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Abstract 

Image-based machine learning tools have emerged as powerful resources for analyzing medical 

images, with deep learning-based semantic segmentation commonly utilized to enable spatial 

quantification of structures in images. However, customization and training of segmentation 

algorithms requires advanced programming skills and intricate workflows, limiting their 

accessibility to many investigators. Here, we present a protocol and software for automatic 

segmentation of medical images guided by a graphical user interface (GUI) using the CODAvision 

algorithm. This workflow simplifies the process of semantic segmentation of microanatomical 

structures by enabling users to train highly customizable deep learning models without extensive 

coding expertise. The protocol outlines best practices for creating robust training datasets, 

configuring model parameters, and optimizing performance across diverse biomedical image 

modalities.  

CODAvision enhances the usability of the CODA algorithm (Nature Methods, 2022) by 

streamlining parameter configuration, model training, and performance evaluation, automatically 

generating quantitative results and comprehensive reports. We expand beyond the original 

implementation of CODA to serial histology by demonstrating robust performance across 

numerous medical image modalities and diverse biological questions. We provide sample results 

in data types including histology, magnetic resonance imaging (MRI), and computed tomography 

(CT). We demonstrate the diverse use of this tool in applications including quantification of 

metastatic burden in in vivo models and deconvolution of spot-based spatial transcriptomics 

datasets. This protocol is designed for researchers with interest in rapid design of highly 

customizable semantic segmentation algorithms and a basic understanding of programming and 

anatomy.  
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Introduction 

Deep learning has emerged as a powerful tool for analyzing digitized biomedical images in various 

research applications.1-11 Semantic segmentation models are commonly used due to their ability to 

be quickly adapted to specific datasets for detecting structures across a variety of image types.12-

14 In addition, their relatively smaller architectures (compared to some larger transformer and 

foundation models) make them amenable to retraining by researchers without access to high-

performance computing. However, the implementation of these methods often requires advanced 

programming skills and intricate workflows, limiting their accessibility and widespread adoption 

outside of the computational biology community. In response, some popular deep learning 

workflows have been made more accessible through the development of graphical user interfaces 

(GUIs), which reduce or eliminate the need for extensive coding during implementation.15-19 

To address this challenge, we developed a novel GUI aimed at simplifying the process of training 

highly-customizable models for segmentation of biological structures in medical images. As a 

companion to this interface, we developed an extensive guide of best practices for annotation layer 

selection and annotation style for the construction of robust supervised models. 

How this Protocol Improves Upon the Existing CODA Methodology 

This protocol is a powerful extension of the CODA workflow.20 CODA, a MATLAB-based 

pipeline for reconstruction of serial histological images into quantitative 3D datasets, has been 

used extensively in biomedical research applications including study of pancreatic cancer 

progression, heart development, diabetic neuropathy, and skin regeneration, among others.20-42 

CODA has shown technological power beyond its original presentation as a method to create 3D 

maps from serial hematoxylin and eosin (H&E) stained histology. Numerous recent studies have 

utilized one useful module of CODA, its image segmentation workflow, and integrated it with 

spatially resolved genomics,21 spatial transcriptomics and proteomics,30-32 tissue stiffness,33 

antibody-based staining techniques,34-36 organoid modelling,37,38 and to quantify in vivo 

histology.39-41  Here, we extract the segmentation module of the CODA package and dramatically 

improve its speed, usability, and applicability to diverse biomedical image modalities. In the 

studies described earlier the core implementation codes of CODA remained unchanged. This 

original implementation possess three clear limitations which we address in the current protocol:  

(1) The original package is written as discrete functions in MATLAB. This language is not open 

source, and the format of the codebase made its implementation challenging even for users with 

extensive programming experience. We address this through the translation of the CODA 

segmentation workflow to Python, optimization of the code speed and performance, and creation 

of a user-friendly GUI. We name this optimized workflow CODAvision. (2) The original package 

lacked description of the format and style of manual annotations required for training robust 

segmentation models. Recent groups have highlighted the importance of training dataset quality 

in deep learning approaches.43,44 We address this through generation of extensive user guides 

describing best-practices for rapid generation of robust segmentation models. (3) The original 
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package demonstrated applicability to H&E images only. Here, we demonstrate applicability of 

CODAvision to H&E as well as other imaging types including MRI and CT. 

The novelty of this workflow is its depth in describing best practices for the optimal creation of 

training datasets, construction of an intuitive user interface for parameter configuration and model 

architecture selection, and automatic generation of model performance reports and quantitative 

results for streamlined use in scientific experiments (Fig 1A). For example, using a dataset of 

mouse lung histology we demonstrate the ability of CODAvision to rapidly generate quantitative 

spatial measurements of composition from in vivo experiments. To validate CODAvision's 

capability to quantify metastatic burden in in vivo studies, we analyzed 55 H&E-stained lung tissue 

sections from mice injected with MDA-MB-231 breast cancer cells. Using a DeepLabv3+ 

architecture with a ResNet50 backbone (precision and recall >90% for all tissue types), we 

quantified the metastatic coverage, which revealed 45% and 53% metastatic burden for wild-type 

and scrambled control cells, respectively (Fig 1B). 

  

  

Figure 1: CODAvision workflow and sample application. a. Pipeline overview showing sequential steps: tissue 

annotation for dataset creation, GUI-guided parameterization, model training, and quantitative analysis. b.  

Representative semantic segmentation results comparing lung histology from a mouse used in a control arm (top) to 

histology from a mouse used in the experimental arm (bottom) of an in vivo experiment. c. Sample tissue composition 

analysis with metastases object count for sample b (bottom). d. Comparison of metastatic burden occupied in the lung 

across three experimental conditions, showing CODAvision quantification (left) versus a conventional ImageJ-based 

analysis (right). 
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Comparison to Alternate Techniques 

Compared to alternative techniques for quantifying structures in biomedical images, our workflow 

possesses differences that make it advantageous for certain research questions. In the proposed 

protocol, we guide users through the generation of robust datasets to train customizable deep 

learning models. Another approach is use of large-scale foundation models and vision transformers 

that have been trained on millions of examples for object-detection tasks, or sometimes more 

specifically on extraction of meaningful features from biomedical images.8,45-48 These methods 

differ from our protocol in that they are intended to be fully automated, where our workflow 

requires initial manual annotation.  

For research projects where direct measure of a certain structure (such as cancer metastases in 

mouse histology, or something very specific such as a subtle phenotype of cancer cells that is not 

currently well defined) is desired, our workflow enables rapid segmentation of that specific 

anatomical structure. In contrast, for applications that benefit from a more holistic perspective – 

such as generalized feature extraction or the generation of attention maps for survival prediction – 

pre-trained foundation models may be more suitable. Our workflow is designed to run on a 

standard desktop computer and requires only minimal programming expertise, making it broadly 

accessible. On the other hand, the deployment of large foundation or transformer models typically 

demands high-performance computing resources and advanced computational skills.  

Experimental design 

In this section, we provide a methodological overview of the five main steps outlined in the 

protocol: dataset creation, GUI-guided parametrization, model training, model optimization, and 

image classification using a custom pretrained model. 

Example datasets: To help users explore the CODAvision software and its features, we include a 

link to a sample dataset of annotated mouse lung histology. Results obtained from CODAvision 

analysis of these datasets are presented in the Anticipated Results below. We recommend that users 

initially run CODAvision on the supplied dataset and follow the detailed protocol described in the 

Procedure section before analyzing new data.  

Dataset creation 

A dataset for this workflow consists of a set of biomedical images (e.g., digitized histology, MRI, 

CT.) and their associated annotation metadata. The first step of the workflow is to identify 

structures in the dataset that can be distinguished from each other, and which of those are required 

for the research objective. An exhaustive list of structures is then made, and manual these structures 

annotated in the freely available program Aperio ImageScope. The selection of classes directly 

corresponds to the research question the CODAvision analysis aims to address (BOX 1). In 

Procedure 1, we outline strategies for developing a robust training dataset that enables building 

custom segmentation models for the targeted structures. 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2025. ; https://doi.org/10.1101/2025.04.11.648464doi: bioRxiv preprint 

https://doi.org/10.1101/2025.04.11.648464
http://creativecommons.org/licenses/by-nd/4.0/


6 
 

GUI guided parametrization 

Once the manual annotations are complete, the next step in the CODAvision workflow is to define 

the date import and model training parameters using a Python-based GUI. Users first install the 

CODAvision Python package, following the instructions for codes and dependencies outlined in 

Procedure 2. The GUI guides users through configuring settings for model training, including 

specifying the location of training and testing datasets, selecting an image resolution 

(downsampled files are generated using OpenSlide),49 and customizing model parameters. The 

choice of resolution is critical, balancing segmentation detail with computational efficiency. The 

GUI further allows for the management of the manual annotated layers, enabling features such 

automatic removal of background pixels, combining or deleting annotation layers, and defining 

the nesting logic for managing overlapping annotations. Advanced settings enable further 

customization, such as adjusting tile size, batch size, and model architecture (e.g., DeepLabV3+, 

UNet),12,50 allowing users to optimize training based on their computational resources and dataset 

size. Once all parameters are set, the model will begin training.  

Model training 

The model training phase begins with tissue thresholding, guided by an interactive popup window 

that allows users to fine-tune the threshold cutoff for optimal tissue/background separation. Once 

the threshold is set, the pre-processing and model training proceed automatically. During this 

phase, the .xml annotation coordinate data will be imported and converted to .png annotation 

masks. These masks will be used to create training and validation tiles built using data 

augmentation techniques such as hue adjustment, scaling, rotation, and Gaussian filtering to 

enhance dataset heterogeneity and model robustness. The chosen model architecture is trained on 

these augmented tiles. After training, the model performs inference on test images, generating a 

confusion matrix that showcases the precision, recall, and overall accuracy. For each segmented 

image, the workflow will output a classified .png mask and a colorized .jpg overlay, enabling users 

to rapidly review the model performance using both quantitative (confusion matrix) and qualitative 

(overlay images) review. The overall composition of each image will be saved in a .csv file, along 

with more detailed morphological calculations if desired by the user. The model results will be 

automatically summarized in a generated .pdf report. Users are encouraged to review these results 

to ensure the trained model meets the recommended performance benchmarks (e.g., >90% overall 

accuracy and >85% per-class precision and recall, and visually acceptable results). 

Model optimization  

If the performance of the trained model is unsatisfactory, Procedure 4 outlines steps to efficiently 

retrain and optimize the model. Optimization strategies include review of the colorized mask 

overlay images to identify patterns of misclassification, determining if any structures were missed 

during initial annotation, and adjusting model parameters to better align with the desired results. 

If misclassifications persist, it is recommended to expanded the training dataset by adding new 

images rather than adding annotations to existing training images. These optimization steps can be 
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repeated iteratively until satisfactory results are achieved, ensuring the model meets the 

recommended performance benchmarks. 

Image segmentation with custom pretrained model 

Once a model is trained, users can apply it to segment additional images beyond the original 

training set using a pretrained model. The steps for classifying additional images through \the 

CODAvision GUI are detailed in the Procedure 5. Users can select the images to segment, choose 

a pretrained model for inference, and optionally modify the color palette for the colorized 

segmentation masks or perform additional object-based morphology analysis. 

Description of the Expertise Needed to Implement the Protocol 

This protocol is designed for researchers with some training and experience in computational 

biology. In particular, users must possess some knowledge of anatomy and of coding to use this 

workflow, which we describe here.  

Successful implementation of this workflow requires knowledge of anatomical structures and how 

they appear in histology / radiology images. For example, a user wishing to segment cancer 

metastases in H&E images of mouse lung must understand how to differentiate cancer cells from 

the functional cells of the lung in these images. The user will use this knowledge to manually 

annotate and to qualitatively assess model performance. We provide a supplemental annotation 

guide (supplementary file 1) that gives some background on how to identify structures in medical 

images, which may be beneficial to some users. 

Users must also possess a basic understanding of programming. While operation of this workflow 

is streamlined with a user-friendly GUI, initial installation requires familiarity with Python 

scripting, CUDA, and cuDNN setup for GPU acceleration. Detailed instructions for these steps are 

provided on the GitHub page, where all codebase and dependencies are hosted. We suggest that 

users without programming knowledge obtain assistance when initially installing the package, 

after which operation of the GUI can proceed without significant coding expertise. 

Limitations 

This workflow, while powerful, possesses several limitations which we document here. First, some 

the model architectures included (DeeplabV3+ and U-Net) may require significant computational 

resources, such as high-performance GPUs. The speed of this workflow is significantly impacted 

on computers without GPUs or on standard laptops.  

Second, the segmentation models described here require highly specific manual annotations for 

training data. The benefit of this approach is the ability to, in the span of a few days, train highly 

accurate and highly customizable segmentation models in any cohort. The limitation is that a 

model trained on one organ (for example mouse lungs) is not easily adapted to another organ (for 

example human pancreas). Instead, users must generate new manual annotations for each new 

application.  
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Materials 

Equipment 

1. A computer with at least 16 GB of RAM  

2. An NVIDIA graphics processing unit (GPU) with at least 8 GB RAM 

3. An up-to-date operating system (Windows 10/11, OSX 11) 

4. At least 2.5 GB of storage space 

5. A working CUDA (≥11.2) and CuDNN (≥8.1) installation (instructions available at the 

provided GitHub page) 

In the analysis described here we used a computer with the following specifications: 

6. Workstation with 128 GB RAM and an NVIDIA GeForce RTX 4090 GPU running on 

Windows 11. 

Software 

1. CODAvision software available in the following repository:  

https://github.com/Kiemen-Lab/CODAvision. 

2. Python Interpreter (e.g., PyCharm, Visual Studio, Spyder) 

3. Image Annotation Tool: For annotating images, the Aperio ImageScope application is 

required. This software can be installed from the following link:  

https://www.leicabiosystems.com/digital-pathology/manage/aperio-imagescope. 

4. Example dataset:  

Dataset 1: Mouse lung histology, available at the following link:  

https://drive.google.com/drive/folders/1K-wY_ArVGbEhebQD4AjOeERwx6-4Fw3G. 
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Procedure 

CRITICAL: This protocol assumes that users possess a dataset of images intended for semantic 

segmentation and quantification. For sample datasets, see Datasets 1 and 2 in the software section 

of this protocol. We demonstrate that CODAvision can be applied to diverse image types including 

histology, MRI, and CT. Our primary demonstration, and the sample datasets provided are 

histological images scanned at 20× magnification (roughly 0.5 µm / pixel resolution), though the 

procedure could be similarly applied to images scanned at higher or lower resolution.  

Procedure 1: Constructing a training dataset for deep learning training 

Annotating on Aperio ImageScope  

• Timing: 10 - 20 h 

1. Select six images to annotate from the initial cohort. 

CRITICAL: The images selected for annotation should reflect the heterogeneity of the larger 

dataset. This may include selecting images from different scientific groups (control vs 

experimental conditions), images possessing distinct anatomical features, and images with 

technical heterogeneity such as variation in lighting or focus. Construction of a heterogeneous 

training dataset will improve the robustness of the segmentation. 

2. Create a folder named ‘Training dataset’, and another folder named ‘Testing dataset.’ 

3. Copy five of the selected images to the ‘Training dataset’ folder and save the sixth image 

in the ‘Testing dataset’ folder.  

4. Install Aperio ImageScope following the installation instructions available at: 

https://www.leicabiosystems.com/digital-pathology/manage/aperio-imagescope. 

5. We suggest users change two settings in Aperio Imagescope upon installation to improve 

the user experience. 

a. To increase the maximum allowable zoom for precise annotation, navigate to Tools 

> Options > General Tab > Maximum magnification and enter 1000%.  

b. To automatically save annotations when exiting the program, navigate to Tools > 

Options > Annotation Tab > Annotation Settings, and check the box 'Automatically 

save annotation changes’. 

6. Open one of the images from the ‘Training dataset’ folder in Aperio ImageScope.  

7. Create the annotation layers by navigating to View, then Annotations to show the 

'Annotations - Detailed View' window and click the ‘+’ button to add an annotation layer. 

Rename the annotation layer by clicking on the layer name's top and press 'F2,' then input 

the desired name. 

8. Create one annotation layer for each object you would like to train a model to segment. 

Once all layers are created, press save. This will generate an .xml file corresponding to this 

image that will contain the annotation coordinates that will be used for model training. 
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CRITICAL: All annotated images must have the same layer order. Create a layer for every 

structure, even in images where those structures are absent.  

CRITICAL: The testing dataset must contain at least one annotation of each annotation layer. If 

all layers are not present in any single image, consider using multiple images for testing so that the 

overall testing dataset contains at least one annotation of each annotation layer.  

CRITICAL: The .xml files in the training and testing folders must correspond to the images they 

annotate, with identical filenames. If an .xml file has a different name than its associated image, 

the code will fail. Ensure that every image has a matching .xml file and vice versa. 

How to choose which structures to annotate? BOX 1 

The number of annotation layers you should generate depends on your research objective. In 

histology, many cell types can be differentiated by the trained eye, including various epithelial, 

vascular, and stromal compartments. We suggest that users first make a list of the major structures 

present in their images, then group these structures until the desired granularity is obtained. 

See Fig 2 for an example of a high-detail and a low-detail model trained on fetal rhesus macaque 

kidney histology. Where exhaustive anatomical labelling is desired, the user can generate a highly 

specific list of structures identifiable in H&E (Fig 2A). For a more focused project, the user can 

group labels to reduce the number of annotation layers and increase the speed of the project (Fig 

2B). 

CRITICAL: No matter your research question, all models should contain a background or 

whitespace layer in the annotation dataset to contain non-tissue pixels in the image.  

 

  

 

 

 

 

 

 

 

 

Figure 2: Sample histological image containing fetal rhesus macaque kidney with anatomical annotations 

overlaid. a.  For a high-detail model, seventeen tissue structures are identifiable in the kidney. b. For a vasculature-

focused model, the annotation layers can be grouped to remove unnecessary labels. 
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9. Begin annotating using the 'Pen' tool. Start the annotation by clicking and annotating the 

area of interest in the main window. Use the pen tool to manually outline the region of 

interest, closing the drawn shape once complete. If you wish to modify the annotation, click 

and redraw over the annotated region until you achieve the desired level of precision in 

refining the borders. 

CRITICAL: The resulting quality of your segmentation model relies on the quality of your 

annotations. Zoom in to high magnification when annotating and aim to annotate the structure 

boundaries very cleanly and consistently (Fig 3B). 

CRITICAL: We recommend that users periodically save the annotations manually by clicking the 

save button in the 'Annotations - Detailed View' window. This will help prevent potential data loss. 

10. Make ~20 annotations per tissue structure per image (training and testing). For rare 

structures, there may be fewer than 20 examples per image. 

GOOD annotation practices: here we provide guidance on good annotation practices. For more 

detailed notes on annotating, see the companion Annotation Guide in supplementary file 1. 

11. Nesting: make overlapping annotations of different classes following a consistent nesting 

hierarchy (Fig 3A). 

CRITICAL: Define the nesting hierarchy before beginning annotations. This hierarchy must 

remain consistent across all annotated images and will be used during the deep learning model 

parametrization described in Procedure 2. 

What is nesting? BOX 2 

We have observed that CODA segmentation models yield better results when the tissues are 

identified within their microenvironments. To achieve this, employ an annotation technique called 

‘nesting.’ Nesting uses a hierarchical tissue organization, in which higher level tissues can be 

‘nested’ inside lower-level ones. Fig 3A illustrates the arrangement of three hypothetical annotated 

types: tissue A (triangles), tissue B (squares), and tissue C (circles). Varying the nesting hierarchy 

changes how these annotation layers are imported for model training.  

12. Annotate structures across the entire image, not just in one region. 

13. Include diverse examples of all annotation classes. Building a dataset with varied 

morphologies for each class ensures optimal performance of your model on unseen data.  

14. Include ‘non-ideal’ annotations for each class to enable the model to correctly classify 

tissue types even in the presence of noise. For example, annotate structures that are slightly 

blurry, darker, or paler.  

15. When glandular structures that contain a lumen, include background annotations within the 

lumen if noise, such as fluid or red blood cells, is present (Fig 3A, right).  
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16. Include 5-10 annotations at tissue structure edges when annotating whole slide images to 

ensure accurate differentiation between tissue borders and background during 

classification. 

17. When re-annotating to improve model performance, first review the classified images to 

identify regions of misclassification. Focus your annotations on these regions to efficiently 

correct the model (Fig 3C). 

CRITICAL: Refer to the supplemental annotation guide (supplementary file 1) for detailed 

examples of tissue annotations and best practice. 

  

Figure 3: Annotation hierarchy and quality control for CODA deep learning model training. a. Hierarchical 

nesting diagram illustrating tissue classification levels. b. Comparison of adipocyte annotation precision within 

pancreatic acinar tissue: suboptimal classification (left) versus optimal annotation (right). c. Iterative annotation 

workflow demonstrating the targeted addition of annotations in misclassified regions to enhance model performance.  
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Procedure 2: Defining model parameters using the GUI 

• Timing: 5 min 

1. After completing the annotation step, download CODAvision by following the README 

instructions present on the following GitHub page:  

https://github.com/Kiemen-Lab/CODAvision. 

2. If desired, import the Python code to an IDE (Integrated Development Environment). 

3. Run the CODAvision.py code to execute the GUI to parametrize the settings for the model.  

File Location tab (Fig 4A) 

4. Browse for the folder containing the training annotations. This folder should contain the 

annotated images and .xml files generated during Procedure 1. 

5. Repeat step 4 to browse for the folder containing the testing annotations.  

6. Specify a desired image resolution by selecting an option from the dropdown list.  

 

  

Figure 4: CODAvision graphical user interface (GUI) tabs. a. File Location tab: Configuration of dataset paths, model 

name, and training image resolution. b. Segmentation Settings tab: Parametrization of whitespace management c. Nesting 

tab: Configuration of nested annotation hierarchy for overlapping tissue annotations. d. Advanced Settings tab: Modification 

of CNN hyperparameters and selection of annotation classes for component analysis. 
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How to choose a training resolution? BOX 3 

The choice of training resolution is critical for achieving the desired segmentation accuracy while 

managing computational resources efficiently. For cellular-level analyses, we recommend using 

10× (1 μm/pixel), whereas organ-level or large tissue structures can be effectively segmented at 

1× (8 μm/pixel). The key consideration is the trade-off between segmentation detail and 

computational efficiency. Higher resolutions provide finer detail but result in larger file sizes, 

extended processing time, and require higher precision manual annotations.   

CODAvision also enables users to provide pre-generated downsampled images and to input this 

custom scale factor instead of choosing from one of the predefined resolutions. To do this, select 

“custom scale” and browse for the folder containing the scaled .tif or .png images. 

7. Enter a desired name for the deep learning model. By default, the name is prepopulated 

with today’s date, but may be customized.  

8. (Optional) Select 'Custom' from the 'Resolution' dropdown menu to train on resolutions 

different from the default options. This action will display a scaling factor input field where 

you can specify the desired downsampling ratio (must be ≥1) (Fig 5). 

a. To use different images for downsampling instead of the annotated images, select 

the 'Scale custom images' checkbox. Then, locate the custom image directories, 

which should be organized into separate training and testing folders. The image 

filenames must correspond exactly to their respective annotation files. 

b. If your custom images are pre-scaled, activate the 'Use pre-scaled images' 

checkbox. Ensure that these images match the value specified in the 'Scaling factor' 

field and are .tif or .png filetype. 

CRITICAL: Choose this option when working with images not originally annotated in the 

recommended formats (.ndpi or .svs). The custom image downsampling feature accepts the 

following file formats: .ndpi, .svs, .tif, .jpg, .png, and .dcm. 

Figure 5: Optional tab for custom downsampling of images or for providing pre-downsampled files to the GUI. 
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9. After completing all sections on the ‘File Location’ tab, click ‘Save & Continue’ move to 

tab 2: ‘Segmentation Settings.’ This tab serves as the interface for defining the different 

classes for the deep learning model, as well as inputting nesting information. This page 

will be pre-populated with the annotation classes and colors used during the manual 

annotation step in Aperio ImageScope.  

Segmentation Settings tab (Fig 4B) 

10. Determine how to handle the white/background pixels (referred to as ‘whitespace’ in this 

protocol) for each annotation layer. To do so, click on an annotation class from the table, 

and select one of the three available options in the ‘Annotation class whitespace settings’ 

(see Fig 6 for examples)  

How to manage background in manual annotations? BOX 4 

Proper whitespace management is critical for training high-accuracy deep learning models. Here, 

we provide advice on what when to automatically remove whitespace or non-whitespace from 

your annotation layers: 

Select ‘Remove whitespace’ to eliminate the background pixels from an annotation layer. This is 

relevant for scenarios such as excluding the lumen from a glandular structure or to remove the 

white pixels intermixed between stromal fibers. Select ‘Keep only whitespace’ to retain only the 

background pixels in the annotation. This is relevant when annotating fat and aiming to exclude 

nonwhite lines separating individual fat cells. Select ‘Keep tissue and whitespace’ to retain both 

background and nonwhite pixels. This is appropriate for the noise/background layer, as the 

annotated regions may contain both whitespace and noise such as shadows, or when annotating a 

solid structure such as hepatocytes in the liver. Refer to Fig 6 for visual examples. 

Figure 6: Example annotations where each whitespace management option is best. 
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11. Upon selecting an ‘Annotation class whitespace settings’ option, click ‘Apply’ or ‘Apply 

all’ to update the table.  

12. Define the destination class for whitespace pixels removed from annotation layers where 

the option ‘Remove whitespace’ was selected. In general, the destination class should be 

the background class. 

13. Similarly, define the destination class for removed non-whitespace pixels taken from the 

annotation layers where the option ‘Keep only whitespace’ was selected. In general, the 

destination class should be the stromal class. This input must be defined even if no 

annotation layer was assigned with ‘Keep only whitespace.’ 

14. (Optional) To change the color assigned to any annotation layer, select the desired 

annotation class from the table click the ‘Change Color’ button. In the color picker window, 

select the desired color, then Click ‘OK’ to confirm the color change.  

CRITICAL: By default, the model's classification output will use the same colors as those used 

during manual annotation (shown as background colors in the table). Color changes are purely 

aesthetic and do not affect model performance, but well-chosen colors may improve users’ ability 

to visually interpret and present the segmentation results. To ensure accessibility, we recommend 

selecting color palettes that are color-blind friendly. 

15. (Optional) To combine annotation layers, hold the ‘ctrl’ key and select the desired rows in 

the table. Click the ‘Combine classes’ button and, when prompted, enter a name for the 

combined class. In the color picker window, select a color for the combined class.  

16. (Optional) To delete unwanted annotation layers, select the appropriate row by clicking 

inside the table and click the ‘Delete class’ button. 

CRITICAL: Delete unwanted annotation layers that should not be included the model training. 

This is useful for removing empty layers. 

17. (Optional) Click the 'Reset list' button to return the annotation class table to its default state. 

This will remove whitespace management choices, uncombine any combined layers, and 

restore deleted layers.  

18. Once this tab is completed, click 'Save & Continue' in the bottom right corner. The interface 

will automatically advance to tab 3: 'Nesting'.  

Nesting tab (Fig. 4C) 

19. Define the appropriate nesting order to ensure correct handling of overlapping annotation 

classes. This order should have been established during the manual annotation step in 

Procedure 1. To define the nesting order in the GUI, select a desired annotation layer. Use 

the ‘Move Up’ and ‘Move Down’ buttons to adjust its position according to layering 

priority. 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2025. ; https://doi.org/10.1101/2025.04.11.648464doi: bioRxiv preprint 

https://doi.org/10.1101/2025.04.11.648464
http://creativecommons.org/licenses/by-nd/4.0/


17 
 

CRITICAL: The ‘Nesting tab’ allows the user to configure the layering hierarchy of annotation 

classes from lowest to highest priority in cases of overlap. The class at the top of the table are 

assigned the highest priority, while the class at the bottom are lowest priority. 

20. (Optional) To define different nesting orders to several annotation layers that combined in 

the Segmentation Settings Tab, check the ‘Nest uncombined data’ box. 

CRITICAL: If annotation classes were combined in the previous tab, the nesting table will display 

these combined layers by default. If a combined layer is made from two layers that require different 

nesting priority, check the 'Nest uncombined data' box. Refer to the annotation guide in 

supplementary file 1 for detailed examples on establishing the nesting order. 

21. Once the nesting tab is completed, the user has four options: 

a. (Most likely) Select ‘Save and train’ to immediately proceed with model training 

b. Click ‘Save and close’ to save the model configuration but NOT train the model. 

c. Click ‘Continue to advanced settings’ to define more complex model parameters 

before training the model. This tab will enable the user to adjust model 

hyperparameters, select the model architecture, or select classes for advanced 

quantitative analysis. 

d. Select ‘Return’ to go back to Tab 2. 

Advanced Settings tab (Fig. 4D) 

22. (Optional) To adjust the default tile size input to the segmentation model, choose a new tile 

size from the dropdown list (default: 1024 × 1024 RGB).  

CRITICAL: The training tile size default is 1024 × 1024 pixels. Users with GPU RAM constraints 

should consider a smaller size such as 512 × 512 or 256 × 256 (the size must be a power of 2). 

23. (Optional) To adjust the training and validation tile number, click on the up and down 

arrows next to each respective text box. The default number of training tiles is 15 and the 

default number of validation tiles is 3. Users may increase these numbers for especially 

large (>50 annotated images) or small (<5 annotated images) training datasets. 

24. (Optional) Adjust the number of images used for tissue mask thresholding (described in 

greater detail in Procedure 3) by clicking on the up and down arrows next to the ‘Tissue 

mask evaluation:’ text box. By default, this number is three images, but a higher number 

may be desired for larger or more diverse datasets. 

25. (Optional) Click the ‘Individual tissue mask evaluation’ checkbox to customize the tissue 

mask threshold for each image in the dataset. This option is recommended when image 

appearance varies substantially across the dataset and images may have varying 

background intensity thresholds. 
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26. (Optional) Choose the desired model architecture from one of two available options in the 

dropdown box (DeepLabV3+, UNet). By default, the training architecture is DeeplabV3+. 

How to choose a model architecture? BOX 5 

The choice of model architecture depends on computational resources available and the specific 

structures to be segmented. UNet contains approximately 41 million parameters, and in our 

benchmark test required approximately 40 minutes to train on an NVIDIA GeForce RTX 4090 

GPU. In contrast, DeepLabV3+ contains approximately 12 million parameters, and trained in 

approximately 75% of the training time of UNet. While UNet excels in capturing fine-grained 

details due to its deeper architecture, DeepLabV3+ is often more computationally efficient and 

may be preferable for users with limited computational resources or time constraints. Users are 

encouraged to experiment with both architectures to determine which best suits their specific 

needs.  

For computationally experienced users, additional architectures can be integrated into the 

workflow by modifying the codavision/models/backbones.py code, where the provided networks 

are implemented as Python classes. Users can also adapt the codavision/models/training.py and 

codavision/CODA.py to enable training on the new architecture and include it as an option in the 

dropdown menu of the advanced settings tab in the GUI. 

27. (Optional) Modify the batch size used for training. By default, the batch size is set to 3. 

CRITICAL: Adjust the batch size according to your GPU memory capacity. Larger batch sizes 

accelerate training but require more GPU memory, while smaller batch sizes increase training 

duration but reduce memory requirements. Monitor GPU memory usage during initial training 

attempts to optimize this parameter for your system. 

28. (Optional) Select classes for detailed quantitative analysis (object number count and size 

per image).  

CRITICAL: For a selected class in each segmented image, the total number of objects >500 pixels 

will be counted and the object size in pixels will be documented. These data will be exported in a 

.csv file following model training and image segmentation. 

29. Once the advanced settings tab is completed, the user has three options: 

a. (Most likely) Select ‘Save and train’ to proceed with model training. 

b. Select ‘Save and close’ to save the configuration but NOT train the model. 

c. Select ‘Return’ to go back to tab 3. 
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Procedure 3: Image pre-processing and model training 

Tissue mask thresholding 

• Timing: 5-10 min 

1. Upon completing the parameter configuration in the CODAvision GUI, the software will 

initiate execution and begin downsampling the training images to the resolution specified 

in Procedure 2, Step 6. 

2. Next, a popup window will appear, enabling interactive selection of a threshold value to 

separate tissue pixels from background pixels. (Fig 7) 

3. In the popup window, an image will be displayed. Double click on a region of the image 

containing both tissue and whitespace. 

4. The popup window will reload and display a magnified view centered on the selected 

region. Confirm the selection or choose a different region until a suitable area with 

sufficient tissue and background is identified. 

5. Once the region is confirmed, a new window will prompt the user to adjust the threshold 

cutoff until the background is detected optimally: 

6. After selecting the desired threshold, another full-size image will load to repeat the process 

until the desired number of images has been assessed. The average threshold value from 

this process will then be applied to all images in the cohort. 

 

Figure 7: Tissue threshold selection interface. a. Region of interest selection in a lung whole-slide image 

(WSI) to optimize threshold values. b. Threshold adjustment interface with optimal tissue-background 

discrimination demonstrated in the lower panel. 
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CRITICAL: Tissue mask threshold optimization is required only once. If retraining the model on 

the same dataset, a popup window will prompt the user to either ‘Keep current tissue mask 

evaluation’, which reuses the previously determined threshold and skips this step, or ‘Evaluate 

tissue mask again’, which initiates a new round of threshold selection. If the ‘Individual tissue 

mask evaluation’ checkbox (see Procedure 2, Step 25) was selected and the user chooses to 

‘Evaluate tissue mask again’, a prompt will appear allowing manual selection of specific tissue 

masks that the user desires to remake. These tissue masks are located in the training annotation 

path in the downsampled images folder. Alternatively, selecting ‘Redo all images’ will apply the 

thresholding process to the entire dataset. 

CODAvision image processing and model training (Fig 8) 

• Timing: 2 h 

7. Following successful completion of tissue mask optimization, the image pre-processing 

and model training will proceed automatically.  

CRITICAL: This step of the protocol is completed automatically by the GUI once the training is 

initiated in Procedure 2. The user has no direct steps in this section, but the steps followed by the 

code are described below for clarity. 

 

 

 

 

 

 

 

 

 

 

8. While executing, the code will output several text statements to the command window, in 

the following order: 

a. The model name. 

b. A message indicating the location where the model metadata will be saved. 

c. For each annotated image, a message will appear indicating the status of the 

annotation metadata import: 

Figure 8: Visualized workflow of Procedure 3.  
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i. If the annotation data were loaded in a previous training and the annotations 

and model parameters have not changed, the message will state that the 

metadata for this image was previously loaded. 

ii. If the annotation data are being loaded for the first time, the following 

checkpoint messages will be displayed: (1) Confirmation that the .xml 

annotation file has been converted to.pkl format; (2) Notification that an 

annotation mask has been generated and saved as a .png file; (3) 

Confirmation that smaller image patches have been cropped around each 

annotated region using the annotations mask, producing ‘bounding boxes’ 

of the RGB image and mask for downstream processing. 

9. After loading all annotation metadata, the code will output the total size of the training 

dataset, including the percentage of the training dataset contributed by each class. 

CRITICAL: It is recommended to have a well-balanced dataset with many examples of each class. 

The codes will automatically calculate the percentage of annotations for each class. We suggest 

that the minimum class will make up at least 5% of the total annotations must represent each class 

to ensure sufficient heterogeneity is provided for each annotation class and that the heterogeneity 

of the annotation classes is represented roughly equally. If any class if under the 5% threshold, we 

recommend the user attempt to add manual annotations of the least prevalent class through further 

annotation of the training images or through addition of new training images. 

10. After the metadata is loaded for all annotation images and the composition of the training 

dataset is calculated, training and validation tiles will be constructed.  

How to generate robust deep learning models Box 6 

Construction of a large and diverse training dataset is important to generate robust deep learning 

models. We augment the manual annotations in several ways to increase the heterogeneity of the 

training data. For each training tile, a large zero-value image of size 10,000 × 10,000 × 3 pixels is 

generated. Bounding boxes containing processed manual annotations are randomly added to the 

tile until the tile is >55% filled. Each iteration, the least represented class in the tile is determined, 

and an annotation bounding box containing that class is added to the tile. Approximately 50% of 

tiles are augmented by adjusting the hue (scaling RGB channels independently within a range of 

0.88 to 1.12), scaling (within a range of 0.6 to 0.95 for downscaling and 1.1 to 1.4 for upscaling), 

rotating (at random angles from 0 to 355 degrees in increments of 5 degrees), and applying a 

Gaussian blur (with sigma values randomly selected from a predefined set, e.g., 1.05, 1.1, 1.15, 

1.2). Each bounding box is thus added many times to the training tiles, but each time in a new 

position surrounded by different neighbors, and augmented in several ways. Once >55% of the 

tiles are filled, these large tiles will be cropped to a size of 1024 × 1024 × 3 pixels (or the custom 

size if defined by the user in the advanced settings tab of the GUI) and saved. 

11. After the predefined number of training and validation images have been created, model 

training will start. All training and validation tiles will be normalized through zero-
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centering. The model will be trained for a maximum of 8 to 10 epochs depending on the 

CNN chosen (see Procedure 2, Step 25) and validated three times per epoch. Model training 

stops according to an early stopping patience of 6. 

12. Following model training, annotation masks will be generated for the test dataset as 

detailed in Step 7 of this Procedure. 

13. The testing image(s) will be segmented, with the resulting segmentation masks and 

colorized overlays saved as .png and .jpg files, respectively. This output will be compared 

to the metadata collected in Step 11 of this Procedure to generate a confusion matrix. 

14. The images specified in the training images folder will be segmented, with the resulting 

segmentation masks and colorized overlays saved as .png and .jpg files, respectively. 

15. The bulk tissue composition of the images in the training images folder will be calculated 

and saved in a .csv file. 

16. (Optional) Component analysis will be calculated for selected annotation classes in the 

‘Advanced settings’ tab described in Procedure 2 and saved in a .csv file. This step would 

be skipped if no classes were selected. 

Generated outputs for Procedure 3 

Model hyperparameters, trained weights, and results will be stored in the training path file location. 

A summary of input and output file formats for the CODAvision workflow is given in Fig 9. This 

workflow generates outputs per annotated image, per trained model, and per segmented image. 

1. 'data_py' folder: 

a. Subfolder for each training image containing: 

i. ‘annotation.pkl’: processed vertex coordinates corresponding to the manual 

annotation data saved in each .xml file 

ii. ‘view_annotations.png’: grayscale mask images containing pixel labels for 

each annotated region, considering the whitespace management and the 

nesting order.  

iii. ‘model_name_boundbox’ subfolder: contains cropped RGB and mask 

images corresponding to each annotated region identified in 

‘view_annotations.png.’ 

1. ‘im’ subfolder: contains the RGB copy of the bounding boxes. 

2. ‘label’ subfolder: contains the corresponding mask of the bounding 

boxes. 

CRITICAL: The 'data_py' folder contains metadata used internally for image processing and 

training tile generation, not for analysis. 
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2. 'check_annotations' folder: contains colorized masks of the training images with annotation 

patches highlighted in colors defined in Tab 2 of the GUI. 

CRITICAL: Review the 'check_annotation' images to verify that your annotations are correctly 

overlaid on the downsampled images. Pay close attention to the whitespace handling (adjust the 

whitespace settings in Tab 2 of the GUI if needed, or regenerate the tissue mask images). Also, 

ensure the nesting order is correct; if necessary, revise the annotations or modify the nesting 

settings in Tab 3 of the GUI.  

a. ‘Model_name’ folder  

b. ‘training’ folder: contains image tiles used for model training 

c. ‘validation’ folder: contains image tiles used for model validation 

d. ‘best_model_X.keras’: weights of the CNN for the best training epoch, where X is 

the name of the model architecture that was trained. 

e. ‘X.keras’: weights of the trained CNN, where X is the name of the model 

architecture that was trained. 

f. ‘net.pkl’: annotation parameterization settings. 

g. ‘model_color_legend.jpg’: color map used in colorized segmented images. 

h. ‘model_evaluation_report.pdf’: detailed performance report. (Fig 10) 

i. ‘confusion_matrix_X.png’: confusion matrix with precision, recall, and accuracy 

metrics, where X is the name of the model architecture that was trained. 

CRITICAL: We suggest a minimum overall accuracy score greater than 90%, and a minimum per-

class precision and recall exceeding 85% for acceptable training results. For models that do not 

meet these standards, we suggest users add additional training annotations and retrain to improve 

the metrics. 

Figure 9: Overview of CODAvision inputs and output data formats.  
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3. Downsampled image folder named based on the chosen resolution (e.g., '1x', '5x', '10x', or 

a user defined custom scale) 

a. 'TA' subfolder: ‘tissue area’ masks for the training images. 

b. 'classification_model_name' subfolder, where ‘model_name’ is the user-defined 

name of the trained model. This subfolder will contain: 

i. grayscale segmentation masks of each training image in .tif format 

1. 'check_classification' subfolder: colorized segmentation masks in 

.jpg format. 

ii. 'image_quantifications.csv': pixel count and tissue composition for each 

training image. 

iii. 'annotation_class_name_count_analysis.csv': object count and size analysis 

for each class. 

CRITICAL: To visually assess the model accuracy, review the ‘check_classification’ images and 

search for areas that are misclassified.  

Figure 10: Sample PDF report summarizing the performance metrics and training parameters of a model 

trained to recognize normal hepatic cells and cancer in human liver histology. 
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Procedure 4: Model optimization 

Timing: 1 – 10 h 

If a trained model is of unsatisfactory quality (overall accuracy <90%, minimum precision or recall 

<85%, or visually poor performance), follow this procedure to retrain the model efficiently. It is 

common when starting a new project to train 2 – 3 models in quick succession before achieving 

satisfactory results. We describe here four techniques to improve model performance (Fig 11). 

1. First, determine if there is human error in the GUI settings. If yes, reconfigure the settings 

and retrain the model without adding new annotations.  

a. Review the color overlay images inside the ‘check_annotation’ folder to determine 

if the annotations contain errors or model parameters were defined incorrectly.  

i. Does the whitespace management look correct? For example, in an 

annotated blood vessel, are the background pixels inside the lumen correctly 

extracted as whitespace? If incorrect, consider adjusting the whitespace 

management in tab 2 of the GUI (see again Fig 6 for examples). 

ii. Does the nesting order in the images look correct? For example, if noise 

was annotated inside of a duct, is that region defined in the 

check_annotation file as noise or as duct? If incorrect, consider adjusting 

the nesting order in tab 3 of the GUI (see again Fig 3 for examples). 

iii. If the nesting order and whitespace management look correct, is anything 

else noticeable in the file? Are any structures incorrectly annotated? Consult 

the supplementary annotation guide (supplementary file 1) for detailed 

Figure 11: Suggested solutions to incrementally improve model performance. 
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best practices in annotation and correct these errors by editing the 

annotations where necessary. 

CRITICAL: Biological images contain complex and subtle structures. Human error in manually 

annotating images is common especially for new users. If errors are identified in the annotated 

files, correct them and retrain, and remember to also correct for errors in the testing dataset. 

b. Review the tissue area masks to determine whether the threshold is correctly 

separating the tissue and background (see again Fig 7 for examples). If this 

threshold looks incorrect, delete the subfolder named ‘TA’ so that a new threshold 

may be calculated upon retraining. 

2. Second, view the images saved inside the folder named ‘check_classification’ to visually 

assess the model performance and identify misclassified regions. These files show a color 

overlay of the model segmentation across whole images. 

a. Review several images and identify common ‘patterns’ in misclassification. For 

example, stroma consistently misclassified as vasculature, or background pixels 

consistently misclassified as fat. 

b. Determine whether there are any structures present in the images that were missed 

during the previous model training and were not included as an annotation layer 

(for example, if blood vessels were not included as a label but are present in the 

images). If identified, determine whether this structure should be combined with a 

current annotation layer or added as an additional annotation layer. 

3. After correcting any problems caused by human error in model parametrization and 

retraining the model, next the user may improve the model results through further 

annotation. Focusing on the list of patterns in misclassification generated in Step 2 of this 

Procedure, add annotations to the identified problem areas. 

CRITICAL: If the model frequently misclassifies unseen structures when applied to images 

beyond the training set, consider augmenting the training dataset with entirely new training images, 

rather than adding additional annotations to images previously used for training. 

4. If all the human errors have been corrected and the training dataset is extensive, the user 

may also consider tweaking model parameters in the advanced settings tab of the GUI. 

CRITICAL: When retraining a model using identical annotations (e.g. same training and validation 

tiles) but with a different architecture, load previous model settings using the 'Load prerecorded 

data' button and modify the model architecture via the advanced settings tab in the CODAvision 

GUI (Procedure 2, step 25). This approach eliminates the need to repeat steps 1-10 of Procedure 

3, allowing rapid retraining of models. 

5. Repeat the steps of procedures 1 – 4 to retrain the model and reoptimize the annotations 

and model parametrization until satisfactory results are obtained. When retraining a model, 

consider using the ‘Load prerecorded data’ option to prepopulate the model parameters.   
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Procedure 5: Image segmentation using a pretrained model 

Timing: 10 – 15 min  

After training a model, the user may segment additional images beyond the original training set. 

CRITICAL: To ensure high model performance, only images with the same resolution as the 

training data set should be classified with a pretrained model. 

1. Run the CODAvision.py code to restart the CODAvision GUI. 

2. Load the training weights of the model you wish to use (Fig 12A). To do this, either select 

‘Load prerecorded data’ and select the folder containing the ‘net.pkl’ file you wish to use, 

or manually input text in the ‘Training annotations’, ‘Resolution’ and ‘Model name’ fields. 

When these fields are completed and a trained model is detected, a green 'Classify images’ 

button will appear. Click this button to proceed to the ‘Segment images’ tab.  

3. After proceeding to the ‘Segment images’ tab (Fig 12B), input folders containing images 

you wish to classify. Click the 'Browse' button to add a desired folder to the table list and 

repeat until all desired folders are added.  

4. (Optional) Modify the segmentation color map. Change the colors of annotation classes in 

the table on the left. This new color overlay may be visualized in real time to ensure 

readability through application to the sample image displayed in the center of the tab. The 

updated color map will be used to generate the colorized segmented images. 

CRITICAL: If the objective is only to modify the color map of previously classified images, input 

the root directory path of images that have been classified by the model specified in step 2.a, and 

click ‘Apply’. The code will begin execution, bypassing the segmentation and will change the 

colorized segmented images. 

5. (Optional) Perform annotation class component analysis. Select the annotation classes to 

quantify in the table on the right. 

6. Click 'Apply’ to segment all new images in all folders added to the segmentation table and 

to perform the quantitative analyses as defined. 
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Figure 12: GUI tab for classifying additional images with pretrained models. a. File location tab showing the 

'Classify Images' button, which appears when a trained network is detected in the specified data folder. b. Interface 

for selecting new image set paths to classify with the pretrained model, modifying segmentation mask color map, 

and performing additional annotation class component analysis. 
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Timing 

The estimated processing times provided below are based on the training of sample Dataset 1 

(human liver histology), trained at the selected magnification of 10× (1 µm / pixel resolution), 

performed using a workstation equipped with an NVIDIA GeForce RTX 4090 GPU running 

Windows 11. These estimates reflect the processing time for an experienced CODAvision user 

using a GPU equipped computer. Processing times will increase substantially if the software is run 

without GPU support. Note that users following the CODAvision workflow for the first time may 

require additional time to familiarize themselves with the annotation best practices and GUI guided 

parametrization. 

• Procedure 1: Building annotation dataset 

o Steps 1-12: 8-10 h 

• Procedure 2: GUI guided parametrization 

o Steps 1-26: 5 min 

• Procedure 3: Image pre-processing and model training 

o Steps 1-5, tissue mask thresholding: 5-10 min 

o Steps 6-16, CODAvision image processing and model training: 2-3 h 

• Procedure 4: Testing a trained model and generating a performance report 

o Steps 1-4: 5 min 

• Procedure 5: Model optimization 

o Steps 1-5: 1-10 h 

• Procedure 6: Segmenting an image with a pretrained model 

o Steps 1-9: 2-3 min 
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Troubleshooting 

  
Step  Problem Possible reasons Solution 

Procedure 2    

1 Unable to install 

cudatoolkit and cudnn 

dependencies  

SSL certificate verification 

issues 

Make sure that OpenSSL is installed and 

properly configured on your system. You 

can download and install OpenSSL from 

https://slproweb.com/products/Win32OpenS

SL.html. After downloading OpenSSL add 

its bin directory to the environment 

variables 

1 Unable to download 

CODAvision 

Git not installed on computer Download git from the following website 

(https://git-scm.com/downloads/win) and 

restart your computer 

2 Cannot execute 

CODAvision.py 

Dependencies not properly 

installed  

Ensure .dll path for OpenSlide is located in 

environment paths 

Procedure 3    

7 Model training failure Existing model with same 

name in file directory 

Rename the model or delete the previous 

model's folder 

8 Code cannot identify 

annotation .xml file for 

training mask 

Filename mismatch between 

annotated images, .xml files, 

and downsampled .tif images 

Ensure all filenames are consistent and 

rerun the code 

11 GPU out of memory Model architecture or batch 

size too resource-intensive 

Choose a lighter model architecture or 

reduce batch size to match computer 

specifications 

11 Validation loss 

increases after a certain 

number of epochs 

(overfitting) 

Insufficient or incorrectly 

annotated training data 

Increase number of annotated images or 

improve annotations 

12 Model testing failure Testing annotations lack 

classes present in training 

dataset 

Include annotations for all classes in the 

training dataset 

12 Confusion matrix 

shows all pixels 

classified into a single 

class 

Numerical instability during 

GPU training 

Retrain and test the model using CPU 

processing instead 

Procedure 4    

1,2 Confusion matrix 

shows low precision 

and recall for light 

contrast classes similar 

to background 

Poor tissue background cut-

off 

Repeat CODAvision workflow with 

different tissue background cutoff value 

2 Misclassification in 

images outside training 

dataset 

Insufficient annotation class 

diversity or heterogeneity 

Include more annotation classes for 

morphologically different structures, create 

more heterogeneous annotations, or increase 

training dataset with additional annotated 

images (refer to supplemental annotation 

guide in supplementary file 1) 
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Anticipated results 

This protocol provides detailed steps to build highly customizable semantic segmentation models. 

We provide comprehensive guidelines to (1) determine the optimal number of target labels for a 

dataset given the scientific question, and (2) annotation best-practices to create effective training 

and testing datasets. We also provide instructions to operate our user interface, including 

streamlining the processes of parameter configuration, model architecture selection, and model 

training.  

After successfully completing the protocol, the user will have generated several files in user-

friendly formats. This protocol enables users to rapidly build highly customizable segmentation 

models for biological research. In this section, we provide use-cases to demonstrate the value of 

the CODAvision outputs across several research areas. 

To demonstrate the versatility of CODAvision, we applied the workflow to four distinct research 

tasks (Fig 13). For each application, we trained using a DeepLabv3+ ResNet50 model architecture. 

Below, we briefly describe each use case and the analyses enabled by CODAvision. 

First, we quantified microanatomical structures in liver and lung histology from a syngeneic mouse 

model of pancreatic cancer (Fig 13A). We demonstrate that CODAvision can be used to quantify 

metastatic burden and organ composition. This histological dataset was generated through an in 

vivo experiment originally described in the work cited.51 Here, we trained separate models for each 

organ. We segmented six structures in the mouse lungs and seven structures in the mouse liver. In 

both models we achieved >90% overall accuracy and >85% per-class precision and recall. In so 

doing, we were able to demonstrate that in this mouse model, the lungs metastases grow larger 

more quickly, are more numerous, and are more solid than the liver metastases. The pipeline 

simultaneously analyzed the composition of other key tissues (bronchioles, alveoli, stroma, and 

vasculature in the lungs, and hepatocytes, bile duct, stroma, fat, and vasculature in the liver), 

demonstrating its utility for comprehensive tissue composition analysis in preclinical models. 

Second, we segmented cell types in human pancreas histology to deconvolute spot-based spatial 

transcriptomic data (Fig 13B). Deconvolution of spatial transcriptomics data has emerged as a vital 

process for honing in on gene expression signatures of target cells that may make up a small 

fraction of the sampled tissue.31,32,52-54 This dataset, consisting of an H&E image and 10× 

Genomics Visium spatial transcriptomics outputs, and the computational method for 

deconvolution using segmentation results, were originally described in the work cited.32 Here, we 

segmented nine structures of pancreatic microanatomy, including normal pancreatic ducts and 

pancreatic precancers, achieving >90% overall accuracy and >80% per-class precision and recall. 

The cell type labels at the coordinates of each 55µm radius Visium spot were extracted and used 

to assess the cellular purity of each spot. This deconvolution allowed us to clearly determine the 

gene expression of pancreatic precancerous cells and to eliminate confounding gene expression 

signatures contributed by non-neoplastic cells within the same Visium spot. 
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Third, to demonstrate CODAvision’s broad applicability to biological images beyond histology, 

we segmented functional components of ECMO membranes in CT (Fig 13C).  ECMO is a device 

used in critical care medicine to provide blood oxygenation for patients suffering from conditions 

that impact lung function such as COVID-19.55 The ECMO membrane is made up of 5 distinct 

fibrous layers contained within either a square or cylindrical exterior casing. Blood is perfused 

from the patient and through the multiple matrix design layers and the hollow fiber layers of the 

ECMO where gas exchange occurs before the blood is returned to the patient.56  The dataset shown 

here was originally presented in the cited work57 where CT images of used ECMO membranes 

were analyzed to determine which of the five fibrous layers contained the highest composition of 

blood clots (a common cause of ECMO failure). Due to the highly specialized nature of the desired 

segmentation, more common methods for CT segmentation such as quantification of changes in 

density need further optimization. CODAvision can be used to automate segmentation across every 

CT slice, ensuring precise and consistent identification of layers and clot formations. We therefore 

trained a segmentation model to detect seven structures in the ECMO device including the five 

fibrous layers and blood clots, achieving >90% overall accuracy and >80% per-class precision and 

recall. After training, we applied the segmentation model to classify the 985 serial images making 

up the 3D CT data. Using the outputted .tif segmentation masks, we constructed a project-specific 

analysis to quantify the composition of blood clot in each of the fibrous layers of the ECMO, 

identifying layer 2 as a region with substantially higher percentage of clots. This analysis, possible 

only through segmentation of the subtle textures that define the distinct ECMO layers, will enable 

future design of more efficient ECMO devices that are less susceptible to blockage by blood clots.  

Finally, to further highlight the versatility of CODAvision, we applied our method to an MRI 

dataset of the human brain (Fig 13D). Here, we desired to rapidly construct a highly specific model 

to distinguish the anatomical components of the brain including white matter, grey matter, the 

cerebellum, and non-brain structures including the human eyes. We annotated these structures and 

trained a segmentation model with CODAvision, achieving >90% overall accuracy and >80% per-

class precision and recall. After model training, we applied the segmentation model to the 157 

serial images making up the 3D MRI data. Using the cited method25 we transformed the segmented 

.tif images outputted by CODAvision into a 3D printable .stl file. This enabled us to 3D print the 

anatomy of the brain.  
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Figure 13: Example applications of CODAvision to different medical image types. a. Quantification of metastatic burden in 

mouse lung and liver through semantic segmentation and automated tissue quantification. b. Deconvolution of Visium spots using 

CODAvision segmentation to reduce noise and improve quantification accuracy within each cluster. c. Segmentation of CT images. 

By leveraging different annotated labels, structures with similar gray intensity values were successfully separated into distinct 

anatomical regions. d. Segmentation of MRI images enables visualization of the anatomy of the brain and spinal cord. 
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Data availability 

Sample datasets are available at the following link:  

https://drive.google.com/drive/folders/1K-wY_ArVGbEhebQD4AjOeERwx6-4Fw3G 

 

Code availability 

The CODAvision package is available in the following repository:  

https://github.com/Kiemen-Lab/CODAvision. 
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