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Recent advancesinimaging and computation have enabled analysis of large
three-dimensional (3D) biological datasets, revealing spatial composition,
morphology, cellular interactions and rare events. However, the accuracy
of these analyses is limited by image quality, which can be compromised by
missing data, tissue damage or low resolution due to mechanical, temporal
or financial constraints. Here, we introduce InterpolAl, a method for
interpolation of synthetic images between pairs of authenticimagesina
stack ofimages, by leveraging frame interpolation for large image motion, an
optical flow-based artificial intelligence (Al) model. InterpolAl outperforms
both linear interpolation and state-of-the-art optical flow-based method
XVFI, preserving microanatomical features and cell counts, and image
contrast, variance and luminance. InterpolAl repairs tissue damages and
reduces stitching artifacts. We validated InterpolAl across multiple imaging
modalities, species, staining techniques and pixel resolutions. This work
demonstrates the potential of Alin improving the resolution, throughput
and quality of image datasets to enable improved 3D imaging.

New three-dimensional (3D) imaging techniques and algorithms that
integrate large, multimodal datasets have improved assessment of
tissue anatomy and heterogeneity using anatomical, molecular and
-omic probes'®. Across 3D image modalities, acommon challenge
emerges: the lack of resolution due to mechanical and financial con-
straints or to damage and distortion of the tissue. Here, we introduce a
methodology torepair and restore 3D biological imaging datasets using
artificialintelligence (Al)-based image interpolation. We demonstrate

the utility of this method across serial sectioning-based and intact
imaging datasets.

Bothserial sectioning and intact imaging methods present resolu-
tionchallenges. Methods that use serial sectioning allow for multiplex-
ing across tens to hundreds of sections®*'°. However, these methods
face two resolution-limiting hurdles. First, imaging resolution is lim-
ited by section thickness, typically 4-10 um for histology and ~40 nm
for serial section transmission electron microscopy (ssTEM). Spatial
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Fig. 1| Interpolation workflow and test datasets. a, Samples were obtained from
two species, mouse and human. Four different organs were analyzed: human
pancreas, human brain, mouse brain and mouse lung. Five imaging modalities
were tested: H&E-stained histological slides, IHC stained histological slides, MRI,
serial ssTEM slides and combined tissue clearing and light-sheet microscopy.

b, Aligned slides are manually searched through to identify missing or damaged
slides, and damaged slides are removed from the stack of slides. InterpolAl
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interpolation is performed using the sections adjacent to the damaged or
missing slides asinputs to recreate slides that were stained differently, missing
or damaged, resulting in a uniform stack of slides. Using CODA, slides are
segmented into labeled tissue masks, with each label representing a different
microanatomical structure in the slide, which is then used to recreate and
visualize microanatomical 3D structuresin the tissue sample. Illustrations
created using BioRender.com.

resolution is further limited when intermixing imaging modalities at
regular intervals within the stack of tissue sections, for instance by
interlacing sections stained with hematoxylin and eosin (H&E) and
sections stained with antibodies viaimmunohistochemistry (IHC) or
molecular probes viaspatial transcriptomics®’ 2. Second, axial spatial
resolution canbe reduced by physical artifacts caused during section-
ing, including tissue section splitting, folding and warping, which
limit the ability to reconstruct continuous structures such as ducts
andblood vessels**™*, In contrast, intact imaging, such as tissue clear-
ing, magnetic resonance imaging (MRI) and computed tomography,
enables 3D imaging of continuous structures™ . However, resolution
problems persist, caused by photobleaching, light absorption, motion
artifacts and signal loss, which canresult in loss of tissue connectivity
and clarity™ ™,

A promising solution liesin the application of generative models
andinterpolation techniquesto enhance the quality of 3D reconstruc-
tions. Various generative deep learning models have been employed
to synthesize tissue images, including CycleGANs (cycle-consistent
generative adversarial networks) and diffusion models? %, CycleGANs
are models that allow for cross-modality translation (Extended Data
Fig.1). They have been used for the transformation of H&E-stained
images into their respective synthetic IHC-stained images that mark
specific proteins in tissues?> 2%, Diffusion models have been used to

augment MRI and computed tomography scans training datasets of
deep learning models”*"*,

Despite advances in generative models, limitations persist in
achieving synthetic biologicalimages that canbe used to extract accu-
rate microanatomical information®2%*"3, Additionally, generative
models are typically applied to generate different synthetic image
stains of the same respective slide, but are limited in their ability to
infer microanatomical structural changes across adjacent interven-
ing slides for microanatomical 3D structure enhancement (Extended
Data Fig. 1). Generation of synthetically accurate image representa-
tions of subtle or rare image texture features, cell clusters and tissue
boundaries remains an unmet technical challenge*°. Here, we explore
interpolationtechniques, such asframeinterpolation for large image
motion (FILM), to restore 3D biological structures® >, We converted
thevideo frame interpolation method FILM into a platform for spatial
interpolation of syntheticbiomedicalimages called InterpolAl. Using
InterpolAl, we can propagate information contained in adjacent input
slides, which restores z axis resolution of 3D microanatomical struc-
tures. Interpolation models such as InterpolAl can generate missing
slides without any pevious access or knowledge of the information on
those slides (Extended Data Fig.1).

Optical flow-based models have been used for temporal inter-
polation and video frame upscaling, stemming from a need for more
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accurate and natural motion representation between frames in video
sequences. The concept, which estimates the apparent motion of
objects between consecutive images based on changes in brightness
between frames, wasfirstintroducedinthe1980s by Hornand Schunck,
who proposed a variational method to compute motion vectors in
ascene®. Their method assumed that certain properties of a scene,
such as brightness, remained consistent between frames, allowing
for the calculation of motion vectors for each pixel. These vectors
describe how much and inwhich direction each pixel moves fromone
frame to the next. Early optical flow methods were computationally
expensive and prone to inaccuracies and the field has since advanced
with learning-based approaches. Convolutional neural networks and
later models such as recurrent neural networks have improved motion
prediction and image synthesis®*®?.

Here, we demonstrate that interpolation of biological images
using InterpolAl provides superior performance compared to the
state-of-the-art optical flow model XVFI (extreme video frame interpo-
lation)*® and linear interpolation. InterpolAl-synthesized images can
reconstruct microanatomical features, improve image contrast and
restore cell countsin damaged or missing slides. Using InterpolAl, 3D
reconstructions of semantically segmented synthetic images of com-
plex microanatomical structures—such as ducts and blood vessels—
feature fewer artifacts than original damaged datasets, as assessed
via 13 Haralick features. The versatility of InterpolAl is shown by its
applications to different 3D imaging modalities (histological slides,
light-sheet, ssTEM, MRI), species (human, mouse), organs (pancreas,
brain, lungs) and pixel resolutions (8 nm, 2 pm, 1 mm). InterpolAl rep-
resents an important advancement by combining deep learning with
motion estimation to handle large movements, making it a valuable tool
for enhancing spatial resolution and recovering biological information.

Results
Multimodal tissue cohorts and interpolation workflows
We applied InterpolAl, anew interpolation workflow based on optical
flow, to restore damages in stacks of two-dimensional (2D) images to
recover microanatomical features lost in 3D reconstructions of tis-
sue architecture and composition (Fig. 1)¥. We tested InterpolAl for
anondiseased pancreatic tissue cohort stained with H&E and IHC,
astack of ssTEM micrographs of thin sections of the mouse brain, a
mouse lung tissue cleared and imaged under light-sheet microscopy,
and astructural MRIdataset of the humanbrain. The selection of these
datasets encompassed different image size and resolution, species,
tissue types, imaging modalities (histology, tissue-cleared light-sheet
microscopy, ssTEM, structural MRI) and magnifications. This diversity
of datasets ensured that the robustness of InterpolAl was evaluated
across a broad spectrum of imaging modalities.

InterpolAluses pairs of undamaged 2D images from animage stack
asinputstoimprove spatial resolution or recover lost microanatomical

information (Fig. 1b). The user specifies the number of images to be
interpolated based on the number of damaged or missing images in
the image stack. Using the output interpolated 2D image stacks, 3D
volumes can be reconstructed without missing or damaged images
(Fig. 1b), which improved spatial resolution and reconstruction of
tissue componentsin 3D (Fig. 1b).

InterpolAl interpolation for stacks of histological slides

We tested the ability of InterpolAl to interpolate whole slide images
(WSIs) within a stack of histological images from human pancreatic
tissue samples. Histological slides are often lost or damaged due to
defects created during tissue sectioning or improper storage and
documentation™, The ability of InterpolAl to interpolate slides was
compared to XVFI, a state-of-the-art optical flow-based interpolation
method, and linear interpolation of the same slides and then compared
to the corresponding authentic slide (Fig. 2)*>*°"*. To qualitatively
compare the interpolated slides, two regions of interest (ROI) from
the 101 serially sectioned and H&E-stained human pancreas dataset
were selected based on the anatomical structures present. These ROI
had atotal of eight tissue components, including islets of Langerhans,
ductal epithelium, blood vessels, fat, acini, extracellular matrix (ECM),
whitespace and PanIN (precursor) lesions. Two images were selected
one every eight images (denoted skip seven) of the original stack of
authentic images, and the missing seven images were interpolated
(Fig. 2a).Interpolated images were compared against their respective
authentic images (Fig. 2b,c).

Due to their complex branching character within the first ROI,
whichrepresent a3D imaging challenge, we examined ducts and blood
vessels (Fig. 2b). Comparison with authenticimage of the duct showed
that the damage was fixed by InterpolAl interpolation (top row, top
arrow, Fig. 2b). Incontrast, the epithelium layer of the duct showed con-
siderable noiseinthelinearly interpolatedimage due to pixel averaging
(top row, bottom arrowhead, Fig. 2b). This caused overlay artifacts that
were absentin InterpolAl, which tracked pixel ‘movements’ using opti-
calflow for asharperimage. Linear interpolationimproperly replaced
the damaged areas with acinus-like material instead of whitespace in
theauthenticslide (top row, top arrowhead, Fig. 2b). In contrast, Inter-
polAlsuccessfully removed the damage and preserved the whitespace
(top row, top arrow, Fig. 2b). Similarly to InterpolAl, XVFI removed a
notable amount of damage replacing it with whitespace, however,
some black damage artifacts remained (top row, top dashed arrow,
Fig.2b). Unlike InterpolAl, XVFl also incorrectly generated hued acini
structures within the whitespaceitinterpolated (top row, right dashed
arrow, Fig. 2b). Furthermore, InterpolAl preserved the central structure
of the duct, whereas linear interpolation thinned and elongated the
lumen (top row, middle arrowhead, Fig. 2b).

Thesuperiority of InterpolAl over linear interpolation was further
observed in blood vessels (bottom row, bottom arrowhead, Fig. 2b).

Fig.2| Comparison of linear, XVFl and InterpolAl interpolations for
pancreatic histology image stacks. a, ROl were selected from WSIs to include
allmicroanatomical features (islets, ducts, vessels, fat, acini, ECM and PanIN).
Slides were interpolated, skipping seven slides between adjacent sections,
generating seven slides. b, ROl1shows acomparison of interpolated to

the authentic ROI for the middle-interpolated image for ducts and vessels.
Arrowheads show linear interpolation replacing damage with acini as opposed
to whitespace, creating noise around the ducts, incorrectly generating fat

and unable to preserve vessel structure. Dashed arrows show XVFI removed
damage, kept some black damage artifacts and incorrectly generated hued acini
within the interpolated whitespace. Arrow shows InterpolAl correctly restored
whitespace. ¢, ROI 2 shows a comparison of interpolated to the authentic ROI for
the middle-interpolated image for ducts, fatand vessels. Arrowheads show linear
interpolation creates duct lumen and fat shadows resembling islets as well as
nonexistent fat regions. Red boxes show XVFI was unable to interpolate cellular
information unlike InterpolAl. Dashed arrows show XVFI created a purple hued

band, lacking cell nuclei around the lumen of the duct. d, Cell counts comparison
between authentic H&E and interpolated images, and percentage error in cell
counts. e, PCA of 13 Haralick features for authentic, and interpolated images for
various numbers of skipped images. Mean Euclidean distance of interpolated
images from authentic images based on 13 Haralick features. f, IHC slides were
interpolated and compared to authentic slides for validation. Middle slide is
compared with the interpolated images. Arrow shows InterpolAl preserves
vessel structure, unlike linear interpolation, which was also unable to preserve
fat domains such as XVFI (arrowheads and dashed arrow). g, Comparison of
CD45" cell counts in authentic images and interpolated images when skipping
7and12slides. h, PCA of 13 Haralick features for authentic and interpolated

IHC images for various numbers of skipped images. Mean Euclidean distance

of interpolated images from authentic images is based on 13 Haralick features.
Error bars represent mean + s.d. *P < 0.05, **P < 0.01, ***P < 0.001, ***P < 0.0001.
Supplementary Table 2 for exact Pvalues calculated via two-tailed Mann-
Whitney U-test, meanands.d.
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Overlay artifacts were present throughout the entire structure of the
blood vessel when using linear interpolation (bottom arrow, Fig. 2b).
Unlike InterpolAl, linear interpolation could not preserve the struc-
ture of theblood vessel (Fig. 2b). Linear interpolationalsoincorrectly
generated regions of fat that were absent in the authenticimages (bot-
tom row, top arrowhead, Fig. 2b). While XVFl accurately interpolated
the structure of the blood vessel, the sharpness of the interpolated
image was degraded compared to the authentic and InterpolAlimages,
resulting in cells in the acini that looked blurred or absent (bottom
row, Fig.2b).

In the second ROI, chosen because it was enriched in ducts, fat
andislets, linear interpolation created an artificial shadow in the duct
lumen (top row, top arrowhead, Fig. 2c). XVFl accurately interpolated
the structure of the duct but again was unable to interpolate cellular
information, specifically epithelial cells lining the duct. XVFI created
a purple hued band that lacked cell nuclei around the lumen of the
duct (top row, dashed arrows, Fig. 2c and inset zoom-in). In contrast,
InterpolAl accurately interpolated the duct, while retaining cellular
information (top row, Fig. 2cand inset zoom-in). Other key structures
included fat and islets, which were typically presented as small and
faint morphologies (bottomrow, Fig. 2c). The authentic slide contained
eightfatandfiveislets structures, however, linear interpolated images
showed shadows of fat where real fat was located (bottom row, top
arrowhead, Fig. 2c). Additionally, it generated nonexistent fat (bottom
row, bottom arrowhead Fig. 2c). These fat shadows could be wrongly
interpreted as islets, especially in regions where islets were present
(bottomrow Fig. 2c). Although InterpolAl struggled with overlapping
fat, it properly interpolated distinct fat without artifacts and could
clearly distinguish islets from fat.

Using CODA cell detection module, the total cell counts were
computed for each of the interpolated H&E images and compared
to corresponding counts in authentic images. This cell count was
repeated for each scenario of skipping one, three and seven slides
(Fig.2d). Linear interpolation consistently generated images contain-
ing more cells than in the authentic images, as a result of overlay arti-
facts. XVFIwasunable to interpolate cellular information and instead
generated images that appeared blurred or out of focus, resulting in
images displaying far fewer cells than the authentic images. While
InterpolAl-interpolated images also generated more cells on average
thaninthe authenticimages, the percentage errorin cell count for the
stack of InterpolAl-interpolated images was <5% for each interpolation
scenario. Linear interpolation resulted in a percentage error in cell
count>10% and XVFI had a percentage error in cell count >20% for each
interpolation scenario (Fig. 2d).

Thirteen Haralick features (angular second moment, contrast,
correlation, sum of squares variance, inverse difference moment, sum
average, sum variance, difference variance, sum entropy, difference
entropy, entropy, information measure of correlation 1and informa-
tionmeasure of correlation2) were measured to evaluate the quality of
interpolated images*>*. The results of each score were averaged for
the different tested scenarios (authentic, InterpolAl,,,, InterpolAly;,;,
InterpolAly;,; linear g, linear,,;, lineary;,; XVFlyi,1, XVFly;,; and
XVFly,;) (Supplementary Table 1), which allowed for principal com-
ponent analysis (PCA) to be carried out (Fig. 2e). This analysis dem-
onstrated that the InterpolAl-interpolated slides represented more
closely the information in the authentic slides, even when skipping
seven slides, compared to linear interpolation and XVFI, which was
the furthest from authentic images. The Euclidean distance of the
13 Haralick features between authentic and interpolated images was
computed (Fig. 2e). Even when skipping sevenslides, InterpolAlimages
were less than half the distance from authentic images for linearly
interpolated images when skipping just one slide. When comparing
independent interpolation scenarios between InterpolAl and XVFI,
InterpolAlimages were also less than half the distance of XVFlimages
to the authenticimages.

Standard metrics, such as meansquare error, structural similarity
index measure, peak signal-to-noise ratio, Spearman correlation, Jac-
card correlation, Sobel filter and channel wise pixel-to-pixel intensity
correlation could not quantify the (very visible) structural errorsinthe
microanatomical features generated by linear interpolation (Fig. 2b,c).
Acini, which are the dominant structure in the healthy pancreas, could
easily beinterpolated, resulting in similar metric values for linear and
InterpolAl, since these metrics are less sensitive to small-pixel devia-
tions compared to large-pixel deviations. We attempted masking acini
to focus on microanatomical structures, but registration differences
between images only highlighted alignment issues rather than inter-
polation quality.

Validation with expert pathologists at the Johns Hopkins School
of Medicine (Gl division, Department of Pathology) was attempted to
determine the authenticity of interpolated images. Initially, patholo-
gists were unable to distinguish microanatomical differences between
authentic and InterpolAl-generated images. Over time, pathologists
distinguished interpolated from authentic images by their reduced
damage artifacts.

Insum, InterpolAl canaccurately interpolate damaged or missing
H&E-stained histological images, which restores lost information in
stacks of 2D images and, consequently, improves connectivity of 3D
continuous microanatomical structures (additional details below).
Unlike linear interpolation, InterpolAl does not generate nonexistent
microanatomical structures, such as ducts or fatin pancreatic tissues,
and preserves cellular information better than XVFI.

InterpolAl for IHC image stacks

Tofurther demonstrate the ability of InterpolAl tointerpolate histologi-
cal WSIs, a second human pancreas sample was stained using IHC for
theleukocyte marker CD45. We note the substantial distance between
input slides, 52 pm, equivalent to omitting 12 successive 4-pum-thick
sections (Fig. 2f). The target images, for which authentic validation
slides were available for comparison, are shaded in dark gray, while
the missing slides between the input and target slides are shaded in
light gray (Fig. 2f).

We compared the middle-interpolated slide to the middle authen-
tic validation slide using both linear and InterpolAl models (Fig. 2f).
Infatdense regions, linear interpolation artifacts were evident, while
InterpolAllacked suchartifacts (arrow, Fig. 2f). Additionally, whereas
distinct cells were readily identified in the authenticimage, the linearly
interpolatedimage showed faintly stained cells covered with white hues
resembling fat (right arrowhead, Fig. 2f). Similarly, XVFI generated
slides showed faded and blurred cells and did not accurately preserve
the structure of fat regions, which lacked edges and resembled whites-
pace (dashed arrow, Fig. 2f). In contrast, InterpolAl could interpolate
distinct cells around the fat and preserved most of the ductal and
ECM structures (arrow, Fig. 2f), unlike the linear interpolation (left
arrowhead, Fig. 2f).

Using CODA, the total cell count of CD45 positive (CD45") cells
was determined for linear, XVFI and InterpolAl-interpolated images
and compared to the cell counts in the authentic images, while skip-
pingandinterpolating 7and 12 slides. Linear interpolation resultedin
higher CD45" cell counts than those in authentic slides. Conversely,
XVFlinterpolation resulted in cell counts far lower than those in the
authentic slides. InterpolAl-interpolated slides resulted in lower cell
counts thaninthe authentic slides, but most closely matched the cell
counttrendinauthenticslides (Fig.2g). Linearly interpolated slides had
the highest percentage error in CD45" cell count, reaching more than
100% for certain slides, followed by XVFl and InterpolAl-interpolated
slides, with amean error of 22% in cell count (Fig. 2g).

Thirteen Haralick texture features were evaluated when interpo-
lating 7 and 12 slides. The results of each score were averaged for the
different scenarios assessed (authentic, InterpolAl;,,, InterpolAlg;,;»,
lineary,;, lineargg,,, XVFlg,; and XVFly,1,) (Supplementary Table 1).
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Fig. 3 | InterpolAlinterpolation for stacks of MRI and light-sheet microscopy
images. a, Tissue-cleared light-sheet images were interpolated skipping seven
slides between adjacent sections, thereby generating seven slides. b, Qualitative
comparison of linear, XVFl and InterpolAlinterpolations to the authenticimage
for the middle-interpolated light-sheet image (image 4). Arrowhead shows
linear interpolation creates double boundary lines around bronchioles. In the
second row, the arrowhead shows photobleachingin authentic reduced by linear
interpolation and completely removed by InterpolAl (arrow). Dashed arrow

shows XVFIreduced photobleaching but did not remove it. Second dashed
arrow shows XVFI elongated the right edge of abronchiole. ¢, PCA of 13 Haralick
features for authentic, linear, XVFland InterpolAl-interpolated light-sheet
images for various numbers of skipped light-sheet images. Mean Euclidean
distance of interpolated images from authentic images based on 13 Haralick
features. d, Euclidean distance by slide of interpolated images from authentic
images based on 13 Haralick features for various numbers of skipped light-
sheetimages.

PCA analysis showed that InterpolAl-interpolated slides more closely
represented authentic slide information along principal component
1and linear along component 2, while XVFl interpolated slides were
the furthest away (Fig. 2h). The measurement of the Euclidean dis-
tance between authentic and interpolated images demonstrated that
InterpolAly;,;, more closely represented the authentic slides compared
tobothlinear,,;and XVFly,, (Fig. 2h).

Insum, by interpolating IHC-CD45 stained images and determining
thedifferencein cell count between authentic andinterpolated images,
we show the ability of InterpolAl to interpolate not only multicellular
structures in stacks of histological images, such as ducts and blood
vessels, butalso smaller features, such as individual cells.

InterpolAlfor stacks of light-sheet microscopy images
Next, we applied InterpolAl to interpolate images within a stack
of light-sheet micrographs obtained from a cleared mouse lung.
Light-sheet microscopy presents challenges, including photobleach-
ing and light absorption, which may result in uneven illumination of
the sample, and tissue movement during imaging, which canintroduce
further distortions. Pairs of images were selected skipping sevenimages
fromthe authenticstack (Fig.3a), and interpolated images were com-
pared to their authentic counterparts.

Linear interpolation of light-sheet micrographs created artificial
double boundary lines around the bronchioles, which is biologically

inaccurate (middle row, top arrowhead, Fig. 3b) (bottom row, right
arrowhead, Fig. 3b). Similarly, XVFI created two additional bronchioles
thatdonotexistinthe authenticimageinaccurate (middle row, dashed
arrow, Fig. 3b) and elongated the right edge of a bronchiole (bottom
row, right dashed arrow, Fig. 3b). In contrast, InterpolAl correctly
interpolated images of bronchioles to accurately depict the structure
observed in the authentic image (middle row, arrow, Fig. 3b). The
second row of zoom-ins shows that the authentic image suffers from
artifacts of light absorption and photobleaching at the top left of the
bronchiole, which cause bleeding of the green and red channels into
thebronchiole (bottomrow, left arrowhead, Fig. 3b). Both linear inter-
polationand XVFIreduced these artifacts, but could not remove them
entirely (bottom row, left arrowhead and left dashed arrow, Fig. 3b),
whereas InterpolAl removed the bleed of the red and green channels
(bottomrow, left arrow, Fig. 3b).

Thirteen Haralick texture features were measured to compare
authenticandinterpolated images, wheninterpolating one, threeand
sevenslides. Theresults for each score were averaged for the different
comparisons (authentic, InterpolAly,,, InterpolAlg,,, InterpolAl,;,
linearg,, linear gy, lineargg,;, XVFlyp, XVFlgip; and XVFlg,,) (Sup-
plementary Table 1), and shown in a PCA plane (Fig. 3c). PCA analysis
showed that linearly interpolated images were more closely repre-
sentative of the authentic images compared to InterpolAl and XVFI
interpolatedimages (Fig. 3c). Nevertheless, when considering the mean
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Euclidean distance, InterpolAl outperformed linear interpolation for
each individual skip scenario and outperformed XVFI when skipping
oneand threeslides (Fig. 3c). The Euclidean distance by slideincreased
when interpolating using XVFI or interpolating linearly through the
stack as opposed to InterpolAl, which remained consistent through
the stack (Fig.3d).

Insum, InterpolAl caninterpolate stacks of light-sheet images to
reduce photobleaching and light absorption artifacts present in the
authenticimages, better than XVFI and linear interpolation. Elimina-
tion of such artifacts allows for more accurate 3D reconstructions of
tissue samples.

InterpolAlinterpolation and restoration of ssSTEM images

A stack of serial ssTEM micrographs of the mouse brain was used to
show our ability tointerpolate not only histological sections (Fig. 4a).
The authentic tiles shown Fig. 4a represent a 2,000 x 3,500-pixel tile
ofthe authentic WSI. Thickirregular black lines were observed across
most of the slides in the authentic stack of images, which correspond
to damage caused by unavoidable tissue tear during processing of thin
sections (left column, arrows, Fig. 4b). For arandomly selected subset
of100 consecutive slides fromastack of the >13,000 ssTEM slides, we
found that >70% were damaged, many of them containing more than
one damaged region. Additionally, fainter gray lines were observed,
going horizontally across the authentic images, which are artifacts of
image stitching (top row, bound by red box Fig. 4b).

Interpolation between two undamaged ssTEM slides using Inter-
polAlremoved the damage to the slides while preserving their micro-
anatomical structures, but also substantially reduce stitching artifacts
(right column, Fig. 4b).

Thirteen Haralick features were measured for the authentic
and interpolated images when interpolating one, three and seven
slides. Theresults of each score were averaged for the different tested

scenarios (authentic, InterpolAlg,;, InterpolAlg,s, InterpolAly;,,,
linear,,,, linear s, linear,;, XVFly,, XVFl,; and XVFlg,;) (Sup-
plementary Table 1). PCA showed that InterpolAl-interpolated slides
more closely represented authentic slide information along principal
component 2, while linear along component 1and XVFIbeing the fur-
thest away (Fig. 4c). The short Euclidean distance between authentic
and interpolated images suggests that InterpolAly,;,; more closely
represents the authentic than lineary,, and XVFl;,; and similarly for
the instance of skipping three and seven slides (Fig. 4¢).

In sum, we demonstrated the ability of InterpolAl to eliminate
damageinssTEMslides, allowing for more accurate 3D reconstructions
of neural structures by decreasing the loss in connectivity that arises
due tothe damageinindividual 2D sections.

InterpolAlinterpolation for stacks of MRl images

To assess the ability of InterpolAl to interpolate low-resolution bio-
medical images, we interpolated images within stacks of MRl images
(1x1x1mm). MRIfaces inherent limitations, such as susceptibility
to motion artifacts due to prolonged scan times leading to patient
discomfort and potential for signal loss due to magnetic field inhomo-
geneities that can affect the quality of acquired images. Pairs of images
were selected one every eight images (skip seven) of the original stack
of authenticimages, and the missing seven images were interpolated
(Fig. 3a). Interpolated images were validated against their respective
authenticimages (Fig. 3b).

Linearinterpolation of MRIimages caused band artifacts around
the boundary of the soft tissue, unlike XVFI and InterpolAl (middle
row, Fig. 5b). However, as aresult of thicker slices obtained during MRI
(1 mm), InterpolAl could not always accurately interpolate large struc-
tural changes in soft tissue structures that occur when skipping seven
images (8 mm) (bottomrow, Fig. 5b). Nevertheless, linear interpolation
created astructure that resembled agray smudge with notable overlay
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artifacts, while XVFI created a faint and inaccurate structure (bottom
row, Fig. 5b), unlike InterpolAl.

Thirteen Haralick texture features were measured to compare
authentic and interpolated MRl images, when interpolating one, three
and seven slides. The results for each score were averaged for the dif-
ferent comparisons (Supplementary Table1),and showninaPCA plane
(Fig. 5¢). InterpolAl-interpolated slides represented more closely the
information in the authentic slides, even when skipping seven slides,
compared to linear interpolation and XVFI, which was the furthest.
The averaged values were also used to compute the Euclidean distance
between authentic and interpolated images (Fig. 5c). Skipping seven
slides, InterpolAl-interpolated slides were less than half the Euclidean
distance between the authentic slides and the linearly or XVFlinterpo-
lated slides when skipping only oneslide. The Euclidean distance by slide
further emphasizes the superiority of InterpolAl over linear interpolation
asthe Euclideandistanceincreased when progressing through the stack
of slides and interpolating linearly as opposed to InterpolAl (Fig. 5d).

We demonstrated the ability of InterpolAl to interpolate
low-resolution MRIimages more accurately than linear and XVFlinter-
polations. InterpolAl reduces motionartifactsin MRIimages, whereas
linear interpolation exaggerates these artifacts, which result in band
artifacts. Elimination of such artifacts allows for improved 3D recon-
structions of whole organ structures. However, shorter interpolation
distances might be required to account for large structural changes
that occur as aresult of the low zresolution of MRI.

3D reconstruction of InterpolAl-interpolated images

To demonstrate the application of InterpolAl to restore 3D images of
microanatomical structures obtained from interpolated 2D images,
InterpolAlinterpolation was applied across differentimage modalities,
including stacks of histological (H&E and IHC), light-sheet, ssTEM and
MRIimages. Sematic segmentation and subsequent concatenation
of the 2D segmented images into a volume allowed visualization of
microanatomical featuresin 3D.

Using CODA, we reconstructed in 3D the epithelial duct from
the pancreatic H&E dataset (Fig. 6a). The 3D reconstruction of the
authentic volume skipping seven images displays the loss in ductal
connectivity resulting from the missing slides. Linear interpolation
of the H&E samples created a low-resolution 3D structure of the duct
that was artificially blocky (that is not smooth), and did not preserve
the branching morphology of the duct (yellow zoom-in, arrowhead,
Fig. 6a). Linear interpolation also generated ductal structures that in
parts missed their ductal wall (green zoom-in, arrowhead, Fig. 6a).In
contrast, InterpolAl and XVFI restored the microanatomical connec-
tivity in the 3D reconstruction of the main and smaller branches of the
duct, while also creating asmoother volume without noise propagation
(Supplementary Video 1). Although structurally accurate, XVFI com-
promised the identification of cells in H&E images as demonstrated
inFig. 2d.

Tissue-cleared light-sheetimages were separated by channeland
used toreconstructin3D the bronchioles of amouse lung (Fig. 6b). The
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Nature Methods


http://www.nature.com/naturemethods

Article

https://doi.org/10.1038/s41592-025-02712-4

comparisonofthe authentic volume toadownsampled reconstruction
of the authentic volume (skipping seven images between adjacent z
planes) showed aloss in connectivity of the bronchiolesin 3D as aresult
ofthe missing image scans. The use of all three interpolation methods
to recover missing z planes resulted in improved connectivity of the
bronchiolesin 3D (Fig. 6b). Theresultsin 3D matched those observed
in2D (Fig.3), where all three interpolation methods were comparable
inperformance as demonstrated through 13 Haralick texture features.

Next, segmented ssTEM images were interpolated using linear,
XVFI and InterpolAl interpolation to reconstruct in 3D the synapses
of the mouse brain. A qualitative assessment between the authentic
volume and downsampled recreation of the authentic volume (skip-
ping sevenimages between adjacent z planes) shows theloss in synapse
connectivity (Fig. 6¢). Linear interpolation to recover the missing z
planes results in the creation of a low-resolution volume with blocky
structures (greenzoom-in, arrowhead, Fig. 6¢). Similarly, XVFI created
alow-resolution volume, although less blocky than linear interpola-
tion. Additionally, XVFI generated connected synapses as opposed to
distinct tubules seenin the authentic volume (green zoom-in, dashed
arrows, Fig. 6¢). Conversely, InterpolAl interpolation resulted in a
higher resolution 3D volume, which resembled that of the authentic
volume, and allowed for synapse connectivity to be restored (Sup-
plementary Video 2).

Finally, CODA was used to reconstruct a whole human brain in
3D using the stack of MRIimages. A comparison of the reconstructed
authentic volume to the authentic volume skipping seven images
showed how connectivity was lost as a result of the missing images.
Thereconstructed authentic volume skipping sevenimages also lacked
the topographical structure of the brainseenin the authentic volume,
replacing it with single planes of information (Fig. 6d). Using linear
interpolation to recover the missing or damaged scans resulted in
increased edges, which resembled objects extruding abnormally out of
thebrain. Thisis especially evident around the base of the brain where
the brain stem protrudes and at the top of the brain toward the skull cap
(green zoom-in, arrowhead, Fig. 6d). Linear interpolation also gener-
ated abiologically inaccurate topography of the brain (yellow zoom-in,
arrowhead, Fig. 6d). XVFIgenerated a volume accurateintopography
butfailed tointerpolate branching structuresinthe brain, specifically
thebrainstem (greenzoom-in, dashed arrow, Fig. 6d). Wheninterpolat-
ingimages using InterpolAl, the 3D reconstructed volume resembled
more closely that of the authentic one, with accurate indentations
and topography around the surface of the brain and even accurate
reconstruction of the branching brain stem structure.

Insum, missing or damaged slides and images in biomedicalimage
stacks cause substantial loss in 3D spatial information, which hinders
the accurate 3D reconstruction of microanatomical structures and
whole organs from these image stacks. We demonstrate that linear
interpolationis not sufficiently robust to recover the information lost
incomplex biomedicalimages, resultingininaccurate 3D reconstruc-
tions. While XVFl interpolation preserves the structural connectivity
of most microanatomical structures, itis limited inits ability to gener-
ate distinct and disjointed structures as seen with the ssTEM dataset.
Additionally, as observed with the H&E histology dataset XVFI cannot
preserve thesingle-cell resolution found in H&E images (Fig.2). In con-
trast, the optical flow-based model InterpolAl recovers more informa-
tionto allow for 3D reconstructions that qualitatively and quantitively
resemble their authentic counterparts.

Discussion

The 3D imaging of biomedical samples has become a requirement
as 2D assessments are not sufficient in capturing the content and
morphology of multicellular structures, rare events and spatial rela-
tionships among different cell types'. A multitude of platforms have
been developed to leverage 2D biomedical stacks of histological,
ssTEM and tissue-cleared light-sheet images to reconstruct volumes

of microanatomical structures and whole organs. Such platforms are
highly dependent on the quality of individual 2D images within the
image stacks for accurate volumetric reconstructions. Additionally,
limitations in the z resolution of these 3D platforms often arise due
to missing slides, tissue damage and the high cost associated with
3Dimaging.

Here, we address these challenges by introducing InterpolAl and
its ability to extract and track features in biomedical images using
optical flow forimage interpolation. By interpolating between undam-
aged slides to recover missing or damaged slides, we bridge gaps in
zresolution. This workflow restores the connectivity of continuous
microanatomical structures, such as ducts and blood vessels, in the
3D reconstructions and mitigates issues arising from damaged or
missing slides. Thismethod improves 2D biomedicalimage stacks for
3Dreconstructions, subsequently improving quantitative assessments
of cellular composition, tissue topography and degree of branching of
continuous structures.

We conducted athorough comparative assessment of the Interpo-
Al platformtolinear and XVFlinterpolation methods using 13 Haralick
texture features. Linear interpolation, which averages pixel intensities
that create hued colors and structures, cannot create realistic bio-
medical images. As the number of images skipped increases, linearly
interpolated images further degrade in authenticity, especially for the
images furthest from the input images (middle-interpolated image).
For large number of skipped images (for example, skip seven), the
middle-interpolated image presents strong hues as pixel intensities
deviatelargely between inputimages. XVFlinterpolation, onthe other
hand, could more accurately generate synthetic biomedical images
than linear interpolation, however, XVFI was unable to achieve cel-
lular resolution and was often limited in its ability to restore damage
in images. Conversely, InterpolAl can interpolate biomedical images
thatresemble their authentic counterparts.

For light-sheet microscopy, InterpolAl accurately interpolates
imagesinthezdirection reducing required zsteps duringimage acqui-
sition. This decreases imaging times of an entire sample, as imaging
patterns are oftenimaged tile by tile laterally before moving to the next
zlevel. Collection time increases exponentially with the lateral size of
the sample, from minutes for a10* pum?>sample at a spatial resolution
of 500 nm to a week for a 10® pm?® sample at the same resolution®.
InterpolAlinterpolation helps address this limitation.

InterpolAl has a few limitations, which must be considered for
optimal interpolation results. First, InterpolAl requires well-aligned
images for optimal interpolation. Using misaligned images leads to
model hallucinations, which appear as unrealistic biological struc-
tures (Supplementary Fig.1). InterpolAl handle vertical and horizontal
misalignments well, up to a misalignment distance of 200 um. How-
ever, InterpolAl cannot successfully interpolate images when they are
bi-directionally or diagonally misaligned beyond adistance of 200 pm
or rotated beyond 2°. Second, InterpolAl performs best when using
nondamaged images as input pairs, which can result in the damage
being propagated across the interpolated images. This is shown in
the damage assessment carried out in Supplementary Fig. 2b,f where
positive data (+y axis) points show damage being propagatedininter-
polated images as a result of damaged inputs and negative data (-y
axis) points show damage being restored. Aside from obvious damage
ininputimages such as tissue folds and tears, staininconsistencies are
an important consideration as sudden changes in pixel intensity and
illumination between input images can cause model hallucinations.
Last, InterpolAl generates images based on the two input images pro-
vided and therefore cannot predict rare events, which did not occur
on either of the input images. This is also noticeable from the results
obtained using the MRI dataset with thicker slices (1 mm) compared to
thinly sliced ssTEM, tissue-cleared light-sheet microscopy and histol-
ogyimages (8 nm,2 um). InterpolAl could notaccurately predict large
structural changes in MRIimages when skipping seven slides (8 mm).
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In conclusion, our work goes beyond existing methods of image
translation, such as CycleGANs and diffusion models that translate
the same respective biomedical images from one image domain to
another. Whereas image translation would require physical access to
theslides of interest to be translated, our workflow interpolates miss-
ing, inaccessible or damaged images, eliminates stitching artifacts
and works across diverse multimodal biomedical images (Extended
DataFig.1). Future work could extend InterpolAl'sapplication to other
spatial omics platforms, enhancing the integration of transcriptomic,
proteomic and metabolomic datawith 3D tissue structures. This would
allow for a more precise multimodal analysis and high-resolution tis-
sue atlases.
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Methods

Specimen acquisition

A sample of nondiseased human pancreas tissue was stained with
H&E; another similar sample was stained with leukocyte marker CD45
via IHC (denoted IHC-CD45). Both samples were from individuals
who underwent surgical resection for pancreatic cancer at the Johns
Hopkins Hospital>. The H&E dataset consisted of a stack of 101 serially
sectionedslides at aresolution of 2 x 2 x 4 um.Hand E are standard his-
tological stains that mark nucleiand cellular structures (H) and ECM (E),
respectively. The IHC-CD45 dataset consisted of 275 consecutive slides
inwhich every third section (16 pm apart) was stained, at aresolution
of 2 x2x16 pm, andis as described inKiemen et al.**. CD45 is a general
marker for leukocytes. This retrospective study was approved by the
Johns Hopkins University Institutional Review Board.

Astack of ssTEM micrographs within adensely annotated mouse
visual cortex petascale image volume (public dataset Minnie65) was
obtained through the online Brain Observatory Storage Service and
Database, created and managed by the Johns Hopkins Applied Physics
Laboratory. This dataset consisted of 100 ssTEM slides captured ata
resolution of 8 x 8 x 40 nm? (ref. 7).

Light-sheet microscopy images of mouse lung were obtained from
the Image Data Resource public repository"*. This dataset consisted
of 401 serial light-sheet microscopy images captured at a resolution
0f3.22x3.22 x10 pm.

MRIsamples of human brain were obtained from the Amsterdam
Open MRI Collection (AOMIC)*. Specifically, the PIOP2 (Population
Imaging of Psychology) cohort consisting of structural MRI scans of
students was used. The dataset consisted of 220 structural MRIscans
captured ataresolutionof1x1x1mm.

Segmentation of pancreatic microanatomy in histology slides
The previously developed semantic segmentation model CODA was
leveraged to segment WSIs of H&E-stained pancreas samplesinto their
different microanatomical components®'**. CODA was specifically
trained for the segmentation of microanatomical components of the
pancreas and labeled seven components at a resolution of 2 pum per
pixel, includingislets of Langerhans, ductal epithelium, blood vessels,
fat, acini, ECM and pancreaticintraepithelial neoplasia (PanIN), which
are precursor lesions of pancreatic cancer?.

Interpolation between 2D images

Spatialinterpolation between 2D slides within a stack was carried out
by developing InterpolAl, whichisbased on FILM, amodel previously
developed for temporal interpolation between frames of videos by
Redaetal.’*. Themodel uses a three-step process to interpolate inter-
mediate frames between two input images: a feature extraction pyra-
mid, optical flow estimation and feature fusion and frame synthesis.

Thefeature extraction pyramid consists of six convolutional layers
responsible for extracting features from the input images, each with
increasing kernel size and decreasing stride capturing progressively
larger receptive fields, extracting features from coarser tofiner scales.
This coupled with the use of shared weights across scales, allows the
model to extract features for both small and large motions efficiently.

Thefeatures extracted are then fed into abidirectional optical flow
estimation module. This module calculates the pixel-wise motion vec-
tors (or ‘flows’) between the features of two inputimages at each pyra-
mid level. These flows represent the transformation needed to warp the
features fromone frameto the other. The bidirectional approach allows
the model to capture both forward and backward motion, leading to
more accurate and detailed interpolations™.

With the extracted features and estimated flows, FILM enters the
final fusion stage. The aligned features from both inputimages, along
with the flows and the original input images themselves, are concat-
enated into a single feature pyramid. This captures both the feature
information and the motion dynamics between the two frames. Finally,

a U-Net decoder architecture processes this fused feature pyramid
and synthesizes the final interpolated frame. The U-Net’s skip connec-
tions, which bypass several layers within the network and concatenate
their outputs directly with the outputs of later layers, ensures that the
interpolated frame retains fine details and maintains consistency with
theinputimages™.

FILM used a recursive function (equation (1)), which accounted
forthe number of input frames, n, and the number of recursive passes
over which the model would interpolate, k. This limited the number
of frames that could be interpolated between the input images to be
either one, four, seven or fifteen frames (equation (1)).

f=2"n-1-1 o

Recognizing the need for flexibility in skipping slides based on user
requirements, a time series spanning from 0 to 1 was implemented in
InterpolAl, with step sizes dynamically determined by the number of
skippedslides. This approach generated time points corresponding to
the skipped slides, facilitating variable frame interpolation between
input pairs.

InterpolAlwas pretrained onthe Vimeo-90k dataset, a largescale
dataset of 89,800 high quality videos designed specifically to train
models oriented toward video processing tasks suchas frame interpola-
tion, image denoising and resolution enhancement**. The optical flow
of this model is already robustly pretrained on a diverse set of videos
with different moving objects, such as vehicles, people and smaller
features such as cameras and soccer balls. Retraining of the model
posed two challenges: alack of documentation onretraining and per-
fectly registering histological slides to curate a training dataset. The
focus of InterpolAl on optical flow means that the model is sensitive
to misalignment in the training images, making histological slides an
unfavorable dataset to retrain the optical flow model due to inherent
variability in tissue preparation, staining intensities and sectioning
processes, whichlead to unpredictable distortions and variations that
complicate accurate spatial alignment of a stack of slides.

Forlargeimages such asthose encountered in histology, InterpolAl
provides a tile-and-stitch algorithm to efficiently handle computer
memory limitations. WSIs are tiled to a user defined size 0of 1,024 or
2,048 padded tiles each with an x and y index. Tiled images with the
samexandyindexare thenused as inputs to interpolate images. Once
all tiles are interpolated for each tile pair, the tiles are stitched back
together with the pad area removed for each respective interpolated
zslide. Thisensures the robustness of InterpolAl for not only small but
large images at high magnification.

Two versions of the InterpolAl code were developed, a validation
code and an operation code. The validation code uses a skip-count
algorithmsuchthat theimage being interpolated existsin the provided
folder path but was simply skipped and generated similarly to how
itis presented in this study. The validation code then computes the
Haralick texture features of both the skipped authenticimage and the
respective interpolated image. All Haralick scores are saved into .csv
file from which PCA analysis can be carried out. The operation code
has askip-countalgorithm that generatesimages between eachimage
pair in the provided folder path without skipping any image, thereby
generating missing images.

Registration assessment

Tounderstand and quantify the alignment needed forimage interpola-
tion, the H&E dataset was used. Four different types of misalignment
were considered, including a vertical shift, horizontal shift, diagonal
shiftand rotation (SupplementaryFig.1). Using aligned slides at z =31
and 33 from the H&E dataset, a 3,024 x 3,024 tile was cropped from both
WSIs at the same position. For shift misalignment, the 3,024 x 3,024 tile
from slide 31 was shifted horizontally, vertically and diagonally from
010200 pm and then cropped to a1,024 x 1,024 tile from the center,
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whereas slide 33 was left unshifted and cropped to a1,024 x 1,024 tile
fromthe center of the 3,024 x 3,024 tile. For rotation misalignment, the
3,024 x 3,024 tile from slide 31 was rotated 0 to 200 degrees from its
center and then cropped to a1,024 x 1,024 tile from the center, while
slide33 wasleftunrotated and croppedtoal,024 x 1,024 tile fromthe
centerofthe 3,024 x 3,024 tile. Ataresolutionof2 x 2 x4 umal-degree
rotation fromthe center ofa3,024 x 3,024 tile corresponds to a 75-um
misalignment at the furthest edges from the center of a1,024 x 1,024
tile, asshown below:

3,024 3,024

lmagecenter = < 2 P ) = (1,512, 1,512)

Considering the misalignment of the furthest point from the
center, the distance from the center to the corner (R) is given by:

R =1/(1,512)* + (1,512)* = 2,138.6 pixels
Rym = 2,138.6 pixels + 2 um/pixel = 4,277.2 ym

Using arc length formula (equation (2)) the maximum displace-
ment (As) at the edge furthest from the center of the image can be
calculated as:

As=R,m x0 2)

Calculating for arotation of one degree:

1xm .
0= 180 - 0.01745 radians

As =4,277.2pm x 0.01745 = 74.6 pm

Interpolation using InterpolAl, linear interpolation and XVFl was
conducted between shifted and rotated slide 31 and unchanged slide
33togenerateslide 32, which was then correlated to the authenticslide
32 using Pearson correlation. The Pearson correlation was calculated
using the SciPy stats package available in Python.

Haralick texture features

Thirteen Haralick texture features were calculated to provide a quan-
titative representation of the texture patterns within an image, offer-
ing insights into their spatial arrangements and relationships***.
The 13 features measure the angular second moment, contrast, cor-
relation, sum of squares variance, inverse difference moment, sum
average, sum variance, difference variance, sum entropy, difference
entropy, entropy, information measure of correlation1and information
measure of correlation 2 (refs. 42,43). Contrast measures the intensity
variations between neighboring pixels, correlation gauges the linear
dependency of gray levels, energy represents theimage uniformity and
homogeneity measures the closeness of gray level pairs.

To manage the complexity and high dimensionality of the fea-
ture space, dimensionality reduction was carried out using PCA. PCA
transformed the original set of Haralick features into a reduced set
of principal components, retaining the most important information
while discarding redundant or less informative aspects. Thisreduction
not only simplifies the interpretation of the data, but also allows for a
holistic assessment of image quality, capturing the essential texture
informationin a more compact form.

Additionally, analysis of the Euclidean distances between authen-
tic and interpolated images was computed using the 13 Haralick
features. By considering the Euclidean distances across all selected
Haralick features simultaneously, a comprehensive evaluation of the
overall error value was achieved. This validation process ensured that

the collective impact of texture features was considered, providing
arobust measure of similarity and/or dissimilarity between images.
The combination of Haralick texture features, PCA for dimensional-
ity reduction and Euclidean distance computation offered a system-
atic and effective approach for evaluating image quality and texture
patterns.

Cell detection in histological sections

Tovalidate the (synthetic) interpolated H&E and IHCimages, the CODA
cell detection module was used to count the total number of cells in
H&E images and CD45" cells in IHC and compare these numbers with
those in their respective authentic images’. For this task, the inten-
sity range of blue pixels was first determined for the nuclei of cells,
along with the intensity of brown pixels for positive CD45 stain. Using
k-means clustering, the mode blue pixel intensity was determined and
selected torepresent the hematoxylin channel, while the mode brown
pixelintensity was selected to represent the positive stain. With color
deconvolution, the cells stained with hematoxylin could be extracted
from the remaining tissue, thereby providing a cell count.

Quantification of damage

To understand and quantify the quality of input images required for
image interpolation, adamage assessment was carried out on a subset
of the last 25 consecutive slides from the H&E dataset and 25 images
of the ssTEM dataset (Supplementary Fig. 2). A CODA segmentation
model was trained to detect folds in both datasets and segment them
as damage. Next, interpolation of both datasets was carried out while
skipping three authentic images and interpolating them. The inter-
polated images were subsequently segmented using the same CODA
segmentation model to detect folds as was done with the authentic
images. Using the segmented images, the difference in the totalnumber
offolded pixels betweentheinterpolated images and authenticimages
was determined and divided by the total number of folded pixelsin the
authenticimagesto determine the percentage by which damaged was
reduced throughinterpolation (Supplementary Fig. 2b,f). Segmented
images were also used to plot the folds inboth datasets in3D and show
the reduction in folds through interpolation. The number of folded
pixels in individual 2D images was plotted against the size of the fold
in3Dtoobtainalog-log plot of the reductioninfoldsin3D, asaresult
of interpolation (Supplementary Fig. 2c,g).

3D rendering of interpolated 2D images

InterpolAlwas used tointerpolate stacks of WSIs of missing or damaged
slides, which resulted in a whole restored dataset (Fig. 1b). For image
postprocessing, CODA was used to semantically segment histological
slides and MRI images to reconstruct microanatomical tissue struc-
tures and whole organs in 3D (Fig. 1b)>. Through manual annotations
of microanatomical tissue structures in a small subset of histology
slides and whole organ annotations of the brain in a subset of MRI
images, CODA allowed for two deep learning models to be trained to
recognize these annotations and apply them to the remaining slides
and/or images in the respective datasets, thereby generating stacks
of segmented histology slides and MRl images. Labels within the seg-
mented slides and/orimages, corresponding to the annotations could
thenbe used by CODA toreconstruct and visualize 3D tissue structures
of interest, such as epithelial ducts in the pancreas and whole organs
such as the brain. Similarly, CODA was leveraged to 3D reconstruct
synapses in the mouse brain using presegmented ssTEM slides with
the appropriate synapse label. Tissue-cleared light-sheet images were
separated into their respective red, green and blue channels allowing
for three stacks to be obtained, one for each channel. 3D reconstruc-
tions of structures within the tissue-cleared light-sheet images of
the lung were then generated by creating volumes using stacks of
channel-separated images. Specifically, the red channel was used to
reconstruct the bronchioles in the mouse lung.
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Computing hardware and software

We used Python (v.3.9) and Tensorflow (v.2.10.0) for allimage interpo-
lations and analysis. For the CODA quantifications and 3D renderings,
we used MATLAB (2023a).

Forsmaller sizedimages, computers equipped withasingle NVIDIA
RTX3090 graphical processing unit (GPU) could easily interpolate them.
Forlarger WSIs, with dimensions exceeding 14,000 x 10,000 pixels, using
more GPU power allowed to speed up the interpolation processing times.
To handle these larger images with higher magnifications, we used the
Rockfish cluster at Johns Hopkins University, which is equipped with
nodes containing four NVIDIA A100 GPUs each. This high-performance
computing resource enabled us to interpolate whole slide histological
images in shorter times. In case of no access to GPU clusters, users may
optforatile-andstitch approach providedin our code, which allows for
tiling of large WSIs, interpolating the tiles individually and thenstitching
them back together into WSIs during postprocessing. The codes and
requirements for InterpolAl have been posted on GitHub.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Data are available upon request from the corresponding author. The
light-sheet lung dataset analyzed in this paper is available at https://
doi.org/10.1038/s42003-021-01786-y (ref. 17). The ssTEM dataset
analyzed in this paper is available at https://doi.org/10.60533/BOSS-
2021-TOSY (ref. 48). The MRI dataset analyzed in this paperis available at
https://doi.org/10.18112/openneuro.ds002790.v2.0.0 (ref. 49).

Code availability
Software used in this paper can be accessed at https://github.com/
sjoshil7jhu/InterpolAl.
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Extended Data Fig. 1| A Fundamental comparison between GANs and InterpolAlinterpolation. GANs translate an H&E stained slide to a slide stained with IHC and

vice versa (top panel). InterpolAl interpolates multiple novel slides between two input slides, restoring tissue connectivity (bottom panel). lllustrations created using
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Extended Data Fig. 2| Qualitative comparison of linear and InterpolAl
interpolations to authentic H&E-stained histological slides of ahuman
pancreas when skipping 7 slides for four different ROI’s. (a) Four ROIs were
selected from H&E-stained whole slide images (WSI's). Slides were interpolated
when skipping 7 slides between adjacent sections, thereby generating 7 slides.
(b) The top row of authentic images shows the middle skipped z-slide of all

four different ROIs selected for interpolation. The middle row of zoom-ins

of authentic images shows microanatomical structures observed within the
different ROI's. The third row of zoom-ins shows the CODA classification of these
microanatomical structures. (c) The top row of linearly interpolated images
shows the middle interpolated z-slide of all four different ROI's corresponding to
the authenticimages. The middle row of zoom-ins of linearly interpolated images

shows microanatomical structures generated by linear interpolation within the
different ROI's. The third row of zoom-ins shows the CODA classification of these
linearly interpolated microanatomical structures. (d) The top row of InterpolAl
interpolated images shows the middle interpolated z-slide of all four different
ROI’s corresponding to the authentic images. The middle row of zoom-ins of
InterpolAlinterpolated images shows microanatomical structures generated by
InterpolAl within the different ROI’s. The third row of zoom-ins shows the CODA
classification of these InterpolAl interpolated microanatomical structures.

(e) Euclidean distance by slide of interpolated images from authentic images
based on thirteen Haralick features for ROI1and ROI 2. (f) Percent errorin
CD45+ cell count by slide between authentic and interpolated images when
skipping12slides.
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s42003-021-01786-y. The ssTEM dataset analyzed in this manuscript is available at the following DOI: 10.60533/BOSS-2021-TOSY. The MRI dataset analyzed in this
manuscript is available at the following DOI:10.18112/openneuro.ds002790.v2.0.0.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender ~ Not applicable.

Population characteristics Not applicable.
Recruitment Not applicable
Ethics oversight Not applicable
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Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size This study was carried out using two cohorts: human and mouse. Four imaging modalities were studied: histology, tissue-clearing/light-sheet
microscopy, magnetic resonance imaging, serial section transmission electron microscopy. Four different tissue types were used: human
pancreas, human brain, mouse brain, and mouse lung. This diverse set of data was selected to demonstrate the applicability of our model to a
range of biomedical images with varying resolutions. For all histology, tissue-clearing/light-sheet microscopy and MRI the whole sample which
was available was used, all slides/images. For ssTEM 100 slides were selected from the middle of the volume due to computational limitations
while downloading the entire volume which is greater than 1 petabyte in size.

Data exclusions  No data was excluded.

Replication Defined and set weights used for image generation in this study have been provided in the github repository. Since weights dot not change
after being defined, image generation for the same results is obtainable using the same datasets provided.

Randomization  Samples were divided by the imaging modality used to obtain them. le. Histology (H&E and IHC), Radiology (MRI), etc...

Blinding Not relevant to this study, all metrics were computed for analysis.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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