment and is a critical predictor of disease outcomes?8-30.
For example, heterogeneity in nuclear morphology within primary tumors can predict metastatic
burden 3'-33, However, the phenotype of a cell type is not static, it is dynamically influenced by
the 3D microenvironment surrounding each cell, including mechanical forces, extracellular matrix
composition, and interactions with neighboring cells 3438 These factors collectively shape
nuclear architecture, which in turn regulates gene expression, cellular function, and responses to

pathological stimuli 3940,

A critical research gap remains in developing robust pipelines to integrate nuclear
morphology and tissue label features into 3D image datasets of large-volume samples, which is
essential for understanding tissue organization and disease progression 2'41-46, This integration
is crucial to analyze, for instance, immune hotspots within the 3D microenvironment, regions of
high cellular activity and complex cell type organizations, which play pivotal roles in disease

progression 47-56,
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While intact 3D imaging techniques, such as light-sheet microscopy and tissue clearing,
enable more direct 3D nuclear segmentation, these methods are limited in their ability to utilize
large tissue volumes and susceptibility to morphological artifacts caused by suboptimal antibody
penetration or low signal-to-noise ratios 5-59. In contrast, serial sectioning workflows support
nuclear segmentation across extensive tissue volumes and preserve tissue blocks for subsequent
profiling, enabling advanced immunostaining or multi-omics analyses to interrogate the tissue

microenvironment, capabilities often lost during tissue clearing 46.60.61,

To overcome the limitations of 2D assessments of nuclear morphology, we introduce here
a novel approach integrating 3D imaging with advanced nuclear and semantic segmentation
techniques to analyze large tissue samples. Our methodology provides a unified pipeline for
processing serial sectioning-derived 3D data and integrating cellular morphology with tissue-level
annotations. 3D nuclear morphology mapping, together within the recently introduced CODA
framework, provides high-resolution reconstructions of tissue architecture and enables the
detection of alterations in morphology and cellular composition. By mapping nuclear morphology
and cellular neighborhoods within the CODA framework, we identify structural alterations
underlying pathologies and morphological attributes of disease progression, affording the ability

to gain novel mechanistic insights into the spatial organization of pathological processes.
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RESULTS

A novel workflow to integrate morphology and nuclear location in 3D space

A technical challenge in serial sectioning-based 3D tissue analysis is the precise alignment of
nuclear segmentations to reconstruct spatial relationships among cells within their tissue
microenvironment 436263, Yet, while 2D nuclear detection and morphology analysis are well-
established methods, analyzing nuclei in 2D sections alone misses critical spatial and contextual
information as the cellular and non-cellular microenvironment of any given cell in a tissue is 3D.
To address this challenge, we developed a pipeline for integration of nuclear segmentation
coordinates and extensive nuclear morphology features with the CODA 3D reconstruction
platform, allowing for comprehensive 3D assessments of tissue architecture and nuclear

morphology 45:60.64.65,

To demonstrate this pipeline, we serially sectioned and 3D reconstructed a thick slab of
human pancreatic tissue collected from a healthy organ donor and stained every fourth section
with H&E (Fig. 1). First, we applied nonlinear image registration to H&E stained images to align
and reconstruct serial images into a high-resolution digital 3D volume. Next, we used a semantic
segmentation algorithm to label seven pancreatic tissue types identifiable in H&E at a resolution
of 1 micron per pixel with 94.9% accuracy: acini, normal ductal epithelium, islets of Langerhans,
vasculature, nerves, fat, and stroma. Finally, we performed nuclear segmentation through fine-
tuning of the StarDist model for application to 20x-magnification whole slide images (WSIs), from
its original optimization for 40x images (see supplemental methods for more technical
information)®. The model achieved a measure of predictive performance F1 score of 0.89, 0.84,
and 0.80 for three randomly chosen tiles of an independent testing set, demonstrating robust

performance across diverse regions (Fig. S2a). Below, we will demonstrate that our pipeline is
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adaptable to any nuclear segmentation tool, such as StarDist or CellPose -, Using these
nuclear masks, we generated a list of 21 features describing nuclear shape, size, stain intensity
and heterogeneity (Table S1), which are automatically generated for nuclei detected with our
pipeline.” Additionally, we extended the use of CODA to enable registration of nuclear coordinate
features into the 3D volume for integrated cellular and tissue-level correlation (Fig. 2b, top and

bottom).

By integrating nuclear segmentation with 3D CODA-based tissue segmentation and
coordinate registration, we generated high-resolution 3D maps of nuclear morphologies by cell
type (Fig 2A)%0. This enabled tissue reconstruction of the human pancreatic tissue (Fig. 2b, top)
and nuclear segmentation reconstruction in that tissue (Fig. 2b, bottom), preserving spatial
relationships between nuclei and tissue structures such as ducts, nerves and blood vessels, and
enabling the analysis of nuclear clustering, and local cell density by cell type. Below, we
demonstrate how this integrated tissue and cellular data enables diverse analyses, including
classification of cell types using 3D neighborhood information and correlation between 3D nuclear

information and local microenvironment in large-volume tissues.

3D nuclear segmentation reveals diverse tissue and cellular heterogeneity

This initial reconstructed sample measured approximately 16 mm x 14 mm x 2.02 mm (volume:
452.5 mm?3) and contained approximately 77 million nuclei, 100x-fold more cells than are present
in a single WSI of the 3D dataset. Bulk cellular and volumetric quantifications revealed significant
heterogeneity in tissue composition (Fig. S2b). Structures such as stroma and nerves showed
notably lower cell density (fewer cells per unit volume), while acini and islets of Langerhans were

markedly denser (Fig. 2c, left).
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Nuclear morphological parameters, including area and circularity, were extracted for each
of the 77 million cells and revealed substantial variability across tissue types (Fig. 2c, middle, left;
Fig. S2d). In total, 21 nuclear features were quantified, and correlation analyses underscored the
broad range of nuclear characteristics at single-cell resolution (Fig. S2c). Among these tissues,
cells in islets of Langerhans displayed a distinct morphological profile, exhibiting high circularity
(mean = 0.90, SD = 0.06, CV = 0.07) and relatively uniform shapes, yet a considerable degree of
variation in nuclear area was noted (SD = 12.2 um?, CV = 0.35). Despite this variability, islets also
exhibited the largest mean nuclear area (34.3 pym?). By contrast, acinar cells demonstrated a more
homogeneous size distribution (SD = 9.9 ym?, CV = 0.34), with high circularity (mean = 0.88, SD
= 0.06, CV = 0.07) and an intermediate mean area (29.1 ym?), suggesting a comparatively
consistent architectural organization. Cells in blood vessels, nerves, pancreatic ducts, and the
stromal compartment presented intermediate levels of heterogeneity in both shape and size,
indicating moderate structural complexity. Fat cells exhibited notable morphological variation,
although their limited sample size prevented definitive conclusions about their overall distribution.
These results demonstrated how our novel workflow can analyze exceedingly large numbers of
nuclei in the same sample and associated complex landscape of 3D nuclear morphological

diversity of the human pancreas.

Identification of leukocytes based on nuclear morphology and 3D associated

microenvironment

To demonstrate the utility of determining nuclear morphology in 3D tissues, we developed an
additional workflow to determine whether we could classify cell types using nuclear morphology
features alone, demonstrated here through identification of CD45+ leukocytes. A subset of 249

leukocytes and 249 non-leukocytes were manually annotated using QuPath and matched to
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corresponding nuclear segmentation features”. A random forest classifier was trained using
hyperparameter tuning, with 5-fold cross-validation optimized key parameters (number of trees,
maximum depth, minimum leaf size) using MATLAB.”2 The best performing hyperparameters
were identified and used to train the final model.”3-75 This model achieved an accuracy of 89.04%
on independent testing of images (Fig. S3a). The classifier trained on 10 sections was then
applied to the entire 3D volume (101 sections), allowing for the generation of 3D leukocytes maps

in the human pancreas sample (Fig. 3a).

We hypothesized that 3D analysis would reveal the true 3D topology of leukocyte hotspots
in the human pancreas compared to 2D traditional assessments, as 2D methods are prone to
distortions from sparse sampling, which can misrepresent spatial density and connectivity.
Comparing a randomly selected 2D single-section immune hotspots (Fig. 3b, left) with 3D volume
immune hotspots (Fig. 3b, right) confirmed this hypothesis, showing more localized and precise
patterns in 3D. 3D leukocyte cell density heatmaps identified hotspots near stromal, vascular, and
epithelial regions, while cold spots were predominantly observed in islets and nerves (Fig. 3c) 45.
These spatial patterns differed significantly from 2D analyses, which often over- or under-

represented leukocyte densities due to sampling bias.

We further exploited our 3D dataset and found through quantitative analysis that a
significantly higher leukocyte density was present around larger pancreatic ducts compared to
smaller ducts, indicating a size-dependent inflammatory response (Fig. 3d, left). Similarly,
leukocyte density was moderately elevated near larger vessels relative to smaller ones,
suggesting a link between vessel size and inflammatory cell recruitment (Fig. 3d, right). Such

assessments are not possible using traditional 2D tissue sampling techniques.
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The three-dimensional cellular and non-cellular microenvironment around each cell of a

tissue

Our integration of 3D CODA mapping with nuclear segmentation opens the opportunity to assess
the cellular and non-cellular composition of the microenvironment in the vicinity of each cell in the
entire 3D tissue sample. To accurately assess the true (unbiased) composition of the
microenvironment surrounding each cell, 3D analysis is essential. 2D methods fail to capture the
full spatial context, as they are limited by sparse sampling and the inability to account for out-of-

plane interactions, leading to incomplete or misleading representations of cellular neighborhoods.

To determine the 3D microenvironment for each cell, we first generated spheres of radii
between 16 and 128 ym around each individual nucleus in the pancreatic sample (Fig. 4a). Then,
we generated heatmaps of the 3D microenvironment composition (Fig. 4b), which revealed a
decline in content for sparser tissue components, such as islets, leukocytes, and nerves, and an
increase in more abundant tissues, such as acini, as the microenvironment radius increased. This
was consistent with qualitative observations in histological slides (Fig. 4c). Larger cell populations
became more predominant with increasing microenvironment size, a trend observed across all

cell types (Fig. 4d).
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DISCUSSION

This study integrates 3D imaging at single-cell resolution with nuclear segmentation within the
CODA 3D cellular imaging platform. As a testbed for this integration, we used the human
pancreas, one of the most complexes organs 467677, While traditional 2D analyses have
historically been the gold standard for solid tissue histology and provide valuable insights, they
are intrinsically limited and do not capture the full spatial complexity of the tissue
microenvironment. Our 3D approach overcomes this limitation by enabling the extraction of
nuclear morphology, alongside spatial characterization of leukocyte distribution within tissues.
Notably, we observed increased leukocyte density in proximity to larger pancreatic ducts and
blood vessels, a pattern that would be difficult to resolve using 2D histology.

By integrating nuclear segmentation with semantic classification, this method enables the
identification of 3D cellular architecture and spatial density gradients (i.e., heatmaps), which are
often overlooked in conventional 2D analyses. This framework also facilitates spatially resolved
characterization of tissue heterogeneity and cellular interactions at single-cell resolution,
providing a more comprehensive understanding of microenvironmental organization. Such
capabilities are particularly relevant for studying cancer pathogenesis, where the interplay
between spatial organization, immune infiltration, and tumor progression is critical.

Despite these advances, challenges remain. The computational demands of 3D
segmentation and analysis are significant, requiring robust hardware and efficient algorithms.
Additionally, reliance on H&E-stained images limits the granularity of cellular feature extraction.
Integrating multi-omics data could enhance the precision and biological relevance of our
analyses®. Future studies should validate this approach across diverse tissues and disease
models. Expanding this framework to study dynamic processes, such as tumor evolution or

immune responses, could further advance our understanding of disease progression.
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In conclusion, our 3D nuclear segmentation approach provides a powerful framework for
analyzing large tissue complexity, offering insights into disease mechanisms. Future work should
focus on broader applications, multi-modal data integration, and overcoming current limitations to

solidify 3D imaging as a gold standard of digital pathology.
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Fig. 1. Construction of 3D nuclear segmented and microanatomically labelled tissue cohoris.
A FFPE tissue is resected and serially sectioned. Every fourth section was stained H&E and digitized at
20x resolution. Tissue- and nuclear-level segmentation is performed on the digitized H&E images and
registered into spatially aligned 3D tissue volumes. CODA-deep learning model is applied to automatically
label nuclei according to their anatomical labels in 3D. Comprehensive 3D nuclear spatial analyses are
conducted to profile the tissue architecture, including evaluation of 3D cellular microenvironment,
identification of 3D cellular hotspots, and characterization of nuclear morphology distributions in tissue

volumes.
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A Microanatomical labelling of human pancreatic tissue blocks B 3D-CODA tissue and nuclear renderings
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Fig. 2. Reconstruction of nuclear morphology in three-dimensional tissues. (a) CODA semantic
segmentation was used to annotate seven microanatomical components of H&E-stained pancreatic tissue
sections: including ductal epithelium, acini, islets of Langerhans, blood vessels, nerves, stroma, fat, and
background. Nuclear segmentation coordinates were integrated with CODA microanatomical labels,
enabling precise classification of individual nuclei within their tissue context. (b) 3D-CODA platform
reconstructed the spatial architecture of tissue components (top panel), and generated the 3D rendering of
77 million nuclear centroids, each color-coded according to its CODA microanatomical label (bottom panel).
(c) Quantitative assessment of nuclear features, including cell density (# nuclei/volume) and nuclear
morphology (size and shape) of cells, both stratified by microanatomical labels of the pancreas. Cell density
across different tissues of the pancreas sample. (d) Nuclear areas stratified by microanatomical labels; we
show both violin plots and distributions for each tissue type). (e) Bulk nuclear circularities analysis, enabling

comparative analysis of nuclear morphology across tissue types.
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Fig. 3. Three-dimensional quantification of leukocyte cell densities and their spatial interaction with
surrounding cellular components in human pancreatic tissue. (a) Leukocytes were identified by
manually selecting a representative subset of leukocytes and training a random forest classifier to predict
the remaining leukocyte population across the 3D dataset. (b) Leukocyte heatmap of a single 2D section
revealed multiple leukocyte hotspots, whereas the corresponding 3D leukocyte heatmap of the same
section revealed more spatially coherent leukocyte hotspots, providing a more comprehensive view of
hotspot distribution in the entire 3D pancreatic sample. (¢) 3D heatmap visualization depicting leukocytes
proximity to distinct tissue components, enabling the assessment of spatial interactions. (d) Quantitative
analysis of leukocyte density in the vicinity of the ducts showed an increase in leukocyte density around
larger pancreatic ducts. Example of a small duct with low inflammation (left, top panel), and a large duct
with high inflammation (left, bottom panel). Similarly, leukocyte density was moderately elevated near larger
blood vessels compared to smaller vessels. Example of a small vessel with low inflammation (right, top

panel), and a large vessel with higher inflammation (right, bottom panel).
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Fig. 4. Three-dimensional assessments of the cellular microenvironment for each individual cell of

a human pancreatic tissue. (a) For each cell within the 3D tissue volume, spherical regions were

generated at defined radii to quantify the number and types of neighboring cells, allowing localized

microenvironment profiling. (b) Quantitative assessment of the cell type composition within these spherical

microenvironments was performed across varying radii. Smaller radii sizes were able to capture smaller

and localized cell populations, whereas larger radii were more prone to capturing more abundant cell
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populations in their vicinity, revealing differences in microenvironmental complexity based on spatial scale.
(c) Visualization of different radius sizes overlaid in H&E-stained histological slides, alongside with nuclear
segmented and anatomically labelled cells, illustrating how the chosen radius impacts microenvironmental
analysis. (d) Tissue composition analyses of the cellular microenvironment for each cell type across
increasing radii. For each cell type, the composition of the surrounding cell was measured as the radius
increased, highlighting shifts in neighboring cell populations as the radius expands. Since the composition
of the healthy human pancreas is dominated by acini, the composition of the cellular microenvironment

around each type of cell is eventually dominated by acini for large radii around the cell.
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Fig. S2. Quantification and validation of nuclear morphology. (a) Subset of tiles was used to validate

the accuracy of the nuclear segmentation, yielding an F1 score of 0.89, 0.84, and 0.80 (b) Segmented
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nuclei were integrated with the 3D-CODA platform, with each color-coded according to its CODA
microanatomical labels. Cell counts for each annotated cell type were extracted. (¢) Correlation plot of the
nuclear features highlights the degree of variation across different nuclear attributes. (d) Nuclear
morphology feature distributions were analyzed in relation to CODA tissue labels, revealing distinct

variations in nuclear properties across different tissue compartments.
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Fig. S3. (a) Quantitative analysis of total leukocyte cell counts across individual tissue slides within the 3D
tissue block showed an accuracy of 89.04%. (b,top) Total leukocyte cell density across the individual tissue
slides within the 3D tissue block. (b,middle) Total leukocyte cell counts stratified by tissue slide. (b,bottom)

Total tissue area (TA) across individual tissue slides within the 3D tissue block.
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Feature Name

Description

Centroid x
Centroid y

Area

Perimeter
Circularity
Aspect Ratio
Compactness
Eccentricity
Extent

Form factor
Maximum radius
Mean radius
Median radius
Minor axis length
Major axis length

Orientation degrees

R mean intensity
G mean intensity
B mean intensity
R intensity std

G intensity std

B intensity std

X-coordinate of the nucleus centroid.

Y-coordinate of the nucleus centroid.

Area of the nucleus (in pixels or um?, depending on resolution).
Perimeter of the nucleus.

Measure of how circular the nucleus is (closer to 1 = more circular).
Ratio of the major axis length to the minor axis length.
Measure of how compact the nucleus is.

Measure of how elongated the nucleus is (0 = circle, 1 = line).
Ratio of the nucleus area to the bounding box area.

Shape descriptor based on area and perimeter.

Maximum distance from the centroid to the nucleus boundary.
Mean distance from the centroid to the nucleus boundary.
Median distance from the centroid to the nucleus boundary.
Length of the minor axis of the nucleus.

Length of the major axis of the nucleus.

Orientation of the nucleus (in degrees).

Mean intensity of the nucleus in the red channel.

Mean intensity of the nucleus in the green channel.

Mean intensity of the nucleus in the blue channel.
Standard deviation of intensity in the red channel.
Standard deviation of intensity in the green channel.
Standard deviation of intensity in the blue channel.

Table S1 Nuclear features extracted from H&E images. For each segmented nucleus, 21
morphological and intensity-based features were computed to profile cellular heterogeneity. A
subset of nuclei was annotated to train a classifier for leukocyte identification based on these
features.
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MATERIALS AND METHODS

Tissue acquisition, processing and imaging

Pancreatic tissue was collected from an organ donor through the network for Pancreatic Organ
Donors with Diabetes (nPOD) in accordance with existing federal and state regulations and with
approval from University of Florida IRB. The formalin-fixed, paraffin-embedded (FFPE) pancreatic
tissue block was serially sectioned at a thickness of 4 ym throughout the entire block, producing
404 tissue sections. Every fourth sections were H&E stained and scanned at 20x resolution (~0.5
micron/pixel) using a Aperio SC2 slide scanner (Leica Biosystems Imaging, Inc). NDPI and
scanned whole slide image SVS files were converted to tiff images (1 micron/pixel) for 3D-CODA

tissue segmentation using the openslide 78.

Software and Hardware Setup

The computational workflow was implemented using the CODA, combined with Python 3.9 and
MATLAB 072, Open-source tools such as StarDist for H&E nuclear segmentation and QuPath for
annotation and validation .71, Workstations equipped with an NVIDIA RTX 4090 GPU and 128
GB of RAM were used for computational processing. MATLAB was used for alignment of images

and nuclear centroids into 3D volumes 45.

CODA microanatomical tissue-level labelling

CODA semantic segmentation was used to identify cell types in H&E, including blood vessels,
nerves, vasculature, acini, epithelium ducts, islets of Langerhans, among other in all WSls .79,
The model was trained using annotations from 5 images, and tested on an independent annotated

image, achieving an overall accuracy of 94.9%.

Alignment of 2D serial histology into 3D labelled tissue maps
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CODA nonlinear image registration was used to align the serial histology and enable 3D
reconstruction of microanatomical structures. Registration was calculated at a resolution of 8
micron per pixel and applied to the higher resolution (1 micron per pixel) segmented images to

generate 3D labelled image stacks.®°

Nuclear segmentation

Nuclear segmentations was performed on 101 H&E stained pancreatic tissue images, using the
Stardist pipeline . A pre-trained StarDist model, originally trained on 40x resolution H&E images,
was fine-tuned for 20x resolution NDPI and SVS image files. To finetune the model, we annotated
25 tiles with 256x256 dimensions for training, followed by subsequent testing on 3 independent
tiles. Finetuning of the pretrained model was optimized through adjustment of hyperparameters
such as the learning rate, training epochs, and data augmentation. Tiles were selected from
diverse regions of the sample to ensure morphological heterogeneity. Fine-tuned model
performance was validated using precision, recall, and F1 score. For segmentation, WSIs were
divided into 4096 x 4096 pixel tiles with an overlap parameter of 128 pixels to minimize edge
artifacts. Segmentation results, including nuclear contours and centroids, were saved as JSON

files for downstream analysis.

Feature extraction from nuclear contours

From the nuclear centroids and contours of each segmented nucleus, a wide range of
morphological and intensity-based features were extracted to characterize cellular and nuclear
properties (Table S1). These features provide quantitative insights into nuclear shape, size, and
staining patterns, which are critical for understanding cellular behavior and tissue organization.

Here, we extracted cellular parameters such as area; long and short axis length; aspect ratio;


https://doi.org/10.1101/2025.03.31.646356
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.03.31.646356; this version posted April 4, 2025. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

eccentricity; diameter; average red, green, and blue intensities; standard deviation of red, green,

and blue intensities; cell ID, slide number, and xyz coordinate.&

Registration of 2D nuclear segmentation into 3D space

To reconstruct the 2D nuclear segmentation masks into 3D space, the CODA registration
integration algorithm was extended to handle nuclear segmentation format data. Following CODA
registration of the serial histology, the registration transforms were used to register the xy
coordinates output following 2D Stardist segmentation into 3D tissue space. This step enabled
integration of nuclear coordinate data with the tissue-type segmentation output, enabling
identification of major cell types in 3D space.*® Tissue labeling data were integrated to ensure

anatomical consistency, preserving spatial relationships between nuclei and tissue structures.

Once registered, the 2D nuclear segmentations were concatenated into a 3D volume, with each
nucleus assigned to a unique cell ID. This ID linked each nucleus to its spatial coordinates and

previously extracted morphological features, such as area, eccentricity, and intensity metrics.

Measurement of bulk cellular and volumetric quantifications

Using the generated 3D tissue and cellular volumes, bulk quantifications were extracted to
characterize tissue composition and cellular distribution. Volumetric data for each tissue
component was calculated by summing the voxels corresponding to each label and adjusting for
voxel size. Bulk cellular information of each microanatomical label can be extracted by integrating
the 3D tissue-labelled volume with the spatial locations of cellular labels in the 3D cellular volume,

enabling in silico analysis of microanatomical regions.

Distinguishing Cell Types Using Nuclear Morphology Features
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We demonstrated the ability of this algorithm to predict cell types using nuclear morphology
through identification of CD45+ lymphocytes. A subset of lymphocytes was manually annotated
in QuPath by researchers with expertise in histology. Annotated cell coordinates were exported
as GeoJSON files, capturing their spatial coordinates and contours. The GeoJSON data was
converted to a JSON file. The annotated cells were then processed to extract nuclear morphology
features (e.g., area, eccentricity, intensity metrics) and stored in a pickle file. Using the
morphology features of the annotated immune cells as a reference, a random forest classifier was
trained to extrapolate immune cell identities across the entire 3D tissue block. The classifier was
applied to all nuclei in the dataset, and the predicted immune cells were mapped onto the 3D
volume. This enabled the generation of 3D renderings of immune cell infiltration, identifying
regions of high immune activity (hot spots) and low immune activity (cold spots) within the tissue
microenvironment. Separate images were CD45 Immunochemistry (IHC) stained to validate the

performance of the classifier.

Assessment of 3D nuclear cell morphology microenvironment

To evaluate the microenvironment of each cell nucleus, spherical volumes with different radii were
generated for all nuclei in the dataset. Cellular, volumetric, and nuclear morphological features
within each sphere were computed and tabulated according to microanatomical labels. Each row
in the resulting tables represented a unique cell ID, with columns detailing cell counts, volumetric

data, and nuclear morphology metrics for each label.

3D heatmap generation for visualizing intra- and inter-variability in tissue blocks

To visualize variability in cellular content, spherical volumes of 144 micron radius were generated

for each voxel in the biospecimen. The number of nuclei within each sphere was summed,
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creating a 3D matrix of local nuclear densities. This matrix was used to generate color-graded

heatmaps, overlaid on the 3D tissue volume, to highlight regions of high and low cellular density.

Statistical considerations

Metrics within and between cohorts were compared using median, mean, standard deviation, and
interquartile range. CODA segmentation model accuracy was determined through annotation of
an independent testing image and calculation of per-class precision and recall. Nuclear
segmentation model accuracy was determined through calculation of F1 score. No additional

statistical analyses were performed in this study.
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