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ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has a poor survival rate due to late detection. PDAC
arises from precursor microscopic lesions, termed pancreatic intraepithelial neoplasia (PanIN),
that develop at least a decade before overt disease—this provides an opportunity to intercept
PanIN-to—PDAC progression. However, immune interception strategies require full
understanding of PanIN and PDAC cellular architecture. Surgical specimens containing PanIN
and PDAC lesions from a unique cohort of five treatment-naive patients with PDAC were surveyed
using spatial-omics (proteomic and transcriptomic). Findings were corroborated by spatial
proteomics of PanIN and PDAC from tamoxifen-inducible KPC (tiKPC) mice. We uncovered the
organization of lymphoid cells into tertiary lymphoid structures (TLSs) adjacent to PanIN lesions.
These TLSs lacked CD21+CD23+ B cells compared to more mature TLSs near the PDAC border.
PanINs harbored mostly CD4+ T cells with fewer Tregs and exhausted T cells than PDAC. Peri-
tumoral space was enriched with naive CD4" and central memory T cells. These observations
highlight the opportunity to modulate the immune microenvironment in PanINs before immune

exclusion and immunosuppression emerge during progression into PDAC.
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INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) carries a dismal 5—year survival rate of 12%,
due to late—stage diagnosis and resistance to standard therapies and immune checkpoint
inhibitors (ICls) (1-3). PDAC is complex with few infiltrating effector T cells, and an abundance of
immunosuppressive regulatory T cells (Tregs), myeloid derived suppressor cells (MDSCs), tumor
associated macrophages (TAMs), and cancer associated fibroblasts (CAFs)—establishing an

immunologically “cold” tumor microenvironment (TME) (4-9).

Precancer lesions—pancreatic intraepithelial neoplasia (PanINs)—are initiated from
driver mutations in KRAS (10). It takes years to decades for invasive PDAC to develop after the
first mutation, providing a protracted window to intercept precancer progression (10). Previous
studies provide evidence for decreased immunosuppressive signaling and increased T cell
trafficking in mouse and human PanINs (11, 12). We reported, for the first time, that a Listeria—
based mKRAS®'?® vaccine with Treg depleting agents triggered mKRAS-specific T cell
responses and slowed early but not late stage PanIN-to-PDAC progression in mice (13). While
these studies highlight the potential therapeutic benefit of early vaccination against driver
mutations in PanINs to prevent or delay PDAC progression, little is known about the human

precancer microenvironment (PCE) that accompanies PDAC.

Procurement of large sections of human pancreas tissue containing PanIN independent
of PDAC has proven infeasible as PanINs are not detectable by imaging to justify tissue resection.
Therefore, we utilized resected PDAC tissue to study distinct PanIN regions that oftentimes exist
within the resected tissue specimen. Healthy human pancreases may harbor genetically diverse
PanINs (14), most of which likely do not progress to PDACs. Since PanINs are microscopic
lesions, spatial proteomics and transcriptomics are required to fully resolve the PCE. Spatial
profiling offers a unique opportunity to quantitate cell—cell organization and interaction within the

PCE, while maintaining the cellular architecture of immune cells. The latter analysis is relevant to
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tertiary lymphoid structures (TLSs), which are organized aggregates of lymphoid cells typically in
peri—tumoral regions of untreated PDAC (15). Peritumoral TLSs in untreated PDACs appear
inactive with few effector T cells. However, TLSs have been induced to traffic into tumors
following treatment with an allogenic whole cell-based GM-CSF vaccine, GVAX (16). These
treatment-induced TLSs associated with a survival benefit appear similar to those found naturally
in ICl-responsive tumors (15, 17, 18). However, little is known about TLS that develop in

precancers.

Here, we utilized spatial proteomics and transcriptomics to characterize the PCE. Our
analysis leverages a unique cohort of untreated resected PDAC specimens from patients with
distinct regions of normal tissue, chronic pancreatitis (CP), and PanINs within the same tissue
section. We report, for the first time, the recruitment and organization of lymphoid cells into
immature TLSs during early PanIN development. The spatially resolved data also show
structurally and functionally mature and immature TLSs in the peri-tumoral regions where
immune cells are largely restricted to the tumor border. Furthermore, we find that immune
populations excluded from the tumor are denser and enriched with more naive and exhausted

CD4+ T cells, and antigen experienced CD8+ T cells than within the tumor boundary.

While these spatial analyses can define immune sub-populations and uncover their
function at the time of resection, it is not possible to evaluate PanIN to PDAC progression in
human biospecimens which would require serial biopsies of the same lesions over years. To
assess whether immune cell states identified in the human PCE are present before progression
to PDAC, we used the tamoxifen—inducible KPC mouse (19), where PanINs progress to PDAC in
a predictable timeframe. We find that features of T cell accumulation in human specimens are
recapitulated in the tiKPC mice. We also show that organized lymphoid cell recruitment and
precursor lymphoid aggregates appear in PanINs in mice. Thus, these studies support a pattern

of lymphoid aggregate development and maturation in association with PanIN to PDAC
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development and suggest that the earliest aggregates contain a pro—immune population that is

targetable by immunotherapeutics to intercept tumorigenesis.

RESULTS

Spatial Multi-omics Profiling of Lymphoid Cells Demonstrates CD4" T cells Recruited to

Clonally Distinct PanIN Regions Relative to PDAC in Treatment—Naive Patients

To determine immune profiles near PanINs unaltered by prior therapies, we analyzed
resected pancreases from 5 treatment—naive patients for which PanINs and chronic inflammation
resided in areas distinct from tumor cells (Figure 1A). To evaluate the genetic relationship
between PanIN and the PDAC loci on shared tissue sections, we used laser capture
microdissection to extract DNA from normal, PanIN, PDAC, and chronic pancreatitis regions.
Whole exome sequencing of 15 regions from three samples showed that PanINs were clonally
distinct from associated tumors, as in Braxton et al. (14) (Figure 1B). Mutations were shared
amongst different PDAC regions within each patient, but regions of PanIN had independent
mutations not shared with other regions of PanIN or PDAC. PanINs in three of four patients
exhibited oncogenic KRAS mutations that differed from PDAC found in the same resection

(Supplemental Table 1), establishing intra—patient precancer heterogeneity.

We used imaging mass cytometry (IMC) to label human tissue sections with a panel of 38
antibodies (Supplemental Table 2). To identify regions of interest (ROIs), an expert pathologist
(E.D.T.) selected patient tissue blocks that were cut and annotated (Figure 1A, Supplemental
Figure 1A). We analyzed 4 specific ROlIs that included PanIN, PDAC, chronic pancreatitis, and
normal tissue (Figure 1A, Supplemental Figure 1B). A caveat to this analysis is the choice of the
relatively uncommon T cell-rich areas within tumor regions. Relative immune—-rich regions within
the boundaries of tumor were chosen when possible and identified using immunohistochemistry

for CD3" T cells (Supplemental Figure 2). Upon image acquisition, we confirmed the
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morphologies of pancreatic ductal cells near each immune-rich region by IMC to classify normal,

PanIN, PDAC, and CP regions (Supplemental Figure 3).

Clustering analysis of the IMC markers identified epithelial cells, fibroblasts, myeloid and
lymphoid populations as the dominant cell types (Figure 1, C and D). All structural components
of pancreatic tissue and immune cells were classified based on the relative expression profile of
each IMC marker across the clusters (Figure 1C). While our focus was on the lymphoid cells, we
also identified macrophages (CD68+), dendritic cells (DCSIGN+), epithelial cells (CK+),
fibroblasts (COL+ SMA+ VIM+), endothelial cells (PDPN+), and NK cells (CD57+) (Figure 1D).
The total cell number and composition showed that normal regions contained the highest number
of cells (Figure 1D), not unexpectedly, as the total area analyzed from normal tissue was greater
than other regions (Supplemental Table 4). Many of these cells make up acinar tissue or islets
accounting for an “unassigned” cluster of cells in normal regions, which was confirmed visually
by mapping their (x, y) coordinates and directly comparing to both the reference hematoxylin and
eosin (H&E) images and MCD files. Patient—specific contribution to these cell types was variable,
but consistent with the total area of tissue analyzed for each sample (Supplemental Figure 4A,
Supplemental Tables 4 and 5). Principal component analysis showed no patient—specific outliers

(Supplemental Figure 4B).

Total T cell (CD3+) density in PanIN and CP was significantly greater than regions of
normal pancreas, whereas there was a trend in PDAC (Figure 2A). Compared with patient—
matched normal tissue, immune infiltration in PanIN, PDACs, and CP, was predominantly CD4+
T cells (Figure 2, B and C) — consistent with studies of PanINs that were not compared with
associated PDAC (12). While CD4" T cells accounted for most of this increase, CD8+ T cells in
CP were also elevated relative to normal tissue (Figure 2B). B cell (CD20+ CD45RA+) density
was also elevated in PDAC and CP, with a variable trend in PanINs (Figure 2D). Macrophage

and dendritic cell (CD68+ CD16+ CD11c+, CD68+ CD16+ HLADR+, DCSIGN+) densities were



181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

increased in PanIN, PDAC, and CP regions compared with normal tissue across all matched
patient samples (Figure 2E). Collectively, the findings demonstrate predominantly CD4+ T cell

infiltration in low—grade PanINs.

PanIN Harbor Fewer Regulatory T Cells Compared to PDAC

IMC offers both spatial resolution and in-depth phenotypic delineation of T cells in PanINs
and PDACs. We find that Tregs (CD4+ FOXP3+ PD1-) were significantly greater in all three
pathologies compared with normal ductal tissue (Figure 2, F and G). As expected, Treg density
was higher in PDAC than in PanINs, suggesting an early ingress of Tregs into the PanIN PCE.
Despite the presence of Tregs in low—grade PanINs, the ratio of CD8+ T cells to Tregs was higher
in PanINs than in PDAC (Figure 2H). The relatively fewer immunosuppressive cells in PanINs
indicates a more amenable environment for inducing cytotoxic CD8+ T cells and mitigating the
early immunosuppressive effects of Tregs. Moreover, there was a minimal exhausted CD4+ T
cell population (CD4+ CD45R0O+ TOX2+ PD1+) in PanIN compared with PDAC or CP (Figure 2,
I and J), expectedly, given that T cell exhaustion occurs from continued antigen or inflammatory
signal exposure. Compared to normal tissue, the increase in the central memory T cell population
(CD4+ CD45R0O+ CCR7+ HLADR+) was marginal in PanIN regions but increased in PDAC and
CP (Figure 2K). Together, these data suggest that PanIN lesions harbor fewer

immunosuppressive signals and higher quality T cells compared to PDAC.

We calculated the shortest distance between each cell in each ROI and depicted the
relative number and distance in an interaction network (Supplemental Figure 5). Most immune
cells in normal, PanIN and CP were positioned closely to stromal fibroblasts (COL+ SMA+ VIM+).
In contrast, PDAC intra-tumoral regions exhibited lymphoid cells in close proximity to one another,
indicating more frequent interactions. Interestingly, the Tregs (CD3+ CD4+ FOXP3+ PD1-) in

PDAC regions were much more spatially integrated with immune cells, particularly closer to the
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cytotoxic T cells (CD3+ CD8+ GZMB+), compared with PanIN and CP. These data not only
suggest closer communication, and possibly, more frequent interactions between Tregs and
cytotoxic CD8+ T cells, but also further support the role of Tregs in dampening the anti—tumor

immunity exerted by the rare, immune—rich regions spatially adjacent to PDAC.

Immune cells were largely restricted to the tumor front within 250 um of the leading
invasive edge (Supplemental Figure 6A). Notably, there was a higher density of naive and
exhausted CD4+ T cells, and antigen—experienced CD45R0O+ CD8+ T cells. By measuring
distances between each cell in the immune—rich border, we generated an interaction network
(Supplemental Figure 6B). These lymphoid cells were again positioned closely together, but with
greater distances from Tregs (CD3+ CD4+ FOXP3+ PD1-) compared to interactions depicted in

the intra—tumoral lymphoid population.

Spatial Proteomics of Lymphoid Cell Populations Uncovers Organized and Distinct

Tertiary Lymphoid Structures Unique to PanIN versus PDAC

In many immune-rich regions at the tumor front, we noted aggregated clusters of CD3+
cells (Figure 3A). IMC showed that these aggregates contained cell types and a structural
organization consistent with mature TLSs, as defined by a distinct zone of B cells (CD20+) with
markers of follicular cells (CD21+ CD23+) and surrounded by a dense zone of CD4+ and CD8+
T cells (20) (Figure 3B). We also found immature TLSs adjacent to PanIN (within 250 um of the
epithelial cell edge), defined as dense but disorganized aggregates of B and T cells without
follicular dendritic cells or cell-type specific zones. Both mature and immature TLSs were also

found in CP regions (Supplemental Table 6).

We studied the diversity and organizational differences across these TLSs using histoCAT
(21), an interactive platform for visualizing multiplexed IMC images. Individual lymphoid

aggregates were separated into individual samples from the rest of the cells captured in a given

10
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region, allowing for the identification of differences specific to TLSs, but independent from the
surrounding immune infiltrate. Profiling 27 TLSs by IMC (Supplementary Table 5) revealed that
PDAC- and CP-adjacent TLSs comprised a more diverse subset of B and T cells compared to
PanIN-adjacent T cells (Figure 3C). Compared with PDAC, TLSs in PanIN regions were
associated with fewer total cells (Supplemental Table 7). Supplemental Table 8 details the
number of TLSs per patient and per region. We excluded TLSs not within 250 um of (a) the edge
of epithelial cells comprising PanINs, (b) the CP region, or (c) invasive tumor border as defined

and measured by pathologist (E.D.T.) (Supplemental Figure 7).

For the most predominant B cell subpopulation (CD20+ CD45RA+), density was not
significantly different across PanIN—, PDAC—, or CP—associated TLSs (Figure 3D). There were
significant differences in the density of germinal-center—associated B cells (CD20+ CD21+
CD23+) with increases specific to PDAC-associated TLSs (Figure 3E). This population was
absent in PanIN-associated TLSs and minimal in CP—associated TLSs, indicative of maturity
specific to some PDAC- and CP-associated TLSs (22, 23). We also found other indications of
mature TLSs associated with PDAC and CP regions based on the densities of dendritic cells
(DCSIGN+) and high endothelial venules (PDPN+) in TLSs associated with PDAC and CP (Figure

3F).

PDAC-Adjacent TLSs Have Distinct T Cell Subtypes Compared to TLSs Associated With

PanIN

PDAC-adjacent TLSs displayed higher expression of activation and effector molecules on
T and B cells compared with PanIN-adjacent TLSs. There was a significantly higher density in
proliferating B cells (CD20+ CD45RA+ KI67+) in PDAC TLSs compared with PanIN—- and CP-
adjacent TLSs (Figure 4A). Cytotoxic T cell (CD3+ CD8+ GZMB+) density was also higher in

peri—tumoral TLSs, while the CD3+ CD8+ CD45RO+ T cells were trending compared with PanIN—

11
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associated TLSs (Figure 4, B-D). While this indicates more activated T cells, there are also more
Tregs (CD3+ CD4+ FOXP3+ PD1-) and exhausted T cells (CD4+ CD45RO+ TOX2+ PD1+
KI67+) populating PDAC-adjacent TLSs (Figure 4, E-G). Lastly, PDAC- and CP-associated
TLSs had a greater memory CD4+ T cells (CD4+ CD45RO+ CD57+) density (Figure 4H).
Collectively, the data show that organization of recruited lymphoid cells begins at early stages of
carcinogenesis, and that these cells appear antigen-experienced and exhausted, with localization
just outside the tumor border and proximal to Tregs. The data also demonstrate a less

immunosuppressive and exhausted T cell phenotype in TLSs associated with precancers.

The spatial organization of subtypes provides further evidence for the structural and
phenotypic maturity of the PDAC and CP TLSs compared to PanIN-associated TLSs. By
identifying the top 2 nearest neighbors of each lymphoid cell, we determined which cell types are
in most frequent contact (and likely interacting). We observed that germinal-center-B cells are
frequently in contact with other B cells and T cells in PDAC—-associated TLSs (Figure 4l).
Whereas TLSs near PanIN and CP had B cells and memory helper T cells (CD4+ CD45RO+) in
close contact with naive—appearing cytotoxic T cells (CD8+ CD45RA+), PDAC-adjacent TLSs
displayed B cells and memory helper T cells in contact more frequently with more differentiated
cytotoxic T cells (CD8+ CD45R0O+) and Tregs (CD4+ FOXP3+). Neighbor analyses further
confirm (a) the existence of true germinal centers unique to the PDAC-adjacent TLSs that are
notably absent in any PanIN—adjacent TLS, and (b) that PanIN—-adjacent TLSs reflect earlier steps

in the formation of immune responses with less immunosuppression.

PanIN Formation in Tamoxifen—-Inducible KPC Mice Recapitulate Accumulation of Tregs

and Lymphoid Aggregates as a Dynamic Change Associated with PDAC Carcinogenesis

Though profiling the immune microenvironment of human PanINs is critical to

understanding PDAC progression, these lesions are detected only PDAC resection. While we
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hypothesize that spatially distinct lesions are independent, allowing spatial distance and genetic
differences to serve a surrogate for the evolution of the disease, we are limited in our ability to
directly infer the timing of immunological changes during carcinogenesis. To overcome this
limitation in temporal sampling, we used a tamoxifen—inducible genetically engineered mouse
model—Kras-*-¢'?P;p53->"; Pdx 1—-CreER (tiKPC) mouse (19)—to generate and harvest PanIN

lesions in vivo before development into PDAC.

Tumor development was induced by daily intraperitoneal injections of tamoxifen over 5
days, followed by sacrifice at 10-16 weeks post—induction (Supplemental Figure 8A). Whole
pancreases from 11 mice were sectioned and representative regions of normal duct, PanIN, and
PDAC identified by pathologist (R.A.A.). We noted increased T cell infiltration in PanIN and PDAC
relative to normal ducts, as well as lymphoid aggregates proximal to PanIN and PDAC
(Supplemental Figure 8C). The latter lacked the organized germinal centers characteristic of

mature human TLSs, possibly due to the short antigen exposure.

Sections of mouse pancreas were analyzed using IMC (Supplemental Table 3). Protein
expression in segmented cells was used to annotate cells by hierarchical clustering
(Supplemental Figure 8B). We inferred following T cell phenotypes: CD4+ T helper (CD4_Th),
CD4+ T regulatory (CD4_Treg), and CD8+ T cells (CD8_T cell). ROIs were annotated by
segmentation with histoCAT (21) as normal (N=12), PanIN (N=8), tumor edge (N=18), tumor core
(N=16), and lymphoid aggregate (PanIN-adjacent, N=4, PDAC-adjacent, N=5) (Supplemental
Figure 8C). T cell densities, including all three observed phenotypes, were compared between

regions.

PanINs were enriched for T cells compared to normal tissue, as were the tumor edges,
upon excluding lymphoid aggregates (Supplementary Figure 8D). Tumor cores displayed lower
T cell densities compared with PanIN. Normal ductal tissues had lower enrichment with CD8 T

cells compared with PanIN, tumor edge, or tumor core. No significant difference in CD8 T cell
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density was noted across the tumor regions (Supplementary Figure 8E). Importantly, as noted in
humans, Tregs were enriched in PanIN, tumor edge, and tumor core relative to normal ducts
(Supplementary Figure 8F). Comparison of lymphoid aggregates proximal to PanIN and PDAC
revealed greater Treg density in PDAC-adjacent aggregates, but the number of aggregates was
too small to yield statistical significance. Differential protein expression in CD8 T cells between
lesion types revealed lower PD1 expression in PanIN-adjacent CD8 T cells (45 cells) than at
PDAC tumor edges (158 cells) or tumor cores (204 cells) (Supplemental Figure 8H). This possibly

reflects a more exhausted T cell phenotype, as with human data.

As observed with human data, we also found that in tiKPC mice (a) PanIN and PDAC
recapitulate features of T cell accumulation relative to normal ducts, and (b) CD8 T cells proximal
to PanIN exhibit lower PD1 compared with PDAC. The lymphoid aggregates observed in mice
also showed a trend towards increased Treg density in PDAC over PanIN, consistent with human
PDAC - together, suggesting that these lymphoid aggregates become more immunosuppressive

with progression to PDAC.

Spatial Transcriptomics of Human Biospecimens Identifies Markers in Peri—-Tumoral TLSs

We employed 10x Genomics Visium to investigate tissue collected from FFPE—embedded
blocks of TLSs found in proximity to PanINs and PDAC (24). 19 of the 20 segments from 5
patients had sufficient read depth and unsupervised clustering that aligned with histologic features
for subsequent analysis. 6 segments across 4 patients contained low-grade PanIN and one
segment contained high-grade PanIN, per pathologists (E.D.T., J.W.L.). All lesions were
categorized as ‘PanIN’ in subsequent analysis, regardless of grade, due to high-grade PanIN
being represented by a single sample (Supplemental Figure 9, Supplemental Table 9). 24 TLSs
were identified within 250 um of CP (4), PanIN (2), or peri-tumoral (18) (Figure 5A). Relative to

surrounding spots and non-TLS tissue, TLSs exhibited increased expression of chemokine—
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encoding genes CXCL13, CCL19, and CCL21; the follicular dendritic cell and germinal—-center—
associated B cell marker CR2 (CD21); and a 12—chemokine—encoding-gene signature that
identified ectopic lymph node—like structures in microarray data from primary colorectal carcinoma

(25) (Figure 5B).

TLSs associated with PanINs were rare, occupying a small area compared with PDAC
TLSs, yielding few representative Visium spots for robust statistics. We thus employed non—
negative factorization of gene expression data from the TLS spots (Figure 5A, red dots) and
neighboring regions within 2 TLS spots (Figure 5A, white spots) using CoGAPS (26). CoGAPS
learned 8 transcriptional patterns. Patterns 2, 3, and 5-8 were specific to spots in stromal regions
in proximity to TLS, and Pattern 4 was enhanced in regions of acinar tissue (Figure 5C,
Supplemental Figure 10A). Pattern 1 showed the greatest association with TLSs. Overlay of
Pattern 1 weights on TLS images showed high pattern weights in centers of TLSs with a gradient
of declining weights to the TLS periphery. Pattern 1 weights for each spot correlated with the 12—
chemokine module score computed for each spot (Pearson coefficient 0.4654, P=9.767e-15)
(Figure 5D), recapitulating the existence of mature TLSs adjacent to PDAC using IMC. Pattern 1
weights were greater in PDAC—proximal TLSs compared with PanIN—proximal TLSs (P=0.0012)
or CP—proximal TLSs (P=1.2e-7) (Figure 5E). This latter finding provides further evidence for the

differences in maturity and functionality in PanIN versus PDAC-associated TLSs as with IMC.

We captured marker genes for each pattern using a novel pattern marker statistic, which
assigns each gene as marker of patterns associated with higher fractional expression — allowing
a gene to be a marker of multiple latent patterns identified by CoGAPS by considering high,
medium, or low fractional expression of each across the dataset. Pattern marker scores for each
pattern were used for gene set enrichment analysis using the Kyoto Encyclopedia of Genes and
Genomes (KEGG) (27-29). Pattern 1 showed high representation of pathways including B and T

cell receptor signaling, and TLS maturation pathways, including cytokine—cytokine receptor
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interactions, cell cycle processes after antigen recognition, and costimulatory receptor
engagement (Figure 5F). Patterns 2, 3, and 6 were enriched for pathways associated with
extracellular matrix interactions and cell adhesion. Pattern 4 showed enhancement of metabolic
pathways associated with acinar cells. Enrichment of autoimmune processes and cytokine
signaling in Pattern 8 suggest inflammatory signals from cells in the stroma. No KEGG pathways
were enriched among marker genes for Patterns 5 or 7 (Supplemental Figure 10B). The
association of Pattern 1 spot weights in PDAC-associated compared with human PanIN—

associated TLSs is consistent with IMC showing that PanIN TLSs are less mature.

We used pySCENIC (30, 31) to infer transcription factor activity in the same Visium spots
from TLSs and their neighbors. Transcription factors with activities displaying high correlation
with Pattern 1 revealed TLS scores with high representation of transcription factors associated
with T and B cell development, namely ETS1 and PAX5, as well as NFKB2, a transcription factor
with broad roles in immune regulation (32-34) (Figure 5G). These findings of transcription factor
activity associated with lymphocyte development and activation within TLS centers is supported
by the observed organization of a B cell germinal center bounded by T cells in PDAC-associated
TLSs using IMC (Figure 3B). We also found that FOXP3, a Treg transcriptional marker, showed
sparse detection (Supplemental Figure 11), likely due to dropout (gene not captured by the spatial
probes) of these transcripts, rather than the paucity of Tregs (based on their proteomic detection).
When assessing the activity of FOXP3 as a transcription factor based on expression of genes in
its regulon (Figure 5E), activity was enhanced around the periphery of TLSs in contact with tumor
stroma. This observation follows the expected distribution of T cells in a mature TLS and suggests
that the Tregs found to be more abundant in PDAC-associated TLSs compared to PanIN TLSs

may play a role in hindering the efflux of mature lymphocytes from the TLS into the tumor.
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DISCUSSION

We present a rigorous analysis of the localization and characterization of lymphoid
aggregates that are associated with treatment-naive PDACs, PanlINs, and CP in resected
specimens from the same patient. We also report the existence of organized lymphoid structures
with distinct structural and functional characteristics that differ between those adjacent to PDAC,
PanIN or CP and were not observed in normal ductal tissue. Furthermore, PanINs were clonally
distinct from patient-matched tumor samples—thus, the immune microenvironment of each
PanIN was genetically distinct from that of associated PDAC. We observed genetic heterogeneity
among PanIN and PDAC lesions present in the same tissue block in agreement with Braxton et
al. (14). We also associated features of the immune response to PDAC progression using spatial
proteomics and transcriptomics. Observed lymphoid structures differed between PanlINs and
PDACs. While PanINs attracted less organized T and B cell aggregates, PDAC invasive fronts
were associated with mature TLS with defined germinal centers and follicular cells. Lymphoid
structures in mice were more similar to the lymphoid aggregates observed in human PanlINs
rather than mature TLSs observed adjacent to PDACs likely explained both by the shorter

duration of antigen exposure and fewer available antigens to react against (35).

We posit that immune cell composition of PanINs is more favorable towards immune—
based interception. First, IMC revealed fewer Tregs in PanIN, while densities in tumor regions
were higher. These Tregs were in closer proximity to cytotoxic CD8+ T cells within the tumor
compared with PanINs, suggesting increased immunosuppression in tumors. Second, we found
that the ratio of cytotoxic CD8+ T cells to Tregs was higher in PanINs compared with tumors.
Finally, PanINs had a lower exhausted T cells density compared with tumor. A caveat is that,
while our analysis was limited to low—grade PanINs, high-grade lesions may display a more

evolved immune suppressive microenvironment but are rarely identified in isolation from PDAC.
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Recent landmark studies have reported on the surprisingly high PanIN frequency in non-
PDAC autopsy specimens, setting the stage for identifying factors in the PCE that may restrain
or promote PDAC progression. Our observations are consistent with Carpenter et al. in that CD4
(and not CD8) T cells are enriched in PanINs. In contrast to Carpenter et al., we observed Treg
enrichment in PanINs -- a discrepancy that we attribute to the difference between spontaneous
PanINs from non-PDAC-affected individuals versus PanINs associated with PDAC. This brings
into question whether Treg-enriched PanINs are more likely to progress to PDAC, as in the case
of our murine studies. Furthermore, given that there are no reports of TLSs in Carpenter et al., it
behooves us to determine whether TLSs occur sporadically alongside PanINs in non-PDAC

affected individuals.

While immune exclusion is frequently described in the context of PDACs, there is less
data regarding the composition of immune populations restricted to the tumor border. We posit
that, among the relatively dense immune microenvironment restricted to just outside the tumor, T
cells are educated by TLSs to recognize specific antigens. However, these T cells are unable to
infiltrate into the tumor due to the dense stroma. TCR sequencing should provide information on
T cell clonality within the tumor compared to peri-tumoral region; this was attempted albeit without

success due to sparse T cells infiltrating the tumor.

The distinctive features between immature and mature TLSs have previously been
described, with immature TLSs comprising CD21*CD23" B cells, but lacking germinal—-center
formation (22, 23). Interestingly, as in precancer lesions of liver (36) and breast cancers (37), we
find immature TLSs associated with both human and mouse PanlN lesions. However, we did not
find mature TLSs in proximity to PanINs, contrasting the mature TLS phenotype described in
intrapapillary mucinous neoplasms (IPMNs), another type of PDAC precancer (38). In the mouse,
immature, but not mature TLSs, were associated with both PanIN and PDAC. That murine

PanINs developed temporally prior to PDAC supports the notion that PanIN themselves induce
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inflammation that results in immature TLSs, independent of PDAC. Notwithstanding our inability
to temporally profile human tissue, our mouse study provides an explanation that immature TLSs
in human PanlIN lesions likely develop independently of co-existing PDAC. However, mature TLSs

have not been identified in the tiKPC mouse.

The low levels of proliferation and activated T cell markers in immature TLSs in PanIN
indicate limited functionality. Furthermore, our exploration of the transcriptomic differences
between PanIN—associated immature and mature TLSs (found outside the tumor margin) showed
a correlation with B cell development transcription factors and protein expression, except NFKB2
activity which was not included in the IMC panel. While the chemokine-related genes LTB,
CCL19, CXCL13, and CXCR5 were expressed in PDAC-associated mature TLSs, only two,
namely LTB and CCL19 overlapped with PanIN—-associated immature TLSs (Figure 6). This gain
of chemokine—related genes in PDAC may thus reflect an evolving microenvironment that begins
with immature TLSs associated with PanINs and progresses slowly to mature, tumor-excluded
TLSs adjacent to the PDAC. Alternatively, low levels of tumor antigen in PanINs may prevent
maturation of the associated immature TLSs. This may also account for the observation of mature
TLSs in the context of IPMN, which are typically much larger than PanIN lesions, and are
radiographically visible (38). To this point, CXCL13 which was expressed by the mature TLS
adjacent to tumors was associated with a signature identifying neoantigen—reactive T cells (39),
suggesting that PDAC-associated mature TLSs have the capacity to educate tumor—specific T
cells similar to TLS found in autoimmune diseases (40). TCR and BCR sequencing of PanIN—
versus PDAC-associated TLSs should provide further clues on antigen recognition by the
respective cellular components. Additionally, while we identified mature TLSs in the periphery of
PDACs, the functionality of any activated T cells within these TLSs is likely mitigated by

immunosuppressive, exhausted, and senescent T cells populating the area.
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Multiple factors in the evolving PCE and TME may account for TLS development. First,
the stroma acts as a physical barrier to T cell ingress (41). Second, data from a mouse melanoma
model suggest that CAFs induce variable levels of lymphoid—inducer signals (42) to contribute to
TLS evolution. Finally, a pro—inflammatory stroma can upregulate CXCL13 expression,
suggesting that stromal elements might affect mature TLS formation (43). This finding is

consistent with the absence of transcriptional upregulation of CXCL 13 in PanIN—associated TLSs.

Therapeutically, the decade or more long window for human PanINs to progress to PDAC
provides an exceptional opportunity to intercept cancer progression in high-risk individuals. For
this, gaining a deeper understanding of early events associated with PDAC progression becomes
imperative. In this respect, the tiKPC mouse is likely to remain a vital tool not only for mechanistic
studies into the quantity, function, and localization of immune cell subtypes and the immune
landscape in both PanINs and PDAC lesions, but also as a platform for testing novel immune

interception strategies that could propagate TLS maturation.

Exogenous antigens delivered in the form of vaccines may potentiate mature TLS
development. HPV vaccines have resulted in mature TLS formation in regressing lesions in
individuals with cervical intraepithelial neoplasia (44). Vaccine adjuvants including TLR agonists
(e.g. Poly ICLC, CpG or STING agonists) can promote TLS maturation. The intratumoral injection
of CXCL13 and CCL21 has led to TLS formation in PDAC models (45). Given their ability to co-
deliver antigen and immune modulating agents simultaneously, nucleic-acid-based vaccines may
be a versatile interception platform focused on enhancing TLS maturation (46). Nonetheless,

potential toxicities must be carefully considered when treating individuals at a high-risk.

In summary, our study comprises a small but rare cohort of treatment-naive PDAC
patients, complemented with a mouse model for temporal analyses. It represents an in—depth
spatial characterization of the immune architecture of early precancer lesions in PDAC. PanIN

lesions in the absence of associated PDAC lesions are not possible to obtain in humans, except
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through the exploration of autopsy samples. The rarity of this resected PDAC cohort arises from
the need to have PanIN and PDAC in the same patient section, but with the two lesions at spatially
distinct locations. Furthermore, our discovery of immature TLSs in PanIN lesions lends a major
challenge—to interrogate immature TLSs to define the earliest tumor—specific T cell responses
and identify mechanisms that promote T cell ingress and activation. The temporal sequence of

PanIN-to—PDAC progression in the tiKPC mouse provides a unique way to achieve this goal.
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METHODS

Human Tissue Acquisition and Selection of Samples

Our study examined male and female PDAC patients (details in Supplementary Table 10).
Five patients without peri-operative chemotherapy with distinct PanIN lesions were identified by
pathologist (E.D.T.). Four patients had PDAC, and one with distal cholangiocarcinoma infiltrating
the pancreas. The latter was included to study treatment—naive PanIN lesions not associated
with PDAC. The microsatellite instability—high (MSI-H) specimen (Patient 3) did contribute 4 of
the 11 PDAC-adjacent TLSs (Supplemental Table 8). For one patient, ROIs for PDAC, PanIN, or
CP were not available; however, there was sufficient ROls including peri-tumoral regions that also

included TLSs.

Serial sections were cut and mounted on unstained SuperFrost Plus slides for H&E, IHC,
or IMC. Sections were cut onto PEN membrane slides activated with 30 min of UV light for laser
capture microdissection. Punches were cut onto 10x Genomics Visium slides for spatial
transcriptomics (Supplemental Figure 1A). Each H&E section was annotated by E.D.T. and ROls
were established as a reference for IMC data acquisition (Figure 1A). Sections were preferentially
chosen for analysis if they had PDAC, PanIN, CP, and normal regions. Immune-rich areas,

particularly within regions of tumor, were identified using CD3 immunostaining.

CD3 immunostaining was performed on FFPE sections on a Ventana Discovery Ultra
autostainer (Roche Diagnostics). Briefly, following dewaxing and rehydration on board, epitope
retrieval was performed using Ventana Ultra CC1 buffer (catalog# 6414575001, Roche
Diagnostics) at 96°C for 60 minutes. Primary anti-CD3 antibody (1:200 dilution; catalog#
ab16669, Abcam; Lot # GR3262328-4, at 36°C, 60 minutes), was captured by an anti—rabbit HQ
detection system (catalog# 7017936001 and 7017812001, Roche Diagnostics). This was followed

by Chromomap DAB IHC detection kit (catalog# 5266645001, Roche Diagnostics),

22



510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

counterstaining with Mayer’s hematoxylin, dehydration, and mounting. All H&E and IHC sections

were scanned using Hamamatsu Nanozoomer, and images visualized using NDP.view2.

Imaging Mass Cytometry Acquisition and Analysis

Resected pancreas slides were baked at 60°C for 2 hours, dewaxed in histological grade
xylene, and rehydrated in a descending alcohol gradient. The slides were incubated in Antigen
Retrieval Agent (pH 9) (Agilent® S2367) at 96°C for 1 hour and blocked with 3% bovine serum
albumin (BSA) in Maxpar® PBS (Standard BioTools, 201058) at room temperature for 45 minutes.
Antibody cocktails for human and mouse tissue sections (Supplemental Table 2 and 3) were used
to stain slides at 4°C overnight. Custom antibodies were conjugated in—house, diluted to 0.25
mg/mL to 0.5 mg/mL, and titrated empirically. Cell-ID™ Intercalator-Ir (Standard BioTools PN
201192A) was diluted at 1:400 in Maxpar® PBS and used for DNA labelling. Ruthenium tetroxide
0.5% Aqueous Solution (Electron Microscopy Sciences PN 20700-05) was diluted at 1:2000 in
Maxpar® PBS and used as a counterstain. Images were acquired by Hyperion Imaging System
(Standard BioTools), and representative images generated through MCD™ Viewer (Standard

BioTools).

Images were segmented for analysis using nuclear (Ir191 and IR193) and plasma
membrane staining (IMC Segmentation Kit, Standard BioTools) (47). Twenty images were used
to assign pixel classifications and establish predictions in /lastik (48), which was used to segment
images using CellProfiler (v 4.2.4) (49). Each segmented image was further subdivided into
increasingly strict regions using histoCAT (21) (based on the features found in each image)
(Figure 1C). For example, a 1mm x 1mm region, which included a PanIN lesion and surrounding
acinar tissue, was further sub—divided into a region that included just the PanIN plus a 200um
region beyond the edge of the PanIN epithelial cells (Supplemental Figure 1B). This approach

restricted our immune cell analysis to the PanlIN lesion while excluding the surrounding tissue. In
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contrast, several PDAC regions were not further sub—divided, as the entire ablated region was

composed entirely of intra—tumoral cells.

For the human dataset, each individual cell (both TLS and non-TLS regions) were
clustered at a resolution of 50 clusters using FlowSOM. Annotations were assigned using the
relative expression of marker panel (Figure 1E). For mouse, cells were clustered using
Rphenograph v0.99.1 at k=30 clustering resolution. Clusters with elevated CD45 expression
were subjected to further clustering at k=30 resolution, which were annotated by cell type based
on characteristic protein markers. Density of cell types was determined by dividing the number
of cells detected per cluster by the area of tissue analyzed (Tables 2 and 4). Box plots were
generated in R v 3.6.3. using ggplot2. P values are derived from Wilcoxon rank—sum tests of cell

density per area and were not adjusted for multiple test correction due to the low number of tests.

Interaction networks were generated by measuring the shortest distance between all cells
computationally (utilizing x, y coordinates generated by the segmentation process) and depicting
the relative distance between each cell type based on average shortest distances. Clusters were

excluded from the analysis if they consisted of less than 1% of the total counts.

Top neighbor analysis was performed by compiling the top 2 neighbors per cell per cluster
using CellProfiler. A heatmap was generated to display the aggregated data. Clusters were
excluded from the heatmap if it comprised of less than 1% of the overall counts. Normalized

relationships were generated by dividing each matrix by the largest cell count per region type.

Representative images were prepared using MCD Viewer, overlaying multiple stains and
adjusting the threshold to minimize background. These were then exported as 16—bit images into

GIMP with minimal noise reduction (level 2).
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Spatial Transcriptomics Data Generation

Sample preparation followed manufacturer’s protocol for Visium FFPE (10x Genomics)
using Visium Spatial Gene Expression Slide Kit (1000185), Visium FFPE Reagent Kit (1000362),
Visium Human Transcriptome Probe Kit (1000364 ), and Dual Index Kit TS Set A (1000251). Four
tissue segments each were collected from 5 surgical specimens by scoring the paraffin block with
a skin punch (5 mm) before sectioning. Segments were placed on 10x Genomics Visium slides
within the 4 fields of maximum 6 x 6 mm size, with each slide containing normal, PDAC, PanIN,
and CP from the same surgical specimen. Segments were deparaffinized, stained H&E, and
scanned using Nanozoomer scanner (Hamamatsu) at 40x. Human probe hybridization was
performed overnight at 50°C using the Visium Human Transcriptome Probe Set v1.0. RNA was
digested following probe ligation, and tissue permeabilized for release, capture, and extension of
probes. Probes were captured for sequencing by oligo-d(T) capture. Sequencing libraries were
prepared following manufacturer’'s instructions to extend probes as the template. All libraries
were sequenced at a minimum depth of 50,000 reads per spot (minimum of ~250 million per
sample) at the Novaseq (lllumina). The Visium Human Transcriptome Probe Set v1.0 contains
probes targeting 19,144 genes, which provided gene expression information on 17,943 genes

after filtering for probes with off-target activity.

Image-Based Tissue Type Annotation with CODA

Seven microanatomical components of human pancreas tissue were multi—labelled with
a semantic segmentation workflow using CODA (50), per Bell et al. (24). A neural network trained
on 25 annotated examples of pancreas tissue was used to annotate each pixel of the spatial
image as islets of Langerhans, normal ductal epithelium, vasculature, fat, acinar tissue, collagen,

PDAC, PanIN, or non-tissue. Nuclear coordinates were generated via the detection of 2D
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hematoxylin intensity peaks. The low—resolution tissue image of each segment provided by
Space Ranger was registered to the high-resolution tissue image using the fiducial markers on
the spatial transcriptomics slide. Visium spot coordinates were registered in the high—resolution
image annotated by tissue types and cellularity was calculated within 25 um of each Visium
coordinate. Tissue composition was determined by analyzing the percentage of each classified
tissue type with each spot. Cellular identity was estimated by determining the microanatomical
label at each coordinate where a nucleus was detected. Spots were labeled by the predominant
tissue type if the spot comprised >70% of the same tissue type. Spots where “no—tissue” type
made up >70% of the spot were annotated as “NA” indicating mixtures of multiple tissue types.
Spots annotated as “PanIN” were further delineated into “low—grade” or “high—grade” PanIN
based on cell morphology (E.D.T.). Where CODA annotations of PanIN did not agree with

morphology, labels were deferred to E.D.T.’s assessment.

Spatial Transcriptomics Data Analysis

Space Ranger v1.3.1 (10x Genomics) was used to demultiplex sequencing data, convert
FASTQ files of spot barcodes and transcript reads, align barcodes to the spatial image, and
generate read count matrices. Subsequent data processing and analysis was conducted in R
v4.2.0 using Seurat v4.1.1 (51). Expression data for each tissue segment was loaded into R and
underwent initial visualization of UMI counts and detected gene number per spot to assess
sample quality. Read count normalization per segment used the SCTransform function with the
negative binomial method followed by clustering of cells using Leiden clustering with Leidenalg
v0.8.0 (52). Using Loupe Browser v6.4.0 (10x Genomics), spots from pieces of tissue that had
broken apart from their native context and spots where tissue had folded onto itself were
annotated for export of spot barcodes and removed from subsequent analysis. All spots

annotated as “fat” by CODA were removed from subsequent analysis to exclude spots where the
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high density of probes from acinar tissue may bleed into neighboring RNA—poor regions of
adipocytes. The segment PANINO4 was not included in subsequent analysis as it had very low
UMI detection per spot (median — 171 UMI per spot) and Leiden clusters did not follow tissue

morphology.

Upon filtering spots and segments based on quality and tissue types, segments were
aggregated into Seurat objects for each patient that were processed and sequenced together.
Expression counts underwent normalization and scaling using SCTransform for each patient.
Spatially variable features were identified using the FindSpatiallyVariableFeatures function and
used for principal component analysis. The first 25 principal components for each patient were
used to identify spot neighborhoods, calculate UMAP embeddings for spots in each patient, and
identify Leiden clusters. The AddModuleScore function was used to identify increased co-—
expression of genes associated with classical PDAC, basal PDAC, cancer stem cells (24), and a
12—chemokine gene signature that delineates microarray data from solid tumors containing TLSs

(25).

TLSs were identified within tissue segments by E.D.T.’s review of H&E images for TLSs
within 250 um of PDAC, PanIN, or CP on sequential slides from the surgical specimens. Visium
spots corresponding to the TLSs were picked using Loupe Browser where cell barcodes were
exported for annotation of the spots in Seurat. Visium spots from neighboring regions surrounding
TLSs were selected automatically using STULtillity v1.1.0 (53) where STULtility objects were
created using the same Space Ranger outputs as the Seurat objects and cell barcodes for TLS
regions. The RegionNeighbors function was used to identify all spots within 2 Visium spots (~150
um) of TLS boundaries. Spots within TLSs and the 2-spot neighboring regions underwent non—
negative matrix factorization using CoGAPS v3.14.0(26). CoGAPS was run on log2—transformed

counts with +1 pseudo counts to learn 10 patterns with 50,000 iterations on “genome-wide”
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distributed CoGAPS mode. Sparsity parameters were a=0.01 and maxGibbsMass=100.

Distributed parameters were nSets=16, cut=10, minNS=8 and maxNS=24.

Spatial plots and violin plots of TLS marker genes and the chemokine module score were
generated with the SpatialFeaturePlot function and VInPlot functions, respectively. TLS
annotations were plotted with SpatialDimPlot. Heatmaps of pattern weights stored as
sampleFactors in the results from CoGAPS were generated with ComplexHeatmap v2.12.0 (54).
Pattern weights in TLSs were compared across PDAC—, PanIN—, and CP-associated TLSs using
Kruskal-Wallis tests across all groups and Wilcoxon rank—sum tests for pairwise comparisons (R
stats v4.2.0). Pearson correlation between the chemokine gene signature module score and
CoGAPS Pattern 1, showing association with TLS cores, was calculated with the cor.test function

and goodness of fit R? values were calculated using linear regression with the Im function.

Pattern markers were assigned based on an approach innovating upon the method of
Stein—O’Brien et al. (55). In brief, genes from the expression matrix (D) were categorized into
distributions based on low, medium, or high fractional expression of the estimated reconstruction
of the expression matrix (D’). Genes which were identified as outliers for the expected expression
distribution in a given pattern were annotated as a marker of that pattern. Gene scores as a
pattern marker from the outlier analysis were used to rank genes for GSEA using the R package
fgsea v1.22.0 with gene sets from KEGG (27-29) obtained through the Molecular Signatures
Database (msigdb) (56, 57) using msigdbr (v7.5.1). Transcription factor activity scores were
quantified for TLS spots and neighboring spots within 2 spots using pySCENIC (30, 31) v0.11.0
with refseq-r80 reference for transcription factor-encoding genes and rankings for transcription
factor binding sites within 500 bp up to 100 bp down and 10 kb up and 10 kb down of transcription
start sites of genes in the hg38 reference genome. Motifs reference v9 was used sourced from

the Aerts lab cisTarget database (htips://resources.aertslab.org/cistarget/).
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Laser Capture Microdissection for Whole Exome Sequencing Preparation and Analysis

Serial FFPE tissue sections (10 um?) were cut onto UV activated (30—minute exposure to
UV light) PEN membrane slides. Tissue sections were stored for up to 2 weeks at —20°C before
microdissection. Slides were heated at 40°C for 20 minutes, deparaffinized in fresh xylene for 5
minutes twice, then rinsed in diH20 six times. Slides were rinsed in 100%, 95%, 70% ethanol
each for 1 minute and stained with 50% hematoxylin for 1 minute, rinsed for 1 minute in diH20,
and stained with 50% eosin for 2 seconds. The slides were rinsed in 70%, 95%, 100% ETOH
each for 1 minute. The stained slides were air dried and laser capture microdissection was
performed using LMD 7000 system (Leica). The adjacent H&E sections were used as reference
for areas that would be micro-dissected (based on annotations by E.D.T.). PanIN regions were
defined by the PanIN lesion itself plus a 250 ym surrounding edge. Large areas were taken within
the tumor and CP regions, and normal tissue to maximize the DNA collected (representative
images in Supplemental Figure 12). Ten (10 ym? thick) sections were cut per region per patient
to collect enough DNA to submit for WES. DNA was extracted using Qiagen QlAamp DNA FFPE

Tissue kit (Cat. 56404).

Somatic mutations were called for each PanIN, PDAC, or CP sample with a matched
normal using gatk toolkit (version 4.3.0.0) following best practice pipeline (58). A panel of normals
(PONs) was generated by running Mutect2 on each normal sample using the hg38 human
reference genome with the max—mnp—distance set to zero, and then, using the
GenomicsDBImport function followed by CreateSomaticPanelOfNormals function. After the
PONSs were created, somatic mutations for each sample of interest were called using Mutect2. A
contamination table for each sample was created using GetPileupSummaries followed by
CalculateContamination. Artifact priors were calculated using the LearnReadOrientation function.
Variants were filtered using the contamination table and artifact priors. Variant annotation was

done using OpenCRAVAT (v 2.2.7) and variants, namely: frameshift insertion, frameshift deletion,

29



682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

in-frame deletion, in-frame insertion, missense variant, splice site variant, stop gain, stop loss,
and synonymous variant were selected (59). Selected variants also needed to have at least 30X
coverage in both tumor and matched normal samples with at least 6 reads in the tumor sample
supporting the variant. Finally, a visual inspection was performed to remove a variant if: (a) all
reads supporting the variant were from the same strand; (b) VAF of the variant was 100%; (c)
supporting reads were towards the end of the read; (d) reads were low quality; and/or (e)
supporting reads had the same start and end position. Mutations for each patient were visualized
using UpSetR (version 1.4.0) (60). One patient had insufficient DNA from the normal sample to
allow for curation of the mutation calls specific to PanIN and PDAC. Another patient was
diagnosed with distal cholangiocarcinoma so the comparison between PanIN- and PDAC-

specific mutations was not considered feasible.

tiKPC Murine Model and Tissue Acquisition

Tamoxifen—inducible Kras-S-¢'?P; p53->": Pdx1-CreER (tiKPC) mice were purchased
from Jackson Labs (Strain# 032429) and bred in-house to generate the Pdx1-
CreEr™"e; Trp53" Kras®'?- genotype. tiKPC mice at 8-10 weeks of age were induced with
intraperitoneal injections of 100 ul tamoxifen (20 mg/mL) for 5 days [1 g tamoxifen (Sigma-Aldrich,
Cat # T5648) plus 2.5 mL pure ethanol, vortexed for 5 minutes]. 50 mL pre—-warmed (55°C)
sunflower oil (Sigma-Aldrich, Cat # S5007) was added to the tamoxifen/ethanol mixture in an
Erlenmeyer flask, and the solution was dissolved in a shaking water bath at 175 rpm, 55°C for up
to an hour. The dissolved solution was aliquoted in amber Eppendorf tubes and stored at —20°C.

On the day(s) of injection, aliquots were warmed in a heat block for 10 minutes until fully thawed.

Pancreas tissue and any pancreas tumors were dissected from each mouse at timepoints
pre—determined before induction was initiated. Tissue was sandwiched between three surgical

sponges (two at bottom, one on top) (Fisher-Scientific, Cat # 22-038-221) during fixation in 10%
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Neutral Buffered Formalin (LabChem, Cat # VT450D) for up to 24 hours. This maximized the

surface area exposure of the tissue and ensured consistent thickness across all samples.

FFPE tissue sections (5 um thick) were cut, and 6 H&E sections produced for each mouse
to explore the entire pancreas. Nine serial sections were cut onto SuperFrost Plus slides for long—
term storage at —80°C. Pathologist R.A.A defined the ROIs as a reference for IMC data
acquisition. H&E tissue sections were labeled as Tumor Edge, Tumor Core, PanIN, Lymphoid
Aggregate, or normal, and were scanned at 40x resolution using Hamamatsu Nanozoomer with

images being visualized by NDP.view2.

Statistics

A P-value of <0.05 was considered significant. Multiple test correction for GSEA tests of
marker gene scores in learned pattern weights was conducted using Benjamini-Hochberg false-
discovery rate adjustment. Box plots denote median, interquartile range, and 5th and 95th deciles.
Data points are overlayed as shapes representing the patient from which they were measured.

Regions subjected to IMC were excluded from analysis if cholangiocarcinoma was present.

Study Approval
All human specimens were obtained with patient consent and approval by the Institutional
Review Board (NA_00001584). All mouse experiments were conducted with approval from the

Johns Hopkins University Animal Care and Use Committee (Mo22M98).
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Data availability

Spatial transcriptomics and IMC datasets are available from NCBI GEO (GSE254829;
GSE294669) and Zenodo, respectively. Human and mouse data are available from

https://doi.org/10.5281/zen0do0.8336719, and https://doi.org/10.5281/zenodo.14751512,

respectively. Code for data analysis are available from

https://github.com/FertigLab/Human_PanIN_Spatial Analysis. Values used to generate figures

are available from Supporting Data Values.
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Figure 1: Inmune-rich regions were identified and segmented for imaging mass cytometry
analysis. A) Visualization of the 4 different regions (normal, low-grade PanIN, PDAC, chronic
pancreatitis) annotated by an expert pathologist (E.D.T.). B) Bar plots of the number of unique
and shared mutations between PanlIN lesions and PDAC from Patients 1, 2, and 5. C) Heatmap
showing the relative expression of each marker in the IMC panel used to identify each cell type.
D) Total number of cells analyzed by region (left) with visualization of the percent distribution of
cells per region (right) (total area of tissue and number of samples used in the subsequent

analysis is summarized in Supplemental Table 2).
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Figure 2: PanINs exhibit reduced exhausted and regulatory T cell populations relative to
regions of PDAC. A) Box plot of CD3+ T cell density. B) Box plots of the density of CD4+ and
CD8+ T cells, and the ratio of CD4+ T cells over CD8+ T cells. C) Representative images of the
CD4+ and CD8+ populations in normal, PanIN, PDAC, and CP regions. D) Box plot of the
CD20+CD45RA+ B cell density. E) Boxplots of the macrophage and dendritic cell densities
(CD68+CD16+CD11c+, CD68+CD16+HLADR+, DCSIGN+). F) Box plot of Treg
(CD4+FOXP+PD1+) density. G) Representative images of the Treg population in each region:
normal, PanIN, PDAC, and CP. H) Box plot of the ratio of CD8+ T cells over the Treg population.
I) Box plot of the density of CD4+CD45RO+TOX2+PD1+ or exhausted CD4+ T cells. J)
Representative images of the exhausted T cell population in each region: normal, PanIN, PDAC,
and CP. K) Box plot of the central memory CD4+ T cell (CD4+CD45RO+CCR7+HLADR+)
density. White arrows on merged representative image panels indicate the cell type of interest.
Densities were calculated using the number cells per mm? of each ROI. Statistics were
determined using a Wilcoxon rank sum test. P-value <= 0.0001, 0.001, 0.01, 0.05, or > 0.05 are

kkkk kkk *k *

denoted in the plots with the respective symbols , R TR T orns.
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Figure 3: Tertiary lymphoid structures (TLS) associated with PanINs maintain an immature
phenotype compared to a mature phenotype in peri-tumoral TLSs. A) Hematoxylin and eosin
(H&E) stain of PDAC region annotated in blue marker by expert pathologist (E.D.T.) with the
outline of the tumor region overlayed on an IHC stain for CD3+ (brown) of a serial section of the
same tissue demonstrating the localization of the lymphoid aggregates in the peri-tumoral region.
B) Representative H&E of a TLS found within 250 um of the invasive edge of the tumor and one
within 250 um of the edge of a PanIN and corresponding IMC staining of CD20+, CD21+, CD23+,
CD4+ and CD8+ staining indicating a mature TLS adjacent to PDAC and an immature TLS
adjacent to PanIN. In PanIN adjacent TLS images, the entire TLS is circled with the dashed white
line, while in the PDAC adjacent TLS images, the germinal center is circled with the dashed white
line. C) Percent distribution of lymphoid cell types according to the region of each TLS included
in the analysis. D) Box plot of the density of CD20+CD45RA+ B cells in PanIN, PDAC, and CP
adjacent TLSs. E) Box plot of the density of germinal-center-associated B cells
(CD20+CD21+CD23+). F) Box plots of the density of dendritic cells (DCSIGN+) and HEVs
(PDPN+) in each region-specific TLS. Densities were calculated using the number of cells per
mm?2 of each ROI. Statistics were determined using a Wilcoxon rank sum test. P-value <= 0.0001,
0.001, 0.01, 0.05, or > 0.05 are denoted in the plots with the respective symbols ****, *** ** * or

ns.
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Figure 4: PDAC adjacent TLSs have distinct proteomic signatures compared to TLSs
adjacent to PanINs. A) Box plot of proliferative B cell (CD20+CD45RA+KI67+) densities. B) Box
plot of the density of cytotoxic CD8+ T cells (CD8+GZMB+). C) Representative images of the
cytotoxic T cell population in PanIN, PDAC and CP adjacent TLSs. D) Box plot of the densities of
antigen experienced CD8+ T cells (CD8+CD45R0O+). E) Box plot of Treg (CD4+FOXP3+PD1-)
density. F) Representative images of the Treg population in PanIN, PDAC, and CP adjacent TLSs.
G) Box plot of the density of exhausted T cells (CD4+CD45R0O+TOX2+PD1+KI67+). H) Box plot
of the density of senescent CD4+ T cells (CD4+CD45R0O+CD57+). I) Nearest neighbor analyses
of the top two nearest neighbors of each lymphoid subtype. Red denotes a greater frequency of
a neighboring cell type, whereas blue denotes a less frequent neighboring cell types. White
arrows on merged representative image panels indicate the cell type of interest. Densities were
calculated using the number of cells per mm2 of each ROI. Scale bars: 50 uym. Statistics were
determined using a Wilcoxon rank sum test. P-value <= 0.0001, 0.001, 0.01, 0.05, or > 0.05 are

k*kkk kkk *k *

denoted in the plots with the respective symbols , R TR T orns.
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Figure 5: 10x Genomics Visium Spatial Transcriptomics platform recapitulates TLS
signatures adjacent to PDAC. A) TLS annotation on hematoxylin and eosin-stained segments
by pathologist (E.D.T.) followed by automated annotation of all Visium spots within 2 spots of the
boundaries of any TLS as TLS neighbor. TLS types were then assigned by the pathologist based
on their proximity to chronic pancreatitis (CP_TLS), pancreatic intraductal neoplasms
(PANIN_TLS), or pancreatic ductal adenocarcinoma (PDAC_TLS). B) Expression of CXCL13,
CCL19, CCL21, CR2 (CD21), and a module score based on expression of chemokine-encoding
genes in TLS (red), TLS neighbor (white), and non-TLS (gray) Visium spots as violin plots and
representative spatial expression plots showing segment PANINO1. C) Heatmap of pattern
weights in each Visium spot for the 8 patterns learned by CoGAPS on the TLS and TLS neighbor
spots. D) Scatter plot of association between the chemokine module score on the x- axis and
Pattern_1 weight on the y-axis. Points are overlayed with trend line of linear regression of
Pattern_1 weight on chemokine module score and calculated Pearson correlation coefficient. E)
Boxplot of Pattern_1 weight comparing CP_TLS (dark green), PANIN_TLS (dark blue), and
PDAC_TLS (dark red). Shapes of each data point correspond to the Patient the visium spot came
from. Weights were compared across all groups using a Kruskal-Wallis test (p = 1.3e-08). Bars
are annotated with p-values of pairwise comparisons by Wilcoxon rank-sum tests. F) Waterfall
plot of gene set enrichment analysis of KEGG gene set in genes ranked by pattern marker statistic
for Pattern_1. Gene sets with significant enrichment (FDR-adjusted p-value < 0.05) are shown.
Enriched gene sets are ordered by —logio(FDR-adjusted p-value). G) Transcription factor activity
scores of ETS1, FOXP3, PAX5, and NFKB2 inferred by SCENIC gene regulatory network

inference and quantified by AUCell overlayed on segment PANINO1.
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Figure 6: Proposed Model of TLS Formation from Normal to PanIN to PDAC Progression.
Immune cells (T and B cells) are recruited to early developing PanIN lesions demonstrating early
organization into immature tertiary lymphoid structures (TLSs). In PDAC, these TLSs are
organized further often presenting with a distinct zone of B cells forming a germinal center,
surrounded by T cells and B cells. This T cell population within the PDAC associated TLSs is also
comprised of increased immunosuppressive Tregs, exhausted CD4+ T cells, and activated CD8+
T cells. Transcriptional signatures indicate LTB and CCL19 overlapping with a PanIN adjacent
TLS, whereas PDAC adjacent TLSs share these signatures plus CXCL13 and CXCRS. * indicates

shared genes
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