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InterpolAI: deep learning-based optical flow 
interpolation and restoration of biomedical 
images for improved 3D tissue mapping
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Vasco Queiroga    1,2, Florin A. Selaru4, Marie Gérard5, Daniel Xenes    6, 
Jordan Matelsky6, Brock Wester    6, Arrate Muñoz Barrutia    7, 
Ashley L. Kiemen    1,2,3,8,9, Pei-Hsun Wu    1,2 & Denis Wirtz    1,2,3,8 

Recent advances in imaging and computation have enabled analysis of large 
three-dimensional (3D) biological datasets, revealing spatial composition, 
morphology, cellular interactions and rare events. However, the accuracy 
of these analyses is limited by image quality, which can be compromised by 
missing data, tissue damage or low resolution due to mechanical, temporal 
or financial constraints. Here, we introduce InterpolAI, a method for 
interpolation of synthetic images between pairs of authentic images in a 
stack of images, by leveraging frame interpolation for large image motion, an 
optical flow-based artificial intelligence (AI) model. InterpolAI outperforms 
both linear interpolation and state-of-the-art optical flow-based method 
XVFI, preserving microanatomical features and cell counts, and image 
contrast, variance and luminance. InterpolAI repairs tissue damages and 
reduces stitching artifacts. We validated InterpolAI across multiple imaging 
modalities, species, staining techniques and pixel resolutions. This work 
demonstrates the potential of AI in improving the resolution, throughput 
and quality of image datasets to enable improved 3D imaging.

New three-dimensional (3D) imaging techniques and algorithms that 
integrate large, multimodal datasets have improved assessment of 
tissue anatomy and heterogeneity using anatomical, molecular and 
-omic probes1–8. Across 3D image modalities, a common challenge 
emerges: the lack of resolution due to mechanical and financial con-
straints or to damage and distortion of the tissue. Here, we introduce a 
methodology to repair and restore 3D biological imaging datasets using 
artificial intelligence (AI)-based image interpolation. We demonstrate 

the utility of this method across serial sectioning-based and intact 
imaging datasets.

Both serial sectioning and intact imaging methods present resolu-
tion challenges. Methods that use serial sectioning allow for multiplex-
ing across tens to hundreds of sections2,9,10. However, these methods 
face two resolution-limiting hurdles. First, imaging resolution is lim-
ited by section thickness, typically 4–10 µm for histology and ~40 nm 
for serial section transmission electron microscopy (ssTEM). Spatial 
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augment MRI and computed tomography scans training datasets of 
deep learning models21,27,30.

Despite advances in generative models, limitations persist in 
achieving synthetic biological images that can be used to extract accu-
rate microanatomical information21–28,31–33. Additionally, generative 
models are typically applied to generate different synthetic image 
stains of the same respective slide, but are limited in their ability to 
infer microanatomical structural changes across adjacent interven-
ing slides for microanatomical 3D structure enhancement (Extended 
Data Fig. 1). Generation of synthetically accurate image representa-
tions of subtle or rare image texture features, cell clusters and tissue 
boundaries remains an unmet technical challenge22,26. Here, we explore 
interpolation techniques, such as frame interpolation for large image 
motion (FILM), to restore 3D biological structures31–34. We converted 
the video frame interpolation method FILM into a platform for spatial 
interpolation of synthetic biomedical images called InterpolAI. Using 
InterpolAI, we can propagate information contained in adjacent input 
slides, which restores z axis resolution of 3D microanatomical struc-
tures. Interpolation models such as InterpolAI can generate missing 
slides without any pevious access or knowledge of the information on 
those slides (Extended Data Fig. 1).

Optical flow-based models have been used for temporal inter-
polation and video frame upscaling, stemming from a need for more 

resolution is further limited when intermixing imaging modalities at 
regular intervals within the stack of tissue sections, for instance by 
interlacing sections stained with hematoxylin and eosin (H&E) and 
sections stained with antibodies via immunohistochemistry (IHC) or 
molecular probes via spatial transcriptomics6,9–12. Second, axial spatial 
resolution can be reduced by physical artifacts caused during section-
ing, including tissue section splitting, folding and warping, which 
limit the ability to reconstruct continuous structures such as ducts 
and blood vessels4,13,14. In contrast, intact imaging, such as tissue clear-
ing, magnetic resonance imaging (MRI) and computed tomography, 
enables 3D imaging of continuous structures15–17. However, resolution 
problems persist, caused by photobleaching, light absorption, motion 
artifacts and signal loss, which can result in loss of tissue connectivity 
and clarity18–20.

A promising solution lies in the application of generative models 
and interpolation techniques to enhance the quality of 3D reconstruc-
tions. Various generative deep learning models have been employed 
to synthesize tissue images, including CycleGANs (cycle-consistent 
generative adversarial networks) and diffusion models21–28. CycleGANs 
are models that allow for cross-modality translation (Extended Data 
Fig. 1). They have been used for the transformation of H&E-stained 
images into their respective synthetic IHC-stained images that mark 
specific proteins in tissues23–25,29. Diffusion models have been used to 
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Fig. 1 | Interpolation workflow and test datasets. a, Samples were obtained from 
two species, mouse and human. Four different organs were analyzed: human 
pancreas, human brain, mouse brain and mouse lung. Five imaging modalities 
were tested: H&E-stained histological slides, IHC stained histological slides, MRI, 
serial ssTEM slides and combined tissue clearing and light-sheet microscopy.  
b, Aligned slides are manually searched through to identify missing or damaged 
slides, and damaged slides are removed from the stack of slides. InterpolAI 

interpolation is performed using the sections adjacent to the damaged or 
missing slides as inputs to recreate slides that were stained differently, missing 
or damaged, resulting in a uniform stack of slides. Using CODA, slides are 
segmented into labeled tissue masks, with each label representing a different 
microanatomical structure in the slide, which is then used to recreate and 
visualize microanatomical 3D structures in the tissue sample. Illustrations 
created using BioRender.com.
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accurate and natural motion representation between frames in video 
sequences. The concept, which estimates the apparent motion of 
objects between consecutive images based on changes in brightness 
between frames, was first introduced in the 1980s by Horn and Schunck, 
who proposed a variational method to compute motion vectors in 
a scene35. Their method assumed that certain properties of a scene, 
such as brightness, remained consistent between frames, allowing 
for the calculation of motion vectors for each pixel. These vectors 
describe how much and in which direction each pixel moves from one 
frame to the next. Early optical flow methods were computationally 
expensive and prone to inaccuracies and the field has since advanced 
with learning-based approaches. Convolutional neural networks and 
later models such as recurrent neural networks have improved motion 
prediction and image synthesis36,37.

Here, we demonstrate that interpolation of biological images 
using InterpolAI provides superior performance compared to the 
state-of-the-art optical flow model XVFI (extreme video frame interpo-
lation)38 and linear interpolation. InterpolAI-synthesized images can 
reconstruct microanatomical features, improve image contrast and 
restore cell counts in damaged or missing slides. Using InterpolAI, 3D 
reconstructions of semantically segmented synthetic images of com-
plex microanatomical structures—such as ducts and blood vessels—
feature fewer artifacts than original damaged datasets, as assessed 
via 13 Haralick features. The versatility of InterpolAI is shown by its 
applications to different 3D imaging modalities (histological slides, 
light-sheet, ssTEM, MRI), species (human, mouse), organs (pancreas, 
brain, lungs) and pixel resolutions (8 nm, 2 µm, 1 mm). InterpolAI rep-
resents an important advancement by combining deep learning with 
motion estimation to handle large movements, making it a valuable tool 
for enhancing spatial resolution and recovering biological information.

Results
Multimodal tissue cohorts and interpolation workflows
We applied InterpolAI, a new interpolation workflow based on optical 
flow, to restore damages in stacks of two-dimensional (2D) images to 
recover microanatomical features lost in 3D reconstructions of tis-
sue architecture and composition (Fig. 1)27. We tested InterpolAI for 
a nondiseased pancreatic tissue cohort stained with H&E and IHC, 
a stack of ssTEM micrographs of thin sections of the mouse brain, a 
mouse lung tissue cleared and imaged under light-sheet microscopy, 
and a structural MRI dataset of the human brain. The selection of these 
datasets encompassed different image size and resolution, species, 
tissue types, imaging modalities (histology, tissue-cleared light-sheet 
microscopy, ssTEM, structural MRI) and magnifications. This diversity 
of datasets ensured that the robustness of InterpolAI was evaluated 
across a broad spectrum of imaging modalities.

InterpolAI uses pairs of undamaged 2D images from an image stack 
as inputs to improve spatial resolution or recover lost microanatomical 

information (Fig. 1b). The user specifies the number of images to be 
interpolated based on the number of damaged or missing images in 
the image stack. Using the output interpolated 2D image stacks, 3D 
volumes can be reconstructed without missing or damaged images 
(Fig. 1b), which improved spatial resolution and reconstruction of 
tissue components in 3D (Fig. 1b).

InterpolAI interpolation for stacks of histological slides
We tested the ability of InterpolAI to interpolate whole slide images 
(WSIs) within a stack of histological images from human pancreatic 
tissue samples. Histological slides are often lost or damaged due to 
defects created during tissue sectioning or improper storage and 
documentation13,14. The ability of InterpolAI to interpolate slides was 
compared to XVFI, a state-of-the-art optical flow-based interpolation 
method, and linear interpolation of the same slides and then compared 
to the corresponding authentic slide (Fig. 2)32,39–41. To qualitatively 
compare the interpolated slides, two regions of interest (ROI) from 
the 101 serially sectioned and H&E-stained human pancreas dataset 
were selected based on the anatomical structures present. These ROI 
had a total of eight tissue components, including islets of Langerhans, 
ductal epithelium, blood vessels, fat, acini, extracellular matrix (ECM), 
whitespace and PanIN (precursor) lesions. Two images were selected 
one every eight images (denoted skip seven) of the original stack of 
authentic images, and the missing seven images were interpolated 
(Fig. 2a). Interpolated images were compared against their respective 
authentic images (Fig. 2b,c).

Due to their complex branching character within the first ROI, 
which represent a 3D imaging challenge, we examined ducts and blood 
vessels (Fig. 2b). Comparison with authentic image of the duct showed 
that the damage was fixed by InterpolAI interpolation (top row, top 
arrow, Fig. 2b). In contrast, the epithelium layer of the duct showed con-
siderable noise in the linearly interpolated image due to pixel averaging 
(top row, bottom arrowhead, Fig. 2b). This caused overlay artifacts that 
were absent in InterpolAI, which tracked pixel ‘movements’ using opti-
cal flow for a sharper image. Linear interpolation improperly replaced 
the damaged areas with acinus-like material instead of whitespace in 
the authentic slide (top row, top arrowhead, Fig. 2b). In contrast, Inter-
polAI successfully removed the damage and preserved the whitespace 
(top row, top arrow, Fig. 2b). Similarly to InterpolAI, XVFI removed a 
notable amount of damage replacing it with whitespace, however, 
some black damage artifacts remained (top row, top dashed arrow, 
Fig. 2b). Unlike InterpolAI, XVFI also incorrectly generated hued acini 
structures within the whitespace it interpolated (top row, right dashed 
arrow, Fig. 2b). Furthermore, InterpolAI preserved the central structure 
of the duct, whereas linear interpolation thinned and elongated the 
lumen (top row, middle arrowhead, Fig. 2b).

The superiority of InterpolAI over linear interpolation was further 
observed in blood vessels (bottom row, bottom arrowhead, Fig. 2b). 

Fig. 2 | Comparison of linear, XVFI and InterpolAI interpolations for 
pancreatic histology image stacks. a, ROI were selected from WSIs to include 
all microanatomical features (islets, ducts, vessels, fat, acini, ECM and PanIN). 
Slides were interpolated, skipping seven slides between adjacent sections, 
generating seven slides. b, ROI 1 shows a comparison of interpolated to 
the authentic ROI for the middle-interpolated image for ducts and vessels. 
Arrowheads show linear interpolation replacing damage with acini as opposed 
to whitespace, creating noise around the ducts, incorrectly generating fat 
and unable to preserve vessel structure. Dashed arrows show XVFI removed 
damage, kept some black damage artifacts and incorrectly generated hued acini 
within the interpolated whitespace. Arrow shows InterpolAI correctly restored 
whitespace. c, ROI 2 shows a comparison of interpolated to the authentic ROI for 
the middle-interpolated image for ducts, fat and vessels. Arrowheads show linear 
interpolation creates duct lumen and fat shadows resembling islets as well as 
nonexistent fat regions. Red boxes show XVFI was unable to interpolate cellular 
information unlike InterpolAI. Dashed arrows show XVFI created a purple hued 

band, lacking cell nuclei around the lumen of the duct. d, Cell counts comparison 
between authentic H&E and interpolated images, and percentage error in cell 
counts. e, PCA of 13 Haralick features for authentic, and interpolated images for 
various numbers of skipped images. Mean Euclidean distance of interpolated 
images from authentic images based on 13 Haralick features. f, IHC slides were 
interpolated and compared to authentic slides for validation. Middle slide is 
compared with the interpolated images. Arrow shows InterpolAI preserves 
vessel structure, unlike linear interpolation, which was also unable to preserve 
fat domains such as XVFI (arrowheads and dashed arrow). g, Comparison of 
CD45+ cell counts in authentic images and interpolated images when skipping 
7 and 12 slides. h, PCA of 13 Haralick features for authentic and interpolated 
IHC images for various numbers of skipped images. Mean Euclidean distance 
of interpolated images from authentic images is based on 13 Haralick features. 
Error bars represent mean ± s.d. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001. 
Supplementary Table 2 for exact P values calculated via two-tailed Mann–
Whitney U-test, mean and s.d.
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Overlay artifacts were present throughout the entire structure of the 
blood vessel when using linear interpolation (bottom arrow, Fig. 2b). 
Unlike InterpolAI, linear interpolation could not preserve the struc-
ture of the blood vessel (Fig. 2b). Linear interpolation also incorrectly 
generated regions of fat that were absent in the authentic images (bot-
tom row, top arrowhead, Fig. 2b). While XVFI accurately interpolated 
the structure of the blood vessel, the sharpness of the interpolated 
image was degraded compared to the authentic and InterpolAI images, 
resulting in cells in the acini that looked blurred or absent (bottom 
row, Fig. 2b).

In the second ROI, chosen because it was enriched in ducts, fat 
and islets, linear interpolation created an artificial shadow in the duct 
lumen (top row, top arrowhead, Fig. 2c). XVFI accurately interpolated 
the structure of the duct but again was unable to interpolate cellular 
information, specifically epithelial cells lining the duct. XVFI created 
a purple hued band that lacked cell nuclei around the lumen of the 
duct (top row, dashed arrows, Fig. 2c and inset zoom-in). In contrast, 
InterpolAI accurately interpolated the duct, while retaining cellular 
information (top row, Fig. 2c and inset zoom-in). Other key structures 
included fat and islets, which were typically presented as small and 
faint morphologies (bottom row, Fig. 2c). The authentic slide contained 
eight fat and five islets structures, however, linear interpolated images 
showed shadows of fat where real fat was located (bottom row, top 
arrowhead, Fig. 2c). Additionally, it generated nonexistent fat (bottom 
row, bottom arrowhead Fig. 2c). These fat shadows could be wrongly 
interpreted as islets, especially in regions where islets were present 
(bottom row Fig. 2c). Although InterpolAI struggled with overlapping 
fat, it properly interpolated distinct fat without artifacts and could 
clearly distinguish islets from fat.

Using CODA cell detection module, the total cell counts were 
computed for each of the interpolated H&E images and compared 
to corresponding counts in authentic images. This cell count was 
repeated for each scenario of skipping one, three and seven slides 
(Fig. 2d). Linear interpolation consistently generated images contain-
ing more cells than in the authentic images, as a result of overlay arti-
facts. XVFI was unable to interpolate cellular information and instead 
generated images that appeared blurred or out of focus, resulting in 
images displaying far fewer cells than the authentic images. While 
InterpolAI-interpolated images also generated more cells on average 
than in the authentic images, the percentage error in cell count for the 
stack of InterpolAI-interpolated images was <5% for each interpolation 
scenario. Linear interpolation resulted in a percentage error in cell 
count >10% and XVFI had a percentage error in cell count >20% for each 
interpolation scenario (Fig. 2d).

Thirteen Haralick features (angular second moment, contrast, 
correlation, sum of squares variance, inverse difference moment, sum 
average, sum variance, difference variance, sum entropy, difference 
entropy, entropy, information measure of correlation 1 and informa-
tion measure of correlation 2) were measured to evaluate the quality of  
interpolated images42,43. The results of each score were averaged for 
the different tested scenarios (authentic, InterpolAIskip1, InterpolAIskip3, 
InterpolAIskip7, linearskip1, linearskip3, linearskip7, XVFIskip1, XVFIskip3 and 
XVFIskip7) (Supplementary Table 1), which allowed for principal com-
ponent analysis (PCA) to be carried out (Fig. 2e). This analysis dem-
onstrated that the InterpolAI-interpolated slides represented more 
closely the information in the authentic slides, even when skipping 
seven slides, compared to linear interpolation and XVFI, which was 
the furthest from authentic images. The Euclidean distance of the 
13 Haralick features between authentic and interpolated images was 
computed (Fig. 2e). Even when skipping seven slides, InterpolAI images 
were less than half the distance from authentic images for linearly 
interpolated images when skipping just one slide. When comparing 
independent interpolation scenarios between InterpolAI and XVFI, 
InterpolAI images were also less than half the distance of XVFI images 
to the authentic images.

Standard metrics, such as mean square error, structural similarity 
index measure, peak signal-to-noise ratio, Spearman correlation, Jac-
card correlation, Sobel filter and channel wise pixel-to-pixel intensity 
correlation could not quantify the (very visible) structural errors in the 
microanatomical features generated by linear interpolation (Fig. 2b,c). 
Acini, which are the dominant structure in the healthy pancreas, could 
easily be interpolated, resulting in similar metric values for linear and 
InterpolAI, since these metrics are less sensitive to small-pixel devia-
tions compared to large-pixel deviations. We attempted masking acini 
to focus on microanatomical structures, but registration differences 
between images only highlighted alignment issues rather than inter-
polation quality.

Validation with expert pathologists at the Johns Hopkins School 
of Medicine (GI division, Department of Pathology) was attempted to 
determine the authenticity of interpolated images. Initially, patholo-
gists were unable to distinguish microanatomical differences between 
authentic and InterpolAI-generated images. Over time, pathologists 
distinguished interpolated from authentic images by their reduced 
damage artifacts.

In sum, InterpolAI can accurately interpolate damaged or missing 
H&E-stained histological images, which restores lost information in 
stacks of 2D images and, consequently, improves connectivity of 3D 
continuous microanatomical structures (additional details below). 
Unlike linear interpolation, InterpolAI does not generate nonexistent 
microanatomical structures, such as ducts or fat in pancreatic tissues, 
and preserves cellular information better than XVFI.

InterpolAI for IHC image stacks
To further demonstrate the ability of InterpolAI to interpolate histologi-
cal WSIs, a second human pancreas sample was stained using IHC for 
the leukocyte marker CD45. We note the substantial distance between 
input slides, 52 μm, equivalent to omitting 12 successive 4-μm-thick 
sections (Fig. 2f). The target images, for which authentic validation 
slides were available for comparison, are shaded in dark gray, while 
the missing slides between the input and target slides are shaded in 
light gray (Fig. 2f).

We compared the middle-interpolated slide to the middle authen-
tic validation slide using both linear and InterpolAI models (Fig. 2f ). 
In fat dense regions, linear interpolation artifacts were evident, while 
InterpolAI lacked such artifacts (arrow, Fig. 2f). Additionally, whereas 
distinct cells were readily identified in the authentic image, the linearly 
interpolated image showed faintly stained cells covered with white hues 
resembling fat (right arrowhead, Fig. 2f). Similarly, XVFI generated 
slides showed faded and blurred cells and did not accurately preserve 
the structure of fat regions, which lacked edges and resembled whites-
pace (dashed arrow, Fig. 2f). In contrast, InterpolAI could interpolate 
distinct cells around the fat and preserved most of the ductal and 
ECM structures (arrow, Fig. 2f), unlike the linear interpolation (left 
arrowhead, Fig. 2f).

Using CODA, the total cell count of CD45 positive (CD45+) cells 
was determined for linear, XVFI and InterpolAI-interpolated images 
and compared to the cell counts in the authentic images, while skip-
ping and interpolating 7 and 12 slides. Linear interpolation resulted in 
higher CD45+ cell counts than those in authentic slides. Conversely, 
XVFI interpolation resulted in cell counts far lower than those in the 
authentic slides. InterpolAI-interpolated slides resulted in lower cell 
counts than in the authentic slides, but most closely matched the cell 
count trend in authentic slides (Fig. 2g). Linearly interpolated slides had 
the highest percentage error in CD45+ cell count, reaching more than 
100% for certain slides, followed by XVFI and InterpolAI-interpolated 
slides, with a mean error of 22% in cell count (Fig. 2g).

Thirteen Haralick texture features were evaluated when interpo-
lating 7 and 12 slides. The results of each score were averaged for the 
different scenarios assessed (authentic, InterpolAIskip7, InterpolAIskip12, 
linearskip7, linearskip12, XVFIskip7 and XVFIskip12) (Supplementary Table 1). 
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PCA analysis showed that InterpolAI-interpolated slides more closely 
represented authentic slide information along principal component 
1 and linear along component 2, while XVFI interpolated slides were 
the furthest away (Fig. 2h). The measurement of the Euclidean dis-
tance between authentic and interpolated images demonstrated that  
InterpolAIskip12 more closely represented the authentic slides compared 
to both linearskip7 and XVFIskip7 (Fig. 2h).

In sum, by interpolating IHC-CD45 stained images and determining 
the difference in cell count between authentic and interpolated images, 
we show the ability of InterpolAI to interpolate not only multicellular 
structures in stacks of histological images, such as ducts and blood 
vessels, but also smaller features, such as individual cells.

InterpolAI for stacks of light-sheet microscopy images
Next, we applied InterpolAI to interpolate images within a stack 
of light-sheet micrographs obtained from a cleared mouse lung. 
Light-sheet microscopy presents challenges, including photobleach-
ing and light absorption, which may result in uneven illumination of 
the sample, and tissue movement during imaging, which can introduce 
further distortions. Pairs of images were selected skipping seven images 
from the authentic stack (Fig. 3a), and interpolated images were com-
pared to their authentic counterparts.

Linear interpolation of light-sheet micrographs created artificial 
double boundary lines around the bronchioles, which is biologically 

inaccurate (middle row, top arrowhead, Fig. 3b) (bottom row, right 
arrowhead, Fig. 3b). Similarly, XVFI created two additional bronchioles 
that do not exist in the authentic image inaccurate (middle row, dashed 
arrow, Fig. 3b) and elongated the right edge of a bronchiole (bottom 
row, right dashed arrow, Fig. 3b). In contrast, InterpolAI correctly 
interpolated images of bronchioles to accurately depict the structure 
observed in the authentic image (middle row, arrow, Fig. 3b). The 
second row of zoom-ins shows that the authentic image suffers from 
artifacts of light absorption and photobleaching at the top left of the 
bronchiole, which cause bleeding of the green and red channels into 
the bronchiole (bottom row, left arrowhead, Fig. 3b). Both linear inter-
polation and XVFI reduced these artifacts, but could not remove them 
entirely (bottom row, left arrowhead and left dashed arrow, Fig. 3b), 
whereas InterpolAI removed the bleed of the red and green channels 
(bottom row, left arrow, Fig. 3b).

Thirteen Haralick texture features were measured to compare 
authentic and interpolated images, when interpolating one, three and 
seven slides. The results for each score were averaged for the different 
comparisons (authentic, InterpolAIskip1, InterpolAIskip3, InterpolAIskip7, 
linearskip1, linearskip3, linearskip7, XVFIskip1, XVFIskip3 and XVFIskip7) (Sup-
plementary Table 1), and shown in a PCA plane (Fig. 3c). PCA analysis 
showed that linearly interpolated images were more closely repre-
sentative of the authentic images compared to InterpolAI and XVFI 
interpolated images (Fig. 3c). Nevertheless, when considering the mean 
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Euclidean distance, InterpolAI outperformed linear interpolation for 
each individual skip scenario and outperformed XVFI when skipping 
one and three slides (Fig. 3c). The Euclidean distance by slide increased 
when interpolating using XVFI or interpolating linearly through the 
stack as opposed to InterpolAI, which remained consistent through 
the stack (Fig. 3d).

In sum, InterpolAI can interpolate stacks of light-sheet images to 
reduce photobleaching and light absorption artifacts present in the 
authentic images, better than XVFI and linear interpolation. Elimina-
tion of such artifacts allows for more accurate 3D reconstructions of 
tissue samples.

InterpolAI interpolation and restoration of ssTEM images
A stack of serial ssTEM micrographs of the mouse brain was used to 
show our ability to interpolate not only histological sections (Fig. 4a). 
The authentic tiles shown Fig. 4a represent a 2,000 × 3,500-pixel tile 
of the authentic WSI. Thick irregular black lines were observed across 
most of the slides in the authentic stack of images, which correspond 
to damage caused by unavoidable tissue tear during processing of thin 
sections (left column, arrows, Fig. 4b). For a randomly selected subset 
of 100 consecutive slides from a stack of the >13,000 ssTEM slides, we 
found that >70% were damaged, many of them containing more than 
one damaged region. Additionally, fainter gray lines were observed, 
going horizontally across the authentic images, which are artifacts of 
image stitching (top row, bound by red box Fig. 4b).

Interpolation between two undamaged ssTEM slides using Inter-
polAI removed the damage to the slides while preserving their micro-
anatomical structures, but also substantially reduce stitching artifacts 
(right column, Fig. 4b).

Thirteen Haralick features were measured for the authentic 
and interpolated images when interpolating one, three and seven 
slides. The results of each score were averaged for the different tested 

scenarios (authentic, InterpolAIskip1, InterpolAIskip3, InterpolAIskip7, 
linearskip1, linearskip3, linearskip7, XVFIskip1, XVFIskip3 and XVFIskip7) (Sup-
plementary Table 1). PCA showed that InterpolAI-interpolated slides 
more closely represented authentic slide information along principal 
component 2, while linear along component 1 and XVFI being the fur-
thest away (Fig. 4c). The short Euclidean distance between authentic 
and interpolated images suggests that InterpolAIskip1 more closely 
represents the authentic than linearskip1 and XVFIskip1 and similarly for 
the instance of skipping three and seven slides (Fig. 4c).

In sum, we demonstrated the ability of InterpolAI to eliminate 
damage in ssTEM slides, allowing for more accurate 3D reconstructions 
of neural structures by decreasing the loss in connectivity that arises 
due to the damage in individual 2D sections.

InterpolAI interpolation for stacks of MRI images
To assess the ability of InterpolAI to interpolate low-resolution bio-
medical images, we interpolated images within stacks of MRI images 
(1 × 1 × 1 mm). MRI faces inherent limitations, such as susceptibility 
to motion artifacts due to prolonged scan times leading to patient 
discomfort and potential for signal loss due to magnetic field inhomo-
geneities that can affect the quality of acquired images. Pairs of images 
were selected one every eight images (skip seven) of the original stack 
of authentic images, and the missing seven images were interpolated 
(Fig. 3a). Interpolated images were validated against their respective 
authentic images (Fig. 3b).

Linear interpolation of MRI images caused band artifacts around 
the boundary of the soft tissue, unlike XVFI and InterpolAI (middle 
row, Fig. 5b). However, as a result of thicker slices obtained during MRI 
(1 mm), InterpolAI could not always accurately interpolate large struc-
tural changes in soft tissue structures that occur when skipping seven 
images (8 mm) (bottom row, Fig. 5b). Nevertheless, linear interpolation 
created a structure that resembled a gray smudge with notable overlay 
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artifacts, while XVFI created a faint and inaccurate structure (bottom 
row, Fig. 5b), unlike InterpolAI.

Thirteen Haralick texture features were measured to compare 
authentic and interpolated MRI images, when interpolating one, three 
and seven slides. The results for each score were averaged for the dif-
ferent comparisons (Supplementary Table 1), and shown in a PCA plane 
(Fig. 5c). InterpolAI-interpolated slides represented more closely the 
information in the authentic slides, even when skipping seven slides, 
compared to linear interpolation and XVFI, which was the furthest. 
The averaged values were also used to compute the Euclidean distance 
between authentic and interpolated images (Fig. 5c). Skipping seven 
slides, InterpolAI-interpolated slides were less than half the Euclidean 
distance between the authentic slides and the linearly or XVFI interpo-
lated slides when skipping only one slide. The Euclidean distance by slide 
further emphasizes the superiority of InterpolAI over linear interpolation 
as the Euclidean distance increased when progressing through the stack 
of slides and interpolating linearly as opposed to InterpolAI (Fig. 5d).

We demonstrated the ability of InterpolAI to interpolate 
low-resolution MRI images more accurately than linear and XVFI inter-
polations. InterpolAI reduces motion artifacts in MRI images, whereas 
linear interpolation exaggerates these artifacts, which result in band 
artifacts. Elimination of such artifacts allows for improved 3D recon-
structions of whole organ structures. However, shorter interpolation 
distances might be required to account for large structural changes 
that occur as a result of the low z resolution of MRI.

3D reconstruction of InterpolAI-interpolated images
To demonstrate the application of InterpolAI to restore 3D images of 
microanatomical structures obtained from interpolated 2D images, 
InterpolAI interpolation was applied across different image modalities, 
including stacks of histological (H&E and IHC), light-sheet, ssTEM and 
MRI images. Sematic segmentation and subsequent concatenation 
of the 2D segmented images into a volume allowed visualization of 
microanatomical features in 3D.

Using CODA, we reconstructed in 3D the epithelial duct from 
the pancreatic H&E dataset (Fig. 6a). The 3D reconstruction of the 
authentic volume skipping seven images displays the loss in ductal 
connectivity resulting from the missing slides. Linear interpolation 
of the H&E samples created a low-resolution 3D structure of the duct 
that was artificially blocky (that is not smooth), and did not preserve 
the branching morphology of the duct (yellow zoom-in, arrowhead, 
Fig. 6a). Linear interpolation also generated ductal structures that in 
parts missed their ductal wall (green zoom-in, arrowhead, Fig. 6a). In 
contrast, InterpolAI and XVFI restored the microanatomical connec-
tivity in the 3D reconstruction of the main and smaller branches of the 
duct, while also creating a smoother volume without noise propagation 
(Supplementary Video 1). Although structurally accurate, XVFI com-
promised the identification of cells in H&E images as demonstrated 
in Fig. 2d.

Tissue-cleared light-sheet images were separated by channel and 
used to reconstruct in 3D the bronchioles of a mouse lung (Fig. 6b). The 
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comparison of the authentic volume to a downsampled reconstruction 
of the authentic volume (skipping seven images between adjacent z 
planes) showed a loss in connectivity of the bronchioles in 3D as a result 
of the missing image scans. The use of all three interpolation methods 
to recover missing z planes resulted in improved connectivity of the 
bronchioles in 3D (Fig. 6b). The results in 3D matched those observed 
in 2D (Fig. 3), where all three interpolation methods were comparable 
in performance as demonstrated through 13 Haralick texture features.

Next, segmented ssTEM images were interpolated using linear, 
XVFI and InterpolAI interpolation to reconstruct in 3D the synapses 
of the mouse brain. A qualitative assessment between the authentic 
volume and downsampled recreation of the authentic volume (skip-
ping seven images between adjacent z planes) shows the loss in synapse 
connectivity (Fig. 6c). Linear interpolation to recover the missing z 
planes results in the creation of a low-resolution volume with blocky 
structures (green zoom-in, arrowhead, Fig. 6c). Similarly, XVFI created 
a low-resolution volume, although less blocky than linear interpola-
tion. Additionally, XVFI generated connected synapses as opposed to 
distinct tubules seen in the authentic volume (green zoom-in, dashed 
arrows, Fig. 6c). Conversely, InterpolAI interpolation resulted in a 
higher resolution 3D volume, which resembled that of the authentic 
volume, and allowed for synapse connectivity to be restored (Sup-
plementary Video 2).

Finally, CODA was used to reconstruct a whole human brain in 
3D using the stack of MRI images. A comparison of the reconstructed 
authentic volume to the authentic volume skipping seven images 
showed how connectivity was lost as a result of the missing images. 
The reconstructed authentic volume skipping seven images also lacked 
the topographical structure of the brain seen in the authentic volume, 
replacing it with single planes of information (Fig. 6d). Using linear 
interpolation to recover the missing or damaged scans resulted in 
increased edges, which resembled objects extruding abnormally out of 
the brain. This is especially evident around the base of the brain where 
the brain stem protrudes and at the top of the brain toward the skull cap 
(green zoom-in, arrowhead, Fig. 6d). Linear interpolation also gener-
ated a biologically inaccurate topography of the brain (yellow zoom-in, 
arrowhead, Fig. 6d). XVFI generated a volume accurate in topography 
but failed to interpolate branching structures in the brain, specifically 
the brain stem (green zoom-in, dashed arrow, Fig. 6d). When interpolat-
ing images using InterpolAI, the 3D reconstructed volume resembled 
more closely that of the authentic one, with accurate indentations 
and topography around the surface of the brain and even accurate 
reconstruction of the branching brain stem structure.

In sum, missing or damaged slides and images in biomedical image 
stacks cause substantial loss in 3D spatial information, which hinders 
the accurate 3D reconstruction of microanatomical structures and 
whole organs from these image stacks. We demonstrate that linear 
interpolation is not sufficiently robust to recover the information lost 
in complex biomedical images, resulting in inaccurate 3D reconstruc-
tions. While XVFI interpolation preserves the structural connectivity 
of most microanatomical structures, it is limited in its ability to gener-
ate distinct and disjointed structures as seen with the ssTEM dataset. 
Additionally, as observed with the H&E histology dataset XVFI cannot 
preserve the single-cell resolution found in H&E images (Fig. 2). In con-
trast, the optical flow-based model InterpolAI recovers more informa-
tion to allow for 3D reconstructions that qualitatively and quantitively 
resemble their authentic counterparts.

Discussion
The 3D imaging of biomedical samples has become a requirement 
as 2D assessments are not sufficient in capturing the content and 
morphology of multicellular structures, rare events and spatial rela-
tionships among different cell types1. A multitude of platforms have 
been developed to leverage 2D biomedical stacks of histological, 
ssTEM and tissue-cleared light-sheet images to reconstruct volumes 

of microanatomical structures and whole organs. Such platforms are 
highly dependent on the quality of individual 2D images within the 
image stacks for accurate volumetric reconstructions. Additionally, 
limitations in the z resolution of these 3D platforms often arise due 
to missing slides, tissue damage and the high cost associated with 
3D imaging.

Here, we address these challenges by introducing InterpolAI and 
its ability to extract and track features in biomedical images using 
optical flow for image interpolation. By interpolating between undam-
aged slides to recover missing or damaged slides, we bridge gaps in 
z resolution. This workflow restores the connectivity of continuous 
microanatomical structures, such as ducts and blood vessels, in the 
3D reconstructions and mitigates issues arising from damaged or 
missing slides. This method improves 2D biomedical image stacks for 
3D reconstructions, subsequently improving quantitative assessments 
of cellular composition, tissue topography and degree of branching of 
continuous structures.

We conducted a thorough comparative assessment of the Interpo-
lAI platform to linear and XVFI interpolation methods using 13 Haralick 
texture features. Linear interpolation, which averages pixel intensities 
that create hued colors and structures, cannot create realistic bio-
medical images. As the number of images skipped increases, linearly 
interpolated images further degrade in authenticity, especially for the 
images furthest from the input images (middle-interpolated image). 
For large number of skipped images (for example, skip seven), the 
middle-interpolated image presents strong hues as pixel intensities 
deviate largely between input images. XVFI interpolation, on the other 
hand, could more accurately generate synthetic biomedical images 
than linear interpolation, however, XVFI was unable to achieve cel-
lular resolution and was often limited in its ability to restore damage 
in images. Conversely, InterpolAI can interpolate biomedical images 
that resemble their authentic counterparts.

For light-sheet microscopy, InterpolAI accurately interpolates 
images in the z direction reducing required z steps during image acqui-
sition. This decreases imaging times of an entire sample, as imaging 
patterns are often imaged tile by tile laterally before moving to the next 
z level. Collection time increases exponentially with the lateral size of 
the sample, from minutes for a 104 µm3 sample at a spatial resolution 
of 500 nm to a week for a 108 µm3 sample at the same resolution16. 
InterpolAI interpolation helps address this limitation.

InterpolAI has a few limitations, which must be considered for 
optimal interpolation results. First, InterpolAI requires well-aligned 
images for optimal interpolation. Using misaligned images leads to 
model hallucinations, which appear as unrealistic biological struc-
tures (Supplementary Fig. 1). InterpolAI handle vertical and horizontal 
misalignments well, up to a misalignment distance of 200 µm. How-
ever, InterpolAI cannot successfully interpolate images when they are 
bi-directionally or diagonally misaligned beyond a distance of 200 µm 
or rotated beyond 2°. Second, InterpolAI performs best when using 
nondamaged images as input pairs, which can result in the damage 
being propagated across the interpolated images. This is shown in 
the damage assessment carried out in Supplementary Fig. 2b,f where 
positive data (+y axis) points show damage being propagated in inter-
polated images as a result of damaged inputs and negative data (−y 
axis) points show damage being restored. Aside from obvious damage 
in input images such as tissue folds and tears, stain inconsistencies are 
an important consideration as sudden changes in pixel intensity and 
illumination between input images can cause model hallucinations. 
Last, InterpolAI generates images based on the two input images pro-
vided and therefore cannot predict rare events, which did not occur 
on either of the input images. This is also noticeable from the results 
obtained using the MRI dataset with thicker slices (1 mm) compared to 
thinly sliced ssTEM, tissue-cleared light-sheet microscopy and histol-
ogy images (8 nm, 2 μm). InterpolAI could not accurately predict large 
structural changes in MRI images when skipping seven slides (8 mm).
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In conclusion, our work goes beyond existing methods of image 
translation, such as CycleGANs and diffusion models that translate 
the same respective biomedical images from one image domain to 
another. Whereas image translation would require physical access to 
the slides of interest to be translated, our workflow interpolates miss-
ing, inaccessible or damaged images, eliminates stitching artifacts 
and works across diverse multimodal biomedical images (Extended 
Data Fig. 1). Future work could extend InterpolAI’s application to other 
spatial omics platforms, enhancing the integration of transcriptomic, 
proteomic and metabolomic data with 3D tissue structures. This would 
allow for a more precise multimodal analysis and high-resolution tis-
sue atlases.
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Methods
Specimen acquisition
A sample of nondiseased human pancreas tissue was stained with 
H&E; another similar sample was stained with leukocyte marker CD45 
via IHC (denoted IHC-CD45). Both samples were from individuals 
who underwent surgical resection for pancreatic cancer at the Johns 
Hopkins Hospital2. The H&E dataset consisted of a stack of 101 serially 
sectioned slides at a resolution of 2 × 2 × 4 µm. H and E are standard his-
tological stains that mark nuclei and cellular structures (H) and ECM (E), 
respectively. The IHC-CD45 dataset consisted of 275 consecutive slides 
in which every third section (16 µm apart) was stained, at a resolution 
of 2 × 2 × 16 µm, and is as described in Kiemen et al.44. CD45 is a general 
marker for leukocytes. This retrospective study was approved by the 
Johns Hopkins University Institutional Review Board.

A stack of ssTEM micrographs within a densely annotated mouse 
visual cortex petascale image volume (public dataset Minnie65) was 
obtained through the online Brain Observatory Storage Service and 
Database, created and managed by the Johns Hopkins Applied Physics 
Laboratory. This dataset consisted of 100 ssTEM slides captured at a 
resolution of 8 × 8 × 40 nm2 (ref. 7).

Light-sheet microscopy images of mouse lung were obtained from 
the Image Data Resource public repository17,45. This dataset consisted 
of 401 serial light-sheet microscopy images captured at a resolution 
of 3.22 × 3.22 × 10 µm.

MRI samples of human brain were obtained from the Amsterdam 
Open MRI Collection (AOMIC)46. Specifically, the PIOP2 (Population 
Imaging of Psychology) cohort consisting of structural MRI scans of 
students was used. The dataset consisted of 220 structural MRI scans 
captured at a resolution of 1 × 1 × 1 mm.

Segmentation of pancreatic microanatomy in histology slides
The previously developed semantic segmentation model CODA was 
leveraged to segment WSIs of H&E-stained pancreas samples into their 
different microanatomical components2,10,47. CODA was specifically 
trained for the segmentation of microanatomical components of the 
pancreas and labeled seven components at a resolution of 2 µm per 
pixel, including islets of Langerhans, ductal epithelium, blood vessels, 
fat, acini, ECM and pancreatic intraepithelial neoplasia (PanIN), which 
are precursor lesions of pancreatic cancer2.

Interpolation between 2D images
Spatial interpolation between 2D slides within a stack was carried out 
by developing InterpolAI, which is based on FILM, a model previously 
developed for temporal interpolation between frames of videos by 
Reda et al.34. The model uses a three-step process to interpolate inter-
mediate frames between two input images: a feature extraction pyra-
mid, optical flow estimation and feature fusion and frame synthesis.

The feature extraction pyramid consists of six convolutional layers 
responsible for extracting features from the input images, each with 
increasing kernel size and decreasing stride capturing progressively 
larger receptive fields, extracting features from coarser to finer scales. 
This coupled with the use of shared weights across scales, allows the 
model to extract features for both small and large motions efficiently.

The features extracted are then fed into a bidirectional optical flow 
estimation module. This module calculates the pixel-wise motion vec-
tors (or ‘flows’) between the features of two input images at each pyra-
mid level. These flows represent the transformation needed to warp the 
features from one frame to the other. The bidirectional approach allows 
the model to capture both forward and backward motion, leading to 
more accurate and detailed interpolations34.

With the extracted features and estimated flows, FILM enters the 
final fusion stage. The aligned features from both input images, along 
with the flows and the original input images themselves, are concat-
enated into a single feature pyramid. This captures both the feature 
information and the motion dynamics between the two frames. Finally, 

a U-Net decoder architecture processes this fused feature pyramid 
and synthesizes the final interpolated frame. The U-Net’s skip connec-
tions, which bypass several layers within the network and concatenate 
their outputs directly with the outputs of later layers, ensures that the 
interpolated frame retains fine details and maintains consistency with 
the input images34.

FILM used a recursive function (equation (1)), which accounted 
for the number of input frames, n, and the number of recursive passes 
over which the model would interpolate, k. This limited the number 
of frames that could be interpolated between the input images to be 
either one, four, seven or fifteen frames (equation (1)).

f = 2k (n − 1) − 1 (1)

Recognizing the need for flexibility in skipping slides based on user 
requirements, a time series spanning from 0 to 1 was implemented in 
InterpolAI, with step sizes dynamically determined by the number of 
skipped slides. This approach generated time points corresponding to 
the skipped slides, facilitating variable frame interpolation between 
input pairs.

InterpolAI was pretrained on the Vimeo-90k dataset, a largescale 
dataset of 89,800 high quality videos designed specifically to train 
models oriented toward video processing tasks such as frame interpola-
tion, image denoising and resolution enhancement34. The optical flow 
of this model is already robustly pretrained on a diverse set of videos 
with different moving objects, such as vehicles, people and smaller 
features such as cameras and soccer balls. Retraining of the model 
posed two challenges: a lack of documentation on retraining and per-
fectly registering histological slides to curate a training dataset. The 
focus of InterpolAI on optical flow means that the model is sensitive 
to misalignment in the training images, making histological slides an 
unfavorable dataset to retrain the optical flow model due to inherent 
variability in tissue preparation, staining intensities and sectioning 
processes, which lead to unpredictable distortions and variations that 
complicate accurate spatial alignment of a stack of slides.

For large images such as those encountered in histology, InterpolAI 
provides a tile-and-stitch algorithm to efficiently handle computer 
memory limitations. WSIs are tiled to a user defined size of 1,024 or 
2,048 padded tiles each with an x and y index. Tiled images with the 
same x and y index are then used as inputs to interpolate images. Once 
all tiles are interpolated for each tile pair, the tiles are stitched back 
together with the pad area removed for each respective interpolated 
z slide. This ensures the robustness of InterpolAI for not only small but 
large images at high magnification.

Two versions of the InterpolAI code were developed, a validation 
code and an operation code. The validation code uses a skip-count 
algorithm such that the image being interpolated exists in the provided 
folder path but was simply skipped and generated similarly to how 
it is presented in this study. The validation code then computes the 
Haralick texture features of both the skipped authentic image and the 
respective interpolated image. All Haralick scores are saved into .csv 
file from which PCA analysis can be carried out. The operation code 
has a skip-count algorithm that generates images between each image 
pair in the provided folder path without skipping any image, thereby 
generating missing images.

Registration assessment
To understand and quantify the alignment needed for image interpola-
tion, the H&E dataset was used. Four different types of misalignment 
were considered, including a vertical shift, horizontal shift, diagonal 
shift and rotation (Supplementary Fig. 1). Using aligned slides at z = 31 
and 33 from the H&E dataset, a 3,024 × 3,024 tile was cropped from both 
WSIs at the same position. For shift misalignment, the 3,024 × 3,024 tile 
from slide 31 was shifted horizontally, vertically and diagonally from 
0 to 200 µm and then cropped to a 1,024 × 1,024 tile from the center, 
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whereas slide 33 was left unshifted and cropped to a 1,024 × 1,024 tile 
from the center of the 3,024 × 3,024 tile. For rotation misalignment, the 
3,024 × 3,024 tile from slide 31 was rotated 0 to 200 degrees from its 
center and then cropped to a 1,024 × 1,024 tile from the center, while 
slide 33 was left unrotated and cropped to a 1,024 × 1,024 tile from the 
center of the 3,024 × 3,024 tile. At a resolution of 2 × 2 × 4 µm a 1-degree 
rotation from the center of a 3,024 × 3,024 tile corresponds to a 75-µm 
misalignment at the furthest edges from the center of a 1,024 × 1,024 
tile, as shown below:

Imagecenter = (3,0242 , 3,0242 ) = (1, 512, 1, 512)

Considering the misalignment of the furthest point from the 
center, the distance from the center to the corner (R) is given by:

R = √(1, 512)2 + (1, 512)2 = 2, 138.6pixels

Rμm = 2, 138.6pixels ∗ 2μm/pixel = 4, 277.2μm

Using arc length formula (equation (2)) the maximum displace-
ment (Δs) at the edge furthest from the center of the image can be 
calculated as:

Δs = Rμm × θ (2)

Calculating for a rotation of one degree:

θ = 1 × π
180 = 0.01745 radians

Δs = 4, 277.2μm × 0.01745 = 74.6μm

Interpolation using InterpolAI, linear interpolation and XVFI was 
conducted between shifted and rotated slide 31 and unchanged slide 
33 to generate slide 32, which was then correlated to the authentic slide 
32 using Pearson correlation. The Pearson correlation was calculated 
using the SciPy stats package available in Python.

Haralick texture features
Thirteen Haralick texture features were calculated to provide a quan-
titative representation of the texture patterns within an image, offer-
ing insights into their spatial arrangements and relationships42,43. 
The 13 features measure the angular second moment, contrast, cor-
relation, sum of squares variance, inverse difference moment, sum 
average, sum variance, difference variance, sum entropy, difference 
entropy, entropy, information measure of correlation 1 and information 
measure of correlation 2 (refs. 42,43). Contrast measures the intensity 
variations between neighboring pixels, correlation gauges the linear 
dependency of gray levels, energy represents the image uniformity and 
homogeneity measures the closeness of gray level pairs.

To manage the complexity and high dimensionality of the fea-
ture space, dimensionality reduction was carried out using PCA. PCA 
transformed the original set of Haralick features into a reduced set 
of principal components, retaining the most important information 
while discarding redundant or less informative aspects. This reduction 
not only simplifies the interpretation of the data, but also allows for a 
holistic assessment of image quality, capturing the essential texture 
information in a more compact form.

Additionally, analysis of the Euclidean distances between authen-
tic and interpolated images was computed using the 13 Haralick 
features. By considering the Euclidean distances across all selected 
Haralick features simultaneously, a comprehensive evaluation of the 
overall error value was achieved. This validation process ensured that 

the collective impact of texture features was considered, providing 
a robust measure of similarity and/or dissimilarity between images. 
The combination of Haralick texture features, PCA for dimensional-
ity reduction and Euclidean distance computation offered a system-
atic and effective approach for evaluating image quality and texture 
patterns.

Cell detection in histological sections
To validate the (synthetic) interpolated H&E and IHC images, the CODA 
cell detection module was used to count the total number of cells in 
H&E images and CD45+ cells in IHC and compare these numbers with 
those in their respective authentic images2. For this task, the inten-
sity range of blue pixels was first determined for the nuclei of cells, 
along with the intensity of brown pixels for positive CD45 stain. Using 
k-means clustering, the mode blue pixel intensity was determined and 
selected to represent the hematoxylin channel, while the mode brown 
pixel intensity was selected to represent the positive stain. With color 
deconvolution, the cells stained with hematoxylin could be extracted 
from the remaining tissue, thereby providing a cell count.

Quantification of damage
To understand and quantify the quality of input images required for 
image interpolation, a damage assessment was carried out on a subset 
of the last 25 consecutive slides from the H&E dataset and 25 images 
of the ssTEM dataset (Supplementary Fig. 2). A CODA segmentation 
model was trained to detect folds in both datasets and segment them 
as damage. Next, interpolation of both datasets was carried out while 
skipping three authentic images and interpolating them. The inter-
polated images were subsequently segmented using the same CODA 
segmentation model to detect folds as was done with the authentic 
images. Using the segmented images, the difference in the total number 
of folded pixels between the interpolated images and authentic images 
was determined and divided by the total number of folded pixels in the 
authentic images to determine the percentage by which damaged was 
reduced through interpolation (Supplementary Fig. 2b,f). Segmented 
images were also used to plot the folds in both datasets in 3D and show 
the reduction in folds through interpolation. The number of folded 
pixels in individual 2D images was plotted against the size of the fold 
in 3D to obtain a log–log plot of the reduction in folds in 3D, as a result 
of interpolation (Supplementary Fig. 2c,g).

3D rendering of interpolated 2D images
InterpolAI was used to interpolate stacks of WSIs of missing or damaged 
slides, which resulted in a whole restored dataset (Fig. 1b). For image 
postprocessing, CODA was used to semantically segment histological 
slides and MRI images to reconstruct microanatomical tissue struc-
tures and whole organs in 3D (Fig. 1b)2. Through manual annotations 
of microanatomical tissue structures in a small subset of histology 
slides and whole organ annotations of the brain in a subset of MRI 
images, CODA allowed for two deep learning models to be trained to 
recognize these annotations and apply them to the remaining slides 
and/or images in the respective datasets, thereby generating stacks 
of segmented histology slides and MRI images. Labels within the seg-
mented slides and/or images, corresponding to the annotations could 
then be used by CODA to reconstruct and visualize 3D tissue structures 
of interest, such as epithelial ducts in the pancreas and whole organs 
such as the brain. Similarly, CODA was leveraged to 3D reconstruct 
synapses in the mouse brain using presegmented ssTEM slides with 
the appropriate synapse label. Tissue-cleared light-sheet images were 
separated into their respective red, green and blue channels allowing 
for three stacks to be obtained, one for each channel. 3D reconstruc-
tions of structures within the tissue-cleared light-sheet images of 
the lung were then generated by creating volumes using stacks of 
channel-separated images. Specifically, the red channel was used to 
reconstruct the bronchioles in the mouse lung.
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Computing hardware and software
We used Python (v.3.9) and Tensorflow (v.2.10.0) for all image interpo-
lations and analysis. For the CODA quantifications and 3D renderings, 
we used MATLAB (2023a).

For smaller sized images, computers equipped with a single NVIDIA 
RTX 3090 graphical processing unit (GPU) could easily interpolate them. 
For larger WSIs, with dimensions exceeding 14,000 × 10,000 pixels, using 
more GPU power allowed to speed up the interpolation processing times. 
To handle these larger images with higher magnifications, we used the 
Rockfish cluster at Johns Hopkins University, which is equipped with 
nodes containing four NVIDIA A100 GPUs each. This high-performance 
computing resource enabled us to interpolate whole slide histological 
images in shorter times. In case of no access to GPU clusters, users may 
opt for a tile-and stitch approach provided in our code, which allows for 
tiling of large WSIs, interpolating the tiles individually and then stitching 
them back together into WSIs during postprocessing. The codes and 
requirements for InterpolAI have been posted on GitHub.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Data are available upon request from the corresponding author. The 
light-sheet lung dataset analyzed in this paper is available at https://
doi.org/10.1038/s42003-021-01786-y (ref. 17). The ssTEM dataset 
analyzed in this paper is available at https://doi.org/10.60533/BOSS-
2021-T0SY (ref. 48). The MRI dataset analyzed in this paper is available at  
https://doi.org/10.18112/openneuro.ds002790.v2.0.0 (ref. 49).

Code availability
Software used in this paper can be accessed at https://github.com/
sjoshi17jhu/InterpolAI.
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Extended Data Fig. 1 | A Fundamental comparison between GANs and InterpolAI interpolation. GANs translate an H&E stained slide to a slide stained with IHC and 
vice versa (top panel). InterpolAI interpolates multiple novel slides between two input slides, restoring tissue connectivity (bottom panel). Illustrations created using 
BioRender.com.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Qualitative comparison of linear and InterpolAI 
interpolations to authentic H&E-stained histological slides of a human 
pancreas when skipping 7 slides for four different ROI’s. (a) Four ROIs were 
selected from H&E-stained whole slide images (WSI’s). Slides were interpolated 
when skipping 7 slides between adjacent sections, thereby generating 7 slides. 
(b) The top row of authentic images shows the middle skipped z-slide of all 
four different ROIs selected for interpolation. The middle row of zoom-ins 
of authentic images shows microanatomical structures observed within the 
different ROI’s. The third row of zoom-ins shows the CODA classification of these 
microanatomical structures. (c) The top row of linearly interpolated images 
shows the middle interpolated z-slide of all four different ROI’s corresponding to 
the authentic images. The middle row of zoom-ins of linearly interpolated images 

shows microanatomical structures generated by linear interpolation within the 
different ROI’s. The third row of zoom-ins shows the CODA classification of these 
linearly interpolated microanatomical structures. (d) The top row of InterpolAI 
interpolated images shows the middle interpolated z-slide of all four different 
ROI’s corresponding to the authentic images. The middle row of zoom-ins of 
InterpolAI interpolated images shows microanatomical structures generated by 
InterpolAI within the different ROI’s. The third row of zoom-ins shows the CODA 
classification of these InterpolAI interpolated microanatomical structures.  
(e) Euclidean distance by slide of interpolated images from authentic images 
based on thirteen Haralick features for ROI 1 and ROI 2. (f) Percent error in  
CD45+ cell count by slide between authentic and interpolated images when 
skipping 12 slides.
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