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Abstract

Image-based machine learning tools have emerged as powerful resources for analyzing medical
images, with deep learning-based semantic segmentation commonly utilized to enable spatial
quantification of structures in images. However, customization and training of segmentation
algorithms requires advanced programming skills and intricate workflows, limiting their
accessibility to many investigators. Here, we present a protocol and software for automatic
segmentation of medical images guided by a graphical user interface (GUI) using the CODAvision
algorithm. This workflow simplifies the process of semantic segmentation of microanatomical
structures by enabling users to train highly customizable deep learning models without extensive
coding expertise. The protocol outlines best practices for creating robust training datasets,
configuring model parameters, and optimizing performance across diverse biomedical image
modalities.

CODAvision enhances the usability of the CODA algorithm (Nature Methods, 2022) by
streamlining parameter configuration, model training, and performance evaluation, automatically
generating quantitative results and comprehensive reports. We expand beyond the original
implementation of CODA to serial histology by demonstrating robust performance across
numerous medical image modalities and diverse biological questions. We provide sample results
in data types including histology, magnetic resonance imaging (MRI), and computed tomography
(CT). We demonstrate the diverse use of this tool in applications including quantification of
metastatic burden in in vivo models and deconvolution of spot-based spatial transcriptomics
datasets. This protocol is designed for researchers with interest in rapid design of highly
customizable semantic segmentation algorithms and a basic understanding of programming and
anatomy.
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Introduction

Deep learning has emerged as a powerful tool for analyzing digitized biomedical images in various
research applications.!"!! Semantic segmentation models are commonly used due to their ability to
be quickly adapted to specific datasets for detecting structures across a variety of image types.'>
4 In addition, their relatively smaller architectures (compared to some larger transformer and
foundation models) make them amenable to retraining by researchers without access to high-
performance computing. However, the implementation of these methods often requires advanced
programming skills and intricate workflows, limiting their accessibility and widespread adoption
outside of the computational biology community. In response, some popular deep learning
workflows have been made more accessible through the development of graphical user interfaces

(GUISs), which reduce or eliminate the need for extensive coding during implementation. !>

To address this challenge, we developed a novel GUI aimed at simplifying the process of training
highly-customizable models for segmentation of biological structures in medical images. As a
companion to this interface, we developed an extensive guide of best practices for annotation layer
selection and annotation style for the construction of robust supervised models.

How this Protocol Improves Upon the Existing CODA Methodology

This protocol is a powerful extension of the CODA workflow.?> CODA, a MATLAB-based
pipeline for reconstruction of serial histological images into quantitative 3D datasets, has been
used extensively in biomedical research applications including study of pancreatic cancer
progression, heart development, diabetic neuropathy, and skin regeneration, among others.??
CODA has shown technological power beyond its original presentation as a method to create 3D
maps from serial hematoxylin and eosin (H&E) stained histology. Numerous recent studies have
utilized one useful module of CODA, its image segmentation workflow, and integrated it with
21 gpatial transcriptomics and proteomics,**? tissue stiffness,*?

3436 organoid modelling,>”*®

spatially resolved genomics,
antibody-based staining techniques, and to quantify in vivo
histology.>>*! Here, we extract the segmentation module of the CODA package and dramatically
improve its speed, usability, and applicability to diverse biomedical image modalities. In the
studies described earlier the core implementation codes of CODA remained unchanged. This

original implementation possess three clear limitations which we address in the current protocol:

(1) The original package is written as discrete functions in MATLAB. This language is not open
source, and the format of the codebase made its implementation challenging even for users with
extensive programming experience. We address this through the translation of the CODA
segmentation workflow to Python, optimization of the code speed and performance, and creation
of a user-friendly GUI. We name this optimized workflow CODAvision. (2) The original package
lacked description of the format and style of manual annotations required for training robust
segmentation models. Recent groups have highlighted the importance of training dataset quality
in deep learning approaches.**** We address this through generation of extensive user guides
describing best-practices for rapid generation of robust segmentation models. (3) The original
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package demonstrated applicability to H&E images only. Here, we demonstrate applicability of
CODAvision to H&E as well as other imaging types including MRI and CT.

The novelty of this workflow is its depth in describing best practices for the optimal creation of
training datasets, construction of an intuitive user interface for parameter configuration and model
architecture selection, and automatic generation of model performance reports and quantitative
results for streamlined use in scientific experiments (Fig 1A). For example, using a dataset of
mouse lung histology we demonstrate the ability of CODAvision to rapidly generate quantitative
spatial measurements of composition from in vivo experiments. To validate CODAvision's
capability to quantify metastatic burden in in vivo studies, we analyzed 55 H&E-stained lung tissue
sections from mice injected with MDA-MB-231 breast cancer cells. Using a DeepLabv3+
architecture with a ResNet50 backbone (precision and recall >90% for all tissue types), we
quantified the metastatic coverage, which revealed 45% and 53% metastatic burden for wild-type
and scrambled control cells, respectively (Fig 1B).
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Figure 1: CODAvision workflow and sample application. a. Pipeline overview showing sequential steps: tissue
annotation for dataset creation, GUI-guided parameterization, model training, and quantitative analysis. b.
Representative semantic segmentation results comparing lung histology from a mouse used in a control arm (top) to
histology from a mouse used in the experimental arm (bottom) of an in vivo experiment. c. Sample tissue composition
analysis with metastases object count for sample b (bottom). d. Comparison of metastatic burden occupied in the lung
across three experimental conditions, showing CODAvision quantification (left) versus a conventional ImageJ-based
analvsis (right).
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Comparison to Alternate Techniques

Compared to alternative techniques for quantifying structures in biomedical images, our workflow
possesses differences that make it advantageous for certain research questions. In the proposed
protocol, we guide users through the generation of robust datasets to train customizable deep
learning models. Another approach is use of large-scale foundation models and vision transformers
that have been trained on millions of examples for object-detection tasks, or sometimes more
specifically on extraction of meaningful features from biomedical images.®*** These methods
differ from our protocol in that they are intended to be fully automated, where our workflow
requires initial manual annotation.

For research projects where direct measure of a certain structure (such as cancer metastases in
mouse histology, or something very specific such as a subtle phenotype of cancer cells that is not
currently well defined) is desired, our workflow enables rapid segmentation of that specific
anatomical structure. In contrast, for applications that benefit from a more holistic perspective —
such as generalized feature extraction or the generation of attention maps for survival prediction —
pre-trained foundation models may be more suitable. Our workflow is designed to run on a
standard desktop computer and requires only minimal programming expertise, making it broadly
accessible. On the other hand, the deployment of large foundation or transformer models typically
demands high-performance computing resources and advanced computational skills.

Experimental design

In this section, we provide a methodological overview of the five main steps outlined in the
protocol: dataset creation, GUI-guided parametrization, model training, model optimization, and
image classification using a custom pretrained model.

Example datasets: To help users explore the CODAvision software and its features, we include a
link to a sample dataset of annotated mouse lung histology. Results obtained from CODAvision
analysis of these datasets are presented in the Anticipated Results below. We recommend that users
initially run CODAvision on the supplied dataset and follow the detailed protocol described in the
Procedure section before analyzing new data.

Dataset creation

A dataset for this workflow consists of a set of biomedical images (e.g., digitized histology, MRI,
CT.) and their associated annotation metadata. The first step of the workflow is to identify
structures in the dataset that can be distinguished from each other, and which of those are required
for the research objective. An exhaustive list of structures is then made, and manual these structures
annotated in the freely available program Aperio ImageScope. The selection of classes directly
corresponds to the research question the CODAvision analysis aims to address (BOX 1). In
Procedure 1, we outline strategies for developing a robust training dataset that enables building
custom segmentation models for the targeted structures.
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GUI guided parametrization

Once the manual annotations are complete, the next step in the CODAvision workflow is to define
the date import and model training parameters using a Python-based GUI. Users first install the
CODAvision Python package, following the instructions for codes and dependencies outlined in
Procedure 2. The GUI guides users through configuring settings for model training, including
specifying the location of training and testing datasets, selecting an image resolution
(downsampled files are generated using OpenSlide),*” and customizing model parameters. The
choice of resolution is critical, balancing segmentation detail with computational efficiency. The
GUI further allows for the management of the manual annotated layers, enabling features such
automatic removal of background pixels, combining or deleting annotation layers, and defining
the nesting logic for managing overlapping annotations. Advanced settings enable further
customization, such as adjusting tile size, batch size, and model architecture (e.g., DeepLabV3+,
UNet),'>* allowing users to optimize training based on their computational resources and dataset
size. Once all parameters are set, the model will begin training.

Model training

The model training phase begins with tissue thresholding, guided by an interactive popup window
that allows users to fine-tune the threshold cutoff for optimal tissue/background separation. Once
the threshold is set, the pre-processing and model training proceed automatically. During this
phase, the .xml annotation coordinate data will be imported and converted to .png annotation
masks. These masks will be used to create training and validation tiles built using data
augmentation techniques such as hue adjustment, scaling, rotation, and Gaussian filtering to
enhance dataset heterogeneity and model robustness. The chosen model architecture is trained on
these augmented tiles. After training, the model performs inference on test images, generating a
confusion matrix that showcases the precision, recall, and overall accuracy. For each segmented
image, the workflow will output a classified .png mask and a colorized .jpg overlay, enabling users
to rapidly review the model performance using both quantitative (confusion matrix) and qualitative
(overlay images) review. The overall composition of each image will be saved in a .csv file, along
with more detailed morphological calculations if desired by the user. The model results will be
automatically summarized in a generated .pdf report. Users are encouraged to review these results
to ensure the trained model meets the recommended performance benchmarks (e.g., >90% overall
accuracy and >85% per-class precision and recall, and visually acceptable results).

Model optimization

If the performance of the trained model is unsatisfactory, Procedure 4 outlines steps to efficiently
retrain and optimize the model. Optimization strategies include review of the colorized mask
overlay images to identify patterns of misclassification, determining if any structures were missed
during initial annotation, and adjusting model parameters to better align with the desired results.
If misclassifications persist, it is recommended to expanded the training dataset by adding new
images rather than adding annotations to existing training images. These optimization steps can be
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repeated iteratively until satisfactory results are achieved, ensuring the model meets the
recommended performance benchmarks.

Image segmentation with custom pretrained model

Once a model is trained, users can apply it to segment additional images beyond the original
training set using a pretrained model. The steps for classifying additional images through \the
CODAvision GUI are detailed in the Procedure 5. Users can select the images to segment, choose
a pretrained model for inference, and optionally modify the color palette for the colorized
segmentation masks or perform additional object-based morphology analysis.

Description of the Expertise Needed to Implement the Protocol

This protocol is designed for researchers with some training and experience in computational
biology. In particular, users must possess some knowledge of anatomy and of coding to use this
workflow, which we describe here.

Successful implementation of this workflow requires knowledge of anatomical structures and how
they appear in histology / radiology images. For example, a user wishing to segment cancer
metastases in H&E images of mouse lung must understand how to differentiate cancer cells from
the functional cells of the lung in these images. The user will use this knowledge to manually
annotate and to qualitatively assess model performance. We provide a supplemental annotation
guide (supplementary file 1) that gives some background on how to identify structures in medical
images, which may be beneficial to some users.

Users must also possess a basic understanding of programming. While operation of this workflow
is streamlined with a user-friendly GUI, initial installation requires familiarity with Python
scripting, CUDA, and cuDNN setup for GPU acceleration. Detailed instructions for these steps are
provided on the GitHub page, where all codebase and dependencies are hosted. We suggest that
users without programming knowledge obtain assistance when initially installing the package,
after which operation of the GUI can proceed without significant coding expertise.

Limitations

This workflow, while powerful, possesses several limitations which we document here. First, some
the model architectures included (DeeplabV3+ and U-Net) may require significant computational
resources, such as high-performance GPUs. The speed of this workflow is significantly impacted
on computers without GPUs or on standard laptops.

Second, the segmentation models described here require highly specific manual annotations for
training data. The benefit of this approach is the ability to, in the span of a few days, train highly
accurate and highly customizable segmentation models in any cohort. The limitation is that a
model trained on one organ (for example mouse lungs) is not easily adapted to another organ (for
example human pancreas). Instead, users must generate new manual annotations for each new
application.


https://doi.org/10.1101/2025.04.11.648464
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.04.11.648464; this version posted April 14, 2025. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

Materials
Equipment
1. A computer with at least 16 GB of RAM
2. An NVIDIA graphics processing unit (GPU) with at least § GB RAM
3. An up-to-date operating system (Windows 10/11, OSX 11)
4. Atleast 2.5 GB of storage space
5. A working CUDA (>11.2) and CuDNN (=8.1) installation (instructions available at the

provided GitHub page)

In the analysis described here we used a computer with the following specifications:

6. Workstation with 128 GB RAM and an NVIDIA GeForce RTX 4090 GPU running on
Windows 11.
Software
1. CODAvision software available in the following repository:

https://github.com/Kiemen-Lab/CODAvision.

Python Interpreter (e.g., PyCharm, Visual Studio, Spyder)

Image Annotation Tool: For annotating images, the Aperio ImageScope application is
required. This software can be installed from the following link:
https://www.leicabiosystems.com/digital-pathology/manage/aperio-imagescope.

Example dataset:
Dataset 1: Mouse lung histology, available at the following link:

https://drive.google.com/drive/folders/1K-wY _ArVGbEhebQD4AjOeERwx6-4Fw3G.
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Procedure

CRITICAL: This protocol assumes that users possess a dataset of images intended for semantic
segmentation and quantification. For sample datasets, see Datasets 1 and 2 in the software section
of this protocol. We demonstrate that CODAvision can be applied to diverse image types including
histology, MRI, and CT. Our primary demonstration, and the sample datasets provided are
histological images scanned at 20x magnification (roughly 0.5 pm / pixel resolution), though the
procedure could be similarly applied to images scanned at higher or lower resolution.

Procedure 1: Constructing a training dataset for deep learning training

Annotating on Aperio ImageScope

e Timing: 10-20h
1. Select six images to annotate from the initial cohort.

CRITICAL: The images selected for annotation should reflect the heterogeneity of the larger
dataset. This may include selecting images from different scientific groups (control vs
experimental conditions), images possessing distinct anatomical features, and images with
technical heterogeneity such as variation in lighting or focus. Construction of a heterogeneous
training dataset will improve the robustness of the segmentation.

2. Create a folder named ‘Training dataset’, and another folder named ‘Testing dataset.’

3. Copy five of the selected images to the ‘Training dataset’ folder and save the sixth image
in the ‘Testing dataset’ folder.

4. Install Aperio ImageScope following the installation instructions available at:
https://www.leicabiosystems.com/digital-pathology/manage/aperio-imagescope.

5. We suggest users change two settings in Aperio Imagescope upon installation to improve
the user experience.

a. To increase the maximum allowable zoom for precise annotation, navigate to Tools
> Options > General Tab > Maximum magnification and enter 1000%.

b. To automatically save annotations when exiting the program, navigate to Tools >
Options > Annotation Tab > Annotation Settings, and check the box 'Automatically
save annotation changes’.

6. Open one of the images from the ‘Training dataset’ folder in Aperio ImageScope.

7. Create the annotation layers by navigating to View, then Annotations to show the
'Annotations - Detailed View' window and click the ‘+’ button to add an annotation layer.
Rename the annotation layer by clicking on the layer name's top and press 'F2,' then input
the desired name.

8. Create one annotation layer for each object you would like to train a model to segment.
Once all layers are created, press save. This will generate an .xml file corresponding to this
image that will contain the annotation coordinates that will be used for model training.
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CRITICAL: All annotated images must have the same layer order. Create a layer for every
structure, even in images where those structures are absent.

CRITICAL: The testing dataset must contain at least one annotation of each annotation layer. If
all layers are not present in any single image, consider using multiple images for testing so that the
overall testing dataset contains at least one annotation of each annotation layer.

CRITICAL: The .xml files in the training and testing folders must correspond to the images they
annotate, with identical filenames. If an .xml file has a different name than its associated image,
the code will fail. Ensure that every image has a matching .xml file and vice versa.

How to choose which structures to annotate? BOX 1

The number of annotation layers you should generate depends on your research objective. In
histology, many cell types can be differentiated by the trained eye, including various epithelial,
vascular, and stromal compartments. We suggest that users first make a list of the major structures
present in their images, then group these structures until the desired granularity is obtained.

See Fig 2 for an example of a high-detail and a low-detail model trained on fetal rhesus macaque
kidney histology. Where exhaustive anatomical labelling is desired, the user can generate a highly
specific list of structures identifiable in H&E (Fig 2A). For a more focused project, the user can
group labels to reduce the number of annotation layers and increase the speed of the project (Fig
2B).

CRITICAL: No matter your research question, all models should contain a background or
whitespace layer in the annotation dataset to contain non-tissue pixels in the image.

B Ureter [ Vvasculature
B Vvein v [] Non-vasculature
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. Developing corpuscle
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. Medullary collecting ducts
. Arterioles
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Figure 2: Sample histological image containing fetal rhesus macaque kidney with anatomical annotations
overlaid. a. For a high-detail model, seventeen tissue structures are identifiable in the kidney. b. For a vasculature-
focused model, the annotation layers can be grouped to remove unnecessary labels.
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9. Begin annotating using the 'Pen' tool. Start the annotation by clicking and annotating the
area of interest in the main window. Use the pen tool to manually outline the region of
interest, closing the drawn shape once complete. If you wish to modify the annotation, click
and redraw over the annotated region until you achieve the desired level of precision in
refining the borders.

CRITICAL: The resulting quality of your segmentation model relies on the quality of your
annotations. Zoom in to high magnification when annotating and aim to annotate the structure
boundaries very cleanly and consistently (Fig 3B).

CRITICAL: We recommend that users periodically save the annotations manually by clicking the
save button in the 'Annotations - Detailed View' window. This will help prevent potential data loss.

10. Make ~20 annotations per tissue structure per image (training and testing). For rare
structures, there may be fewer than 20 examples per image.

GOOD annotation practices: here we provide guidance on good annotation practices. For more

detailed notes on annotating, see the companion Annotation Guide in supplementary file 1.

11. Nesting: make overlapping annotations of different classes following a consistent nesting
hierarchy (Fig 3A).

CRITICAL: Define the nesting hierarchy before beginning annotations. This hierarchy must
remain consistent across all annotated images and will be used during the deep learning model
parametrization described in Procedure 2.

What is nesting? BOX 2

We have observed that CODA segmentation models yield better results when the tissues are
identified within their microenvironments. To achieve this, employ an annotation technique called
‘nesting.” Nesting uses a hierarchical tissue organization, in which higher level tissues can be
‘nested’ inside lower-level ones. Fig 3A illustrates the arrangement of three hypothetical annotated
types: tissue A (triangles), tissue B (squares), and tissue C (circles). Varying the nesting hierarchy
changes how these annotation layers are imported for model training.

12. Annotate structures across the entire image, not just in one region.

13. Include diverse examples of all annotation classes. Building a dataset with varied
morphologies for each class ensures optimal performance of your model on unseen data.

14. Include ‘non-ideal’ annotations for each class to enable the model to correctly classify
tissue types even in the presence of noise. For example, annotate structures that are slightly
blurry, darker, or paler.

15. When glandular structures that contain a lumen, include background annotations within the
lumen if noise, such as fluid or red blood cells, is present (Fig 3A, right).
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16. Include 5-10 annotations at tissue structure edges when annotating whole slide images to
ensure accurate differentiation between tissue borders and background during
classification.

17. When re-annotating to improve model performance, first review the classified images to
identify regions of misclassification. Focus your annotations on these regions to efficiently
correct the model (Fig 3C).

CRITICAL: Refer to the supplemental annotation guide (supplementary file 1) for detailed
examples of tissue annotations and best practice.

a Nesting
= Triangles Squares Circles
s Squares Triangles Squares
o Circles Circles Triangles .
Nesting
Hierarchy

Example masks

Manual annotation

Wy Z
= E B Stroma
£ [1Duct
©
= B Noise
b c Iterative approach
WSI Annotation
15t model 273 model
% classification classification
< — .
)
2g :
% jo)) Whitespace
5 £
C
ok
= CNN CODA CNN
Segmentation Training

Figure 3: Annotation hierarchy and quality control for CODA deep learning model training. a. Hierarchical
nesting diagram illustrating tissue classification levels. b. Comparison of adipocyte annotation precision within
pancreatic acinar tissue: suboptimal classification (left) versus optimal annotation (right). c. Iterative annotation
workflow demonstrating the targeted addition of annotations in misclassified regions to enhance model performance.
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Procedure 2: Defining model parameters using the GUI

e Timing: 5 min
1. After completing the annotation step, download CODAvision by following the README
instructions present on the following GitHub page:
https://github.com/Kiemen-Lab/CODAvision.
2. [If desired, import the Python code to an IDE (Integrated Development Environment).
3. Run the CODAvision.py code to execute the GUI to parametrize the settings for the model.

File Location tab (Fig 4A)

4. Browse for the folder containing the training annotations. This folder should contain the
annotated images and .xml files generated during Procedure 1.

5. Repeat step 4 to browse for the folder containing the testing annotations.

6. Specify a desired image resolution by selecting an option from the dropdown list.

a Tab 1: File Location b Tab 2: Tissue Segmentation

File Location Segmentation Settings Nesting Advans

Training dataset - Testing dataset Manual Remove Keeptissue & Kesponly
annotation hi hi whitespace

e

. Blood Vessel

| mm 200 pm

c d Tab 4: Advanced Settings
Top layer
Bottom layer i
I
S
Ma:“’?' Training mask Image ObjectID  Object Size (pixels)
20ROt Of) NTC12281 metastasis 1 547903]
TN I Noise TUNTC1-22.4f metastasis 2 325980
i TUNTC1-22.tif metastasis 3 300641
> u B"’_°_d Vessel TUNTC122.tif  metastasis 4 280711
B Acini TUNTC1-22.6if  metastasis 5 180707
- Stroma TUNTC1-22.tif metastasis6 168919
| s 200 pm TUNTC1-22.tif  metastasis 7 135568

Figure 4: CODAvision graphical user interface (GUI) tabs. a. File Location tab: Configuration of dataset paths, model
name, and training image resolution. b. Segmentation Settings tab: Parametrization of whitespace management c. Nesting
tab: Configuration of nested annotation hierarchy for overlapping tissue annotations. d. Advanced Settings tab: Modification
of CNN hyperparameters and selection of annotation classes for component analysis.
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How to choose a training resolution? BOX 3

The choice of training resolution is critical for achieving the desired segmentation accuracy while
managing computational resources efficiently. For cellular-level analyses, we recommend using
10x (1 um/pixel), whereas organ-level or large tissue structures can be effectively segmented at
1x (8 um/pixel). The key consideration is the trade-off between segmentation detail and
computational efficiency. Higher resolutions provide finer detail but result in larger file sizes,
extended processing time, and require higher precision manual annotations.

CODAvision also enables users to provide pre-generated downsampled images and to input this
custom scale factor instead of choosing from one of the predefined resolutions. To do this, select
“custom scale” and browse for the folder containing the scaled .tif or .png images.

7. Enter a desired name for the deep learning model. By default, the name is prepopulated
with today’s date, but may be customized.

8. (Optional) Select 'Custom' from the 'Resolution' dropdown menu to train on resolutions
different from the default options. This action will display a scaling factor input field where
you can specify the desired downsampling ratio (must be >1) (Fig 5).

a. To use different images for downsampling instead of the annotated images, select
the 'Scale custom images' checkbox. Then, locate the custom image directories,
which should be organized into separate training and testing folders. The image
filenames must correspond exactly to their respective annotation files.

b. If your custom images are pre-scaled, activate the 'Use pre-scaled images'
checkbox. Ensure that these images match the value specified in the 'Scaling factor’
field and are .tif or .png filetype.

CRITICAL: Choose this option when working with images not originally annotated in the
recommended formats (.ndpi or .svs). The custom image downsampling feature accepts the
following file formats: .ndpi, .svs, .tif, .jpg, .png, and .dem.

Tab 1: Custom Downsampling (optional)

File Location Segmentation Settings Nesting Advanced Settings File Location Segmentation Settings Nesting Advanced Settings

Figure 5: Optional tab for custom downsampling of images or for providing pre-downsampled files to the GUI.

14


https://doi.org/10.1101/2025.04.11.648464
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.04.11.648464; this version posted April 14, 2025. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

9. After completing all sections on the ‘File Location’ tab, click ‘Save & Continue’ move to
tab 2: ‘Segmentation Settings.’ This tab serves as the interface for defining the different
classes for the deep learning model, as well as inputting nesting information. This page
will be pre-populated with the annotation classes and colors used during the manual
annotation step in Aperio ImageScope.

Segmentation Settings tab (Fig 4B)

10. Determine how to handle the white/background pixels (referred to as ‘whitespace’ in this
protocol) for each annotation layer. To do so, click on an annotation class from the table,
and select one of the three available options in the ‘Annotation class whitespace settings’
(see Fig 6 for examples)

How to manage background in manual annotations? BOX 4

Proper whitespace management is critical for training high-accuracy deep learning models. Here,
we provide advice on what when to automatically remove whitespace or non-whitespace from
your annotation layers:

Select ‘Remove whitespace’ to eliminate the background pixels from an annotation layer. This is
relevant for scenarios such as excluding the lumen from a glandular structure or to remove the
white pixels intermixed between stromal fibers. Select ‘Keep only whitespace’ to retain only the
background pixels in the annotation. This is relevant when annotating fat and aiming to exclude
nonwhite lines separating individual fat cells. Select ‘Keep tissue and whitespace’ to retain both
background and nonwhite pixels. This is appropriate for the noise/background layer, as the
annotated regions may contain both whitespace and noise such as shadows, or when annotating a
solid structure such as hepatocytes in the liver. Refer to Fig 6 for visual examples.

Structures where it is appropriate to Structures where it is appropriate to Structures where it is appropriate to
select ‘Remove whitespace’ select ‘Keep only whitespace’ select ‘Keep tissue and whitespace’
Annotation mask

Annotation mask

Fat

R 5 A} > \ X X
—— o e e o ow— w— —

Figure 6: Example annotations where each whitespace management option is best.
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11. Upon selecting an ‘Annotation class whitespace settings’ option, click ‘Apply’ or ‘Apply
all’ to update the table.

12. Define the destination class for whitespace pixels removed from annotation layers where
the option ‘Remove whitespace’ was selected. In general, the destination class should be
the background class.

13. Similarly, define the destination class for removed non-whitespace pixels taken from the
annotation layers where the option ‘Keep only whitespace’ was selected. In general, the
destination class should be the stromal class. This input must be defined even if no
annotation layer was assigned with ‘Keep only whitespace.’

14. (Optional) To change the color assigned to any annotation layer, select the desired
annotation class from the table click the ‘Change Color’ button. In the color picker window,
select the desired color, then Click ‘OK’ to confirm the color change.

CRITICAL: By default, the model's classification output will use the same colors as those used
during manual annotation (shown as background colors in the table). Color changes are purely
aesthetic and do not affect model performance, but well-chosen colors may improve users’ ability
to visually interpret and present the segmentation results. To ensure accessibility, we recommend
selecting color palettes that are color-blind friendly.

15. (Optional) To combine annotation layers, hold the ‘ctr]’ key and select the desired rows in
the table. Click the ‘Combine classes’ button and, when prompted, enter a name for the
combined class. In the color picker window, select a color for the combined class.

16. (Optional) To delete unwanted annotation layers, select the appropriate row by clicking
inside the table and click the ‘Delete class’ button.

CRITICAL: Delete unwanted annotation layers that should not be included the model training.
This is useful for removing empty layers.

17. (Optional) Click the 'Reset list' button to return the annotation class table to its default state.
This will remove whitespace management choices, uncombine any combined layers, and
restore deleted layers.

18. Once this tab is completed, click 'Save & Continue' in the bottom right corner. The interface
will automatically advance to tab 3: Nesting'.

Nesting tab (Fig. 4C)

19. Define the appropriate nesting order to ensure correct handling of overlapping annotation
classes. This order should have been established during the manual annotation step in
Procedure 1. To define the nesting order in the GUI, select a desired annotation layer. Use
the ‘Move Up’ and ‘Move Down’ buttons to adjust its position according to layering
priority.
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CRITICAL: The ‘Nesting tab’ allows the user to configure the layering hierarchy of annotation
classes from lowest to highest priority in cases of overlap. The class at the top of the table are
assigned the highest priority, while the class at the bottom are lowest priority.

20. (Optional) To define different nesting orders to several annotation layers that combined in
the Segmentation Settings Tab, check the ‘Nest uncombined data’ box.

CRITICAL: If annotation classes were combined in the previous tab, the nesting table will display
these combined layers by default. If a combined layer is made from two layers that require different
nesting priority, check the 'Nest uncombined data' box. Refer to the annotation guide in
supplementary file 1 for detailed examples on establishing the nesting order.

21. Once the nesting tab is completed, the user has four options:

a. (Most likely) Select ‘Save and train’ to immediately proceed with model training

b. Click ‘Save and close’ to save the model configuration but NOT train the model.

c. Click ‘Continue to advanced settings’ to define more complex model parameters
before training the model. This tab will enable the user to adjust model
hyperparameters, select the model architecture, or select classes for advanced
quantitative analysis.

d. Select ‘Return’ to go back to Tab 2.

Advanced Settings tab (Fig. 4D)

22. (Optional) To adjust the default tile size input to the segmentation model, choose a new tile
size from the dropdown list (default: 1024 x 1024 RGB).

CRITICAL: The training tile size default is 1024 x 1024 pixels. Users with GPU RAM constraints
should consider a smaller size such as 512 x 512 or 256 x 256 (the size must be a power of 2).

23. (Optional) To adjust the training and validation tile number, click on the up and down
arrows next to each respective text box. The default number of training tiles is 15 and the
default number of validation tiles is 3. Users may increase these numbers for especially
large (>50 annotated images) or small (<5 annotated images) training datasets.

24. (Optional) Adjust the number of images used for tissue mask thresholding (described in
greater detail in Procedure 3) by clicking on the up and down arrows next to the ‘Tissue
mask evaluation:’ text box. By default, this number is three images, but a higher number
may be desired for larger or more diverse datasets.

25. (Optional) Click the ‘Individual tissue mask evaluation’ checkbox to customize the tissue
mask threshold for each image in the dataset. This option is recommended when image
appearance varies substantially across the dataset and images may have varying
background intensity thresholds.
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26. (Optional) Choose the desired model architecture from one of two available options in the
dropdown box (DeepLabV3+, UNet). By default, the training architecture is DeeplabV3+.

How to choose a model architecture? BOX 5

The choice of model architecture depends on computational resources available and the specific
structures to be segmented. UNet contains approximately 41 million parameters, and in our
benchmark test required approximately 40 minutes to train on an NVIDIA GeForce RTX 4090
GPU. In contrast, DeepLabV3+ contains approximately 12 million parameters, and trained in
approximately 75% of the training time of UNet. While UNet excels in capturing fine-grained
details due to its deeper architecture, DeepLabV3+ is often more computationally efficient and
may be preferable for users with limited computational resources or time constraints. Users are
encouraged to experiment with both architectures to determine which best suits their specific
needs.

For computationally experienced users, additional architectures can be integrated into the
workflow by modifying the codavision/models/backbones.py code, where the provided networks
are implemented as Python classes. Users can also adapt the codavision/models/training.py and
codavision/CODA.py to enable training on the new architecture and include it as an option in the
dropdown menu of the advanced settings tab in the GUI.

27. (Optional) Modify the batch size used for training. By default, the batch size is set to 3.

CRITICAL: Adjust the batch size according to your GPU memory capacity. Larger batch sizes
accelerate training but require more GPU memory, while smaller batch sizes increase training
duration but reduce memory requirements. Monitor GPU memory usage during initial training
attempts to optimize this parameter for your system.

28. (Optional) Select classes for detailed quantitative analysis (object number count and size
per image).

CRITICAL: For a selected class in each segmented image, the total number of objects >500 pixels
will be counted and the object size in pixels will be documented. These data will be exported in a
.csv file following model training and image segmentation.

29. Once the advanced settings tab is completed, the user has three options:
a. (Most likely) Select ‘Save and train’ to proceed with model training.
b. Select ‘Save and close’ to save the configuration but NOT train the model.
c. Select ‘Return’ to go back to tab 3.
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Procedure 3: Image pre-processing and model training

Tissue mask thresholding

e Timing: 5-10 min

1. Upon completing the parameter configuration in the CODAvision GUI, the software will
initiate execution and begin downsampling the training images to the resolution specified
in Procedure 2, Step 6.

2. Next, a popup window will appear, enabling interactive selection of a threshold value to
separate tissue pixels from background pixels. (Fig 7)

3. In the popup window, an image will be displayed. Double click on a region of the image
containing both tissue and whitespace.

4. The popup window will reload and display a magnified view centered on the selected
region. Confirm the selection or choose a different region until a suitable area with
sufficient tissue and background is identified.

5. Once the region is confirmed, a new window will prompt the user to adjust the threshold
cutoff until the background is detected optimally:

6. After selecting the desired threshold, another full-size image will load to repeat the process
until the desired number of images has been assessed. The average threshold value from
this process will then be applied to all images in the cohort.

a b Select an intensity threshold so that the tissue in the binary image is marked in black

Original image Binary mask

Toomuch Toomuch
tissue whitespace
v e Ry i
” )A , e y

>

H&E

Figure 7: Tissue threshold selection interface. a. Region of interest selection in a lung whole-slide image
(WSI) to optimize threshold values. b. Threshold adjustment interface with optimal tissue-background
discrimination demonstrated in the lower panel.
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CRITICAL: Tissue mask threshold optimization is required only once. If retraining the model on
the same dataset, a popup window will prompt the user to either ‘Keep current tissue mask
evaluation’, which reuses the previously determined threshold and skips this step, or ‘Evaluate
tissue mask again’, which initiates a new round of threshold selection. If the ‘Individual tissue
mask evaluation’ checkbox (see Procedure 2, Step 25) was selected and the user chooses to
‘Evaluate tissue mask again’, a prompt will appear allowing manual selection of specific tissue
masks that the user desires to remake. These tissue masks are located in the training annotation
path in the downsampled images folder. Alternatively, selecting ‘Redo all images’ will apply the
thresholding process to the entire dataset.

CODAVvision image processing and model training (Fig 8)

e Timing: 2 h
7. Following successful completion of tissue mask optimization, the image pre-processing
and model training will proceed automatically.

CRITICAL: This step of the protocol is completed automatically by the GUI once the training is
initiated in Procedure 2. The user has no direct steps in this section, but the steps followed by the
code are described below for clarity.

INPUT: Annotated Optimization of Annotation bounding
WSI & GUI tissue/background boxes
parametrization mask threshold (H&E & mask)

Big tiles
(H&E & mask)

Generation of
confusion matrix &
model report

Segmentation of

Model training testing dataset

Figure 8: Visualized workflow of Procedure 3.

8. While executing, the code will output several text statements to the command window, in
the following order:
a. The model name.
b. A message indicating the location where the model metadata will be saved.
c. For each annotated image, a message will appear indicating the status of the
annotation metadata import:
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1. Ifthe annotation data were loaded in a previous training and the annotations
and model parameters have not changed, the message will state that the
metadata for this image was previously loaded.

ii. If the annotation data are being loaded for the first time, the following
checkpoint messages will be displayed: (1) Confirmation that the .xml
annotation file has been converted to.pkl format; (2) Notification that an
annotation mask has been generated and saved as a .png file; (3)
Confirmation that smaller image patches have been cropped around each
annotated region using the annotations mask, producing ‘bounding boxes’
of the RGB image and mask for downstream processing.

9. After loading all annotation metadata, the code will output the total size of the training
dataset, including the percentage of the training dataset contributed by each class.

CRITICAL: It is recommended to have a well-balanced dataset with many examples of each class.
The codes will automatically calculate the percentage of annotations for each class. We suggest
that the minimum class will make up at least 5% of the total annotations must represent each class
to ensure sufficient heterogeneity is provided for each annotation class and that the heterogeneity
of the annotation classes is represented roughly equally. If any class if under the 5% threshold, we
recommend the user attempt to add manual annotations of the least prevalent class through further
annotation of the training images or through addition of new training images.

10. After the metadata is loaded for all annotation images and the composition of the training
dataset is calculated, training and validation tiles will be constructed.

How to generate robust deep learning models Box 6

Construction of a large and diverse training dataset is important to generate robust deep learning
models. We augment the manual annotations in several ways to increase the heterogeneity of the
training data. For each training tile, a large zero-value image of size 10,000 x 10,000 x 3 pixels is
generated. Bounding boxes containing processed manual annotations are randomly added to the
tile until the tile is >55% filled. Each iteration, the least represented class in the tile is determined,
and an annotation bounding box containing that class is added to the tile. Approximately 50% of
tiles are augmented by adjusting the hue (scaling RGB channels independently within a range of
0.88 to 1.12), scaling (within a range of 0.6 to 0.95 for downscaling and 1.1 to 1.4 for upscaling),
rotating (at random angles from O to 355 degrees in increments of 5 degrees), and applying a
Gaussian blur (with sigma values randomly selected from a predefined set, e.g., 1.05, 1.1, 1.15,
1.2). Each bounding box is thus added many times to the training tiles, but each time in a new
position surrounded by different neighbors, and augmented in several ways. Once >55% of the
tiles are filled, these large tiles will be cropped to a size of 1024 x 1024 x 3 pixels (or the custom
size if defined by the user in the advanced settings tab of the GUI) and saved.

11. After the predefined number of training and validation images have been created, model
training will start. All training and validation tiles will be normalized through zero-
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centering. The model will be trained for a maximum of 8 to 10 epochs depending on the
CNN chosen (see Procedure 2, Step 25) and validated three times per epoch. Model training
stops according to an early stopping patience of 6.

12. Following model training, annotation masks will be generated for the test dataset as
detailed in Step 7 of this Procedure.

13. The testing image(s) will be segmented, with the resulting segmentation masks and
colorized overlays saved as .png and .jpg files, respectively. This output will be compared
to the metadata collected in Step 11 of this Procedure to generate a confusion matrix.

14. The images specified in the training images folder will be segmented, with the resulting
segmentation masks and colorized overlays saved as .png and .jpg files, respectively.

15. The bulk tissue composition of the images in the training images folder will be calculated
and saved in a .csv file.

16. (Optional) Component analysis will be calculated for selected annotation classes in the
‘Advanced settings’ tab described in Procedure 2 and saved in a .csv file. This step would
be skipped if no classes were selected.

Generated outputs for Procedure 3

Model hyperparameters, trained weights, and results will be stored in the training path file location.
A summary of input and output file formats for the CODAvision workflow is given in Fig 9. This
workflow generates outputs per annotated image, per trained model, and per segmented image.

1. 'data py' folder:
a. Subfolder for each training image containing:
1. ‘annotation.pkl’: processed vertex coordinates corresponding to the manual
annotation data saved in each .xml file
ii. ‘view_annotations.png’: grayscale mask images containing pixel labels for
each annotated region, considering the whitespace management and the
nesting order.

iii.  ‘model name boundbox’ subfolder: contains cropped RGB and mask
images corresponding to each annotated region identified in
‘view_annotations.png.’

1. ‘im’ subfolder: contains the RGB copy of the bounding boxes.
2. ‘label’ subfolder: contains the corresponding mask of the bounding
boxes.

CRITICAL: The 'data py' folder contains metadata used internally for image processing and
training tile generation, not for analysis.
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Figure 9: Overview of CODAvision inputs and output data formats.

2. 'check annotations' folder: contains colorized masks of the training images with annotation
patches highlighted in colors defined in Tab 2 of the GUI.

CRITICAL: Review the 'check annotation' images to verify that your annotations are correctly
overlaid on the downsampled images. Pay close attention to the whitespace handling (adjust the
whitespace settings in Tab 2 of the GUI if needed, or regenerate the tissue mask images). Also,
ensure the nesting order is correct; if necessary, revise the annotations or modify the nesting
settings in Tab 3 of the GUL

‘Model_name’ folder

‘training’ folder: contains image tiles used for model training

‘validation’ folder: contains image tiles used for model validation

‘best model X.keras’: weights of the CNN for the best training epoch, where X is
the name of the model architecture that was trained.

‘X.keras’: weights of the trained CNN, where X is the name of the model
architecture that was trained.

a0 o

o

‘net.pkl’: annotation parameterization settings.
‘model_color legend.jpg’: color map used in colorized segmented images.

= g

‘model evaluation report.pdf’: detailed performance report. (Fig 10)

—

‘confusion_matrix_X.png’: confusion matrix with precision, recall, and accuracy
metrics, where X is the name of the model architecture that was trained.

CRITICAL: We suggest a minimum overall accuracy score greater than 90%, and a minimum per-
class precision and recall exceeding 85% for acceptable training results. For models that do not
meet these standards, we suggest users add additional training annotations and retrain to improve
the metrics.
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Sample model performance report

Pertormance repart for madet: COOA_ python 0830 2024 Purformance report for model: CODA. python 0830, 2024 Pertormance roport for model: CODA python 08,30 2024 Performance report for model: CODA_python 08302024
 Comtosen e 1 Cowe Aevwtrton N

Figure 10: Sample PDF report summarizing the performance metrics and training parameters of a model
trained to recognize normal hepatic cells and cancer in human liver histology.

3. Downsampled image folder named based on the chosen resolution (e.g., '1x', '5x', '10x', or
a user defined custom scale)
a. 'TA'subfolder: ‘tissue area’ masks for the training images.
b. 'classification_model name' subfolder, where ‘model name’ is the user-defined
name of the trained model. This subfolder will contain:
1. grayscale segmentation masks of each training image in .tif format
1. 'check classification' subfolder: colorized segmentation masks in
.Jpg format.
ii. 'image quantifications.csv': pixel count and tissue composition for each
training image.
iii. 'annotation class name count analysis.csv': object count and size analysis
for each class.

CRITICAL: To visually assess the model accuracy, review the ‘check classification” images and
search for areas that are misclassified.
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Procedure 4: Model optimization
Timing: 1 -10 h

If a trained model is of unsatisfactory quality (overall accuracy <90%, minimum precision or recall
<85%, or visually poor performance), follow this procedure to retrain the model efficiently. It is
common when starting a new project to train 2 — 3 models in quick succession before achieving
satisfactory results. We describe here four techniques to improve model performance (Fig 11).

Review
check_classification Review check_annotations
images for images for human error in

misclassification patters annotations/ GUI inputs

A 4

Model
optimization
(Optional) Add additional
Tweak GUI Advanced annotations to
settings misclassified areas

r 3

Figure 11: Suggested solutions to incrementally improve model performance.

1. First, determine if there is human error in the GUI settings. If yes, reconfigure the settings
and retrain the model without adding new annotations.
a. Review the color overlay images inside the ‘check annotation’ folder to determine
if the annotations contain errors or model parameters were defined incorrectly.

i. Does the whitespace management look correct? For example, in an
annotated blood vessel, are the background pixels inside the lumen correctly
extracted as whitespace? If incorrect, consider adjusting the whitespace
management in tab 2 of the GUI (see again Fig 6 for examples).

ii. Does the nesting order in the images look correct? For example, if noise
was annotated inside of a duct, is that region defined in the
check annotation file as noise or as duct? If incorrect, consider adjusting
the nesting order in tab 3 of the GUI (see again Fig 3 for examples).

iii. If the nesting order and whitespace management look correct, is anything
else noticeable in the file? Are any structures incorrectly annotated? Consult
the supplementary annotation guide (supplementary file 1) for detailed
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best practices in annotation and correct these errors by editing the
annotations where necessary.

CRITICAL: Biological images contain complex and subtle structures. Human error in manually
annotating images is common especially for new users. If errors are identified in the annotated
files, correct them and retrain, and remember to also correct for errors in the testing dataset.

b. Review the tissue area masks to determine whether the threshold is correctly
separating the tissue and background (see again Fig 7 for examples). If this
threshold looks incorrect, delete the subfolder named ‘TA’ so that a new threshold
may be calculated upon retraining.

2. Second, view the images saved inside the folder named ‘check classification’ to visually
assess the model performance and identify misclassified regions. These files show a color
overlay of the model segmentation across whole images.

a. Review several images and identify common ‘patterns’ in misclassification. For
example, stroma consistently misclassified as vasculature, or background pixels
consistently misclassified as fat.

b. Determine whether there are any structures present in the images that were missed
during the previous model training and were not included as an annotation layer
(for example, if blood vessels were not included as a label but are present in the
images). If identified, determine whether this structure should be combined with a
current annotation layer or added as an additional annotation layer.

3. After correcting any problems caused by human error in model parametrization and
retraining the model, next the user may improve the model results through further
annotation. Focusing on the list of patterns in misclassification generated in Step 2 of this
Procedure, add annotations to the identified problem areas.

CRITICAL: If the model frequently misclassifies unseen structures when applied to images
beyond the training set, consider augmenting the training dataset with entirely new training images,
rather than adding additional annotations to images previously used for training.

4. If all the human errors have been corrected and the training dataset is extensive, the user
may also consider tweaking model parameters in the advanced settings tab of the GUI.

CRITICAL: When retraining a model using identical annotations (e.g. same training and validation
tiles) but with a different architecture, load previous model settings using the 'Load prerecorded
data' button and modify the model architecture via the advanced settings tab in the CODAvision
GUI (Procedure 2, step 25). This approach eliminates the need to repeat steps 1-10 of Procedure
3, allowing rapid retraining of models.

5. Repeat the steps of procedures 1 — 4 to retrain the model and reoptimize the annotations
and model parametrization until satisfactory results are obtained. When retraining a model,
consider using the ‘Load prerecorded data’ option to prepopulate the model parameters.
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Procedure 5: Image segmentation using a pretrained model
Timing: 10 — 15 min
After training a model, the user may segment additional images beyond the original training set.

CRITICAL: To ensure high model performance, only images with the same resolution as the
training data set should be classified with a pretrained model.

1. Run the CODAvision.py code to restart the CODAvision GUI.

2. Load the training weights of the model you wish to use (Fig 12A). To do this, either select
‘Load prerecorded data’ and select the folder containing the ‘net.pkl’ file you wish to use,
or manually input text in the ‘Training annotations’, ‘Resolution’ and ‘Model name’ fields.
When these fields are completed and a trained model is detected, a green 'Classify images’
button will appear. Click this button to proceed to the ‘Segment images’ tab.

3. After proceeding to the ‘Segment images’ tab (Fig 12B), input folders containing images
you wish to classify. Click the 'Browse' button to add a desired folder to the table list and
repeat until all desired folders are added.

4. (Optional) Modify the segmentation color map. Change the colors of annotation classes in
the table on the left. This new color overlay may be visualized in real time to ensure
readability through application to the sample image displayed in the center of the tab. The
updated color map will be used to generate the colorized segmented images.

CRITICAL: If the objective is only to modify the color map of previously classified images, input
the root directory path of images that have been classified by the model specified in step 2.a, and
click ‘Apply’. The code will begin execution, bypassing the segmentation and will change the
colorized segmented images.

5. (Optional) Perform annotation class component analysis. Select the annotation classes to
quantify in the table on the right.

6. Click 'Apply’ to segment all new images in all folders added to the segmentation table and
to perform the quantitative analyses as defined.
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File Location Segmentation Settings Nesting Advanced Settings

Load presecorded data
vendata/Valentina Matos/)

jemendata/Valent aime/mouse lung/test

Save and Continue

Reset colormap

Figure 12: GUI tab for classifying additional images with pretrained models. a. File location tab showing the
'Classify Images' button, which appears when a trained network is detected in the specified data folder. b. Interface
for selecting new image set paths to classify with the pretrained model, modifying segmentation mask color map,
and performing additional annotation class component analysis.
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Timing

The estimated processing times provided below are based on the training of sample Dataset 1
(human liver histology), trained at the selected magnification of 10x (1 um / pixel resolution),
performed using a workstation equipped with an NVIDIA GeForce RTX 4090 GPU running
Windows 11. These estimates reflect the processing time for an experienced CODAvision user
using a GPU equipped computer. Processing times will increase substantially if the software is run
without GPU support. Note that users following the CODAvision workflow for the first time may
require additional time to familiarize themselves with the annotation best practices and GUI guided
parametrization.

e Procedure 1: Building annotation dataset
o Steps 1-12: 8-10 h
o Procedure 2: GUI guided parametrization
o Steps 1-26: 5 min
e Procedure 3: Image pre-processing and model training
o Steps 1-5, tissue mask thresholding: 5-10 min
o Steps 6-16, CODAvision image processing and model training: 2-3 h
e Procedure 4: Testing a trained model and generating a performance report
o Steps 1-4: 5 min
e Procedure 5: Model optimization
o Steps 1-5: 1-10 h
e Procedure 6: Segmenting an image with a pretrained model

o Steps 1-9: 2-3 min
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Troubleshooting
Step Problem Possible reasons Solution
Procedure 2
1 Unable to install SSL certificate verification =~ Make sure that OpenSSL is installed and
cudatoolkit and cudnn issues properly configured on your system. You
dependencies can download and install OpenSSL from
https://slproweb.com/products/Win32OpenS
SL.html. After downloading OpenSSL add
its bin directory to the environment
variables
1 Unable to download  Git not installed on computer Download git from the following website

2

Procedure 3

CODAvision

Cannot execute Dependencies not properly
CODAvision.py installed

(https://git-scm.com/downloads/win) and
restart your computer

Ensure .dll path for OpenSlide is located in
environment paths

7 Model training failure Existing model with same Rename the model or delete the previous
name in file directory model's folder
8 Code cannot identify ~ Filename mismatch between Ensure all filenames are consistent and
annotation .xml file for annotated images, .xml files, rerun the code
training mask and downsampled .tif images
11 GPU out of memory =~ Model architecture or batch ~ Choose a lighter model architecture or
size too resource-intensive reduce batch size to match computer
specifications
11 Validation loss Insufficient or incorrectly Increase number of annotated images or
increases after a certain annotated training data improve annotations
number of epochs
(overfitting)
12 Model testing failure  Testing annotations lack Include annotations for all classes in the
classes present in training training dataset
dataset
12 Confusion matrix Numerical instability during Retrain and test the model using CPU
shows all pixels GPU training processing instead
classified into a single
class
Procedure 4
1,2 Confusion matrix Poor tissue background cut- Repeat CODAvision workflow with
shows low precision  off different tissue background cutoff value
and recall for light
contrast classes similar
to background
2 Misclassification in Insufficient annotation class  Include more annotation classes for

images outside training diversity or heterogeneity
dataset

morphologically different structures, create
more heterogeneous annotations, or increase
training dataset with additional annotated
images (refer to supplemental annotation
guide in supplementary file 1)
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Anticipated results

This protocol provides detailed steps to build highly customizable semantic segmentation models.
We provide comprehensive guidelines to (1) determine the optimal number of target labels for a
dataset given the scientific question, and (2) annotation best-practices to create effective training
and testing datasets. We also provide instructions to operate our user interface, including
streamlining the processes of parameter configuration, model architecture selection, and model
training.

After successfully completing the protocol, the user will have generated several files in user-
friendly formats. This protocol enables users to rapidly build highly customizable segmentation
models for biological research. In this section, we provide use-cases to demonstrate the value of
the CODAvision outputs across several research areas.

To demonstrate the versatility of CODAvision, we applied the workflow to four distinct research
tasks (Fig 13). For each application, we trained using a DeepLabv3+ ResNet50 model architecture.
Below, we briefly describe each use case and the analyses enabled by CODAvision.

First, we quantified microanatomical structures in liver and lung histology from a syngeneic mouse
model of pancreatic cancer (Fig 13A). We demonstrate that CODAvision can be used to quantify
metastatic burden and organ composition. This histological dataset was generated through an in
vivo experiment originally described in the work cited.’! Here, we trained separate models for each
organ. We segmented six structures in the mouse lungs and seven structures in the mouse liver. In
both models we achieved >90% overall accuracy and >85% per-class precision and recall. In so
doing, we were able to demonstrate that in this mouse model, the lungs metastases grow larger
more quickly, are more numerous, and are more solid than the liver metastases. The pipeline
simultaneously analyzed the composition of other key tissues (bronchioles, alveoli, stroma, and
vasculature in the lungs, and hepatocytes, bile duct, stroma, fat, and vasculature in the liver),
demonstrating its utility for comprehensive tissue composition analysis in preclinical models.

Second, we segmented cell types in human pancreas histology to deconvolute spot-based spatial
transcriptomic data (Fig 13B). Deconvolution of spatial transcriptomics data has emerged as a vital
process for honing in on gene expression signatures of target cells that may make up a small
fraction of the sampled tissue.’'*>°2% This dataset, consisting of an H&E image and 10x
Genomics Visium spatial transcriptomics outputs, and the computational method for
deconvolution using segmentation results, were originally described in the work cited.>?> Here, we
segmented nine structures of pancreatic microanatomy, including normal pancreatic ducts and
pancreatic precancers, achieving >90% overall accuracy and >80% per-class precision and recall.
The cell type labels at the coordinates of each 55um radius Visium spot were extracted and used
to assess the cellular purity of each spot. This deconvolution allowed us to clearly determine the
gene expression of pancreatic precancerous cells and to eliminate confounding gene expression
signatures contributed by non-neoplastic cells within the same Visium spot.
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Third, to demonstrate CODAvision’s broad applicability to biological images beyond histology,
we segmented functional components of ECMO membranes in CT (Fig 13C). ECMO is a device
used in critical care medicine to provide blood oxygenation for patients suffering from conditions
that impact lung function such as COVID-19.%> The ECMO membrane is made up of 5 distinct
fibrous layers contained within either a square or cylindrical exterior casing. Blood is perfused
from the patient and through the multiple matrix design layers and the hollow fiber layers of the
ECMO where gas exchange occurs before the blood is returned to the patient.® The dataset shown
here was originally presented in the cited work®’ where CT images of used ECMO membranes
were analyzed to determine which of the five fibrous layers contained the highest composition of
blood clots (a common cause of ECMO failure). Due to the highly specialized nature of the desired
segmentation, more common methods for CT segmentation such as quantification of changes in
density need further optimization. CODAvision can be used to automate segmentation across every
CT slice, ensuring precise and consistent identification of layers and clot formations. We therefore
trained a segmentation model to detect seven structures in the ECMO device including the five
fibrous layers and blood clots, achieving >90% overall accuracy and >80% per-class precision and
recall. After training, we applied the segmentation model to classify the 985 serial images making
up the 3D CT data. Using the outputted .tif segmentation masks, we constructed a project-specific
analysis to quantify the composition of blood clot in each of the fibrous layers of the ECMO,
identifying layer 2 as a region with substantially higher percentage of clots. This analysis, possible
only through segmentation of the subtle textures that define the distinct ECMO layers, will enable
future design of more efficient ECMO devices that are less susceptible to blockage by blood clots.

Finally, to further highlight the versatility of CODAvision, we applied our method to an MRI
dataset of the human brain (Fig 13D). Here, we desired to rapidly construct a highly specific model
to distinguish the anatomical components of the brain including white matter, grey matter, the
cerebellum, and non-brain structures including the human eyes. We annotated these structures and
trained a segmentation model with CODAvision, achieving >90% overall accuracy and >80% per-
class precision and recall. After model training, we applied the segmentation model to the 157
serial images making up the 3D MRI data. Using the cited method*® we transformed the segmented
tif images outputted by CODAvision into a 3D printable .stl file. This enabled us to 3D print the
anatomy of the brain.
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Figure 13: Example applications of CODAvision to different medical image types. a. Quantification of metastatic burden in
mouse lung and liver through semantic segmentation and automated tissue quantification. b. Deconvolution of Visium spots using
CODAvision segmentation to reduce noise and improve quantification accuracy within each cluster. c. Segmentation of CT images.
By leveraging different annotated labels, structures with similar gray intensity values were successfully separated into distinct
anatomical regions. d. Segmentation of MRI images enables visualization of the anatomy of the brain and spinal cord.
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Data availability

Sample datasets are available at the following link:
https://drive.google.com/drive/folders/1IK-wY ArVGbEhebQD4AjOeERwx6-4Fw3G

Code availability

The CODAvision package is available in the following repository:
https://github.com/Kiemen-Lab/CODAuvision.

Author contributions statements

ALK, DW, and VM-R conceived the project. VM-R led the computational analysis, with help from
JG-B, AF, LD, TN, SJ, AS, YS, SN, EH, PN, JS-HW, EL-O, ATFB, LDW, LK, EF, IC, CS, D-FD,
MPM, JJS, OJTM, JOL, AR, RHH, and AM-B provided sample datasets and guidance. VM-R and
ALK drafted the manuscript, and VM-R drafted the protocol and supplementary guides, which all
authors edited and approved.

ORCID for corresponding author
Ashley Kiemen, PhD: https://orcid.org/0000-0002-6281-2616

Acknowledgments

We would like to thank the following sources of support: US4CA268083; Lustgarten Foundation-
AACR Career development award for pancreatic cancer research in honor of Ruth Bader Ginsburg;
Susan Wojcicki and Denis Troper; The Carl and Carol Nale Fund for Pancreatic Cancer Research;
the Rolfe Pancreatic Cancer Foundation; Fight Cancer Stay Positive; The Sol Goldman Pancreatic
Cancer Research Center; The Johns Hopkins University Data Science and Artificial Intelligence
Program. National Institutes of Health (NIH) Grant P51 ODO011092. This work was partially
supported by the Ministerio de Ciencia, Innovacién y Universidades, Agencia Estatal de
Investigacion, MCIN/AEI/10.13039/501100011033, under grant PID2023-1526310B-100, co-
financed by European Regional Development Fund (ERDF).

Competing interests

The authors declare no competing interests.

34


https://doi.org/10.1101/2025.04.11.648464
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.04.11.648464; this version posted April 14, 2025. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

References

1

10

11

12

13

14

Chan, H. P, Samala, R. K., Hadjiiski, L. M. & Zhou, C. Deep Learning in Medical Image
Analysis. Adv Exp Med Biol 1213, 3-21 (2020). https://doi.org:10.1007/978-3-030-33128-
31

Lundervold, A. S. & Lundervold, A. An overview of deep learning in medical imaging
focusing on MRI. Z Med Phys 29, 102-127 (2019).
https://doi.org:10.1016/j.zemedi.2018.11.002

Salto-Tellez, M., Maxwell, P. & Hamilton, P. Artificial intelligence-the third revolution in
pathology. Histopathology 74, 372-376 (2019). https://doi.org:10.1111/his.13760

Bera, K., Schalper, K. A., Rimm, D. L., Velcheti, V. & Madabhushi, A. Artificial intelligence
in digital pathology - new tools for diagnosis and precision oncology. Nat Rev Clin Oncol
16, 703-715 (2019). https://doi.org:10.1038/s41571-019-0252-y

Paul, J. et al. Digital transformation: A multidisciplinary perspective and future research
agenda. Int J Consum Stud 48 (2024). https://doi.org:ARTN 13015 10.1111/ijcs.13015
Echle, A. et al. Deep learning in cancer pathology: a new generation of clinical
biomarkers. Brit J Cancer 124, 686-696 (2021). https://doi.org:10.1038/s41416-020-
01122-x

Ghahremani, P. et al. Deep learning-inferred multiplex immunofluorescence for
immunohistochemical image quantification. Nat Mach Intell 4, 401-+ (2022).
https://doi.org:10.1038/s42256-022-00471-x

Zhang, D. W. et al. Inferring super-resolution tissue architecture by integrating spatial
transcriptomics with histology. Nature Biotechnology 42 (2024).
https://doi.org:10.1038/s41587-023-02019-9

Lu, M. Y. et al. Data-efficient and weakly supervised computational pathology on whole-
slide images. Nat Biomed Eng 5, 555-+ (2021). https://doi.org:10.1038/s41551-020-
00682-w

Xie, W. et al. Prostate Cancer Risk Stratification via Nondestructive 3D Pathology with
Deep Learning-Assisted Gland Analysis. Cancer Res 82, 334-345 (2022).
https://doi.org:10.1158/0008-5472.CAN-21-2843

Phillip, J. M., Han, K. S., Chen, W. C., Wirtz, D. & Wu, P. H. A robust unsupervised
machine-learning method to quantify the morphological heterogeneity of cells and
nuclei. Nat Protoc 16, 754-774 (2021). https://doi.org:10.1038/s41596-020-00432-x
Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K. & Yuille, A. L. in IEEE Transactions on
Pattern Analysis and Machine Intelligence Vol. 40 834-848 (IEEE Computer Society,
2018).

Liu, Z. et al. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows.
2021 leee/Cvf International Conference on Computer Vision (Iccv 2021), 9992-10002
(2021). https://doi.org:10.1109/Iccv48922.2021.00986

Strudel, R., Garcia, R., Laptey, |. & Schmid, C. Segmenter: Transformer for Semantic
Segmentation. 2021 leee/Cvf International Conference on Computer Vision (lccv 2021),
7242-7252 (2021). https://doi.org:10.1109/lccv48922.2021.00717

35


https://doi.org:10.1007/978-3-030-33128-3_1
https://doi.org:10.1007/978-3-030-33128-3_1
https://doi.org:10.1016/j.zemedi.2018.11.002
https://doi.org:10.1111/his.13760
https://doi.org:10.1038/s41571-019-0252-y
https://doi.org:ARTN
https://doi.org:10.1038/s41416-020-01122-x
https://doi.org:10.1038/s41416-020-01122-x
https://doi.org:10.1038/s42256-022-00471-x
https://doi.org:10.1038/s41587-023-02019-9
https://doi.org:10.1038/s41551-020-00682-w
https://doi.org:10.1038/s41551-020-00682-w
https://doi.org:10.1158/0008-5472.CAN-21-2843
https://doi.org:10.1038/s41596-020-00432-x
https://doi.org:10.1109/Iccv48922.2021.00986
https://doi.org:10.1109/Iccv48922.2021.00717
https://doi.org/10.1101/2025.04.11.648464
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.04.11.648464; this version posted April 14, 2025. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

15 Belevich, I. & Jokitalo, E. DeepMIB: User-friendly and open-source software for training
of deep learning network for biological image segmentation. PLoS Comput Biol 17,
1008374 (2021). https://doi.org:10.1371/journal.pchi.1008374

16 Gomez-de-Mariscal, E. et al. Deeplmagel: A user-friendly environment to run deep
learning models in Imagel. Nat Methods 18, 1192-1195 (2021).
https://doi.org:10.1038/s41592-021-01262-9

17 Lutnick, B. et al. A user-friendly tool for cloud-based whole slide image segmentation
with examples from renal histopathology. Commun Med (Lond) 2, 105 (2022).
https://doi.org:10.1038/s43856-022-00138-z

18 Ghahremani, P., Marino, J., Dodds, R. & Nadeem, S. DeepLIIF: An Online Platform for
Quantification of Clinical Pathology Slides. 2022 leee/Cvf Conference on Computer Vision
and Pattern Recognition (Cvpr 2022), 21367-21373 (2022).
https://doi.org:10.1109/Cvpr52688.2022.02071

19 Muller, A. et al. Modular segmentation, spatial analysis and visualization of volume
electron microscopy datasets. Nat Protoc 19, 1436-1466 (2024).
https://doi.org:10.1038/s41596-024-00957-5

20 Kiemen, A. L. et al. CODA: quantitative 3D reconstruction of large tissues at cellular
resolution. Nat Methods 19, 1490-1499 (2022). https://doi.org:10.1038/s41592-022-
01650-9

21 Braxton, A. M. et al. 3D genomic mapping reveals multifocality of human pancreatic
precancers. Nature (2024). https://doi.org:10.1038/s41586-024-07359-3

22 Kiemen, A. L. et al. Power-law growth models explain incidences and sizes of pancreatic

cancer precursor lesions and confirm spatial genomic findings. Science Advances (2024).
https://doi.org:10.1101/2023.12.01.569633

23 Dequiedt, L. et al. Three-Dimensional Reconstruction of Fetal Rhesus Macaque Kidneys
at Single-Cell Resolution. Laboratory Investigation 103, S1433-S1434 (2023).
https://doi.org:10.1101/2023.12.07.570622

24 Forjaz, A. V., E. Matos-Romero, V.; Joshi, S.; Fujikara, K.; Braxton, A.M.; Jiang, A.; Cornish,
T.; Hong, S.M.; Hruban, R.H.; Wood, L.; Wu, P.H.; Kiemen, A.; Wirtz, D. Three-dimensional
assessments are necessary to determine the true spatial tissue composition of diseased
tissues. Biorxiv (2023).

25 Kiemen, A. L. et al. High-Resolution 3D Printing of Pancreatic Ductal Microanatomy
Enabled by Serial Histology. Adv Mater Technol-Us 9 (2024).
https://doi.org:10.1002/admt.202301837

26 Kiemen, A. L. D., A. |.; Braxton, A.M.; He, J.; Laheru, D.; Fishman, E.K.; Chames, P.;
Almagro-Perez, C.; Wu, PW.; Wirtz, D.; Wood, L. D.; Hruban, R. H. Tissue clearing and 3D
reconstruction of digitized, serially sectioned slides provide novel insights into pancreatic
cancer. Med (2023). https://doi.org:10.1016/j.med|.2022.11.009

27 Kiemen, A. L. D., L.;Shen, Y;Zhu, Y.;Matos-Romero, V.;Forjaz, A.;Campbell, K.;Dhana,
W.;Cornish, T.;Braxton, A.;Wu, P.;Fishman, E.;Wood, L.;Wirtz, D.;Hruban, R. PanIN or
IPMN? Redefining lesion size in three dimensions. American Journal of Surgical
Pathology (2024). https://doi.org:10.1097/PAS.0000000000002245

28 Johnson, J. A. |. et al. Digitize your Biology! Modeling multicellular systems through
interpretable cell behavior. bioRxiv (2023). https://doi.org:10.1101/2023.09.17.557982

36


https://doi.org:10.1371/journal.pcbi.1008374
https://doi.org:10.1038/s41592-021-01262-9
https://doi.org:10.1038/s43856-022-00138-z
https://doi.org:10.1109/Cvpr52688.2022.02071
https://doi.org:10.1038/s41596-024-00957-5
https://doi.org:10.1038/s41592-022-01650-9
https://doi.org:10.1038/s41592-022-01650-9
https://doi.org:10.1038/s41586-024-07359-3
https://doi.org:10.1101/2023.12.01.569633
https://doi.org:10.1101/2023.12.07.570622
https://doi.org:10.1002/admt.202301837
https://doi.org:10.1016/j.medj.2022.11.009
https://doi.org:10.1097/PAS.0000000000002245
https://doi.org:10.1101/2023.09.17.557982
https://doi.org/10.1101/2025.04.11.648464
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.04.11.648464; this version posted April 14, 2025. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

29

30

31

32

33

34

35

36

37

38

39

40

available under aCC-BY-ND 4.0 International license.

Joshi, S. et al. Generative interpolation and restoration of images using deep learning for
improved 3D tissue mapping. bioRxiv (2024).
https://doi.org:10.1101/2024.03.07.583909
Sidiropoulos, D. N. et al. Machine learning integrating spatial omics uncovers humoral
immunity patterns in intratumoral tertiary lymphoid structures in pancreatic cancer
pathologic responders. Cancer Research 84 (2024). https://doi.org:10.1158/1538-
7445.Am2024-1159
Deshpande, A. L., M.; Sidiripoulos, D. N.; Zhangm S.; Yuanm L; Bell, A.; Zhu, Q. Jin Ho, W,;
Santa-Maria, C.; Gilkes, D.; Williams, S. R.; Uytingco, C.R.; Chew, J.; Hartnett, A.; Bent,
Z\W.; Favorov, A. V.; Popel, A.S.; Yarchoan, M.; Kiemen, A.; Wu, P.H.; Fujikura, K.; Wirtz,
D.; Wood, L.; Zheng, L.; Jaffee, E. M.; Anders, R.; Danilova, L.; Stein-O'Brien, G.; Kagohara,
L.T.; Fertig, E. Uncovering the spatial landscape of molecular interactions within the
tumor microenvironment through latent spaces. Cell Systems (2023).
https://doi.org:10.1016/j.cels.2023.03.004
Bell, A. M., J.T.; , Kiemen, A. L. F.,, K.; Fedor, H.; ambichler, B.; Deshpande, A.; Wu, P.;
Sidiropoulos, D.; Erbe, R.; Stern, J.; Chan, R.; Williams, S.; Chell, J.M.; Zimmerman, J.W.;
Wirtz, D.; Jaffee, E.M.; & Wood, L. D. F, E.J.; Kagohara, LT.;. PanIN and CAF Transitions in
Pancreatic Carcinogenesis Revealed with Spatial Data Integration. Cell Systems (2024).
https://doi.org:10.1016/j.cels.2024.07.001
Sneider, A. K., A.; Kim, JH; Wu, PH; Habibi, M; White, M.; Phillip, J.M.; Gu, L.; Wirtz, D.
Deep learning identification of stiffness markers in breast cancer. Biomaterials 285
(2022). https://doi.org:10.1016/).BIOMATERIALS.2022.121540
Groot, A. E. d. M., Kayla V.; Krueger, Timothy E. G.; Kiemen, Ashley L.; Nagy, Natalia H.; &
Brame, A. T., Vicente E.; Zhang, Zhongyuan; Trabzonlu, Levent; Brennen, W. Nathaniel;
Wirtz, Denis; Marzo, Angelo M. De; Amend, Sarah R.; Pienta, Kenneth J. Characterization
of tumor-associated macrophages in prostate cancer transgenic mouse models. The
Prostate 81, 629-647 (2021). https://doi.org:10.1002/PR0OS.24139
Kiemen, A. L. et al. Three-dimensional immune atlas of pancreatic cancer precursor
lesions reveals large inter- and intra-lesion heterogeneity. Cancer Research 84 (2024).
https://doi.org:10.1158/1538-7445.Am2024-1206
Kiemen, A. L. et al. Intraparenchymal metastases as a cause for local recurrence of
pancreatic cancer. Histopathology (2022). https://doi.org:10.1111/his.14839
Crawford, A. J. et al. Precision-engineered biomimetics: the human fallopian tube.
Science Advances (2024). https://doi.org:10.1101/2023.06.06.543923
Lee, M. H. et al. Multi-compartment tumor organoids. Mater Today 61, 104-116 (2022).
https://doi.org:10.1016/j.mattod.2022.07.006
Xue, Y. et al. Mechanical tension mobilizes Lgr6+ epidermal stem cells to drive skin
growth. Science Advances 8, 8698 (2022).
https://doi.org:10.1126/SCIADV.ABL8698/SUPPL FILE/SCIADV.ABL8698 MOVIES S1 TO
S4.ZIP
Yang, H. et al. Engineered bispecific antibodies targeting the interleukin-6 and -8
receptors potently inhibit cancer cell migration and tumor metastasis. Molecular
Therapy (2022). https://doi.org:10.1016/JYMTHE.2022.07.008

37


https://doi.org:10.1101/2024.03.07.583909
https://doi.org:10.1158/1538-7445.Am2024-1159
https://doi.org:10.1158/1538-7445.Am2024-1159
https://doi.org:10.1016/j.cels.2023.03.004
https://doi.org:10.1016/j.cels.2024.07.001
https://doi.org:10.1016/J.BIOMATERIALS.2022.121540
https://doi.org:10.1002/PROS.24139
https://doi.org:10.1158/1538-7445.Am2024-1206
https://doi.org:10.1111/his.14839
https://doi.org:10.1101/2023.06.06.543923
https://doi.org:10.1016/j.mattod.2022.07.006
https://doi.org:10.1126/SCIADV.ABL8698/SUPPL_FILE/SCIADV.ABL8698_MOVIES_S1_TO_S4.ZIP
https://doi.org:10.1126/SCIADV.ABL8698/SUPPL_FILE/SCIADV.ABL8698_MOVIES_S1_TO_S4.ZIP
https://doi.org:10.1016/J.YMTHE.2022.07.008
https://doi.org/10.1101/2025.04.11.648464
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.04.11.648464; this version posted April 14, 2025. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

available under aCC-BY-ND 4.0 International license.

O'Brien, J. et al. Skin keratinocyte-derived SIRT1 and BDNF modulate mechanical
allodynia in mouse models of diabetic neuropathy. Brain (2024).
https://doi.org:10.1093/brain/awae100

Forjaz, A. K., D.; Shen, Yu; Bea, H.; Tsapatsis, M.; Ping, J.; Queiroga, V; San, K.; Joshi, S.;
Grubel, C.; Beery, M.L.; Kusmartseva, l.; Atkinson, M.; Kiemen, A.L.; Wirtz, D. Integration
of nuclear morphology and 3D imaging to profile cellular neighborhoods. biorxiv (2025).
https://doi.org:10.1101/2025.03.31.646356

Montezuma, D. et al. Annotation Practices in Computational Pathology: A European
Society of Digital and Integrative Pathology (ESDIP) Survey Study. Lab Invest 105, 102203
(2024). https://doi.org:10.1016/j.l1abinv.2024.102203

Liao, Y. H., Kar, A. & Fidler, S. Towards Good Practices for Efficiently Annotating Large-
Scale Image Classification Datasets. Proc Cvpr leee, 4348-4357 (2021).
https://doi.org:10.1109/Cvpr46437.2021.00433

Kirillov, A. et al. Segment Anything. leee | Conf Comp Vis, 3992-4003 (2023).
https://doi.org:10.1109/1ccv51070.2023.00371

Moor, M. et al. Foundation models for generalist medical artificial intelligence. Nature
616, 259-265 (2023). https://doi.org:10.1038/s41586-023-05881-4

Zhang, K. et al. A generalist vision-language foundation model for diverse biomedical
tasks. Nat Med 30, 3129-3141 (2024). https://doi.org:10.1038/s41591-024-03185-2
Chen, R. J. et al. Scaling Vision Transformers to Gigapixel Images via Hierarchical Self-
Supervised Learning. 2022 leee/Cvf Conference on Computer Vision and Pattern
Recognition (Cvpr 2022), 16123-16134 (2022).
https://doi.org:10.1109/Cvpr52688.2022.01567

Goode, A., Gilbert, B., Harkes, J., Jukic, D. & Satyanarayanan, M. in Journal of Pathology
Informatics Vol. 4 27 (Wolters Kluwer -- Medknow Publications, 2013).

He, K. M., Zhang, X. Y., Ren, S. Q. & Sun, J. Deep Residual Learning for Image Recognition.
2016 leee Conference on Computer Vision and Pattern Recognition (Cvpr), 770-778
(2016). https://doi.org:10.1109/Cvpr.2016.90

Zhang, Y. et al. Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the
establishment of an immunosuppressive environment in pancreatic cancer. Gut 66, 124-
136 (2017). https://doi.org:10.1136/gutjnl-2016-312078

Li, H. Y. et al. A comprehensive benchmarking with practical guidelines for cellular
deconvolution of spatial transcriptomics. Nature Communications 14 (2023).
https://doi.org:ARTN 1548 10.1038/s41467-023-37168-7

Dong, R. & Yuan, G. C. SpatialDWLS: accurate deconvolution of spatial transcriptomic
data. Genome Biology 22 (2021). https://doi.org:ARTN 145 10.1186/s13059-021-02362-7
Zhou, Z. X., Zhong, Y. S., Zhang, Z. M. & Ren, X. W. Spatial transcriptomics deconvolution
at single-cell resolution using Redeconve. Nature Communications 14 (2023).
https://doi.org:ARTN 7930 10.1038/s41467-023-43600-9

Olson, S. R. et al. Thrombosis and Bleeding in Extracorporeal Membrane Oxygenation
(ECMO) Without Anticoagulation: A Systematic Review. ASAIO J 67, 290-296 (2021).
https://doi.org:10.1097/MAT.0000000000001230

Wang, J. S. H. et al. Multimodality Quantification of Thrombus Deposition in
Extracorporeal Membrane Oxygenation (ECMO); Correlating Oxygenator Computed

38


https://doi.org:10.1093/brain/awae100
https://doi.org:10.1101/2025.03.31.646356
https://doi.org:10.1016/j.labinv.2024.102203
https://doi.org:10.1109/Cvpr46437.2021.00433
https://doi.org:10.1109/Iccv51070.2023.00371
https://doi.org:10.1038/s41586-023-05881-4
https://doi.org:10.1038/s41591-024-03185-2
https://doi.org:10.1109/Cvpr52688.2022.01567
https://doi.org:10.1109/Cvpr.2016.90
https://doi.org:10.1136/gutjnl-2016-312078
https://doi.org:ARTN
https://doi.org:ARTN
https://doi.org:ARTN
https://doi.org:10.1097/MAT.0000000000001230
https://doi.org/10.1101/2025.04.11.648464
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.04.11.648464; this version posted April 14, 2025. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

57

available under aCC-BY-ND 4.0 International license.

Tomography Imaging, Electron Microscopy and Histology to Clinical Outcomes. Blood
142 (2023). https://doi.org:10.1182/blood-2023-191092

Si Han Wang, A. A. R., Caleb H Moon, Ari Lauthner, Helen H Vu, Sandra Rugonyi, Anna J
Hansen, Heather M Mayes, Bishoy Zakhary, David Zonies, Ran Ran, Akram Khan, Denis
Wirtz, Ashley L Kiemen, Owen McCarty, Joseph J. Shatzel. Development of a method for
visualizing and quantifying thrombus formation in extracorporeal membrane
oxygenators. under review (2025).

39


https://doi.org:10.1182/blood-2023-191092
https://doi.org/10.1101/2025.04.11.648464
http://creativecommons.org/licenses/by-nd/4.0/

