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ABSTRACT 65 

Pancreatic ductal adenocarcinoma (PDAC) has a poor survival rate due to late detection. PDAC 66 

arises from precursor microscopic lesions, termed pancreatic intraepithelial neoplasia (PanIN), 67 

that develop at least a decade before overt disease––this provides an opportunity to intercept 68 

PanIN–to–PDAC progression. However, immune interception strategies require full 69 

understanding of PanIN and PDAC cellular architecture. Surgical specimens containing PanIN 70 

and PDAC lesions from a unique cohort of five treatment-naïve patients with PDAC were surveyed 71 

using spatial-omics (proteomic and transcriptomic). Findings were corroborated by spatial 72 

proteomics of PanIN and PDAC from tamoxifen-inducible KPC (tiKPC) mice. We uncovered the 73 

organization of lymphoid cells into tertiary lymphoid structures (TLSs) adjacent to PanIN lesions. 74 

These TLSs lacked CD21+CD23+ B cells compared to more mature TLSs near the PDAC border. 75 

PanINs harbored mostly CD4+ T cells with fewer Tregs and exhausted T cells than PDAC. Peri-76 

tumoral space was enriched with naïve CD4+ and central memory T cells. These observations 77 

highlight the opportunity to modulate the immune microenvironment in PanINs before immune 78 

exclusion and immunosuppression emerge during progression into PDAC.  79 

80 
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INTRODUCTION 81 

Pancreatic ductal adenocarcinoma (PDAC) carries a dismal 5–year survival rate of 12%, 82 

due to late–stage diagnosis and resistance to standard therapies and immune checkpoint 83 

inhibitors (ICIs) (1-3).  PDAC is complex with few infiltrating effector T cells, and an abundance of 84 

immunosuppressive regulatory T cells (Tregs), myeloid derived suppressor cells (MDSCs), tumor 85 

associated macrophages (TAMs), and cancer associated fibroblasts (CAFs)––establishing an 86 

immunologically “cold” tumor microenvironment (TME) (4-9).   87 

Precancer lesions––pancreatic intraepithelial neoplasia (PanINs)––are initiated from 88 

driver mutations in KRAS (10).  It takes years to decades for invasive PDAC to develop after the 89 

first mutation, providing a protracted window to intercept precancer progression (10).  Previous 90 

studies provide evidence for decreased immunosuppressive signaling and increased T cell 91 

trafficking in mouse and human PanINs (11, 12).  We reported, for the first time, that a Listeria–92 

based mKRASG12D vaccine with Treg depleting agents triggered mKRAS–specific T cell 93 

responses and slowed early but not late stage PanIN-to-PDAC progression in mice (13).  While 94 

these studies highlight the potential therapeutic benefit of early vaccination against driver 95 

mutations in PanINs to prevent or delay PDAC progression, little is known about the human 96 

precancer microenvironment (PCE) that accompanies PDAC.  97 

Procurement of large sections of human pancreas tissue containing PanIN independent 98 

of PDAC has proven infeasible as PanINs are not detectable by imaging to justify tissue resection. 99 

Therefore, we utilized resected PDAC tissue to study distinct PanIN regions that oftentimes exist 100 

within the resected tissue specimen.  Healthy human pancreases may harbor genetically diverse 101 

PanINs (14), most of which likely do not progress to PDACs. Since PanINs are microscopic 102 

lesions, spatial proteomics and transcriptomics are required to fully resolve the PCE.  Spatial 103 

profiling offers a unique opportunity to quantitate cell–cell organization and interaction within the 104 

PCE, while maintaining the cellular architecture of immune cells. The latter analysis is relevant to 105 
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tertiary lymphoid structures (TLSs), which are organized aggregates of lymphoid cells typically in 106 

peri–tumoral regions of untreated PDAC (15).  Peritumoral TLSs in untreated PDACs appear 107 

inactive with few effector T cells.  However, TLSs have been induced to traffic into tumors 108 

following treatment with an allogenic whole cell–based GM-CSF vaccine, GVAX (16).  These 109 

treatment-induced TLSs associated with a survival benefit appear similar to those found naturally 110 

in ICI-responsive tumors (15, 17, 18). However, little is known about TLS that develop in 111 

precancers.  112 

Here, we utilized spatial proteomics and transcriptomics to characterize the PCE.  Our 113 

analysis leverages a unique cohort of untreated resected PDAC specimens from patients with 114 

distinct regions of normal tissue, chronic pancreatitis (CP), and PanINs within the same tissue 115 

section.  We report, for the first time, the recruitment and organization of lymphoid cells into 116 

immature TLSs during early PanIN development.  The spatially resolved data also show 117 

structurally and functionally mature and immature TLSs in the peri–tumoral regions where 118 

immune cells are largely restricted to the tumor border.  Furthermore, we find that immune 119 

populations excluded from the tumor are denser and enriched with more naïve and exhausted 120 

CD4+ T cells, and antigen experienced CD8+ T cells than within the tumor boundary.   121 

While these spatial analyses can define immune sub-populations and uncover their 122 

function at the time of resection, it is not possible to evaluate PanIN to PDAC progression in 123 

human biospecimens which would require serial biopsies of the same lesions over years. To 124 

assess whether immune cell states identified in the human PCE are present before progression 125 

to PDAC, we used the tamoxifen–inducible KPC mouse (19), where PanINs progress to PDAC in 126 

a predictable timeframe.  We find that features of T cell accumulation in human specimens are 127 

recapitulated in the tiKPC mice.  We also show that organized lymphoid cell recruitment and 128 

precursor lymphoid aggregates appear in PanINs in mice.  Thus, these studies support a pattern 129 

of lymphoid aggregate development and maturation in association with PanIN to PDAC 130 
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development and suggest that the earliest aggregates contain a pro–immune population that is 131 

targetable by immunotherapeutics to intercept tumorigenesis.  132 

 133 

RESULTS 134 

Spatial Multi–omics Profiling of Lymphoid Cells Demonstrates CD4+ T cells Recruited to 135 

Clonally Distinct PanIN Regions Relative to PDAC in Treatment–Naïve Patients 136 

To determine immune profiles near PanINs unaltered by prior therapies, we analyzed 137 

resected pancreases from 5 treatment–naïve patients for which PanINs and chronic inflammation 138 

resided in areas distinct from tumor cells (Figure 1A).  To evaluate the genetic relationship 139 

between PanIN and the PDAC loci on shared tissue sections, we used laser capture 140 

microdissection to extract DNA from normal, PanIN, PDAC, and chronic pancreatitis regions.  141 

Whole exome sequencing of 15 regions from three samples showed that PanINs were clonally 142 

distinct from associated tumors, as in Braxton et al. (14) (Figure 1B). Mutations were shared 143 

amongst different PDAC regions within each patient, but regions of PanIN had independent 144 

mutations not shared with other regions of PanIN or PDAC. PanINs in three of four patients 145 

exhibited oncogenic KRAS mutations that differed from PDAC found in the same resection 146 

(Supplemental Table 1), establishing intra–patient precancer heterogeneity. 147 

We used imaging mass cytometry (IMC) to label human tissue sections with a panel of 38 148 

antibodies (Supplemental Table 2).  To identify regions of interest (ROIs), an expert pathologist 149 

(E.D.T.) selected patient tissue blocks that were cut and annotated (Figure 1A, Supplemental 150 

Figure 1A).  We analyzed 4 specific ROIs that included PanIN, PDAC, chronic pancreatitis, and 151 

normal tissue (Figure 1A, Supplemental Figure 1B). A caveat to this analysis is the choice of the 152 

relatively uncommon T cell–rich areas within tumor regions.  Relative immune–rich regions within 153 

the boundaries of tumor were chosen when possible and identified using immunohistochemistry 154 

for CD3+ T cells (Supplemental Figure 2).  Upon image acquisition, we confirmed the 155 
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morphologies of pancreatic ductal cells near each immune–rich region by IMC to classify normal, 156 

PanIN, PDAC, and CP regions (Supplemental Figure 3).  157 

Clustering analysis of the IMC markers identified epithelial cells, fibroblasts, myeloid and 158 

lymphoid populations as the dominant cell types (Figure 1, C and D).  All structural components 159 

of pancreatic tissue and immune cells were classified based on the relative expression profile of 160 

each IMC marker across the clusters (Figure 1C).  While our focus was on the lymphoid cells, we 161 

also identified macrophages (CD68+), dendritic cells (DCSIGN+), epithelial cells (CK+), 162 

fibroblasts (COL+ SMA+ VIM+), endothelial cells (PDPN+), and NK cells (CD57+) (Figure 1D).  163 

The total cell number and composition showed that normal regions contained the highest number 164 

of cells (Figure 1D), not unexpectedly, as the total area analyzed from normal tissue was greater 165 

than other regions (Supplemental Table 4).  Many of these cells make up acinar tissue or islets 166 

accounting for an “unassigned” cluster of cells in normal regions, which was confirmed visually 167 

by mapping their (x, y) coordinates and directly comparing to both the reference hematoxylin and 168 

eosin (H&E) images and MCD files.  Patient–specific contribution to these cell types was variable, 169 

but consistent with the total area of tissue analyzed for each sample (Supplemental Figure 4A, 170 

Supplemental Tables 4 and 5).  Principal component analysis showed no patient–specific outliers 171 

(Supplemental Figure 4B).   172 

Total T cell (CD3+) density in PanIN and CP was significantly greater than regions of 173 

normal pancreas, whereas there was a trend in PDAC (Figure 2A).  Compared with patient–174 

matched normal tissue, immune infiltration in PanIN, PDACs, and CP, was predominantly CD4+ 175 

T cells (Figure 2, B and C) –– consistent with studies of PanINs that were not compared with 176 

associated PDAC (12).  While CD4+ T cells accounted for most of this increase, CD8+ T cells in 177 

CP were also elevated relative to normal tissue (Figure 2B).  B cell (CD20+ CD45RA+) density 178 

was also elevated in PDAC and CP, with a variable trend in PanINs (Figure 2D).  Macrophage 179 

and dendritic cell (CD68+ CD16+ CD11c+, CD68+ CD16+ HLADR+, DCSIGN+) densities were 180 
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increased in PanIN, PDAC, and CP regions compared with normal tissue across all matched 181 

patient samples (Figure 2E).  Collectively, the findings demonstrate predominantly CD4+ T cell 182 

infiltration in low–grade PanINs. 183 

 184 

PanIN Harbor Fewer Regulatory T Cells Compared to PDAC 185 

IMC offers both spatial resolution and in-depth phenotypic delineation of T cells in PanINs 186 

and PDACs.  We find that Tregs (CD4+ FOXP3+ PD1–) were significantly greater in all three 187 

pathologies compared with normal ductal tissue (Figure 2, F and G).  As expected, Treg density 188 

was higher in PDAC than in PanINs, suggesting an early ingress of Tregs into the PanIN PCE.  189 

Despite the presence of Tregs in low–grade PanINs, the ratio of CD8+ T cells to Tregs was higher 190 

in PanINs than in PDAC (Figure 2H).  The relatively fewer immunosuppressive cells in PanINs 191 

indicates a more amenable environment for inducing cytotoxic CD8+ T cells and mitigating the 192 

early immunosuppressive effects of Tregs.  Moreover, there was a minimal exhausted CD4+ T 193 

cell population (CD4+ CD45RO+ TOX2+ PD1+) in PanIN compared with PDAC or CP (Figure 2, 194 

I and J), expectedly, given that T cell exhaustion occurs from continued antigen or inflammatory 195 

signal exposure.  Compared to normal tissue, the increase in the central memory T cell population 196 

(CD4+ CD45RO+ CCR7+ HLADR+) was marginal in PanIN regions but increased in PDAC and 197 

CP (Figure 2K).  Together, these data suggest that PanIN lesions harbor fewer 198 

immunosuppressive signals and higher quality T cells compared to PDAC. 199 

We calculated the shortest distance between each cell in each ROI and depicted the 200 

relative number and distance in an interaction network (Supplemental Figure 5). Most immune 201 

cells in normal, PanIN and CP were positioned closely to stromal fibroblasts (COL+ SMA+ VIM+).  202 

In contrast, PDAC intra-tumoral regions exhibited lymphoid cells in close proximity to one another, 203 

indicating more frequent interactions.  Interestingly, the Tregs (CD3+ CD4+ FOXP3+ PD1–) in 204 

PDAC regions were much more spatially integrated with immune cells, particularly closer to the 205 
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cytotoxic T cells (CD3+ CD8+ GZMB+), compared with PanIN and CP.  These data not only 206 

suggest closer communication, and possibly, more frequent interactions between Tregs and 207 

cytotoxic CD8+ T cells, but also further support the role of Tregs in dampening the anti–tumor 208 

immunity exerted by the rare, immune–rich regions spatially adjacent to PDAC. 209 

Immune cells were largely restricted to the tumor front within 250 μm of the leading 210 

invasive edge (Supplemental Figure 6A).  Notably, there was a higher density of naïve and 211 

exhausted CD4+ T cells, and antigen–experienced CD45RO+ CD8+ T cells.  By measuring 212 

distances between each cell in the immune–rich border, we generated an interaction network 213 

(Supplemental Figure 6B).  These lymphoid cells were again positioned closely together, but with 214 

greater distances from Tregs (CD3+ CD4+ FOXP3+ PD1–) compared to interactions depicted in 215 

the intra–tumoral lymphoid population. 216 

 217 

Spatial Proteomics of Lymphoid Cell Populations Uncovers Organized and Distinct 218 

Tertiary Lymphoid Structures Unique to PanIN versus PDAC 219 

In many immune-rich regions at the tumor front, we noted aggregated clusters of CD3+ 220 

cells (Figure 3A).  IMC showed that these aggregates contained cell types and a structural 221 

organization consistent with mature TLSs, as defined by a distinct zone of B cells (CD20+) with 222 

markers of follicular cells (CD21+ CD23+) and surrounded by a dense zone of CD4+ and CD8+ 223 

T cells (20) (Figure 3B).  We also found immature TLSs adjacent to PanIN (within 250 μm of the 224 

epithelial cell edge), defined as dense but disorganized aggregates of B and T cells without 225 

follicular dendritic cells or cell–type specific zones.  Both mature and immature TLSs were also 226 

found in CP regions (Supplemental Table 6). 227 

We studied the diversity and organizational differences across these TLSs using histoCAT 228 

(21), an interactive platform for visualizing multiplexed IMC images. Individual lymphoid 229 

aggregates were separated into individual samples from the rest of the cells captured in a given 230 
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region, allowing for the identification of differences specific to TLSs, but independent from the 231 

surrounding immune infiltrate.  Profiling 27 TLSs by IMC (Supplementary Table 5) revealed that 232 

PDAC– and CP–adjacent TLSs comprised a more diverse subset of B and T cells compared to 233 

PanIN–adjacent T cells (Figure 3C).  Compared with PDAC, TLSs in PanIN regions were 234 

associated with fewer total cells (Supplemental Table 7).  Supplemental Table 8 details the 235 

number of TLSs per patient and per region.  We excluded TLSs not within 250 μm of (a) the edge 236 

of epithelial cells comprising PanINs, (b) the CP region, or (c) invasive tumor border as defined 237 

and measured by pathologist (E.D.T.) (Supplemental Figure 7).  238 

For the most predominant B cell subpopulation (CD20+ CD45RA+), density was not 239 

significantly different across PanIN–, PDAC–, or CP–associated TLSs (Figure 3D).  There were 240 

significant differences in the density of germinal–center–associated B cells (CD20+ CD21+ 241 

CD23+) with increases specific to PDAC–associated TLSs (Figure 3E).  This population was 242 

absent in PanIN–associated TLSs and minimal in CP–associated TLSs, indicative of maturity 243 

specific to some PDAC– and CP–associated TLSs (22, 23).  We also found other indications of 244 

mature TLSs associated with PDAC and CP regions based on the densities of dendritic cells 245 

(DCSIGN+) and high endothelial venules (PDPN+) in TLSs associated with PDAC and CP (Figure 246 

3F).  247 

 248 

PDAC–Adjacent TLSs Have Distinct T Cell Subtypes Compared to TLSs Associated With 249 

PanIN 250 

PDAC–adjacent TLSs displayed higher expression of activation and effector molecules on 251 

T and B cells compared with PanIN–adjacent TLSs.  There was a significantly higher density in 252 

proliferating B cells (CD20+ CD45RA+ KI67+) in PDAC TLSs compared with PanIN– and CP–253 

adjacent TLSs (Figure 4A).  Cytotoxic T cell (CD3+ CD8+ GZMB+) density was also higher in 254 

peri–tumoral TLSs, while the CD3+ CD8+ CD45RO+ T cells were trending compared with PanIN–255 
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associated TLSs (Figure 4, B–D).  While this indicates more activated T cells, there are also more 256 

Tregs (CD3+ CD4+ FOXP3+ PD1–) and exhausted T cells (CD4+ CD45RO+ TOX2+ PD1+ 257 

KI67+) populating PDAC–adjacent TLSs (Figure 4, E–G).  Lastly, PDAC– and CP–associated 258 

TLSs had a greater memory CD4+ T cells (CD4+ CD45RO+ CD57+) density (Figure 4H).  259 

Collectively, the data show that organization of recruited lymphoid cells begins at early stages of 260 

carcinogenesis, and that these cells appear antigen-experienced and exhausted, with localization 261 

just outside the tumor border and proximal to Tregs.  The data also demonstrate a less 262 

immunosuppressive and exhausted T cell phenotype in TLSs associated with precancers.  263 

The spatial organization of subtypes provides further evidence for the structural and 264 

phenotypic maturity of the PDAC and CP TLSs compared to PanIN–associated TLSs.  By 265 

identifying the top 2 nearest neighbors of each lymphoid cell, we determined which cell types are 266 

in most frequent contact (and likely interacting).  We observed that germinal–center–B cells are 267 

frequently in contact with other B cells and T cells in PDAC–associated TLSs (Figure 4I).  268 

Whereas TLSs near PanIN and CP had B cells and memory helper T cells (CD4+ CD45RO+) in 269 

close contact with naïve–appearing cytotoxic T cells (CD8+ CD45RA+), PDAC–adjacent TLSs 270 

displayed B cells and memory helper T cells in contact more frequently with more differentiated 271 

cytotoxic T cells (CD8+ CD45RO+) and Tregs (CD4+ FOXP3+).  Neighbor analyses further 272 

confirm (a) the existence of true germinal centers unique to the PDAC–adjacent TLSs that are 273 

notably absent in any PanIN–adjacent TLS, and (b) that PanIN–adjacent TLSs reflect earlier steps 274 

in the formation of immune responses with less immunosuppression. 275 

 276 

PanIN Formation in Tamoxifen–Inducible KPC Mice Recapitulate Accumulation of Tregs 277 

and Lymphoid Aggregates as a Dynamic Change Associated with PDAC Carcinogenesis 278 

 Though profiling the immune microenvironment of human PanINs is critical to 279 

understanding PDAC progression, these lesions are detected only PDAC resection.  While we 280 
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hypothesize that spatially distinct lesions are independent, allowing spatial distance and genetic 281 

differences to serve a surrogate for the evolution of the disease, we are limited in our ability to 282 

directly infer the timing of immunological changes during carcinogenesis.  To overcome this 283 

limitation in temporal sampling, we used a tamoxifen–inducible genetically engineered mouse 284 

model––KrasLSL-G12D;p53LoxP;Pdx1–CreER (tiKPC) mouse (19)––to generate and harvest PanIN 285 

lesions in vivo before development into PDAC.   286 

Tumor development was induced by daily intraperitoneal injections of tamoxifen over 5 287 

days, followed by sacrifice at 10–16 weeks post–induction (Supplemental Figure 8A). Whole 288 

pancreases from 11 mice were sectioned and representative regions of normal duct, PanIN, and 289 

PDAC identified by pathologist (R.A.A.).  We noted increased T cell infiltration in PanIN and PDAC 290 

relative to normal ducts, as well as lymphoid aggregates proximal to PanIN and PDAC 291 

(Supplemental Figure 8C).  The latter lacked the organized germinal centers characteristic of 292 

mature human TLSs, possibly due to the short antigen exposure.   293 

Sections of mouse pancreas were analyzed using IMC (Supplemental Table 3).  Protein 294 

expression in segmented cells was used to annotate cells by hierarchical clustering 295 

(Supplemental Figure 8B).  We inferred following T cell phenotypes: CD4+ T helper (CD4_Th), 296 

CD4+ T regulatory (CD4_Treg), and CD8+ T cells (CD8_T cell).  ROIs were annotated by 297 

segmentation with histoCAT (21) as normal (N=12), PanIN (N=8), tumor edge (N=18), tumor core 298 

(N=16), and lymphoid aggregate (PanIN–adjacent, N=4, PDAC–adjacent, N=5) (Supplemental 299 

Figure 8C).  T cell densities, including all three observed phenotypes, were compared between 300 

regions.  301 

PanINs were enriched for T cells compared to normal tissue, as were the tumor edges, 302 

upon excluding lymphoid aggregates (Supplementary Figure 8D).  Tumor cores displayed lower 303 

T cell densities compared with PanIN.  Normal ductal tissues had lower enrichment with CD8 T 304 

cells compared with PanIN, tumor edge, or tumor core.  No significant difference in CD8 T cell 305 
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density was noted across the tumor regions (Supplementary Figure 8E).  Importantly, as noted in 306 

humans, Tregs were enriched in PanIN, tumor edge, and tumor core relative to normal ducts 307 

(Supplementary Figure 8F).  Comparison of lymphoid aggregates proximal to PanIN and PDAC 308 

revealed greater Treg density in PDAC–adjacent aggregates, but the number of aggregates was 309 

too small to yield statistical significance.  Differential protein expression in CD8 T cells between 310 

lesion types revealed lower PD1 expression in PanIN–adjacent CD8 T cells (45 cells) than at 311 

PDAC tumor edges (158 cells) or tumor cores (204 cells) (Supplemental Figure 8H).  This possibly 312 

reflects a more exhausted T cell phenotype, as with human data.  313 

As observed with human data, we also found that in tiKPC mice (a) PanIN and PDAC 314 

recapitulate features of T cell accumulation relative to normal ducts, and (b) CD8 T cells proximal 315 

to PanIN exhibit lower PD1 compared with PDAC.  The lymphoid aggregates observed in mice 316 

also showed a trend towards increased Treg density in PDAC over PanIN, consistent with human 317 

PDAC – together, suggesting that these lymphoid aggregates become more immunosuppressive 318 

with progression to PDAC.   319 

 320 

Spatial Transcriptomics of Human Biospecimens Identifies Markers in Peri–Tumoral TLSs 321 

We employed 10x Genomics Visium to investigate tissue collected from FFPE–embedded 322 

blocks of TLSs found in proximity to PanINs and PDAC (24).  19 of the 20 segments from 5 323 

patients had sufficient read depth and unsupervised clustering that aligned with histologic features 324 

for subsequent analysis.  6 segments across 4 patients contained low-grade PanIN and one 325 

segment contained high-grade PanIN, per pathologists (E.D.T., J.W.L.). All lesions were 326 

categorized as ‘PanIN’ in subsequent analysis, regardless of grade, due to high-grade PanIN 327 

being represented by a single sample (Supplemental Figure 9, Supplemental Table 9). 24 TLSs 328 

were identified within 250 μm of CP (4), PanIN (2), or peri-tumoral (18) (Figure 5A).  Relative to 329 

surrounding spots and non–TLS tissue, TLSs exhibited increased expression of chemokine–330 
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encoding genes CXCL13, CCL19, and CCL21; the follicular dendritic cell and germinal–center–331 

associated B cell marker CR2 (CD21); and a 12–chemokine–encoding-gene signature that 332 

identified ectopic lymph node–like structures in microarray data from primary colorectal carcinoma 333 

(25) (Figure 5B).   334 

TLSs associated with PanINs were rare, occupying a small area compared with PDAC 335 

TLSs, yielding few representative Visium spots for robust statistics.  We thus employed non–336 

negative factorization of gene expression data from the TLS spots (Figure 5A, red dots) and 337 

neighboring regions within 2 TLS spots (Figure 5A, white spots) using CoGAPS (26).  CoGAPS 338 

learned 8 transcriptional patterns. Patterns 2, 3, and 5–8 were specific to spots in stromal regions 339 

in proximity to TLS, and Pattern 4 was enhanced in regions of acinar tissue (Figure 5C, 340 

Supplemental Figure 10A).  Pattern 1 showed the greatest association with TLSs.  Overlay of 341 

Pattern 1 weights on TLS images showed high pattern weights in centers of TLSs with a gradient 342 

of declining weights to the TLS periphery.  Pattern 1 weights for each spot correlated with the 12–343 

chemokine module score computed for each spot (Pearson coefficient 0.4654, P=9.767e-15) 344 

(Figure 5D), recapitulating the existence of mature TLSs adjacent to PDAC using IMC.  Pattern 1 345 

weights were greater in PDAC–proximal TLSs compared with PanIN–proximal TLSs (P=0.0012) 346 

or CP–proximal TLSs (P=1.2e-7) (Figure 5E).  This latter finding provides further evidence for the 347 

differences in maturity and functionality in PanIN versus PDAC-associated TLSs as with IMC.  348 

We captured marker genes for each pattern using a novel pattern marker statistic, which 349 

assigns each gene as marker of patterns associated with higher fractional expression – allowing 350 

a gene to be a marker of multiple latent patterns identified by CoGAPS by considering high, 351 

medium, or low fractional expression of each across the dataset.  Pattern marker scores for each 352 

pattern were used for gene set enrichment analysis using the Kyoto Encyclopedia of Genes and 353 

Genomes (KEGG) (27-29).  Pattern 1 showed high representation of pathways including B and T 354 

cell receptor signaling, and TLS maturation pathways, including cytokine–cytokine receptor 355 
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interactions, cell cycle processes after antigen recognition, and costimulatory receptor 356 

engagement (Figure 5F).  Patterns 2, 3, and 6 were enriched for pathways associated with 357 

extracellular matrix interactions and cell adhesion.  Pattern 4 showed enhancement of metabolic 358 

pathways associated with acinar cells. Enrichment of autoimmune processes and cytokine 359 

signaling in Pattern 8 suggest inflammatory signals from cells in the stroma.  No KEGG pathways 360 

were enriched among marker genes for Patterns 5 or 7 (Supplemental Figure 10B).  The 361 

association of Pattern 1 spot weights in PDAC–associated compared with human PanIN–362 

associated TLSs is consistent with IMC showing that PanIN TLSs are less mature. 363 

We used pySCENIC (30, 31) to infer transcription factor activity in the same Visium spots 364 

from TLSs and their neighbors.  Transcription factors with activities displaying high correlation 365 

with Pattern 1 revealed TLS scores with high representation of transcription factors associated 366 

with T and B cell development, namely ETS1 and PAX5, as well as NFKB2, a transcription factor 367 

with broad roles in immune regulation (32-34) (Figure 5G).  These findings of transcription factor 368 

activity associated with lymphocyte development and activation within TLS centers is supported 369 

by the observed organization of a B cell germinal center bounded by T cells in PDAC-associated 370 

TLSs using IMC (Figure 3B). We also found that FOXP3, a Treg transcriptional marker, showed 371 

sparse detection (Supplemental Figure 11), likely due to dropout (gene not captured by the spatial 372 

probes) of these transcripts, rather than the paucity of Tregs (based on their proteomic detection).  373 

When assessing the activity of FOXP3 as a transcription factor based on expression of genes in 374 

its regulon (Figure 5E), activity was enhanced around the periphery of TLSs in contact with tumor 375 

stroma.  This observation follows the expected distribution of T cells in a mature TLS and suggests 376 

that the Tregs found to be more abundant in PDAC-associated TLSs compared to PanIN TLSs 377 

may play a role in hindering the efflux of mature lymphocytes from the TLS into the tumor.   378 

 379 

 380 
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DISCUSSION 381 

We present a rigorous analysis of the localization and characterization of lymphoid 382 

aggregates that are associated with treatment–naive PDACs, PanINs, and CP in resected 383 

specimens from the same patient.  We also report the existence of organized lymphoid structures 384 

with distinct structural and functional characteristics that differ between those adjacent to PDAC, 385 

PanIN or CP and were not observed in normal ductal tissue.  Furthermore, PanINs were clonally 386 

distinct from patient–matched tumor samples––thus, the immune microenvironment of each 387 

PanIN was genetically distinct from that of associated PDAC. We observed genetic heterogeneity 388 

among PanIN and PDAC lesions present in the same tissue block in agreement with Braxton et 389 

al. (14).  We also associated features of the immune response to PDAC progression using spatial 390 

proteomics and transcriptomics. Observed lymphoid structures differed between PanINs and 391 

PDACs.  While PanINs attracted less organized T and B cell aggregates, PDAC invasive fronts 392 

were associated with mature TLS with defined germinal centers and follicular cells.  Lymphoid 393 

structures in mice were more similar to the lymphoid aggregates observed in human PanINs 394 

rather than mature TLSs observed adjacent to PDACs likely explained both by the shorter 395 

duration of antigen exposure and fewer available antigens to react against (35).  396 

We posit that immune cell composition of PanINs is more favorable towards immune–397 

based interception.  First, IMC revealed fewer Tregs in PanIN, while densities in tumor regions 398 

were higher.  These Tregs were in closer proximity to cytotoxic CD8+ T cells within the tumor 399 

compared with PanINs, suggesting increased immunosuppression in tumors.  Second, we found 400 

that the ratio of cytotoxic CD8+ T cells to Tregs was higher in PanINs compared with tumors.  401 

Finally, PanINs had a lower exhausted T cells density compared with tumor.  A caveat is that, 402 

while our analysis was limited to low–grade PanINs, high-grade lesions may display a more 403 

evolved immune suppressive microenvironment but are rarely identified in isolation from PDAC. 404 
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Recent landmark studies have reported on the surprisingly high PanIN frequency in non-405 

PDAC autopsy specimens, setting the stage for identifying factors in the PCE that may restrain 406 

or promote PDAC progression. Our observations are consistent with Carpenter et al. in that CD4 407 

(and not CD8) T cells are enriched in PanINs. In contrast to Carpenter et al., we observed Treg 408 

enrichment in PanINs -- a discrepancy that we attribute to the difference between spontaneous 409 

PanINs from non-PDAC-affected individuals versus PanINs associated with PDAC. This brings 410 

into question whether Treg-enriched PanINs are more likely to progress to PDAC, as in the case 411 

of our murine studies. Furthermore, given that there are no reports of TLSs in Carpenter et al., it 412 

behooves us to determine whether TLSs occur sporadically alongside PanINs in non-PDAC 413 

affected individuals. 414 

While immune exclusion is frequently described in the context of PDACs, there is less 415 

data regarding the composition of immune populations restricted to the tumor border.  We posit 416 

that, among the relatively dense immune microenvironment restricted to just outside the tumor, T 417 

cells are educated by TLSs to recognize specific antigens.  However, these T cells are unable to 418 

infiltrate into the tumor due to the dense stroma.  TCR sequencing should provide information on 419 

T cell clonality within the tumor compared to peri-tumoral region; this was attempted albeit without 420 

success due to sparse T cells infiltrating the tumor.  421 

The distinctive features between immature and mature TLSs have previously been 422 

described, with immature TLSs comprising CD21+CD23+ B cells, but lacking germinal–center 423 

formation (22, 23).  Interestingly, as in precancer lesions of liver (36) and breast cancers (37), we 424 

find immature TLSs associated with both human and mouse PanIN lesions.  However, we did not 425 

find mature TLSs in proximity to PanINs, contrasting the mature TLS phenotype described in 426 

intrapapillary mucinous neoplasms (IPMNs), another type of PDAC precancer (38).  In the mouse, 427 

immature, but not mature TLSs, were associated with both PanIN and PDAC.  That murine 428 

PanINs developed temporally prior to PDAC supports the notion that PanIN themselves induce 429 
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inflammation that results in immature TLSs, independent of PDAC.  Notwithstanding our inability 430 

to temporally profile human tissue, our mouse study provides an explanation that immature TLSs 431 

in human PanIN lesions likely develop independently of co-existing PDAC. However, mature TLSs 432 

have not been identified in the tiKPC mouse. 433 

The low levels of proliferation and activated T cell markers in immature TLSs in PanIN 434 

indicate limited functionality.  Furthermore, our exploration of the transcriptomic differences 435 

between PanIN–associated immature and mature TLSs (found outside the tumor margin) showed 436 

a correlation with B cell development transcription factors and protein expression, except NFKB2 437 

activity which was not included in the IMC panel. While the chemokine–related genes LTB, 438 

CCL19, CXCL13, and CXCR5 were expressed in PDAC–associated mature TLSs, only two, 439 

namely LTB and CCL19 overlapped with PanIN–associated immature TLSs (Figure 6).  This gain 440 

of chemokine–related genes in PDAC may thus reflect an evolving microenvironment that begins 441 

with immature TLSs associated with PanINs and progresses slowly to mature, tumor-excluded 442 

TLSs adjacent to the PDAC.  Alternatively, low levels of tumor antigen in PanINs may prevent 443 

maturation of the associated immature TLSs.  This may also account for the observation of mature 444 

TLSs in the context of IPMN, which are typically much larger than PanIN lesions, and are 445 

radiographically visible (38).  To this point, CXCL13 which was expressed by the mature TLS 446 

adjacent to tumors was associated with a signature identifying neoantigen–reactive T cells (39), 447 

suggesting that PDAC–associated mature TLSs have the capacity to educate tumor–specific T 448 

cells similar to TLS found in autoimmune diseases (40). TCR and BCR sequencing of PanIN– 449 

versus PDAC–associated TLSs should provide further clues on antigen recognition by the 450 

respective cellular components.  Additionally, while we identified mature TLSs in the periphery of 451 

PDACs, the functionality of any activated T cells within these TLSs is likely mitigated by 452 

immunosuppressive, exhausted, and senescent T cells populating the area.  453 
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Multiple factors in the evolving PCE and TME may account for TLS development.  First, 454 

the stroma acts as a physical barrier to T cell ingress (41).  Second, data from a mouse melanoma 455 

model suggest that CAFs induce variable levels of lymphoid–inducer signals (42) to contribute to 456 

TLS evolution.  Finally, a pro–inflammatory stroma can upregulate CXCL13 expression, 457 

suggesting that stromal elements might affect mature TLS formation (43).  This finding is 458 

consistent with the absence of transcriptional upregulation of CXCL13 in PanIN–associated TLSs.   459 

Therapeutically, the decade or more long window for human PanINs to progress to PDAC 460 

provides an exceptional opportunity to intercept cancer progression in high–risk individuals. For 461 

this, gaining a deeper understanding of early events associated with PDAC progression becomes 462 

imperative.  In this respect, the tiKPC mouse is likely to remain a vital tool not only for mechanistic 463 

studies into the quantity, function, and localization of immune cell subtypes and the immune 464 

landscape in both PanINs and PDAC lesions, but also as a platform for testing novel immune 465 

interception strategies that could propagate TLS maturation.  466 

Exogenous antigens delivered in the form of vaccines may potentiate mature TLS 467 

development. HPV vaccines have resulted in mature TLS formation in regressing lesions in 468 

individuals with cervical intraepithelial neoplasia (44). Vaccine adjuvants including TLR agonists 469 

(e.g. Poly ICLC, CpG or STING agonists) can promote TLS maturation. The intratumoral injection 470 

of CXCL13 and CCL21 has led to TLS formation in PDAC models (45). Given their ability to co-471 

deliver antigen and immune modulating agents simultaneously, nucleic-acid-based vaccines may 472 

be a versatile interception platform focused on enhancing TLS maturation (46). Nonetheless, 473 

potential toxicities must be carefully considered when treating individuals at a high-risk.  474 

In summary, our study comprises a small but rare cohort of treatment–naïve PDAC 475 

patients, complemented with a mouse model for temporal analyses.  It represents an in–depth 476 

spatial characterization of the immune architecture of early precancer lesions in PDAC.  PanIN 477 

lesions in the absence of associated PDAC lesions are not possible to obtain in humans, except 478 
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through the exploration of autopsy samples.  The rarity of this resected PDAC cohort arises from 479 

the need to have PanIN and PDAC in the same patient section, but with the two lesions at spatially 480 

distinct locations.  Furthermore, our discovery of immature TLSs in PanIN lesions lends a major 481 

challenge––to interrogate immature TLSs to define the earliest tumor–specific T cell responses 482 

and identify mechanisms that promote T cell ingress and activation.  The temporal sequence of 483 

PanIN–to–PDAC progression in the tiKPC mouse provides a unique way to achieve this goal.   484 

485 
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METHODS 486 

Human Tissue Acquisition and Selection of Samples 487 

Our study examined male and female PDAC patients (details in Supplementary Table 10). 488 

Five patients without peri-operative chemotherapy with distinct PanIN lesions were identified by 489 

pathologist (E.D.T.).  Four patients had PDAC, and one with distal cholangiocarcinoma infiltrating 490 

the pancreas.  The latter was included to study treatment–naïve PanIN lesions not associated 491 

with PDAC. The microsatellite instability–high (MSI-H) specimen (Patient 3) did contribute 4 of 492 

the 11 PDAC–adjacent TLSs (Supplemental Table 8). For one patient, ROIs for PDAC, PanIN, or 493 

CP were not available; however, there was sufficient ROIs including peri-tumoral regions that also 494 

included TLSs.  495 

Serial sections were cut and mounted on unstained SuperFrost Plus slides for H&E, IHC, 496 

or IMC.  Sections were cut onto PEN membrane slides activated with 30 min of UV light for laser 497 

capture microdissection. Punches were cut onto 10x Genomics Visium slides for spatial 498 

transcriptomics (Supplemental Figure 1A).  Each H&E section was annotated by E.D.T. and ROIs 499 

were established as a reference for IMC data acquisition (Figure 1A).  Sections were preferentially 500 

chosen for analysis if they had PDAC, PanIN, CP, and normal regions.  Immune–rich areas, 501 

particularly within regions of tumor, were identified using CD3 immunostaining.   502 

CD3 immunostaining was performed on FFPE sections on a Ventana Discovery Ultra 503 

autostainer (Roche Diagnostics).  Briefly, following dewaxing and rehydration on board, epitope 504 

retrieval was performed using Ventana Ultra CC1 buffer (catalog# 6414575001, Roche 505 

Diagnostics) at 96oC for 60 minutes.  Primary anti–CD3 antibody (1:200 dilution; catalog# 506 

ab16669, Abcam; Lot # GR3262328-4, at 36oC, 60 minutes), was captured by an anti–rabbit HQ 507 

detection system (catalog# 7017936001 and 7017812001, Roche Diagnostics). This was followed 508 

by Chromomap DAB IHC detection kit (catalog# 5266645001, Roche Diagnostics), 509 
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counterstaining with Mayer’s hematoxylin, dehydration, and mounting.  All H&E and IHC sections 510 

were scanned using Hamamatsu Nanozoomer, and images visualized using NDP.view2. 511 

 512 

Imaging Mass Cytometry Acquisition and Analysis 513 

Resected pancreas slides were baked at 60°C for 2 hours, dewaxed in histological grade 514 

xylene, and rehydrated in a descending alcohol gradient.  The slides were incubated in Antigen 515 

Retrieval Agent (pH 9) (Agilent® S2367) at 96°C for 1 hour and blocked with 3% bovine serum 516 

albumin (BSA) in Maxpar® PBS (Standard BioTools, 201058) at room temperature for 45 minutes. 517 

Antibody cocktails for human and mouse tissue sections (Supplemental Table 2 and 3) were used 518 

to stain slides at 4°C overnight.  Custom antibodies were conjugated in–house, diluted to 0.25 519 

mg/mL to 0.5 mg/mL, and titrated empirically.  Cell-ID™ Intercalator-Ir (Standard BioTools PN 520 

201192A) was diluted at 1:400 in Maxpar® PBS and used for DNA labelling.  Ruthenium tetroxide 521 

0.5% Aqueous Solution (Electron Microscopy Sciences PN 20700-05) was diluted at 1:2000 in 522 

Maxpar® PBS and used as a counterstain.  Images were acquired by Hyperion Imaging System 523 

(Standard BioTools), and representative images generated through MCD™ Viewer (Standard 524 

BioTools). 525 

Images were segmented for analysis using nuclear (Ir191 and IR193) and plasma 526 

membrane staining (IMC Segmentation Kit, Standard BioTools) (47). Twenty images were used 527 

to assign pixel classifications and establish predictions in Ilastik (48), which was used to segment 528 

images using CellProfiler (v 4.2.4) (49).  Each segmented image was further subdivided into 529 

increasingly strict regions using histoCAT (21) (based on the features found in each image) 530 

(Figure 1C).  For example, a 1mm x 1mm region, which included a PanIN lesion and surrounding 531 

acinar tissue, was further sub–divided into a region that included just the PanIN plus a 200μm 532 

region beyond the edge of the PanIN epithelial cells (Supplemental Figure 1B).  This approach 533 

restricted our immune cell analysis to the PanIN lesion while excluding the surrounding tissue.  In 534 
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contrast, several PDAC regions were not further sub–divided, as the entire ablated region was 535 

composed entirely of intra–tumoral cells.     536 

For the human dataset, each individual cell (both TLS and non–TLS regions) were 537 

clustered at a resolution of 50 clusters using FlowSOM.  Annotations were assigned using the 538 

relative expression of marker panel (Figure 1E).  For mouse, cells were clustered using 539 

Rphenograph v0.99.1 at k=30 clustering resolution.  Clusters with elevated CD45 expression 540 

were subjected to further clustering at k=30 resolution, which were annotated by cell type based 541 

on characteristic protein markers.  Density of cell types was determined by dividing the number 542 

of cells detected per cluster by the area of tissue analyzed (Tables 2 and 4).  Box plots were 543 

generated in R v 3.6.3. using ggplot2.  P values are derived from Wilcoxon rank–sum tests of cell 544 

density per area and were not adjusted for multiple test correction due to the low number of tests. 545 

Interaction networks were generated by measuring the shortest distance between all cells 546 

computationally (utilizing x, y coordinates generated by the segmentation process) and depicting 547 

the relative distance between each cell type based on average shortest distances.  Clusters were 548 

excluded from the analysis if they consisted of less than 1% of the total counts.  549 

Top neighbor analysis was performed by compiling the top 2 neighbors per cell per cluster 550 

using CellProfiler.  A heatmap was generated to display the aggregated data.  Clusters were 551 

excluded from the heatmap if it comprised of less than 1% of the overall counts.  Normalized 552 

relationships were generated by dividing each matrix by the largest cell count per region type.  553 

Representative images were prepared using MCD Viewer, overlaying multiple stains and 554 

adjusting the threshold to minimize background.  These were then exported as 16–bit images into 555 

GIMP with minimal noise reduction (level 2).  556 

 557 

 558 
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Spatial Transcriptomics Data Generation 559 

Sample preparation followed manufacturer’s protocol for Visium FFPE (10x Genomics) 560 

using Visium Spatial Gene Expression Slide Kit (1000185), Visium FFPE Reagent Kit (1000362), 561 

Visium Human Transcriptome Probe Kit (1000364), and Dual Index Kit TS Set A (1000251).  Four 562 

tissue segments each were collected from 5 surgical specimens by scoring the paraffin block with 563 

a skin punch (5 mm) before sectioning.  Segments were placed on 10x Genomics Visium slides 564 

within the 4 fields of maximum 6 x 6 mm size, with each slide containing normal, PDAC, PanIN, 565 

and CP from the same surgical specimen.  Segments were deparaffinized, stained H&E, and 566 

scanned using Nanozoomer scanner (Hamamatsu) at 40x.  Human probe hybridization was 567 

performed overnight at 50°C using the Visium Human Transcriptome Probe Set v1.0.  RNA was 568 

digested following probe ligation, and tissue permeabilized for release, capture, and extension of 569 

probes.  Probes were captured for sequencing by oligo-d(T) capture.  Sequencing libraries were 570 

prepared following manufacturer’s instructions to extend probes as the template.  All libraries 571 

were sequenced at a minimum depth of 50,000 reads per spot (minimum of ~250 million per 572 

sample) at the Novaseq (Illumina).  The Visium Human Transcriptome Probe Set v1.0 contains 573 

probes targeting 19,144 genes, which provided gene expression information on 17,943 genes 574 

after filtering for probes with off–target activity. 575 

 576 

Image-Based Tissue Type Annotation with CODA 577 

Seven microanatomical components of human pancreas tissue were multi–labelled with 578 

a semantic segmentation workflow using CODA (50), per Bell et al. (24).  A neural network trained 579 

on 25 annotated examples of pancreas tissue was used to annotate each pixel of the spatial 580 

image as islets of Langerhans, normal ductal epithelium, vasculature, fat, acinar tissue, collagen, 581 

PDAC, PanIN, or non–tissue.  Nuclear coordinates were generated via the detection of 2D 582 
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hematoxylin intensity peaks.  The low–resolution tissue image of each segment provided by 583 

Space Ranger was registered to the high–resolution tissue image using the fiducial markers on 584 

the spatial transcriptomics slide.  Visium spot coordinates were registered in the high–resolution 585 

image annotated by tissue types and cellularity was calculated within 25 µm of each Visium 586 

coordinate.  Tissue composition was determined by analyzing the percentage of each classified 587 

tissue type with each spot.  Cellular identity was estimated by determining the microanatomical 588 

label at each coordinate where a nucleus was detected.  Spots were labeled by the predominant 589 

tissue type if the spot comprised >70% of the same tissue type. Spots where “no–tissue” type 590 

made up >70% of the spot were annotated as “NA” indicating mixtures of multiple tissue types.  591 

Spots annotated as “PanIN” were further delineated into “low–grade” or “high–grade” PanIN 592 

based on cell morphology (E.D.T.).  Where CODA annotations of PanIN did not agree with 593 

morphology, labels were deferred to E.D.T.’s assessment. 594 

 595 

Spatial Transcriptomics Data Analysis 596 

Space Ranger v1.3.1 (10x Genomics) was used to demultiplex sequencing data, convert 597 

FASTQ files of spot barcodes and transcript reads, align barcodes to the spatial image, and 598 

generate read count matrices.  Subsequent data processing and analysis was conducted in R 599 

v4.2.0 using Seurat v4.1.1 (51).  Expression data for each tissue segment was loaded into R and 600 

underwent initial visualization of UMI counts and detected gene number per spot to assess 601 

sample quality.  Read count normalization per segment used the SCTransform function with the 602 

negative binomial method followed by clustering of cells using Leiden clustering with Leidenalg 603 

v0.8.0 (52).  Using Loupe Browser v6.4.0 (10x Genomics), spots from pieces of tissue that had 604 

broken apart from their native context and spots where tissue had folded onto itself were 605 

annotated for export of spot barcodes and removed from subsequent analysis.  All spots 606 

annotated as “fat” by CODA were removed from subsequent analysis to exclude spots where the 607 
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high density of probes from acinar tissue may bleed into neighboring RNA–poor regions of 608 

adipocytes.  The segment PANIN04 was not included in subsequent analysis as it had very low 609 

UMI detection per spot (median – 171 UMI per spot) and Leiden clusters did not follow tissue 610 

morphology. 611 

Upon filtering spots and segments based on quality and tissue types, segments were 612 

aggregated into Seurat objects for each patient that were processed and sequenced together. 613 

Expression counts underwent normalization and scaling using SCTransform for each patient. 614 

Spatially variable features were identified using the FindSpatiallyVariableFeatures function and 615 

used for principal component analysis.  The first 25 principal components for each patient were 616 

used to identify spot neighborhoods, calculate UMAP embeddings for spots in each patient, and 617 

identify Leiden clusters. The AddModuleScore function was used to identify increased co–618 

expression of genes associated with classical PDAC, basal PDAC, cancer stem cells (24), and a 619 

12–chemokine gene signature that delineates microarray data from solid tumors containing TLSs 620 

(25).  621 

TLSs were identified within tissue segments by E.D.T.’s review of H&E images for TLSs 622 

within 250 µm of PDAC, PanIN, or CP on sequential slides from the surgical specimens.  Visium 623 

spots corresponding to the TLSs were picked using Loupe Browser where cell barcodes were 624 

exported for annotation of the spots in Seurat.  Visium spots from neighboring regions surrounding 625 

TLSs were selected automatically using STUtillity v1.1.0 (53), where STUtility objects were 626 

created using the same Space Ranger outputs as the Seurat objects and cell barcodes for TLS 627 

regions.  The RegionNeighbors function was used to identify all spots within 2 Visium spots (~150 628 

µm) of TLS boundaries. Spots within TLSs and the 2-spot neighboring regions underwent non–629 

negative matrix factorization using CoGAPS v3.14.0(26).  CoGAPS was run on log2–transformed 630 

counts with +1 pseudo counts to learn 10 patterns with 50,000 iterations on “genome-wide” 631 
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distributed CoGAPS mode.  Sparsity parameters were α=0.01 and maxGibbsMass=100.  632 

Distributed parameters were nSets=16, cut=10, minNS=8 and maxNS=24.  633 

Spatial plots and violin plots of TLS marker genes and the chemokine module score were 634 

generated with the SpatialFeaturePlot function and VlnPlot functions, respectively.  TLS 635 

annotations were plotted with SpatialDimPlot.  Heatmaps of pattern weights stored as 636 

sampleFactors in the results from CoGAPS were generated with ComplexHeatmap v2.12.0 (54).  637 

Pattern weights in TLSs were compared across PDAC–, PanIN–, and CP–associated TLSs using 638 

Kruskal-Wallis tests across all groups and Wilcoxon rank–sum tests for pairwise comparisons (R 639 

stats v4.2.0).  Pearson correlation between the chemokine gene signature module score and 640 

CoGAPS Pattern 1, showing association with TLS cores, was calculated with the cor.test function 641 

and goodness of fit R2 values were calculated using linear regression with the lm function.  642 

Pattern markers were assigned based on an approach innovating upon the method of 643 

Stein–O’Brien et al. (55).  In brief, genes from the expression matrix (D) were categorized into 644 

distributions based on low, medium, or high fractional expression of the estimated reconstruction 645 

of the expression matrix (D’).  Genes which were identified as outliers for the expected expression 646 

distribution in a given pattern were annotated as a marker of that pattern.  Gene scores as a 647 

pattern marker from the outlier analysis were used to rank genes for GSEA using the R package 648 

fgsea v1.22.0 with gene sets from KEGG (27-29) obtained through the Molecular Signatures 649 

Database (msigdb) (56, 57) using msigdbr (v7.5.1).  Transcription factor activity scores were 650 

quantified for TLS spots and neighboring spots within 2 spots using pySCENIC (30, 31) v0.11.0 651 

with refseq-r80 reference for transcription factor–encoding genes and rankings for transcription 652 

factor binding sites within 500 bp up to 100 bp down and 10 kb up and 10 kb down of transcription 653 

start sites of genes in the hg38 reference genome.  Motifs reference v9 was used sourced from 654 

the Aerts lab cisTarget database (https://resources.aertslab.org/cistarget/).  655 

 656 

https://resources.aertslab.org/cistarget/
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Laser Capture Microdissection for Whole Exome Sequencing Preparation and Analysis 657 

Serial FFPE tissue sections (10 µm2) were cut onto UV activated (30–minute exposure to 658 

UV light) PEN membrane slides.  Tissue sections were stored for up to 2 weeks at –20°C before 659 

microdissection.  Slides were heated at 40°C for 20 minutes, deparaffinized in fresh xylene for 5 660 

minutes twice, then rinsed in diH20 six times.  Slides were rinsed in 100%, 95%, 70% ethanol 661 

each for 1 minute and stained with 50% hematoxylin for 1 minute, rinsed for 1 minute in diH20, 662 

and stained with 50% eosin for 2 seconds.  The slides were rinsed in 70%, 95%, 100% ETOH 663 

each for 1 minute.  The stained slides were air dried and laser capture microdissection was 664 

performed using LMD 7000 system (Leica).  The adjacent H&E sections were used as reference 665 

for areas that would be micro-dissected (based on annotations by E.D.T.).  PanIN regions were 666 

defined by the PanIN lesion itself plus a 250 µm surrounding edge.  Large areas were taken within 667 

the tumor and CP regions, and normal tissue to maximize the DNA collected (representative 668 

images in Supplemental Figure 12).  Ten (10 µm2 thick) sections were cut per region per patient 669 

to collect enough DNA to submit for WES.  DNA was extracted using Qiagen QIAamp DNA FFPE 670 

Tissue kit (Cat. 56404).   671 

Somatic mutations were called for each PanIN, PDAC, or CP sample with a matched 672 

normal using gatk toolkit (version 4.3.0.0) following best practice pipeline (58).  A panel of normals 673 

(PONs) was generated by running Mutect2 on each normal sample using the hg38 human 674 

reference genome with the max–mnp–distance set to zero, and then, using the 675 

GenomicsDBImport function followed by CreateSomaticPanelOfNormals function.  After the 676 

PONs were created, somatic mutations for each sample of interest were called using Mutect2.  A 677 

contamination table for each sample was created using GetPileupSummaries followed by 678 

CalculateContamination.  Artifact priors were calculated using the LearnReadOrientation function. 679 

Variants were filtered using the contamination table and artifact priors.  Variant annotation was 680 

done using OpenCRAVAT (v 2.2.7) and variants, namely: frameshift insertion, frameshift deletion, 681 
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in-frame deletion, in-frame insertion, missense variant, splice site variant, stop gain, stop loss, 682 

and synonymous variant were selected (59).  Selected variants also needed to have at least 30X 683 

coverage in both tumor and matched normal samples with at least 6 reads in the tumor sample 684 

supporting the variant.  Finally, a visual inspection was performed to remove a variant if: (a) all 685 

reads supporting the variant were from the same strand; (b) VAF of the variant was 100%; (c) 686 

supporting reads were towards the end of the read; (d) reads were low quality; and/or (e) 687 

supporting reads had the same start and end position.  Mutations for each patient were visualized 688 

using UpSetR (version 1.4.0) (60).  One patient had insufficient DNA from the normal sample to 689 

allow for curation of the mutation calls specific to PanIN and PDAC.  Another patient was 690 

diagnosed with distal cholangiocarcinoma so the comparison between PanIN– and PDAC–691 

specific mutations was not considered feasible. 692 

 693 

tiKPC Murine Model and Tissue Acquisition 694 

Tamoxifen–inducible KrasLSL-G12D; p53LoxP; Pdx1–CreER (tiKPC) mice were purchased 695 

from Jackson Labs (Strain# 032429) and bred in–house to generate the Pdx1-696 

CreErTg/Tg;Trp53fl/fl;KrasG12D/- genotype.  tiKPC mice at 8-10 weeks of age were induced with 697 

intraperitoneal injections of 100 µl tamoxifen (20 mg/mL) for 5 days [1 g tamoxifen (Sigma-Aldrich, 698 

Cat # T5648) plus 2.5 mL pure ethanol, vortexed for 5 minutes].  50 mL pre–warmed (55°C) 699 

sunflower oil (Sigma-Aldrich, Cat # S5007) was added to the tamoxifen/ethanol mixture in an 700 

Erlenmeyer flask, and the solution was dissolved in a shaking water bath at 175 rpm, 55°C for up 701 

to an hour.  The dissolved solution was aliquoted in amber Eppendorf tubes and stored at –20°C.  702 

On the day(s) of injection, aliquots were warmed in a heat block for 10 minutes until fully thawed. 703 

Pancreas tissue and any pancreas tumors were dissected from each mouse at timepoints 704 

pre–determined before induction was initiated.  Tissue was sandwiched between three surgical 705 

sponges (two at bottom, one on top) (Fisher-Scientific, Cat # 22-038-221) during fixation in 10% 706 
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Neutral Buffered Formalin (LabChem, Cat # VT450D) for up to 24 hours.  This maximized the 707 

surface area exposure of the tissue and ensured consistent thickness across all samples.  708 

FFPE tissue sections (5 µm thick) were cut, and 6 H&E sections produced for each mouse 709 

to explore the entire pancreas.  Nine serial sections were cut onto SuperFrost Plus slides for long–710 

term storage at –80°C.  Pathologist R.A.A defined the ROIs as a reference for IMC data 711 

acquisition.  H&E tissue sections were labeled as Tumor Edge, Tumor Core, PanIN, Lymphoid 712 

Aggregate, or normal, and were scanned at 40x resolution using Hamamatsu Nanozoomer with 713 

images being visualized by NDP.view2.  714 

 715 

Statistics 716 

 A P-value of <0.05 was considered significant. Multiple test correction for GSEA tests of 717 

marker gene scores in learned pattern weights was conducted using Benjamini-Hochberg false-718 

discovery rate adjustment. Box plots denote median, interquartile range, and 5th and 95th deciles. 719 

Data points are overlayed as shapes representing the patient from which they were measured. 720 

Regions subjected to IMC were excluded from analysis if cholangiocarcinoma was present. 721 

 722 

Study Approval 723 

All human specimens were obtained with patient consent and approval by the Institutional 724 

Review Board (NA_00001584). All mouse experiments were conducted with approval from the 725 

Johns Hopkins University Animal Care and Use Committee (Mo22M98). 726 

 727 

 728 

 729 

 730 

 731 
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Data availability 732 

Spatial transcriptomics and IMC datasets are available from NCBI GEO (GSE254829; 733 

GSE294669) and Zenodo, respectively. Human and mouse data are available from 734 

https://doi.org/10.5281/zenodo.8336719, and https://doi.org/10.5281/zenodo.14751512, 735 

respectively. Code for data analysis are available from  736 

https://github.com/FertigLab/Human_PanIN_Spatial_Analysis. Values used to generate figures 737 

are available from Supporting Data Values. 738 

 739 

 740 

 741 

 742 

 743 

 744 

 745 

 746 

 747 

 748 

 749 

 750 

 751 

 752 

 753 

 754 

 755 

 756 

 757 

https://doi.org/10.5281/zenodo.8336719
https://doi.org/10.5281/zenodo.14751512
https://github.com/FertigLab/Human_PanIN_Spatial_Analysis


 33 

Author Contributions 758 

MRL, JTM, LTK, EDT, EMJ, EJF, WJH, and NZ contributed to study design. MRL, JTM, LTK, 759 

SMS, AH, EMC, EDT, EMJ, EJF, WJH, and NZ contributed to experiment design. MRL, JTM, 760 

LTK, SDH, SMS, BB, GL, AH, EMC, XY, LA, AK, AF, DW, PHW, EDT, WJH, and NZ contributed 761 

to data acquisition. MRL, JTM, LTK, SR, ALH, SMS, SG, JL, YL, RK, AG, AK, AF, DW, PHW, AD, 762 

JWL, TDA, JWZ, LDW, RA, EDT, EMJ, EJF, WJH, and NZ contributed to data interpretation and 763 

analysis. MRL, JTM, SMS, JL, EMJ, EJF, WJH, and NZ contributed to manuscript preparation. 764 

MRL, JTM, LTK, ALH, SDH, SMS, SG, BB, GL, AH, EMC, XY, LA, JL, YL, RK, AG, AK, AF, DW, 765 

PHW, AD, JWL, TDA, NSA, JWZ, LDW, RA, EDT, EMJ, EJF, WJH, and NZ contributed to 766 

manuscript review. MRL led study design, experiment design, analysis of human spatial 767 

proteomics data, and writing of the manuscript’s first draft. JTM led analysis of transcriptomics 768 

data, analysis of mouse proteomics data, and addressing comments received upon peer-review. 769 

 770 

 771 

 772 

 773 

 774 

 775 

 776 

 777 

 778 

 779 

 780 

 781 

 782 

 783 



 34 

Acknowledgements 784 

NZ is funded by the National Cancer Institute (NCI) [R37CA292056 Merit Award], and 785 

ASCO Career Development Award. Funding was also provided by P01CA247886 (to ALH, LTK, 786 

EMJ, EJF, NZ), The Lustgarten Foundation (to NZ, ALH, LTK, EMJ, EJF,), and Stand Up To 787 

Cancer (NZ, EMJ, EJF). EMJ is the Dana and Albert “Cubby” Broccoli Professor of Oncology and 788 

receives funding from the National Cancer Institute (NCI) [R01 CA197296 and SPORE in 789 

Gastrointestinal Cancer, P50CA062924]. IMC data was collected at Johns Hopkins Flow/Mass 790 

Cytometry Shared Resource (P30CA006973; S10OD034407). JTM was supported by National 791 

Institutes of Health [F31CA284525 and 5T32GM07814].  DW is funded by NCI (U54CA143868 792 

and U54CA268083) and the National Institute of Arthritis and Musculoskeletal and Skin Diseases 793 

(U54AR081774). 794 

  795 



 35 

References 796 

1. Li HB, Yang ZH, and Guo QQ. Immune checkpoint inhibition for pancreatic ductal 797 
adenocarcinoma: limitations and prospects: a systematic review. Cell Commun Signal. 798 
2021;19(1):117. 799 

2. Balsano R, Zanuso V, Pirozzi A, Rimassa L, and Bozzarelli S. Pancreatic Ductal 800 
Adenocarcinoma and Immune Checkpoint Inhibitors: The Gray Curtain of Immunotherapy 801 
and Spikes of Lights. Curr Oncol. 2023;30(4):3871-85. 802 

3. Henriksen A, Dyhl-Polk A, Chen I, and Nielsen D. Checkpoint inhibitors in pancreatic 803 
cancer. Cancer Treat Rev. 2019;78:17-30. 804 

4. Kamisawa T, Wood LD, Itoi T, and Takaori K. Pancreatic cancer. Lancet. 805 
2016;388(10039):73-85. 806 

5. Stott MC, Oldfield L, Hale J, Costello E, and Halloran CM. Recent advances in 807 
understanding pancreatic cancer. Fac Rev. 2022;11:9. 808 

6. Sivakumar S, Abu-Shah E, Ahern DJ, Arbe-Barnes EH, Jainarayanan AK, Mangal N, et 809 
al. Activated Regulatory T-Cells, Dysfunctional and Senescent T-Cells Hinder the 810 
Immunity in Pancreatic Cancer. Cancers (Basel). 2021;13(8). 811 

7. Goulart MR, Stasinos K, Fincham REA, Delvecchio FR, and Kocher HM. T cells in 812 
pancreatic cancer stroma. World J Gastroenterol. 2021;27(46):7956-68. 813 

8. Huber M, Brehm CU, Gress TM, Buchholz M, Alashkar Alhamwe B, von Strandmann EP, 814 
et al. The Immune Microenvironment in Pancreatic Cancer. Int J Mol Sci. 2020;21(19). 815 

9. Zhang T, Ren Y, Yang P, Wang J, and Zhou H. Cancer-associated fibroblasts in 816 
pancreatic ductal adenocarcinoma. Cell Death Dis. 2022;13(10):897. 817 

10. Yachida S, and Iacobuzio-Donahue CA. Evolution and dynamics of pancreatic cancer 818 
progression. Oncogene. 2013;32(45):5253-60. 819 

11. Clark CE, Hingorani SR, Mick R, Combs C, Tuveson DA, and Vonderheide RH. Dynamics 820 
of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res. 821 
2007;67(19):9518-27. 822 

12. Carpenter ES, Elhossiny AM, Kadiyala P, Li J, McGue J, Griffith BD, et al. Analysis of 823 
donor pancreata defines the transcriptomic signature and microenvironment of early 824 
neoplastic lesions. Cancer Discov. 2023. 825 

13. Keenan BP, Saenger Y, Kafrouni MI, Leubner A, Lauer P, Maitra A, et al. A Listeria vaccine 826 
and depletion of T-regulatory cells activate immunity against early stage pancreatic 827 
intraepithelial neoplasms and prolong survival of mice. Gastroenterology. 828 
2014;146(7):1784-94.e6. 829 

14. Braxton AM, Kiemen AL, Grahn MP, Forjaz A, Babu JM, Zheng L, et al. 3D genomic 830 
mapping reveals multifocality of human pancreatic precancers. Nature. 831 
2024;629(8012):679-87. 832 

15. Hiraoka N, Ino Y, Yamazaki-Itoh R, Kanai Y, Kosuge T, and Shimada K. Intratumoral 833 
tertiary lymphoid organ is a favourable prognosticator in patients with pancreatic cancer. 834 
Br J Cancer. 2015;112(11):1782-90. 835 

16. Lutz ER, Wu AA, Bigelow E, Sharma R, Mo G, Soares K, et al. Immunotherapy converts 836 
nonimmunogenic pancreatic tumors into immunogenic foci of immune regulation. Cancer 837 
Immunol Res. 2014;2(7):616-31. 838 

17. J Gunderson A, Rajamanickam V, Bui C, Bernard B, Pucilowska J, Ballesteros-Merino C, 839 
et al. Germinal center reactions in tertiary lymphoid structures associate with neoantigen 840 
burden, humoral immunity and long-term survivorship in pancreatic cancer. 841 
Oncoimmunology. 2021;10(1):1900635. 842 

18. Wartenberg M, Cibin S, Zlobec I, Vassella E, Eppenberger-Castori S, Terracciano L, et al. 843 
Integrated Genomic and Immunophenotypic Classification of Pancreatic Cancer Reveals 844 



 36 

Three Distinct Subtypes with Prognostic/Predictive Significance. Clin Cancer Res. 845 
2018;24(18):4444-54. 846 

19. Maddipati R, and Stanger BZ. Pancreatic cancer metastases harbor evidence of 847 
polyclonality. Cancer Research. 2015;5(10):1086–97. 848 

20. Schumacher TN, and Thommen DS. Tertiary lymphoid structures in cancer. Science. 849 
2022;375(6576):eabf9419. 850 

21. Schapiro D, Jackson HW, Raghuraman S, Fischer JR, Zanotelli VRT, Schulz D, et al. 851 
histoCAT: analysis of cell phenotypes and interactions in multiplex image cytometry data. 852 
Nat Methods. 2017;14(9):873-6. 853 

22. Sautès-Fridman C, Petitprez F, Calderaro J, and Fridman WH. Tertiary lymphoid 854 
structures in the era of cancer immunotherapy. Nat Rev Cancer. 2019;19(6):307-25. 855 

23. Posch F, Silina K, Leibl S, Mündlein A, Moch H, Siebenhüner A, et al. Maturation of tertiary 856 
lymphoid structures and recurrence of stage II and III colorectal cancer. Oncoimmunology. 857 
2018;7(2):e1378844. 858 

24. Bell ATF, Mitchell JT, Kiemen AL, Fujikura K, Fedor H, Gambichler B, et al. Spatial 859 
transcriptomics of FFPE pancreatic intraepithelial neoplasias reveals cellular and 860 
molecular alterations of progression to pancreatic ductal carcinoma. Biorxiv. 2022. 861 

25. Coppola D, Nebozhyn M, Khalil F, Dai H, Yeatman T, Loboda A, et al. Unique ectopic 862 
lymph node-like structures present in human primary colorectal carcinoma are identified 863 
by immune gene array profiling. Am J Pathol. 2011;179(1):37-45. 864 

26. Fertig EJ, Ding J, Favorov AV, Parmigiani G, and Ochs MF. CoGAPS: an R/C++ package 865 
to identify patterns and biological process activity in transcriptomic data. Bioinformatics. 866 
2010;26(21):2792-3. 867 

27. Kanehisa M, and Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic 868 
Acids Res. 2000;28(1):27-30. 869 

28. Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein 870 
Sci. 2019;28(11):1947-51. 871 

29. Kanehisa M, Furumichi M, Sato Y, Kawashima M, and Ishiguro-Watanabe M. KEGG for 872 
taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 873 
2023;51(D1):D587-D92. 874 

30. Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et 875 
al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 876 
2017;14(11):1083-6. 877 

31. Van de Sande B, Flerin C, Davie K, De Waegeneer M, Hulselmans G, Aibar S, et al. A 878 
scalable SCENIC workflow for single-cell gene regulatory network analysis. Nat Protoc. 879 
2020;15(7):2247-76. 880 

32. Garrett-Sinha LA. An update on the roles of transcription factor Ets1 in autoimmune 881 
diseases. WIREs Mech Dis. 2023:e1627. 882 

33. Nasri Nasrabadi P, Martin D, Gharib E, and Robichaud GA. The Pleiotropy of. Int J Mol 883 
Sci. 2022;23(17). 884 

34. Zhang Q, Lenardo MJ, and Baltimore D. 30 Years of NF-κB: A Blossoming of Relevance 885 
to Human Pathobiology. Cell. 2017;168(1-2):37-57. 886 

35. Murphy SJ, Hart SN, Lima JF, Kipp BR, Klebig M, Winters JL, et al. Genetic alterations 887 
associated with progression from pancreatic intraepithelial neoplasia to invasive 888 
pancreatic tumor. Gastroenterology. 2013;145(5):1098-109. 889 

36. Meylan M, Petitprez F, Lacroix L, Di Tommaso L, Roncalli M, Bougoüin A, et al. Early 890 
Hepatic Lesions Display Immature Tertiary Lymphoid Structures and Show Elevated 891 
Expression of Immune Inhibitory and Immunosuppressive Molecules. Clin Cancer Res. 892 
2020;26(16):4381-9. 893 

37. Gil Del Alcazar CR, Huh SJ, Ekram MB, Trinh A, Liu LL, Beca F, et al. Immune Escape in 894 
Breast Cancer During. Cancer Discov. 2017;7(10):1098-115. 895 



 37 

38. Roth S, Zamzow K, Gaida MM, Heikenwalder M, Tjaden C, Hinz U, et al. Evolution of the 896 
immune landscape during progression of pancreatic intraductal papillary mucinous 897 
neoplasms to invasive cancer. EBioMedicine. 2020;54:102714. 898 

39. Hanada KI, Zhao C, Gil-Hoyos R, Gartner JJ, Chow-Parmer C, Lowery FJ, et al. A 899 
phenotypic signature that identifies neoantigen-reactive T cells in fresh human lung 900 
cancers. Cancer Cell. 2022;40(5):479-93.e6. 901 

40. Korpos É, Kadri N, Loismann S, Findeisen CR, Arfuso F, Burke GWr, et al. Identification 902 
and characterisation of tertiary lymphoid organs in human type 1 diabetes. Diabetologia. 903 
2021;64(7):1626-41. 904 

41. Neesse A, Michl P, Frese KK, Feig C, Cook N, Jacobetz MA, et al. Stromal biology and 905 
therapy in pancreatic cancer. Gut. 2011;60(6):861-8. 906 

42. Rodriguez AB, Peske JD, Woods AN, Leick KM, Mauldin IS, Meneveau MO, et al. Immune 907 
mechanisms orchestrate tertiary lymphoid structures in tumors via cancer-associated 908 
fibroblasts. Cell Rep. 2021;36(3):109422. 909 

43. Neesse A, Bauer CA, Öhlund D, Lauth M, Buchholz M, Michl P, et al. Stromal biology and 910 
therapy in pancreatic cancer: ready for clinical translation? Gut. 2019;68(1):159-71. 911 

44. Maldonado L, Teague JE, Morrow MP, Jotova I, Wu TC, Wang C, et al. Intramuscular 912 
therapeutic vaccination targeting HPV16 induces T cell responses that localize in mucosal 913 
lesions. Sci Transl Med. 2014;6(221):221ra13. 914 

45. Delvecchio  FR, Fincham REA, Spear S, Clear A, Roy-Luzarraga M, Balkwill FR, et al. 915 
Pancreatic Cancer Chemotherapy Is Potentiated by Induction of Tertiary Lymphoid 916 
Structures in Mice. Cell Mol Gastroenterol Hepatol. 2021;12(5):1543-65. 917 

46. Huff AL, Jaffee EM, and Zaidi N. Messenger RNA vaccines for cancer immunotherapy: 918 
progress promotes promise. J Clin Invest. 2022;132(6):e156211. 919 

47. Ho WJ, Zhu Q, Durham J, Popovic A, Xavier S, Leatherman J, et al. Neoadjuvant 920 
Cabozantinib and Nivolumab Converts Locally Advanced HCC into Resectable Disease 921 
with Enhanced Antitumor Immunity. Nat Cancer. 2021;2(9):891-903. 922 

48. Berg S, Kutra D, Kroeger T, Straehle CN, Kausler BX, Haubold C, et al. ilastik: interactive 923 
machine learning for (bio)image analysis. Nat Methods. 2019;16(12):1226-32. 924 

49. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, et al. CellProfiler: 925 
image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 926 
2006;7(10):R100. 927 

50. Kiemen AL, Braxton AM, Grahn MP, Han KS, Babu JM, Reichel R, et al. CODA: 928 
quantitative 3D reconstruction of large tissues at cellular resolution. Nat Methods. 929 
2022;19(11):1490-9. 930 

51. Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, et al. Integrated 931 
analysis of multimodal single-cell data. Cell. 2021;184(13):3573-87.e29. 932 

52. Traag VA, Waltman L, and van Eck NJ. From Louvain to Leiden: guaranteeing well-933 
connected communities. Sci Rep. 2019;9(1):5233. 934 

53. Bergenstråhle J, Larsson L, and Lundeberg J. Seamless integration of image and 935 
molecular analysis for spatial transcriptomics workflows. BMC Genomics. 2020;21(1):482. 936 

54. Gu Z, Eils R, and Schlesner M. Complex heatmaps reveal patterns and correlations in 937 
multidimensional genomic data. Bioinformatics. 2016;32(18):2847-9. 938 

55. Stein-O'Brien GL, Carey JL, Lee WS, Considine M, Favorov AV, Flam E, et al. 939 
PatternMarkers & GWCoGAPS for novel data-driven biomarkers via whole transcriptome 940 
NMF. Bioinformatics. 2017;33(12):1892-4. 941 

56. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, and Mesirov JP. 942 
Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27(12):1739-40. 943 

57. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene 944 
set enrichment analysis: a knowledge-based approach for interpreting genome-wide 945 
expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545-50. 946 



 38 

58. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, et 947 
al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best 948 
practices pipeline. Curr Protoc Bioinformatics. 2013;43(1110):11.0.1-.0.33. 949 

59. Pagel KA, Kim R, Moad K, Busby B, Zheng L, Tokheim C, et al. Integrated Informatics 950 
Analysis of Cancer-Related Variants. JCO Clin Cancer Inform. 2020;4:310-7. 951 

60. Conway JR, Lex A, and Gehlenborg N. UpSetR: an R package for the visualization of 952 
intersecting sets and their properties. Bioinformatics. 2017;33(18):2938-40. 953 

  954 



 39 

Figures 955 

 956 

 957 

 958 



 40 

Figure 1: Immune-rich regions were identified and segmented for imaging mass cytometry 959 

analysis. A) Visualization of the 4 different regions (normal, low-grade PanIN, PDAC, chronic 960 

pancreatitis) annotated by an expert pathologist (E.D.T.). B) Bar plots of the number of unique 961 

and shared mutations between PanIN lesions and PDAC from Patients 1, 2, and 5. C) Heatmap 962 

showing the relative expression of each marker in the IMC panel used to identify each cell type. 963 

D) Total number of cells analyzed by region (left) with visualization of the percent distribution of 964 

cells per region (right) (total area of tissue and number of samples used in the subsequent 965 

analysis is summarized in Supplemental Table 2). 966 
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Figure 2: PanINs exhibit reduced exhausted and regulatory T cell populations relative to 986 

regions of PDAC. A) Box plot of CD3+ T cell density. B) Box plots of the density of CD4+ and 987 

CD8+ T cells, and the ratio of CD4+ T cells over CD8+ T cells. C) Representative images of the 988 

CD4+ and CD8+ populations in normal, PanIN, PDAC, and CP regions. D) Box plot of the 989 

CD20+CD45RA+ B cell density. E) Boxplots of the macrophage and dendritic cell densities 990 

(CD68+CD16+CD11c+, CD68+CD16+HLADR+, DCSIGN+). F) Box plot of Treg 991 

(CD4+FOXP+PD1+) density. G) Representative images of the Treg population in each region: 992 

normal, PanIN, PDAC, and CP. H) Box plot of the ratio of CD8+ T cells over the Treg population. 993 

I) Box plot of the density of CD4+CD45RO+TOX2+PD1+ or exhausted CD4+ T cells. J) 994 

Representative images of the exhausted T cell population in each region: normal, PanIN, PDAC, 995 

and CP. K) Box plot of the central memory CD4+ T cell (CD4+CD45RO+CCR7+HLADR+) 996 

density. White arrows on merged representative image panels indicate the cell type of interest. 997 

Densities were calculated using the number cells per mm2 of each ROI. Statistics were 998 

determined using a Wilcoxon rank sum test. P-value <= 0.0001, 0.001, 0.01, 0.05, or > 0.05 are 999 

denoted in the plots with the respective symbols ****, ***, **, *, or ns. 1000 
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Figure 3: Tertiary lymphoid structures (TLS) associated with PanINs maintain an immature 1013 

phenotype compared to a mature phenotype in peri-tumoral TLSs. A) Hematoxylin and eosin 1014 

(H&E) stain of PDAC region annotated in blue marker by expert pathologist (E.D.T.) with the 1015 

outline of the tumor region overlayed on an IHC stain for CD3+ (brown) of a serial section of the 1016 

same tissue demonstrating the localization of the lymphoid aggregates in the peri-tumoral region. 1017 

B) Representative H&E of a TLS found within 250 μm of the invasive edge of the tumor and one 1018 

within 250 μm of the edge of a PanIN and corresponding IMC staining of CD20+, CD21+, CD23+, 1019 

CD4+ and CD8+ staining indicating a mature TLS adjacent to PDAC and an immature TLS 1020 

adjacent to PanIN. In PanIN adjacent TLS images, the entire TLS is circled with the dashed white 1021 

line, while in the PDAC adjacent TLS images, the germinal center is circled with the dashed white 1022 

line. C) Percent distribution of lymphoid cell types according to the region of each TLS included 1023 

in the analysis. D) Box plot of the density of CD20+CD45RA+ B cells in PanIN, PDAC, and CP 1024 

adjacent TLSs. E) Box plot of the density of germinal-center-associated B cells 1025 

(CD20+CD21+CD23+). F) Box plots of the density of dendritic cells (DCSIGN+) and HEVs 1026 

(PDPN+) in each region-specific TLS. Densities were calculated using the number of cells per 1027 

mm2 of each ROI. Statistics were determined using a Wilcoxon rank sum test. P-value <= 0.0001, 1028 

0.001, 0.01, 0.05, or > 0.05 are denoted in the plots with the respective symbols ****, ***, **, *, or 1029 

ns. 1030 
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Figure 4: PDAC adjacent TLSs have distinct proteomic signatures compared to TLSs 1043 

adjacent to PanINs. A) Box plot of proliferative B cell (CD20+CD45RA+KI67+) densities. B) Box 1044 

plot of the density of cytotoxic CD8+ T cells (CD8+GZMB+). C) Representative images of the 1045 

cytotoxic T cell population in PanIN, PDAC and CP adjacent TLSs. D) Box plot of the densities of 1046 

antigen experienced CD8+ T cells (CD8+CD45RO+). E) Box plot of Treg (CD4+FOXP3+PD1-) 1047 

density. F) Representative images of the Treg population in PanIN, PDAC, and CP adjacent TLSs. 1048 

G) Box plot of the density of exhausted T cells (CD4+CD45RO+TOX2+PD1+KI67+). H) Box plot 1049 

of the density of senescent CD4+ T cells (CD4+CD45RO+CD57+). I) Nearest neighbor analyses 1050 

of the top two nearest neighbors of each lymphoid subtype. Red denotes a greater frequency of 1051 

a neighboring cell type, whereas blue denotes a less frequent neighboring cell types. White 1052 

arrows on merged representative image panels indicate the cell type of interest. Densities were 1053 

calculated using the number of cells per mm2 of each ROI. Scale bars: 50 μm. Statistics were 1054 

determined using a Wilcoxon rank sum test. P-value <= 0.0001, 0.001, 0.01, 0.05, or > 0.05 are 1055 

denoted in the plots with the respective symbols ****, ***, **, *, or ns. 1056 
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Figure 5: 10x Genomics Visium Spatial Transcriptomics platform recapitulates TLS 1070 

signatures adjacent to PDAC. A) TLS annotation on hematoxylin and eosin-stained segments 1071 

by pathologist (E.D.T.) followed by automated annotation of all Visium spots within 2 spots of the 1072 

boundaries of any TLS as TLS neighbor. TLS types were then assigned by the pathologist based 1073 

on their proximity to chronic pancreatitis (CP_TLS), pancreatic intraductal neoplasms 1074 

(PANIN_TLS), or pancreatic ductal adenocarcinoma (PDAC_TLS). B) Expression of CXCL13, 1075 

CCL19, CCL21, CR2 (CD21), and a module score based on expression of chemokine-encoding 1076 

genes in TLS (red), TLS_neighbor (white), and non-TLS (gray) Visium spots as violin plots and 1077 

representative spatial expression plots showing segment PANIN01. C) Heatmap of pattern 1078 

weights in each Visium spot for the 8 patterns learned by CoGAPS on the TLS and TLS neighbor 1079 

spots. D) Scatter plot of association between the chemokine module score on the x- axis and 1080 

Pattern_1 weight on the y-axis. Points are overlayed with trend line of linear regression of 1081 

Pattern_1 weight on chemokine module score and calculated Pearson correlation coefficient. E) 1082 

Boxplot of Pattern_1 weight comparing CP_TLS (dark green), PANIN_TLS (dark blue), and 1083 

PDAC_TLS (dark red). Shapes of each data point correspond to the Patient the visium spot came 1084 

from. Weights were compared across all groups using a Kruskal-Wallis test (p = 1.3e-08). Bars 1085 

are annotated with p-values of pairwise comparisons by Wilcoxon rank-sum tests. F) Waterfall 1086 

plot of gene set enrichment analysis of KEGG gene set in genes ranked by pattern marker statistic 1087 

for Pattern_1. Gene sets with significant enrichment (FDR-adjusted p-value < 0.05) are shown. 1088 

Enriched gene sets are ordered by –log10(FDR-adjusted p-value). G) Transcription factor activity 1089 

scores of ETS1, FOXP3, PAX5, and NFKB2 inferred by SCENIC gene regulatory network 1090 

inference and quantified by AUCell overlayed on segment PANIN01.  1091 
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Figure 6: Proposed Model of TLS Formation from Normal to PanIN to PDAC Progression. 1112 

Immune cells (T and B cells) are recruited to early developing PanIN lesions demonstrating early 1113 

organization into immature tertiary lymphoid structures (TLSs). In PDAC, these TLSs are 1114 

organized further often presenting with a distinct zone of B cells forming a germinal center, 1115 

surrounded by T cells and B cells. This T cell population within the PDAC associated TLSs is also 1116 

comprised of increased immunosuppressive Tregs, exhausted CD4+ T cells, and activated CD8+ 1117 

T cells. Transcriptional signatures indicate LTB and CCL19 overlapping with a PanIN adjacent 1118 

TLS, whereas PDAC adjacent TLSs share these signatures plus CXCL13 and CXCR5. * indicates 1119 

shared genes 1120 
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