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SUMMARY

Methods for spatially resolved cellular profiling of tissue sections enable in-depth study of inter- and intra- 

sample heterogeneity but often profile small regions, requiring evaluation of many samples to compensate 

for limited assessment. Recent advances in three-dimensional (3D) tissue mapping offer deeper insights; 

however, attempts to quantify the information gained in transitioning to 3D remains limited. Here, to compare 

inter- and intra-sample tissue heterogeneity, we analyze >100 pancreas samples as cores, whole-slide im

ages (WSIs), and cm3-sized 3D samples. We show that tens of WSIs and hundreds of tissue microarrays 

are needed to approximate the compositional tissue heterogeneity of tumors. Additionally, spatial correla

tions of pancreatic structures decay significantly within microns, demonstrating that isolated two-dimen

sional (2D) sections poorly represent their surroundings. Through 3D simulations, we determined the number 

of slides necessary to accurately measure tumor burden. These results quantify the power of 3D mapping and 

establish sampling methods for biological studies prioritizing composition or incidence.

INTRODUCTION

Recent developments in spatial profiling technologies have led to 

the construction of atlases to characterize cellular and tissue 

compositions, structure, and the ‘‘omic’’ (genomic, epigenomic, 

transcriptomic, proteomic, and metabolomic) landscapes of tis

sues, organs, and whole organisms.1–9 These techniques have 

led to important discoveries regarding changes in cellular compo

sition during development, aging, and the progression of diseases 

such as cancer and cardiovascular disease. Due to technical and 

financial limitations, current spatial omic methods are designed 

to evaluate mm2-sized two-dimensional (2D) regions.1,6,10–14

Recently, teams have developed novel techniques, such as 

open-top light-sheet, micro-computed tomography (micro-CT), 

MOTIVATION Spatially resolved cellular profiling methods are essential tools for studying tissue heteroge

neity, yet they typically assess limited regions, requiring numerous samples to accurately capture tissue het

erogeneity. Recent advances in three-dimensional (3D) tissue mapping offer deeper insights; however, at

tempts to quantify the information gained remain limited. Here, we comprehensively evaluate inter- and 

intra-sample heterogeneity using tissue cores, whole-slide images (WSIs), and 3D samples from over 100 

pancreatic tissues. Our analysis quantifies the impact of sampling and defines sampling strategies to approx

imate the compositional heterogeneity observed in large-scale 3D tissues. 
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serial-section-based imaging for three-dimensional (3D) tissue 

mapping.15–18 However, attempts to quantify the amount of infor

mation gained in the transition from 2D to 3D have been limited. 

The purpose of this manuscript is to interrogate the added value 

of quantitative 3D pathology over classical 2D analysis. Here, to 

evaluate the loss in information when comparing inter- and 

intra-sample tissue heterogeneity, we analyze >100 pancreas tis

sue samples in the form of tissue cores, whole-slide images 

(WSIs), and cm3-sized 3D samples.

Consider a histological section of standard, 4 μm thickness: a 

1-mm2 core of a tissue microarray (TMA) represents a volume of 

tissue of just 0.004 mm3, while a common region size for spatial 

transcriptomics (6.5 × 6.5 mm2) corresponds to a volume of 

0.2 mm3. These volumes represent minuscule fractions of the 

human organs that they are used to represent. More standard 

techniques, including WSIs stained with hematoxylin and eosin 

(H&E) or immunohistochemistry (IHC), are often considered the 

gold standard of diagnostic anatomic pathology.19,20 These 

slides feature a lateral area of 2 × 5 cm2, corresponding to a vol

ume of 5 mm3. The implicit assumption of 2D sampling is that the 

cells within the sampled region, as well as their morphologies, 

densities, and cellular and non-cellular neighborhoods, are 

representative of those of the 3D organs and diseased tissues 

from which they are obtained.

Accurate clinical diagnosis of a range of diseases using single 

2D H&E sections (selectively chosen from gross inspection of re

sected tissues) shows that the generalization of findings from 2D 

is possible, although recent works suggest that relevant criteria, 

including cancer grade and cancer precursor type, may be easily 

misdiagnosed in 2D.16,21–24 In research settings, where the goal 

of tissue atlas efforts is generalizability, we hypothesize that 2D 

sampling may be insufficient to capture the marked intra-sample 

heterogeneity in cellular composition and tissue architecture.

Recent 3D work has demonstrated the utility of tissue clearing 

and serial-sectioning-based approaches to assess microana

tomical maps of large (>1 cm3) volumes of tissue at cellular res

olution.16,17,25–37 Here, we use the recently developed 3D imag

ing workflow CODA to assess the spatial composition of key cell 

types in thick slabs of both grossly normal human pancreas tis

sue and human pancreas tissue containing pancreatic ductal 

adenocarcinoma (PDAC), the deadliest form of pancreatic can

cer.17 CODA was recently advanced to enable user interface- 

guided workflows in an open-source programming language38

and has been used to quantitatively interrogate normal human 

organ development, as well as breast cancer, prostate cancer, 

pancreatic cancer, diabetic neuropathy, myocarditis, skin regen

eration, and fetal development in murine and human tis

sues.28,39–47 The uniquely heterogeneous spatial microenviron

ment of PDAC makes it an optimal testbed to evaluate the 

benefits of 3D microanatomic mapping over standard 2D 

approaches.48–50

Our exhaustive analysis demonstrates that standard 2D sam

pling—using a limited number of TMA cores or WSIs—is typically 

insufficient for accurate assessment of tissue composition or tu

mor content or the selection of regions of interest (ROIs) for the 

creation of TMA cores and capturing rare events.43 We deter

mine that tens of WSIs and hundreds of TMA cores are neces

sary to accurately represent the range of tissue compositions 

present in a cm3-sized human pancreas sample. We find that 

sections inside a tumor, sometimes just tens of microns apart, 

can have completely different, uncorrelated cellular and non- 

cellular structures. 2D assessments of ‘‘representative’’ slides 

fail particularly in the enumeration of rare events, such as the 

estimation of the density of cancer or cancer precursor cells in 

samples known to have low neoplastic content.27,43 This work 

helps clarify the impact of tissue subsampling in the study of 

the composition of normal and malignant tissues, using analysis 

of 2D and 3D pancreatic human tissue samples as a testbed.

RESULTS

Construction of cohorts of 2D and 3D microanatomically 

labeled pancreatic tissue

To interrogate the differences between inter-sample and intra- 

sample compositional heterogeneity, pancreatic tissue from 

149 individuals was retrospectively collected, consisting of 101 

samples containing invasive pancreatic cancer and 48 samples 

containing grossly normal pancreas (Figure 1A). Three cohorts 

consist of (1) the ‘‘2D-WSI’’ cohort, which has 64 individual, 

pathologist-curated WSIs; the ‘‘3D-CODA’’ cohort, which has 

14 samples containing serially sectioned 3D blocks (seven of 

which contain invasive pancreatic cancer); and the ‘‘TMA’’ 

cohort, which is a single TMA containing pancreas histology 

from 30 individuals. Cohorts were matched between the TMA, 

WSI, and 3D cohorts according to age and gender (Table S1).

We used a segmentation algorithm to label microanatomical 

components to a resolution of 1 μm (see STAR Methods). Inde

pendent testing showed an overall accuracy of 93.2% across 

all samples (Figure S1). For the 3D-CODA cohort, image registra

tion was performed to create digital tissue volumes (Figure 1B). 

The minimum number of sections for these 3D samples was 

270 (mean: 297, interquartile range: 816). The median recon

structed volume was 39.0 mm3 (mean: 132.2 mm3, interquartile 

range: 247.3 mm3). Statistical sampling was conducted on the 

2D and 3D cohorts to evaluate the impact of sampling on tissue 

composition analysis of heterogeneous microanatomical tissue 

components (Figure 1C).

Spatial correlation rapidly decays within pancreatic 

tumors

To assess the structural continuity of tissues, we calculated how 

rapidly tissue composition changed along a straight line through 

the 3D tumors. To determine the correlation length of each tissue 

component (PDAC, vasculature, fat, ducts, etc.)—i.e., the dis

tance over which the composition remained significantly corre

lated—we calculated the pixel-to-pixel correlation of these tis

sue components in 3D (Figure 2A). If this correlation is high, 

then the sampling of a tumor can be sparse. As a limit, if this cor

relation is perfect, then a 2D section is sufficient to capture the 

composition of the tumor.

This correlation was calculated for each tissue component and 

for all WSIs spaced between 4 and 720 μm apart, averaged 

across the seven 3D tumor samples, and plotted as a function 

of distance (Figure 2B). Making intuitive sense, our analysis re

vealed that more abundant structures, such as extracellular ma

trix (ECM) and acini, remained spatially correlated over large 
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distances within the blocks, requiring >180 slides (or 720 μm) un

til they reached a spatial correlation that had decreased by 

>50%. For sparser tissues, such as nerves and vasculature, 

this correlation dropped by >50% within just 24 μm, or six 

4-mm-thick slices (Figure 2C). Hence, tissue composition be

comes rapidly decorrelated within pancreatic tumors.

To determine whether this rapid decorrelation holds in non- 

diseased organs, we conducted a similar analysis in seven 3D 

samples of grossly normal pancreas. Interestingly, the spatial 

correlation of ECM dropped more rapidly in normal tissue, with 

a loss of >50% in just 24 μm (compared to 720 μm in cancer tis

sue). As expected, we found that the spatial correlation in acinar 

tissue decayed more slowly in normal pancreas, reflecting the 

marked acinar atrophy and desmoplastic stromal deposition 

that occurs in pancreatic cancer.

We repeated this calculation for samples virtually cut to 

6.5 × 6.5 mm2, the area used in some spatial transcriptomics an

alyses (Figure S2). For tissue components such as ducts, PDAC, 

islets of Langerhans, blood vessels, nerves, and fat, a decrease 

in spatial correlation of 50% was observed within just 40 μm, or 

10 sections.

In conclusion, tissue composition changes rapidly in both 

normal and diseased tissues, highlighting the necessity of 3D as

sessments to fully capture their spatial organization.

Limitations of core-needle biopsies in assessment of 

tumor heterogeneity in tissue composition

TMA cores are often created following pathologist-selected 

ROIs on a single histological section that contains a target 

structure (e.g., cancer). Hundreds of sections may be subse

quently cut from these cores for use by researchers who aim 

to study the original structure chosen by the pathologist. We 

hypothesized that due to the rapid changes in tissue composi

tion across 3D tumors (Figure 2), the specific target structures 

and cellular features selected by pathologists in the initial 

ROIs could quickly be lost in the cores as successive sections 

are cut. To quantify this, we created virtual cores within our 3D 

samples (Figure 3A). We manually chose 50 locations on the 

first H&E section of two 3D samples containing visually high 

cancer content. From these virtual cores, we digitally cut virtual 

TMA (vTMA) sections and quantified the change in tissue 

composition compared to the first (target) section (Figure 3B).

First, we considered the situation where researchers’ objec

tive is to profile the composition of the tumor microenvironment 

(Figure 3C). We quantified changes in stromal cell density across 

vTMA sections to assess whether the number and identity of 

stromal cells would vary greatly between slides, leading to the 

possibility that two researchers, studying sections from the 

same TMA cut hundreds of slides apart, could reach opposite 

conclusions. We found that, as subsequential sections are cut 

from the initial pathologist-selected ROI, stromal cell density er

rored, on average, 25% within the first 100 sections (0.4 mm), 

with many simulations nearing 100% change within 300 sections 

(∼1.2 mm).

Finally, we determined the average number of virtual sections 

within which virtual cores lost their target structure altogether 

(Figure 3D). In this case, core ROIs were chosen as containing 

high cancer content. We thus determined how many of the 100 

simulated cores no longer contained cancer for each virtual sec

tion. We found that nearly 50% of cores contained no cancer 

within 200 sections (0.8 mm), with this number approaching 

75% after 300 sections.

This analysis demonstrates a rapid decorrelation in cancer 

content even within expert-guided cores, suggesting that TMA 

cores may rapidly lose the benefit of expert-guided ROI selection 

as sections are cut.

Hundreds of TMAs are necessary to capture the true 

tissue composition of WSIs and 3D tumors

Conventional histological analysis often relies on 2D tissue sec

tions or TMAs to quantify the overall composition of tumors. 

While practical for large-scale studies, this approach assumes 

Figure 1. Overview of statistical sampling analysis for assessment of inter- and intra-patient tumor heterogeneity 

(A) Cohorts of 14 3D blocks, 127 WSIs from 64 individuals, and a TMA containing cores from 30 samples were collected. 

(B) Tissues were surgically resected, formalin fixed and paraffin embedded, sectioned, stained with H&E, and digitized. CODA segmentation was used to label 10 

different microanatomical components at a resolution of 1 μm. For the processing of the 3D-CODA cohort, specimens were additionally registered into aligned 

tissue volumes. 

(C) Statistical sampling analysis was conducted to assess the importance of sampling and associated sampling error.
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that these limited samples are representative of entire heteroge

neous 3D tumors. This can lead to a significant loss of informa

tion, which can overlook important spatial tissue composition 

variations and miss rare cell populations. Here, we aimed to 

quantify information loss when subsampling a heterogeneous 

3D sample through 2D histology. To do this, we randomly simu

lated vTMAs with a 1 mm diameter in the 2D WSIs and the 3D 

samples (Figure 4A). We quantified the error in tissue composi

tion for various numbers of random, non-overlapping vTMAs 

compared to the true, 3D tissue composition (Figure 4B). This 

process was repeated to quantify the error between vTMAs 

and 2D WSI composition (Figure 4C) and the error between 2D 

WSIs and 3D tissues (Figure 4D).

As expected, increasing the number of TMAs taken from a 

sample decreased the error of estimation of tissue composition 

of that sample, and this error varied across different microana

tomical tissues (Figures 4B–4D). By comparing the number of 

2D sections necessary to reach <10% error, we identified tissue 

components of high and low heterogeneity (Figures 4E–4G). We 

identified ECM as the component with the lowest heterogeneity, 

with an average of 19 TMAs necessary to reach <10% error in the 

estimation of 2D-WSI composition, 22 TMAs necessary for the 

Figure 2. Quantifying the length scale of decay in spatial correlation of tumors 

(A) 2D spatial correlation in tissue composition was determined for all combinations of pairs of sections in the 3D samples. 

(B) For each tissue type, correlation was plotted as a function of distance between section pairs (line: mean across 3D samples, shaded area: standard deviation 

across 3D samples, colored plot: cancer samples, and gray: grossly normal samples). 

(C) Distances at which the correlation falls below 50%, revealing that the length scale of compositional decorrelation in a normal and a cancer-containing 

pancreatic tissue is extremely short.
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estimation of 3D-volume composition, and only 1 WSI necessary 

to correctly estimate 3D-volume composition (within 10% error). 

In contrast, we identified cancer as a much more heterogeneous 

structure, with >500 TMAs necessary to estimate the true 3D 

composition with <10% error.

We repeated this calculation for samples virtually cut to 

6.5 × 6.5 mm2, the area often used in spatial transcriptomics an

alyses (Figure S2).51–54 Our analysis demonstrated that tissue 

components such as acini, islets of Langerhans, PDAC, ducts, 

and blood vessels required roughly 50 simulated sections to es

timate true 3D tissue composition with <10% error. Overall, this 

analysis demonstrates that subsampling heterogeneous tumors 

leads to significant information loss and that this information loss 

may be quantified through the simulation of 3D anatomical tis

sue maps.

Sampling guidelines in pancreatic cancer determined 

through 3D assessment of neoplastic content

In studies of pancreatic cancer initiation and its precursors 

(pancreatic intraepithelial neoplasias [PanINs]), an accurate un

derstanding of the number and composition of cancer precur

sors in the ductal system is necessary to determine the risk of 

a given precursor lesion to progress to cancer.55–57 Yet, it is 

not currently feasible to profile entire human pancreases at 

cellular resolution to quantify all precursors. Here, we demon

strate that the amount of tissue necessary for incidence profiling 

may be estimated using simulations of 3D tissue. To do this, we 

assessed the sampling necessary to reach a preset error in the 

estimation of neoplastic content.

For this calculation, we utilized a previously reported cohort of 

48 large 3D reconstructed samples of human pancreas tissue 

containing PanINs, the precursors to pancreatic cancer.5 We 

defined PanIN burden as the volume percent of PanINs within 

the pancreatic ductal system. Next, we calculated PanIN 

burden for all possible combinations of consecutive slides sub

sampled from 3D and calculated the relative error of the sub

sampled region to that of the full 3D sample (Figure 5A). Visual

izing this as bar plots for low, medium, and high PanIN burden 

revealed that fewer slides are needed to accurately determine 

the neoplastic content of samples containing extensive 

PanINs, while many slides are needed to accurately determine 

the neoplastic content of samples containing fewer PanINs 

(Figure 5B).

We conducted the same calculation for cancer content. We 

defined cancer burden as the percentage of epithelial cells that 

were classified as PDAC. Again, we found that fewer slides are 

needed to estimate the composition of cancer in samples with 

high cancer burden but that many slides are necessary to esti

mate cancer composition in samples with low neoplastic content 

(Figure 5C).

These results suggest the rather intuitive guideline that the 

rarer the tissue component being studied, the larger the number 

of sections required for a rigorous assessment of that compo

nent’s content. This calculation may be used in the design of 

Figure 3. Error when TMA cores are used to assess spatial tissue content in a tumor 

(A) Cartoon demonstrating the process of region selection and tissue coring for creation of TMAs. 

(B) 50 ROIs containing cancer were manually selected from the top slide of two 3D samples. 

(C) TMAs were virtually cut and the relative error in stromal cell density in comparison to the original ROI was calculated. 

(D) TMAs were virtually cut and the percentage of TMAs with no cancer present on a given cut was calculated.
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Figure 4. Hundreds of TMAs and tens of WSIs are needed to accurately estimate the true composition of 3D tumors 

(A) Representation of 3D-CODA H&E-stained volume, comprised of serial, 2D-WSIs, from which virtual TMAs may be extracted. 

(B) The loss in the accuracy of calculation of tissue composition due to TMA subsampling was measured through 200 simulations of 1–100 virtual TMAs (vTMAs) in 

the 2D-WSI cohort. Tissue composition of the generated vTMAs was compared to the average 2D-WSI (black line). 

(legend continued on next page) 
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studies seeking to minimize the amount of tissue collected for 

accurate estimation of rare structures.

DISCUSSION

Methods for spatially resolved cellular profiling have enabled in- 

depth quantitative mapping of tissues and tumors to study inter- 

patient and intra-patient differences in normal human anatomy 

and disease onset and progression. These methods profile 

extremely limited regions, which may impact the evaluation of 

tissue content and local heterogeneity due to tissue 

subsampling.

Here, we used CODA to quantitatively compare inter- and intra- 

sample heterogeneity through the lens of tissue composition. Us

ing the pancreas as a model system, we demonstrated that the 

correlation of tissue structures decays within tens of microns, 

even in normal tissues; that the target ROI selected by expert pa

thologists in the design of tissue cores may be rapidly lost within 

tens of sections; and that tens of WSIs and hundreds of TMAs 

are needed to recapitulate the true, 3D tissue composition. Further, 

we demonstrated that quantification of 3D-mapped tissues may 

be used to estimate the number of sections necessary for accurate 

2D experimentation. Given that spatial heterogeneity is common in 

many tumors, similar patterns of rapid tissue structure decay and 

sampling challenges are also likely to be present in other cancers. 

To improve tissue analysis accuracy and reduce information loss, it 

is crucial to account for these subsampling factors.

While this work studies inter- and intra-tumoral heterogeneity 

through meticulous enumeration of tissue composition, it is likely 

that molecular, genomic, and transcriptomic heterogeneity is 

also high within 3D tissue samples. For example, recent work 

has shown that PanINs (precursors to pancreatic cancer) exhibit 

great inter- and intra-lesional heterogeneity in KRAS mutations, 

suggesting that these lesions develop primarily from independent 

genetic events and may meet and merge within the ductal sys

tem.5,46 Using CyCIF to measure cellular heterogeneity, groups 

have also shown alterations in marker-positive cells from TMAs 

to WSIs.58

The impact of transitioning from 2D to 3D analysis has been 

shown to be important in clinically relevant features, such as 

Figure 5. Quantification of error in estimation of neoplastic content when subsampling 3D tissues 

(A and B) 3D renderings of pancreata containing (A) low or high PanIN content and (B) low or high PDAC content. 

(C) For 48 3D samples containing PanINs (precursors to pancreatic cancer), the error in estimation of overall PanIN content plotted as a function of the number of 

consecutive sections subsampled. Lines are color coded according to the PanIN content of the 3D sample. 

(D) The data in (C) binned according to overall PanIN content in equal thirds as low PanIN burden (0%–33%, LP), Moderate PanIN burden (34%–67%, MP), and 

high PanIN burden (68%–100%, HP) to show that fewer sections are needed to accurately estimate the PanIN content of samples that contain many PanIN 

lesions, and vice versa. p values: LP compared to MP = 1.3E− 4; LP compared to HP = 5E− 6; MP compared to HP = 7E− 6. 

(E) The calculation of (C) repeated for the seven samples containing PDAC to show that fewer sections are needed to accurately estimate cancer content in 

samples that contain high cancer composition. Data are represented as mean ± SEM.

(C and D) The calculation of (A) was repeated for the calculation of (C) the loss in accuracy between TMAs and 3D tumors and (D) the loss in accuracy between 2D 

WSIs and 3D tumors. 

(E–G) Distilling the information from the simulations shown in (A)–(C), we determined the number of TMAs and WSIs necessary to estimate WSI and 3D-tumor 

composition with ≤10% error. Some structures, such as blood vessels, nerves, and PanINs, take tens to hundreds of 2D sections to reach ≤10% error. Data are 

represented as mean ± SEM.
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the Gleason grade in prostate cancer, which can vary greatly 

across short distances of a 3D sample.16,27,30,58–64 Additionally, 

recent work on pancreatic precursor lesions indicates that diag

nostic criteria for intraductal papillary mucinous neoplasms 

(IPMNs), primarily based on 2D planar cross-sectional dimen

sions, may be inaccurate when moving to 3D, potentially 

requiring the reclassification of some lesions as PanINs.21

Despite the potential of 3D imaging, its widespread adoption 

in basic and clinical research has been limited by high opera

tional costs and the technical expertise necessary for sample 

processing, imaging, and computational analysis. However, 

several technological developments are reducing these barriers. 

The decreasing cost of chemical reagents for optical tissue 

clearing,65–69 optimized software,70,71 and the integration of 

generative artificial intelligence for interpolation of missing or 

damaged images in volumetric stacks are collectively enhancing 

scalability.72 In parallel, the emergence of open-source GUIs for 

light-sheet fluorescence microscopy and serial section histology 

reconstruction has accelerated the use of 3D in tissue analysis in 

biomedical and oncologic research.38,73

In sum, we demonstrate in this work that 3D assessments are 

necessary to accurately assess tissue composition and tumor 

content and provide guidelines for the rate of sampling neces

sary to rigorously assess spatially resolved tissue composition 

and associated tissue density and intercellular distances.

Limitations of the study

This study primarily evaluates tissue composition heterogeneity 

and does not directly assess genomic, transcriptomic, or molec

ular variability, which also significantly contributes to spatial dif

ferences. The analysis was performed only on pancreatic tissue, 

potentially limiting the generalizability of the findings to other tis

sues or cancers. Additionally, the practical constraints of cost 

and specialized expertise required for the widespread adoption 

of 3D methodologies remain notable factors.
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STAR★METHODS

KEY RESOURCES TABLE

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

This retrospective study was approved by the Institutional Review Board (IRB) at the Johns Hopkins University School of Medicine. 

Human pancreatic tissue specimens were analyzed across three independent cohorts: a commercially acquired tissue microarray 

(TMA), whole-slide images (WSI), and a three-dimensionally reconstructed specimens processed using the CODA imaging pipe

line.17 All samples were obtained from archived, de-identified surgical resections and used in accordance with institutional ethical 

regulations and informed consent protocols.

The TMA cohort consisted of 60 cores, each 1.5 mm in diameter, sampled from the pancreata of 30 individuals with pancreatic 

cancer. Each case was represented by two cores. The patients ranged in age from 40 to 84 years, with a mean of 58.4 years and 

a median of 60 years. Equal numbers of 30 male and 30 female donors were included in this group. These samples were obtained 

from a commercial vendor TissueArray. The WSI cohort comprises 64 surgical resections from patients treated at Johns Hopkins 

Hospital for pancreatic cancer, and is a cohort that was previously published.74 One representative FFPE slide per case was 

analyzed. Patient ages in this group ranged from 48 to 90 years, with a mean age of 64.4 years and a median age of 67 years. Of 

the patients, 22 were female and 25 were male, and gender information was not available for 17 individuals. The 3D-CODA cohort 

included pancreas resections from 14 individuals, also treated at Johns Hopkins Hospital, and is a cohort that was previously pub

lished.17,26 Seven of these samples were processed using serial sectioning, computational alignment, and microanatomical segmen

tation for 3D reconstruction. The mean number of histological sections per case was 393 slides, with a total of 5,503 images across 

the cohort. Patient ages ranged from 41 to 75 years, with a mean of 61.4 and a median of 58 years. Six of the patients were female 

and eight were male. Histological. Sex and age data are summarized in Table S1. All tissue handling and data analysis procedures 

conformed to institutional and national research standards.

METHOD DETAILS

Computational resources

For the execution of computational methods in this work, we used a computer with the following specifications: Intel i9 12th gen CPU, 

128GB DDR4 memory RAM, and 3090 RTX Nvidia GPU. For implementation of the workflow by bench scientists, the CODA workflow 

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Tissue Microarray of human pancreas TissueArray PA803

Adult human pancreas This paper N/A

Chemicals, peptides, and recombinant proteins

Molecular biology grade water Corning Catalog #46-000-CI

Xylene, Histological Grade Milipore Sigma Catalog #534056

Hematoxylin Solution, Mayer’s Milipore Sigma Catalog #MHS16

Bluing reagent Dako Catalog #CS70230-2

Ethyl Alcohol, Pure (200proof, anhydrous) Milipore Sigma Catalog #E7023-500ML

Eosin Y-solution, Alcoholic Milipore Sigma Catalog #HT110116

Deposited data

3D human pancreas CODA blocks This paper Zenodo: doi: https://zenodo.org/records/ 

15337577

Software and algorithms

Openslide Goode et al. https://github.com/openslide/openslide

Imagescope Leica https://www.leicabiosystems.com/us/digital- 

pathology/manage/aperio-imagescope/

CODA Kiemen et al. Zenodo: doi: https://zenodo.org/records/ 

11130691

MATLAB The MathWorks Inc. https://www.mathworks.com

Other

NanoZoomer S210 Hamamatsu Catalog #C13239-01
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has been modularly optimized to support scalability and accessibility, allowing streamlined execution on standard laptop configu

rations with reduced computational overhead.38

Tissue processing

Resected tissues were formalin-fixed, paraffin embedded, and sectioned at a thickness of 4 μm. For the TMA and 2D-WSI cohorts, a 

single histological section was stained with H&E. For the 3D-CODA cohort, a minimum of 270 serial sections were taken, and every 

third section was stained with H&E, for a minimum of 90 H&E-stained tissue sections per sample. H&E-stained images were digitized 

at 20× magnification using a Hamamatsu S360 scanner.

Segmentation of pancreatic microanatomy in 2D

A previously developed deep learning semantic segmentation pipeline for the labeling of distinct microanatomical components in 

histological images was adapted here to label ten microanatomical components of human pancreatic cancer histology at 1 μm 

per pixel resolution: pancreatic cancer, pancreatic cancer precursor lesions, normal ductal epithelium, acinar tissue, islets of Lang

erhans, vasculature, nerves, fat, and extracellular matrix (ECM).17,75 Convolutional neural networks were trained in MATLAB2023b to 

classify the TMA cores, 2D-WSI, and 3D-CODA cohorts of tissues. Manual annotations of the ten microanatomical tissue compo

nents were generated on a subset of histological images, and fed into the CODA-segmentation workflow for retraining of a re

snet-50 network. Resulting networks were deemed acceptable if the overall accuracy exceeded 90% and minimum per-class pre

cision and recall exceeded 85%.

Reconstruction of pancreatic microanatomy in 3D

CODA image registration was used to create digital tissue volumes from the serial H&E images for the seven samples in the 3D-CODA 

cohort.17 This nonlinear registration workflow iteratively aligns serial stacks of images (with the reference coordinates at the center of 

the stack), and utilizes a two-step global and local calculation in MATLAB2023b. Images are downsampled to a resolution of eight μm 

per pixel, converted to greyscale, and Gaussian-filtered. Global registration angle is calculated through maximization of the cross 

correlation of radon-transforms of the filtered images taken at discrete angles from 0◦ to 360◦, and registration translation is calcu

lated through maximization of the cross correlation of the rotated, filtered images. Local registration is computed by repeating this 

process along subsampled regions of the two globally registered images. This registration is repeated for all images in the serial sam

ples and is subsequently rescaled and applied to the high resolution (1 μm per pixel resolution) H&E and microanatomically 

segmented H&E images.

Calculation of variation in tissue composition in 2D and 3D

For each discrete sample in the TMA, 2D-WSI and 3D-CODA cohort, overall microanatomical composition was assessed. First, the 

number of pixels classified as each of the 10 microanatomical tissue types segmented by the deep learning model was determined. 

Next, composition was defined as the area percent of each tissue type in each sample. Variation in tissue composition in the 2D-WSI 

cohort was defined as the distribution of composition of each tissue type segmented by the deep learning model. Variation in tissue 

composition in the 3D-CODA cohort was defined as the distribution of composition of each tissue type along the z-dimension of the 

serial stack of images, taking each serial histological image as an independent measurement. Minimum, maximum, mean, median, 

standard deviation, and histogram bin counts of each tissue component composition in the 2D-WSI and 3D-CODA cohorts were 

determined. In determination of the distribution of tissue composition in the 3D-CODA cohort, samples containing >90 serial images 

were randomly subsampled to contain 90 consecutive images.

Calculation of the number of tissue microarrays necessary to understand WSI and 3D tissue composition

Virtual TMAs (vTMAs) were generated in the 2D-WSI and 3D-CODA samples. First, a 2D or 3D coordinate was generated. Pixels 

were extracted corresponding to a 1 × 1 mm2 square surrounding the coordinates. A circular filter was applied to this extracted 

square to leave a 1-mm diameter disk representing a vTMA taken from the 2D or 3D image. To determine the number of vTMAs 

necessary to accurately estimate the tissue composition of a WSI or 3D pancreatic cancer tissue sample, random coordinates 

were determined, virtual TMAs were generated, and the tissue composition of each vTMA was recorded. Error was calculated be

tween the per-class vTMA tissue composition and the overall composition of the WSI or 3D tissue sample. Another random vTMA 

was generated, added to the first vTMA, and error was recalculated for the combined sampling of two vTMAs. This process was 

repeated for sampling of up to 800 vTMAs on the 3D tissue samples and up to 100 vTMAs on 2D-WSIs. One thousand such sim

ulations were performed to determine the general trend of per-class TMA error in assessment of WSI and 3D sample tissue 

composition.

Calculation of the decay in spatial correlation within 2D and 3D samples

In each sample of the 3D-CODA cohort, 2D planes of pixels were extracted from each classified tissue volume. For each segmented 

tissue component, the cross-correlation of the pixels classified as that component in that plane to all other planes of the 3D-sample 

was determined, and this correlation along with the distance between the planes was recorded. This process was repeated for all 

possible combinations of z-planes in a volume, and was repeated for each of the seven tissue samples. Aggregate correlation of 
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composition of a single tissue component as a function of distance within a 3D sample was defined as the mean cross-correlation of 

that tissue component across all images of all samples.

Calculation of the change in tissue composition along vTMA cores

Change in tissue composition along serial sections of a vTMA core was determined. First, manual selection of coordinates on the first 

image of a sample was selected corresponding to a region visibly seen to contain invasive cancer. Next, a virtual core was extracted 

from the 3D segmented tissue volume corresponding to a cylinder of 3 mm diameter. Serial vTMAs were taken from each core, and 

the tissue composition of each serial vTMA was determined. Error in composition of each tissue type between the initial, manually 

selected vTMA and each serial TMA was calculated, and recorded along with the section number of that virtual serial TMA.

Calculation of the number of sections necessary to understand neoplastic content

Pancreatic neoplastic content was defined in two ways. For pancreatic cancer precursor lesions, PanIN content was defined as the 

volume of PanIN normalized by the combined volume of PanIN and normal ductal epithelium. For pancreatic cancer, PDAC content 

was defined as the volume of PDAC normalized by all PDAC, epithelial ducts, and PanIN total volume of the 3D sample. For each 3D 

sample, subvolumes were extracted corresponding to all combinations of between 1 and 90 serial tissue images. For each unique 

combination, the neoplastic content of the subvolume was calculated, and the relative error of this content was determined in relation 

to the neoplastic content of the whole 3D volume. For each 3D sample, measurements were grouped by the number of serial images 

contained in each subvolume.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed using MATLAB scripts, with specific test employed as indicated. All significance tests were 

performed using the Wilcoxon rank-sum test. To compare metrics within and between cohorts, median, mean, standard deviation, 

and interquartile range were determined. Relative error was defined as [measured value – expected value]/expected value. No other 

statistical calculations were performed in this work.
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