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Abstract 

Cell migration plays a key role in normal developmental programs and in disease, including immune 

responses, tissue repair, and metastasis. Unlike other cell functions, such as proliferation which can 

be studied using high-throughput assays, cell migration requires more sophisticated instruments and 

analysis, which decreases throughput and has led to more limited mechanistic advances in our 

understanding of cell migration. Current assays either preclude single-cell level analysis, require 

tedious manual tracking, or use fluorescently labeled cells, which greatly limit the number of 

extracellular conditions and molecular manipulations that can be studied in a reasonable amount of 

time. Using the migration of cancer cells as a testbed, we established a workflow that images large 

numbers of cells in real time, using a 96-well plate format. We developed and validated a machine-

vision and deep-learning analysis method, DeepBIT, to automatically detect and track the migration 

of individual cells from time-lapsed videos without cell labeling and user bias. We demonstrate that 

our assay can examine cancer cell motility behavior in many conditions, using different small-

molecule inhibitors of known and potential regulators of migration, different extracellular conditions 

such as different contents in extracellular matrix and growth factors, and different CRISPR-mediated 

knockouts. About 1500 cells per well were tracked in 840 different conditions, for a total of ~1.3M 

tracked cells, in 70h (5 min per condition). Manual tracking of these cells by a trained user would 

take ~5.5 years. This demonstration reveals previously unidentified molecular regulators of cancer 

cell migration and suggests that collagen content can change the sign of how cytoskeletal molecules 

can regulate cell migration.  
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Introduction 

Cell migration is a fundamental and complex biological process that regulates various functions, 

including immune surveillance and response 1,2, embryonic development 3–5, and wound healing 6–9. 

Dysregulated cell motility contributes to multiple pathological conditions, such as chronic wounds, 

fibrosis, and hyper-inflammation10. In oncology, motility plays a crucial role in tumor progression, 

allowing spreading of cancer cells from the primary tumor and their dispersal to distant sites. 

Identifying the biophysical and molecular regulatory principles that drive cell migration in both 

healthy and disease contexts have led to the discovery of therapeutic targets11–13. 

Numerous cell migration assays have been developed to investigate the mechanisms and 

regulators of cell migration across diverse biological settings. Among these, video-based cell tracking 

has emerged as a powerful method to study cell migration, as it provides single-cell resolution and 

temporal data to characterize and understand complex migration processes14,15. Tracking cell 

movements in videos remains a non-trivial task. A critical step in cell tracking is the accurate 

identification of nuclei/cells. Fluorescent labeling of cells is a common strategy to facilitate cell 

identification via image processing or machine vision algorithms. However, fluorescence imaging 

presents several challenges, including phototoxicity and alterations of cell physiology16–19. In 

contrast, brightfield imaging perturbs cellular systems minimally, but detecting cell locations in these 

images is challenging due to low contrast and highly heterogeneous cell morphology. Moreover, 

while manual tracking can be used for brightfield videos16–19, the extensive effort and subjectivity 

involved make it impractical. 

Traditional cell tracking methods suffer from extremely low throughput, restricting the 

comprehensive study of cell migration at the molecular level14,15. Using conventional manual tracking 

software, an experienced user may track 50 cells in a video of 50 frames in ~1 hour. Hence, to track 

cells in 500 different conditions (~1,500 cells per condition) would take a staggering 6 years. 

Moreover, emerging evidence highlights the context-dependent nature of motility regulation20,21, 

emphasizing the need for large-scale, network-based analyses to fully elucidate the regulatory roles 

of various molecules and biological context.  Evaluating motility responses using existing molecular 

and drug compound libraries could be highly helpful for identifying novel motility regulators and 

potential therapeutic targets. However, the lack of high-throughput motility analysis workflows 

continues to pose a significant challenge. Collectively, these limitations underscore the pressing need 

for high-throughput motility analysis of unlabeled cells to advance our understanding of cell 

migration and its intracellular and extracellular mechanisms of regulation. 

In this work, we developed a high-throughput, label-free cell motility analysis platform called 

Deep learning Brightfield Imaging and cell Tracking (DeepBIT). Utilizing convolutional neural 

networks (CNNs), DeepBIT detects the nuclei of live cells in brightfield images, enabling automated 

and accurate cell tracking without the need for fluorescence labeling. A common challenge in training 

CNN models is the need for large, diverse, and representative datasets. We address this by integrating 

brightfield imaging, molecular labeling, and fluorescence microscopy to generate extensive and 

varied training datasets with ground truth labels — eliminating the need for time-consuming manual 

annotations. DeepBIT can track thousands of cells across ~100 time frames in minutes, significantly 

enhancing the throughput of motility analysis. Its label-free imaging and automated tracking 
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capabilities enable the large-scale deployment of motility studies for drug screening, systems 

analysis, and high-dimensional interaction studies. 

 

Results 

Deep learning brightfield imaging and cell tracking (DeepBIT) system 

Fluorescently tagged cells or nuclei enable easy and accurate detection of cell and nuclear locations, 

facilitating cell tracking using real-time imaging. However, fluorescent labeling can potentially alter 

the biological state of the observed cells, and present issues such as phototoxicity and 

photobleaching, which limit the duration and temporal resolution of observations. In contrast, 

brightfield microscopy offers a label-free approach for live-cell imaging with minimal effects on the 

cells, allowing for extended observation time. However, accurately detecting cell locations in 

brightfield images is a challenging task16–18. 

Here, we established a pipeline that accurately detects the locations of label-free cells in 

brightfield images using convolutional neural networks (CNN), enabling high-throughput cell 

tracking and analysis (Fig. 1). Modern microscopy setups allow for the examination of motility 

patterns (i.e. trajectories) of individual cells from a vast number of different cell conditions in a 96-

well layout, tracking cells over 4 mm² of area in each well with a sufficient temporal resolution of 10 

minutes. Combined with high-throughput label-free analysis, our proposed workflow offers the 

opportunity to study a vast array of motility conditions and perturbations, such as compound 

screening, factorial extracellular designs, and molecular perturbations, thus enabling systems-level 

analysis of cell motility. 

We established an effective workflow for training a CNN model to detect nuclei locations in 

brightfield images, bypassing the need for time-consuming manual annotations of training datasets. 

Molecular labeling with Hoechst 33342 and propidium iodide (PI) was used to label live and dead 

cells, respectively. Both brightfield and fluorescent images of the cells were acquired simultaneously 

(Fig. 2a; Supp. Fig. 1). The live and dead cell map (i.e. ground truth labels) corresponding to the 

brightfield images was then generated by processing the fluorescent images (Fig. 2a). To ensure that 

robust cell detection across various focal planes was achieved by the trained CNN, a z-stack of 11 

brightfield images, representing both in-focus and slightly out-of-focus positions (± 20 µm in z), was 

acquired at a given field of view (FOV), along with live and dead cell imaging (Fig. 2b).  

This molecular imaging integration allowed us to collect a large dataset of images from both 

MDA-MB-231 and MCF-7 breast cancer cells — two ubiquitously used cell lines in cancer research —  

at various cell densities, totaling 1,584 brightfield images across 144 FOVs and 11 focal planes to 

train (N=792) and test (N=792) CNN models for cell detection (Fig. 2b). Live and dead nuclei images 

were acquired for each FOV to obtain the nuclei labels. The data set is composed of cells at densities 

of 500 cells/well, 1,000 cells/well, and 2,000 cells/well in a 96-well plate.  The molecular images 

were first converted to the label maps of live and dead cells through image processing. We trained 

the CNN model with the DeepLabV3+ framework19, converting brightfield images into labeled live 

and dead cell images. The trained model labeled nuclei in the brightfield images of the testing dataset 

with an overall pixel-level accuracy of 98%+ for both cell types (Fig. 2c). The detection of live cells 
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in labeled images showed a robust accuracy with an F1-score of 93.3-95.6% for MDA-MB-231s at 

different focal planes and cell densities. Interestingly, the cell detection had a better accuracy when 

images of cells were slightly out of the focal plane (Fig 2d; Supp. Fig. 2a). Similarly, the accuracy of 

the detection of MCF7 cells was robust across focal planes and cell densities, ranging from 90.7%-

96.3% (F1-score) (Supp. Fig. 2c). Our trained model outperformed cell detection using the pre-

trained cyto3 Cellpose model22, for which the F1-score was just 76.83% on average for MDA-MB-231 

cells and 70.41% for MCF-7 cells (Supp. Fig. 2d). 

 Using our trained CNN, cell locations in each frame of live-cell brightfield movies could be 

effectively detected to reconstruct cell trajectories (Fig. 2f; Supp. Video 1 & 2). We further validated 

the tracked cell speed against manual tracking results (Fig. 2f, g). Results showed that the average 

cell speed measured using DeepBIT (19.0±6.6 μm/h; N=2600 cells) was consistent with the expected 

values from manual tracking (20.6±5.0 μm/h; N=30 cells). For a single well of a 96-well plate, >2000 

cells can be tracked in 100 frames (16 h) within minutes using DeepBIT. The automated tracking 

throughput is substantially faster compared to manual tracking, which we estimated takes ~1 hour 

to track 50 cells in 50 consecutive frames.  We further demonstrated that cell speed measurements 

across replicate wells demonstrated high consistency from DeepBIT tracking (Fig. 2h & i). Overall, 

these results demonstrate that the established workflow can accurately analyze the motility of 

individual cells at high throughput. 

 

DeepBIT enables the screening of motility regulation compounds  

To demonstrate the utility and effectiveness of the DeepBIT workflow, we aimed to identify potential 

molecular modulators of cell motility by using compounds that inhibit cancer invasiveness and 

motility using FDA-approved compound libraries. A total of 96 FDA-approved compounds targeting 

more than 16 distinct signaling pathways (Supp. Table 1) were tested on MDA-MB-231 breast 

cancer cells at three different concentrations (0.01 µM, 1 µM, 10 µM) (Fig. 3a). Of the 288 total 

conditions (96 unique compounds × 3 concentrations), our trained CNN model accurately 

determined nuclei locations and tracked cell motility under most conditions, successfully analyzing 

280 conditions (Fig. 3b & c).  Eight compounds (Supp. Table 2) at a concentration of 100 μM could 

not be accurately tracked due to the presence of a significant number of particle-like objects in the 

brightfield images, resulting from the limited solubility of these compounds (Supp. Fig. 3). In total, 

more than 600,000 cells were tracked across the analyzed conditions. 

To ensure that these inhibitors only affected cell motility and not cell viability and 

proliferation, our live-dead assay was performed for all compounds at each dose. A condition was 

defined as having an effect on motility, proliferation, or viability if it caused a 25% or greater change 

compared to the DMSO controls (Fig. 3b & c).  Among all the tested compounds, we found that 32 

affected motility, 42 affected proliferation, and 21 affected viability (Fig. 3d; Supp. Table 3). 

Interestingly, a high occurrence of motility inhibitors was found in the Neuronal Signaling (N=10) 

and Endocrinology & Hormone (N=4) pathways (Fig. 3d). In particular, we found that 5-HT receptor 

antagonists significantly affected cell motility (Supp. Fig. 4).  
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Since motility inhibition could result from cell killing (and dead cells cannot actively move), 

we examined the association between cell motility, proliferation, and viability among motility 

inhibitors. Out of the 46 total conditions that influenced motility, we identified 13 conditions that 

specifically affected motility without significantly impacting proliferation (Fig. 3e). Thus, a majority 

of conditions that affected motility also affected either proliferation or viability. For the 5-HT 

receptor antagonists, we found only 1 of the 5 compounds affected only motility (Fig. 3f). Not 

surprisingly, we found that all the compounds that affected viability (N=21) also affected motility and 

proliferation. We also identified 12 conditions that affected both proliferation and motility.  

From the 13 compounds that affected motility only, we found 4 compounds that promoted 

motility while 9 compounds inhibit motility (Fig. 3f & g). Interestingly, we found that Resminostat, 

an epigenetic drug, could induce an ~80% increase in MDA-MB-231 cell motility at a dosage of 1 μM 

compared to DMSO controls without affecting viability, but slightly lowered proliferation. However, 

Resminostat caused complete cell death at 100 μM and had no significant effect at dosages lower than 

1 μM (Fig. 3c & g). Overall, our results demonstrate that our DeepBIT workflow can efficiently screen 

libraries of compounds and identify novel potential regulators for cell motility.  

 

DeepBIT enables combinatorial analysis of extracellular regulators of motility  

We next used the DeepBIT platform for a systems analysis of potential extracellular regulators of 

motility by exploring cell motility responses to combinatorial conditions. A subset of 

microenvironmental factors known to individually influence breast cancer cell motility were 

investigated, including cytokine stimulation (EGF, TNF-α)21, extracellular matrix (collagen)23, and 

variations in serum (FBS)24 (Fig. 4a).  Additionally, to determine cell-dependent responses, five 

breast cancer cell lines of varying invasive potential were examined (Fig. 4a, b) including MDA-MB-

231, MCF-7, SUM149, SUM159, and HCC1954 cancer cells.  These cells were chosen because they are 

routinely used for cancer modeling in vitro and in animal models. 

Our trained DeepBIT platform was able to accurately determine nuclei locations and track 

cell motility for all the above cell lines and conditions, corresponding to a total of 120 unique 

conditions (Fig. 4c). More than 500,000 cells were tracked across the analyzed conditions in three 

biological replicates. Examination of the heatmaps summarizing speed and persistence values 

reveals the important effect of extracellular cues in the modulation of cell motility. Collagen and EGF 

generally increased motility, while the effect of TNF-α varied across cell lines. There was a direct 

correlation between speed and persistence observed across all cell lines, which suggests that cells 

that move faster tend to exhibit more directional movement (Fig. 4d). Overall, MDA-MB-231 cells 

had the highest motility, however, their persistence was more susceptible to modulation by 

microenvironmental factors compared to other tested cancer cells.   

To further evaluate how individual cytokines influence motility, we measured changes in 

speed and persistence in response to EGF and TNF-α (Fig. 4e & f). In MDA-MB-231 cells, EGF 

generally increased both speed and persistence, but the magnitude varied widely (from +7.7% to 

+48.6% in cell speed) depending on the microenvironment. For instance, EGF enhanced motility by 

48.6% in the presence of TNF-α, 0.1% FBS, and collagen on a flat substrate, but this effect dropped to 
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11.6% when FBS concentration was increased to 10% (Fig. 4e & f). Similarly, TNF-α — typically 

linked to increased cancer cell motility20,21,25 — showed both positive and negative effects on MDA-

MB-231 motility, depending on extracellular context. TNF-α generally promoted motility, except in 

environments containing only collagen and/or FBS, where it had a negative effect on migration (Fig. 

4f). Together, these results highlight that microenvironmental factors critically shape the regulatory 

impact of motility signals. 

We further explored the motility regulatory effects across different breast cancer cell lines. 

EGF generally enhanced cell motility in all five cell lines under most conditions. However, a significant 

negative effect was observed in HCC1954 cells, where EGF reduced motility by 18.9% under 10% 

FBS without collagen or TNF-α (Fig. 4g & Supp. Fig. 5). Consistent with earlier findings, TNF-α 

exhibited a dual role in motility regulation across all cell lines (Fig. 4g). Notably, the negative 

regulation by TNF-α varied by cell line and context. For example, under no collagen, no EGF, and 10% 

FBS, TNF-α reduced motility in MCF-7 and HCC1954 cells, while under the same conditions, TNF-α 

strongly promoted motility in SUM149 cells (Supp. Fig. 5).  Hierarchical clustering of normalized 

persistence and speed values revealed which cell lines had similar motility responses to extracellular 

factors (Fig. 4h and Supp. Fig. 6). SUM149 and SUM159 clustered closely, which suggests that they 

share motility characteristics in response to stimuli. MDA-MB-231 and MCF-7 formed distinct 

clusters of regulated migration, which suggests that they have unique migration strategies in 

response to microenvironmental factors compared to other breast cancer cells.   

Overall, our results demonstrate that breast cancer cell motility is highly context-dependent 

— including EGF acting primarily as a promigratory factor and TNF-α having pro- and anti-migratory 

effects. These findings, made possible thanks to our high-throughput assay, provide new insight into 

how microenvironmental factors regulate cancer cell migration and could help identify potential 

targets for therapeutic strategies.  

 

Combining DeepBIT and CRISPR enables deep profiling of motility regulators under diverse 

microenvironmental conditions 

Lastly, we demonstrated that DeepBIT enables deep phenotypic profiling of molecules that regulate 

cell migration by incorporating molecular perturbation methods, such as CRISPR. We knocked out 

RHOA, ARPC2, and CTTN in MDA-MB-231 cells; molecules that regulate the assembly and 

architecture of actin filament network.  We measured their motility responses across 16 distinct 

microenvironmental conditions. These conditions were defined by a combinatorial framework 

incorporating cytokine stimulation (EGF, TNF-α), extracellular matrix components (collagen), and 

serum (FBS) (Fig. 5a). In total, > 250,000 cells were tracked across the 64 analyzed conditions in 

three biological replicates.  

Molecular knockouts (KOs) can influence cell morphology and we found that RHOA KO 

induced a notable morphological transformation (Supp. Fig. 7). Yet, our trained CNN model 

continued to successfully detect cell nuclei and tracked motility across all KO experiments, including 

RHOA KO. Our results revealed that, once more, cell motility under KO conditions exhibited a wide 

range of behaviors, depending on extrinsic factors (Supp. Fig. 8). The slowest motility across all 
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tested KOs and controls consistently occurred in the absence of external stimuli (i.e.: no FBS, collagen, 

EGF, or TNF-α). In contrast, the highest motility responses for both KOs and controls were observed 

under conditions with different combinations of three or more external stimuli (Fig. 5b-e). 

Interestingly, we found a strong association between cell speed and movement persistence 

across all KO groups and conditions (Fig. 5c). At lower speeds, persistence was highly correlated with 

speed, whereas at higher speeds, persistence plateaued. These results suggest a “universal” motility 

response characterized by the non-linear relationship between cell speed and persistence26. 

We further examined the effect of these molecular manipulations on cell motility across 

different conditions, comparing them to the scramble control. The loss of RHOA induced distinct 

effects on cell motility that depended on extrinsic conditions. Under conditions where cells migrated 

at high speed, RHOA KO further enhanced cell migration. In contrast, when cells were already in 

conditions associated with lower migration potential, RHOA KO led to a decrease in motility (Fig. 

5d). Knockout of ARPC2, on the other hand, generally led to a reduction in cell speed. The extent of 

this reduction was strongly associated with the cell's migration capability, with an estimated ~35% 

decrease in speed observed across all tested conditions (Fig. 5d). The mixed effects of CTTN KO in 

MDA-MB-231 cells were also observed, with most conditions showing minimal decreases in speed. 

We further examined how extrinsic conditions are associated with different molecular KOs (Fig 5d). 

In the presence of collagen and serum, RHOA KO significantly increased cell speed (Fig. 5e). Under 

other conditions, RHOA KO caused a slight decrease in cell motility or had minimal effects. The ARPC2 

KO consistently reduced cell motility across most conditions, with the largest effect observed in the 

presence of collagen (Fig. 5e). Minor reductions in speed were observed for CTTN KO under certain 

conditions (Fig. 5e).  

Our findings demonstrate that motility regulation via gene targeting is also context-

dependent. ARPC2 is clearly essential for maintaining migration speed, whereas RHOA and CTTN 

appear to have a more context-dependent role. These results, rendered possible by our high-

throughput assay, provide insight into how cytoskeletal regulators influence cancer cell motility and 

suggest targets that could be used to modulate migration. 

 

Discussion 

We demonstrate that the proposed DeepBIT framework enables accurate and efficient tracking of 

cell motility in label-free brightfield videos using a trained CNN. Our workflow addresses the 

challenges of training accurate CNN models for nuclei detection by integrating fluorescent cell 

labeling with brightfield microscopy. This approach generates an extensive training dataset without 

the need for potentially time consuming and subjective manual annotations. The automated labeling 

of nuclei in brightfield imaging provides a foundation for high-throughput analysis of cell migration 

behaviors at a single-cell resolution in a time-resolved manner. Additionally, it facilitates large-scale 

screening of motility inhibitors and enables the exploration of motility responses at complex 

molecular intersections. The convolutional neural network (CNN) model developed in this study for 

live nuclei detection is effective in tracking cells with epithelial or mesenchymal phenotypes, such as 
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MCF-7 or MDA-MB-231 cell lines. However, its performance may be limited when applied to cells 

with significantly different morphologies, such as lymphocytes. A major challenge in retraining CNN 

models is the need for substantial datasets for training and testing to ensure robust performance. 

Our proposed workflow streamlines the acquisition of large training datasets, enabling efficient 

retraining of the cell detection CNN model to accommodate various cell lines. 

 The role of RhoA in cancer invasion remains controversial, as findings from individual studies 

have reported both pro-invasive and inhibitory effects when RhoA is inhibited27,28. Our study also 

demonstrates that RhoA knockout induces a wide range of motility responses, from inhibition to 

minimal or even enhanced motility, depending on the presence of collagen in the environment. These 

results underscore the complex interplay between extrinsic and intrinsic cellular factors in 

regulating motility. A single-axis (piecemeal) analysis of molecular function provides a limited 

context and may not accurately reflect its role in the complex in vivo environment, emphasizing the 

need for high-throughput approaches to capture a more comprehensive picture and precision of 

biology. 

Automated cell tracking in brightfield images significantly reduces manual effort and enables 

high-throughput analysis of cell motility, facilitating advances in systems and precision biology. In 

this study, we analyzed a total of 840 experiments (including all repeats and conditions) with 100+ 

frames per experiment, requiring approximately 70 hours of processing time and tracking ~1.2 

million cells. By comparison, we estimate that manual tracking by a trained researcher achieves a 

throughput of 50 cells across 50 frames per hour, meaning the same task would take approximately 

48,000 hours (~5.5 years) to complete manually. This stark contrast highlights the potential of 

automated tracking for large-scale motility studies. 

Our assay reveals that 5-hydroxytryptamine (5-HT) antagonists of can significantly impact 

cell motility, implicating neurotransmitter signaling pathways in the regulation of breast cancer 

migration. While the role of 5-HT receptors, or serotonin receptors, is well established in 

neurotransmitter regulation, recent studies have also highlighted their involvement in tumorigenesis 

and tumor progression across various tumor types29,30. In breast cancer, overexpression of 5-HT has 

been observed in patients with triple-negative breast cancer31 and is associated with increased pro-

tumor activity. Additionally, treatment with 5-HT agonist antidepressants in cancer patients has been 

linked to a higher risk of cancer recurrence32–34. Our findings further demonstrate that a subset of 5-

HT antagonists induces anti-migratory effects in cancer cells, independent of their anti-proliferative 

activities. These results provide further evidence of the role of the 5-HT-associated pathway in 

regulating cancer invasion.  

Our assay identified dose-dependent, conflicting effects of a pan- histone deacetylase (HDAC) 

inhibitor, resminostat, in triple-negative breast cancer cells (MDA-MB-231).  Various HDAC 

inhibitors have been studied for their anti-tumor effects in breast cancer35,36. In particular, 

suberoylanilide hydroxamic acid (SAHA), a well-studied pan-HDAC inhibitor, has been shown to 

suppress cancer cell proliferation, migration, invasion, and epithelial-mesenchymal transition 

(EMT)37–39. However, conflicting reports suggest that SAHA may also promote cancer invasion and 

EMT in breast cancer cells40,41. Resminostat, another pan-HDAC inhibitor, has been extensively 

investigated for its anti-tumor effects in hepatocellular carcinoma and T-cell cutaneous 
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lymphoma42,43. However, its effects on breast cancer remain less explored. While high doses (100 µM) 

of resminostat inhibit breast cancer cell proliferation, exposure to low doses (1 µM) significantly 

increases cell motility, indicating an enhanced invasive state. Together, our findings highlight the 

complex, dose-dependent effects of HDAC inhibitors on breast cancer cells, emphasizing the need for 

further investigation to optimize their therapeutic potential. 
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Figure captions 

Figure 1. Workflow for plating/cell treatment, DL analysis, and DL model training. 

a. Cells were seeded at 1000-2000 cells/well in 96-well plates and incubated at cell culture 

conditions (37°C and 5% CO2). Following incubation, treatment conditions were added to 

each well accordingly. The plates were then placed on a microscope (Nikon TI) with an on-

stage incubator to maintain cell culture conditions. Time-lapse brightfield images were 

acquired at 10-minute intervals over a minimum of 16 hours (4 positions per well; 384 

positions per plate). The live nuclei in the brightfield images were detected using a custom 

DL model with DeepLabv3+ network architecture, and the trajectories of individual live 

nuclei were tracked using the previously established tracking methods. 

 

Figure 2. Validation of DL model to ensure high overall accuracy for nuclei prediction. 

The developed DL model shows a high overall pixel accuracy and can quickly track 1000+ 

cells in the time it takes to track 30 cells manually. 

a. Training data sets consisting of various cancer cell lines were used to allow for the model 

to learn to distinguish between live and dead nuclei. Brightfield images with corresponding 

fluorescent images (Hoechst 33342 for live cell detection and PI for dead cell detection) were 

acquired using the same microscopy setup as (Fig. 1a). Corresponding brightfield and 

fluorescent images were combined to generate images annotated for background, live cell 

nuclei, and dead cell nuclei. These annotated images made up the data used to train the DL 

model, and the final model was used to annotate brightfield images for live and dead cell 

nuclei without and use of any additional markers/tags.  

c. Nuclei prediction by the DL model. The brightfield images are at the top, and their 

respective nuclei predictions by the DL model are on the bottom. Brightfield image of MCF-

7 and MDA-MB-231 and the corresponding DL predicted nuclei are present.  

d. Nuclei detection remains robust, and accuracy is retained even at different focal planes. 

e. Nuclei detection remains robust, and accuracy is retained even at different cell densities. 

f. Trajectory comparison between manual tracking (N=30) and DL annotation/tracking 

(N=2600). Results come from tracking done on the same sample video. 

g. Comparison between individual cell speeds determined from manual tracking (N=30) and 

DL annotation/tracking (N=2600). Results come from tracking done on the same sample 

video. 

h. Measured cell speed using DeepBIT for MDA-MB-231 cells in a 96-well plate, with half 

coated using 50 μg/mL collagen. Measurements remain consistent throughout all replicates 

within the same plate. 

i. Comparison between MDA-MB-231 cell motility with and without collagen coating. 

Measurements within the same 96-well plate remain consistent. 

 

Figure 3. The cell motility response of MDA-MB-231 to a panel of 96 FDA-approved 

compounds.  
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a. Schematic of the compound screening workflow. Cells were incubated with three 

concentrations (0.01, 1, 100 μM) of compounds for 24 hours prior to imaging. The panel of 

96 FDA-approved compounds was categorized into 16 unique pathways. 

b. Comparison between normalized cell speed and viability following treatment for each 

condition. Dotted lines represent cutoffs for “effective” conditions, and red numbers indicate 

notable conditions: (1) Idebenone at 100 μM, (2) 1% DMSO; control, and (3) Resminostat at 

1 μM. 

c. Representative cell trajectories for visualization of a (1) decrease, (2) control, and (3) 

increase in cell motility. Numbers correspond with highlighted conditions from panel (b). 

Scale bar: 50 μm. 

d. Analysis of each pathway, showing the number of compounds which affect motility (black), 

proliferation (grey), and viability (white) within each pathway category. 

e. Venn diagram that summarizes which conditions significantly affect cell speed, 

proliferation, and viability out of the total 288 conditions tested (includes all 

compounds/concentrations). 

f. Table listing the 13 conditions which caused a significant increase (blue, +) or decrease 

(red, -) in cell speed without influencing proliferation or viability. For each condition, the 

compound name, pathway, target, and effective concentration is listed.   

g. Heatmaps which show the normalized effect of the 13 compounds from panel (f) on cell 

speed, proliferation, and viability. DMSO and Reminostat were included as a control 

condition and significant motility promoter, respectively. Red indicates inhibition and blue 

indicated enhancement, relative to WT controls.  

 

Figure 4. The cell motility response of a breast cancer cell panel to combinations of 

serum concentration, ECM coating, and cytokines. 

a. Workflow diagram outlining the total unique conditions tested within this study. Cells 

were serum starved for 16-24 hours and then incubated with their respective cytokines 

(100ng/mL) for 4 hours prior to imaging. 500,000+ total cells were tracked over 120 

combinations with 3 replicates. 

b. Representative cell trajectories for visualization of the fastest and slowest condition for 

each breast cancer cell line. Scale bar: 100 μm. 

c. Heatmap summarizing the motility (top) and persistence (bottom) effects from the various 

combinations of microenvironmental factors on breast cancer cells. 

d. Comparison between the persistence and displacement values across all conditions and 

cell lines. Each point represents a unique combination of microenvironmental factors. 

e. Plots showing the percentage change in speed and persistence induced by EGF (circles) 

and TNF-α (squares) in MDA-MB-231 and MCF-7 cells. Each point represents a change 

caused by a soluble factor compared to a baseline combination of factors without the factor 

of interest.  
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f. Comparison of MDA-MB-231 percentage change in speed in response to EGF and TNF-α 

across all conditions. Shows the difference in magnitude of response depending on the 

context in which a soluble factor is introduced. Statistical analysis was performed by one-

way ANOVA: P < 0.05 (*), P < 0.01 (**), and P < 0.001 (***). 

g. Plots showing the percentage change in speed and persistence induced by EGF and TNF-α 

across all cell lines. Each point represents a change caused by a soluble factor compared to a 

baseline combination of factors without the factor of interest. 

h. Hierarchical clustering analysis of speed and persistence changes among the five breast 

cancer cell lines. Illustrated are the similarities and differences in response to 

microenvironmental factors between cell lines.  

 

Figure 5. The impact of CRISPR knockouts on cancer cell motility across diverse 

microenvironmental conditions 

a. Workflow diagram outlining the total unique MDA-MB-231 knockouts (KO) and 

conditions tested within this study. KO/WT cells were serum starved for 16-24 hours and 

then incubated with their respective cytokines (100ng/mL) for 4 hours prior to imaging. 

b. Representative cell trajectories for visualization of the fastest and slowest condition for 

each unique KO. Scale bar: 50 μm. 

c. Comparison between the persistence and displacement values across all conditions and 

cell lines. Each point represents a unique combination of microenvironmental factors. 

d. Plots showing the change in speed induced by the KO in MDA-MB-231 cells compared to 

the negative control speed. Each point represents a unique combination of environmental 

conditions. 

e. Comparison of percentage change in speed in response to RHOA (circle), ARPC2 (square), 

and CTTN (triangle) KOs across all microenvironmental conditions. Shows the difference in 

magnitude of response depending on the context in which KO is introduced. Statistical 

analysis was performed by one-way ANOVA: P < 0.05 (*), P < 0.01 (**), and P < 0.001 (***). 
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Materials and Methods 

Cell lines and culture 

MDA-MB-231 (HTB-26), MCF-7 (HTB-22), and HCC1954 (CRL-2338) cells were purchased 

from the American Type Culture Collection (ATCC), and SUM149 (HUMANSUM-0003004) 

and SUM159 (HUMANSUM-0003006) were obtained from BioIVT. The breast cancer cell 

lines were cultured in DMEM supplemented with 10% fetal bovine serum (FBS, Corning, 35-

010-CV) and 1% penicillin-streptomycin (P/S, Sigma-Aldrich, P0781-100ML). Cells were 

maintained at 37°C and 5% CO2 in an incubator for passage numbers less than 15. Cell were 

trypsinized (trypsin EDTA, Sigma-Aldrich, T4049-500ML) and passaged at 70-80% 

confluency, every 2-3 days. 

 

Live and dead cell assay and analysis 

Cells were plated at a density of 1500-2000 cells per well depending on the cell line. 

Following an overnight incubation and/or cell tracking experiment, well plates were stained 

using Hoechst 33342 (Thermo Fisher Scientific, H21492) and propidium iodide (PI, Thermo 

Fisher Scientific, P1304MP), and imaged in two channels, 395 and 555 nm. Cells were 

identified in the fluorescent images and were classified as live or dead using filters based on 

Hoechst 33342 and PI intensity. 

 

Deep-learning model training 

Cells were plated at varying densities of 500, 1,000, and 2,000 cells per well in 96-well plates 

(Corning, 3603). After plating, cells were incubated overnight to allow attachment to the 

surface. The following day, cells were stained with Hoechst 33342 (3 µg/mL) and propidium 

iodide (PI, 3 µg/mL) to label live and dead nuclei, respectively, for 30 minutes. For imaging, 

brightfield images were first captured at 11 different focal planes, offset above and below the 

in-focus plane, using a Nikon TI-E microscope with 10x objective. Immediately after 

brightfield imaging, fluorescence images of Hoechst 33342 and PI were acquired for each 

field of view (FOV) to minimize potential differences caused by cell motility. Four FOVs were 

imaged per well.  

Live and dead cell-labeled images for each FOV were generated from the fluorescent images. 

A bandpass filter was applied to reduce background noise and improve the signal-to-noise 

ratio44,45. Intensity thresholds were manually determined to identify positively stained 

regions. Since Hoechst stains both live and dead nuclei, regions positive for both Hoechst and 

PI were classified as PI-positive (dead) cells.  The brightfield images were also normalized 

prior to training. First, the background field was estimated and subtracted from each 

brightfield image. The background field was calculated using a 2D median filter with a 

window size of 300 × 300 pixels. After background subtraction, the images were rescaled to 
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have a mean intensity of 100 arbitrary units (a.u.) and a standard deviation of 30 a.u. This 

was achieved by dividing the pixel intensities of the background-corrected images by their 

standard deviation, multiplying by 30, and then adding 100. 

The image set is then split into a training and testing data set to train a DeeplabV3+ network19 

to detect live and dead cell label from brightfield images. The image split is performed at FOV 

levels such that the whole z-stack images are assigned either to training or testing. The 

images are first down-sampled at two-fold and the image size for training models are set to 

1024x 1024 pixels.  The networks are trained with 30 epochs. The model performance is 

evaluated based on the testing image. All computational procedures including image 

processing and model training were performed using MATLAB (The MathWorks, Natick, MA). 

 

Cell motility assay  

Black 96-well plates (Corning, 3603) were coated with 50 μg/mL of collagen type I, rat tail 

(Corning, 354249) for 30 minutes. Breast cancer cells were seeded at so that cells would 

reach ~2000 cells per well prior to imaging. To ensure even cell distribution, the 96-well 

plate was placed on a shaker at 500 RPM for 2 minutes following seeding and allowed to 

settle for 20 minutes before being placed in an incubator. Cells underwent desired 

treatments following an overnight incubation. Following treatment, 96-well plates were 

placed onto a microscope (Nikon Eclipse Ti-E) with an on-stage incubator (Tokai Hit, INU-

TIZW) to maintain cell culture conditions of 37°C and 5% CO2. Time-lapse brightfield images 

were acquired at 10-minute intervals over a minimum of 16 hours (4 positions per well; 384 

positions per plate). Images were obtained at 10x magnification. 

 

FDA-approved compound treatment 

MDA-MB-231 cells were seeded at 1,000 cells per well in a 96-well plate. Cells were treated 

with 0.01 μM, 1 μM, and 100 μM FDA-approved compounds randomly selected from a single 

plate of an FDA-approved screening library (Selleck Chem, L4300-03) for 24 hours. Treated 

cells underwent time-lapse imaging with subsequent live/dead cell analysis. “Control” 

samples were supplemented with DMSO vehicle in place of FDA-approved compounds. 

 

CRISPR lipofection 

MDA-MB-231 cells were seeded in 12-well plates so that they would reach 60-80% 

confluency on the day of transfection. Cells were transfected with TrueCut Cas9 Protein 

(2500 ng per well, Thermo Fisher Scientific, A36498) and RHOA (CRISPR1031551_SGM), 

ARPC2 (CRISPR995699_SGM), and CTTN (CRISPR925694_SGM) True Guide sgRNA (480 ng 

per well, Thermo Fisher Scientific, A35533) using Lipofectamine CRISPRMAX (Thermo 

Fisher Scientific, CMAX00003) for 48 hours. Following transfection, cells were trypsinized 
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and seeded into 96-well plates for high-throughput cell motility assay conditioning and 

analysis.  Non-targeting sgRNA-treated (Thermo Fisher Scientific, A35526) cells and cells 

treated with Lipofectamine CRISPRMAX only were used as controls. 

 

Serum starvation and cytokine treatment 

MDA-MB-231 and HCC1954 were seeded at 1,500 cells per well and MCF-7, SUM159, and 

SUM149 were seeded at 1,250 cells per well in a 96-well plate. Cell culture medium was 

replaced with starvation medium (DMEM supplemented with 0%, 0.1%, 10% FBS 

respectively and 1% P/S) following an overnight incubation after plating. Cells were serum-

starved for 16-24 hours. 100 ng/mL of EGF (PeproTech, AF-100-15), TNF-α (PeproTech, 

300-01A), and EGF+TNF-α was added to each well respectively and incubated with cells for 

4 hours prior to imaging. “Control” samples underwent serum-starvation and were 

supplemented with additional starvation medium in place of cytokines. 

 

Deep-learning cell detection, tracking, and analysis 

To track the cell motility, the live cell nuclei locations in the brightfield images are first 

detected using the trained DL model after 2-fold down sampling.  The marker-controlled 

watershed was then implemented to segmentation, the detected live nuclei image and 

locations of the segmented nuclei object are then measured44. Objects with area less than 15 

um2 are excluded from further analysis. Once the nuclei locations are obtained from all 

timeframes, cell trajectories are tracked using previously established methods46,47. Cell 

instantaneous speed and persistence are calculated for each tracked object. Cell 

instantaneous speed was calculated at a time-lag (𝜏) of 1 hour using the following equation:  

𝑆𝑝𝑒𝑒𝑑 (𝜏) =<
√(𝑥(𝑡+𝜏)−𝑥(𝑡))

2
+(𝑦(𝑡+𝜏)−𝑦(𝑡))

2

𝜏
>, 

where 𝜏 represents time-lag, <…> indicates time-averaging, t represents the instantaneous 

time, and (x,y) are the coordinates for cell location at a given point in time. 

 

Persistence is defined as the ratio of net distance traveled (Dnet) to integrated distances 

traveled (Dint), calculated using the following equations: 

𝐷𝑛𝑒𝑡 = √(𝑥(𝑡𝑒𝑛𝑑) − 𝑥(𝑡0))
2

+ (𝑦(𝑡𝑒𝑛𝑑) − 𝑦(𝑡0))
2
 

𝐷𝑖𝑛𝑡 = ∑ √(𝑥(𝑡 + 𝜏) − 𝑥(𝑡))
2

+ (𝑦(𝑡 + 𝜏) − 𝑦(𝑡))
2

𝑡=𝑡0+𝑁𝜏,   𝑁=0,1…
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In these equations, t0 represents the initial timepoint, tend represents the final timepoint 

collected, and N represents the total number of time steps, taking into account the time lag. 

The time lag for calculating Dint is a single frame. 

 

Statistical analysis 

One-way analysis of variance (ANOVA) was performed using GraphPad Prism and was used 

to determine statistical significance. Results were considered significant at P < 0.05 (*), P < 

0.01 (**), and P < 0.001 (***).  
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Figure 1. Workflow for plating/cell treatment, DL analysis, and DLmodel training.
a. Cells were seeded at 1000-2000 cells/well in 96-well plates and incubated at cell culture conditions
(37°C and 5% CO2). Following incubation, treatment conditions were added to each well accordingly. The
plates were then placed on a microscope (Nikon TI) with an on-stage incubator to maintain cell culture
conditions. Time-lapse brightfield images were acquired at 10-minute intervals over a minimum of 16
hours (4 positions per well; 384 positions per plate). The live nuclei in the brightfield images were
detected using a custom DL model with DeepLabv3+ network architecture, and the trajectories of
individual live nuclei were tracked using the previously established trackingmethods.
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Figure 2. Validation of DL model to ensure high overall accuracy for nuclei prediction. The
developed DL model shows a high overall pixel accuracy and can quickly track 1000+ cells in the time it
takes to track 30 cells manually. a. Training data sets consisting of various cancer cell lines were used to
allow for the model to learn to distinguish between live and dead nuclei. Brightfield images with
corresponding fluorescent images (H33342 for live cell detection and PI for dead cell detection) were
acquired using the same microscopy setup as (Fig. 1a). Corresponding brightfield and fluorescent images
were combined to generate images annotated for background, live cell nuclei, and dead cell nuclei. These
annotated images made up the data used to train the DL model, and the final model was used to annotate
brightfield images for live and dead cell nuclei without and use of any additional markers/tags. c. Nuclei
prediction by the DL model. The brightfield images are at the top, and their respective nuclei predictions
by the DL model are on the bottom. Brightfield image of MCF-7 and MDA-MB-231 and the corresponding
DL predicted nuclei are present. d. Nuclei detection remains robust, and accuracy is retained even at
different focal planes. e. Nuclei detection remains robust, and accuracy is retained even at different cell
densities. f. Trajectory comparison between manual tracking (N=30) and DL annotation/tracking
(N=2600). Results come from tracking done on the same sample video. g. Comparison between
individual cell speeds determined from manual tracking (N=30) and DL annotation/tracking (N=2600).
Results come from tracking done on the same sample video. h. Measured cell speed using DeepBIT for
MDA-MB-231 cells in a 96-well plate, with half coated using 50 μg/mL collagen. Measurements remain
consistent throughout all replicates within the same plate. i. Comparison between MDA-MB-231 cell
motility with and without collagen coating. Measurements within the same 96-well plate remain
consistent.
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Figure 3. The cell motility response of MDA-MB-231 to a panel of 96 FDA-approved compounds. a.
Schematic of the compound screening workflow. Cells were incubated with three concentrations (0.01, 1,
100 μM) of compounds for 24 hours prior to imaging. The panel of 96 FDA-approved compounds was
categorized into 16 unique pathways. b. Comparison between normalized cell speed and viability
following treatment for each condition. Dotted lines represent cutoffs for “effective” conditions, and red
numbers indicate notable conditions: (1) Idebenone at 100 μM, (2) 1% DMSO; control, and (3)
Resminostat at 1 μM. c. Representative cell trajectories for visualization of a (1) decrease, (2) control,
and (3) increase in cell motility. Numbers correspond with highlighted conditions from panel (b). Scale
bar: 50 μm. d. Analysis of each pathway, showing the number of compounds which affect motility (black),
proliferation (grey), and viability (white) within each pathway category. e. Venn diagram that
summarizes which conditions significantly affect cell speed, proliferation, and viability out of the total
288 conditions tested (includes all compounds/concentrations). f. Table listing the 13 conditions which
caused a significant increase (blue, +) or decrease (red, -) in cell speed without influencing proliferation
or viability. For each condition, the compound name, pathway, target, and effective concentration is
listed. g. Heatmaps which show the normalized effect of the 13 compounds from panel (f) on cell speed,
proliferation, and viability. DMSO and Reminostat were included as a control condition and significant
motility promoter, respectively. Red indicates inhibition and blue indicated enhancement, relative to WT
controls.
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Figure 4. The cell motility response of a breast cancer cell panel to combinations of serum
concentration, ECM coating, and cytokines. a.Workflow diagram outlining the total unique conditions
tested within this study. Cells were serum starved for 16-24 hours and then incubated with their
respective cytokines (100ng/mL) for 4 hours prior to imaging. 500,000+ total cells were tracked over
120 combinations with 3 replicates. b. Representative cell trajectories for visualization of the fastest and
slowest condition for each breast cancer cell line. Scale bar: 100 μm. c. Heatmap summarizing the
motility (top) and persistence (bottom) effects from the various combinations of microenvironmental
factors on breast cancer cells. d. Comparison between the persistence and displacement values across all
conditions and cell lines. Each point represents a unique combination of microenvironmental factors. e.
Plots showing the percentage change in speed and persistence induced by EGF (circles) and TNF-α
(squares) in MDA-MB-231 and MCF-7 cells. Each point represents a change caused by a soluble factor
compared to a baseline combination of factors without the factor of interest. f. Comparison of MDA-MB-
231 percentage change in speed in response to EGF and TNF-α across all conditions. Shows the
difference in magnitude of response depending on the context in which a soluble factor is introduced.
Statistical analysis was performed by one-way ANOVA: P < 0.05 (*), P < 0.01 (**), and P < 0.001 (***). g.
Plots showing the percentage change in speed and persistence induced by EGF and TNF-α across all cell
lines. Each point represents a change caused by a soluble factor compared to a baseline combination of
factors without the factor of interest. h. Hierarchical clustering analysis of speed and persistence changes
among the five breast cancer cell lines. Illustrated are the similarities and differences in response to
microenvironmental factors between cell lines.
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Figure 5. The impact of CRISPR knockouts on cancer cell motility across diverse
microenvironmental conditions. a. Workflow diagram outlining the total unique MDA-MB-231
knockouts (KO) and conditions tested within this study. KO/WT cells were serum starved for 16-24
hours and then incubated with their respective cytokines (100ng/mL) for 4 hours prior to imaging. b.
Representative cell trajectories for visualization of the fastest and slowest condition for each unique KO.
Scale bar: 50 μm. c. Comparison between the persistence and displacement values across all conditions
and cell lines. Each point represents a unique combination of microenvironmental factors. d. Plots
showing the change in speed induced by the KO in MDA-MB-231 cells compared to the negative control
speed. Each point represents a unique combination of environmental conditions. e. Comparison of
percentage change in speed in response to RHOA (circle), ARPC2 (square), and CTTN (triangle) KOs
across all microenvironmental conditions. Shows the difference in magnitude of response depending on
the context in which KO is introduced. Statistical analysis was performed by one-way ANOVA: P < 0.05
(*), P < 0.01 (**), and P < 0.001 (***).
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