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In brief

Forjaz et al. demonstrate that tissue
structure and composition vary rapidly in
three dimensions, revealing the
limitations of traditional 2D pathology
techniques. Their findings highlight the
need for 3D imaging to accurately capture
tissue heterogeneity and improve the
assessment of both normal and disease
microanatomical changes.
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MOTIVATION Spatially resolved cellular profiling methods are essential tools for studying tissue heteroge-
neity, yet they typically assess limited regions, requiring numerous samples to accurately capture tissue het-
erogeneity. Recent advances in three-dimensional (3D) tissue mapping offer deeper insights; however, at-
tempts to quantify the information gained remain limited. Here, we comprehensively evaluate inter- and
intra-sample heterogeneity using tissue cores, whole-slide images (WSlIs), and 3D samples from over 100
pancreatic tissues. Our analysis quantifies the impact of sampling and defines sampling strategies to approx-
imate the compositional heterogeneity observed in large-scale 3D tissues.

SUMMARY

Methods for spatially resolved cellular profiling of tissue sections enable in-depth study of inter- and intra-
sample heterogeneity but often profile small regions, requiring evaluation of many samples to compensate
for limited assessment. Recent advances in three-dimensional (3D) tissue mapping offer deeper insights;
however, attempts to quantify the information gained in transitioning to 3D remains limited. Here, to compare
inter- and intra-sample tissue heterogeneity, we analyze >100 pancreas samples as cores, whole-slide im-
ages (WSIs), and cm®-sized 3D samples. We show that tens of WSIs and hundreds of tissue microarrays
are needed to approximate the compositional tissue heterogeneity of tumors. Additionally, spatial correla-
tions of pancreatic structures decay significantly within microns, demonstrating that isolated two-dimen-
sional (2D) sections poorly represent their surroundings. Through 3D simulations, we determined the number
of slides necessary to accurately measure tumor burden. These results quantify the power of 3D mapping and
establish sampling methods for biological studies prioritizing composition or incidence.

INTRODUCTION

Recent developments in spatial profiling technologies have led to
the construction of atlases to characterize cellular and tissue
compositions, structure, and the “omic” (genomic, epigenomic,
transcriptomic, proteomic, and metabolomic) landscapes of tis-
sues, organs, and whole organisms.’'® These techniques have

led to important discoveries regarding changes in cellular compo-
sition during development, aging, and the progression of diseases
such as cancer and cardiovascular disease. Due to technical and
financial limitations, current spatial omic methods are designed
to evaluate mm?-sized two-dimensional (2D) regions.’:%10"*
Recently, teams have developed novel techniques, such as
open-top light-sheet, micro-computed tomography (micro-CT),
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serial-section-based imaging for three-dimensional (3D) tissue
mapping.'®~'® However, attempts to quantify the amount of infor-
mation gained in the transition from 2D to 3D have been limited.
The purpose of this manuscript is to interrogate the added value
of quantitative 3D pathology over classical 2D analysis. Here, to
evaluate the loss in information when comparing inter- and
intra-sample tissue heterogeneity, we analyze >100 pancreas tis-
sue samples in the form of tissue cores, whole-slide images
(WSls), and cm®-sized 3D samples.

Consider a histological section of standard, 4 pm thickness: a
1-mm? core of a tissue microarray (TMA) represents a volume of
tissue of just 0.004 mm?, while a common region size for spatial
transcriptomics (6.5 x 6.5 mm?) corresponds to a volume of
0.2 mm3. These volumes represent minuscule fractions of the
human organs that they are used to represent. More standard
techniques, including WSiIs stained with hematoxylin and eosin
(H&E) or immunohistochemistry (IHC), are often considered the
gold standard of diagnostic anatomic pathology.'®?° These
slides feature a lateral area of 2 x 5 cm?, corresponding to a vol-
ume of 5 mm?3. The implicit assumption of 2D sampling is that the
cells within the sampled region, as well as their morphologies,
densities, and cellular and non-cellular neighborhoods, are
representative of those of the 3D organs and diseased tissues
from which they are obtained.

Accurate clinical diagnosis of a range of diseases using single
2D H&E sections (selectively chosen from gross inspection of re-
sected tissues) shows that the generalization of findings from 2D
is possible, although recent works suggest that relevant criteria,
including cancer grade and cancer precursor type, may be easily
misdiagnosed in 2D."%?""?* |n research settings, where the goal
of tissue atlas efforts is generalizability, we hypothesize that 2D
sampling may be insufficient to capture the marked intra-sample
heterogeneity in cellular composition and tissue architecture.

Recent 3D work has demonstrated the utility of tissue clearing
and serial-sectioning-based approaches to assess microana-
tomical maps of large (>1 cm®) volumes of tissue at cellular res-
olution."®"7?>=3" Here, we use the recently developed 3D imag-
ing workflow CODA to assess the spatial composition of key cell
types in thick slabs of both grossly normal human pancreas tis-
sue and human pancreas tissue containing pancreatic ductal
adenocarcinoma (PDAC), the deadliest form of pancreatic can-
cer.'” CODA was recently advanced to enable user interface-
guided workflows in an open-source programming language®®
and has been used to quantitatively interrogate normal human
organ development, as well as breast cancer, prostate cancer,
pancreatic cancer, diabetic neuropathy, myocarditis, skin regen-
eration, and fetal development in murine and human tis-
sues.”®%°"" The uniquely heterogeneous spatial microenviron-
ment of PDAC makes it an optimal testbed to evaluate the
benefits of 3D microanatomic mapping over standard 2D
approaches. ™"

Our exhaustive analysis demonstrates that standard 2D sam-
pling—using a limited number of TMA cores or WSIs—is typically
insufficient for accurate assessment of tissue composition or tu-
mor content or the selection of regions of interest (ROls) for the
creation of TMA cores and capturing rare events.*®> We deter-
mine that tens of WSIs and hundreds of TMA cores are neces-
sary to accurately represent the range of tissue compositions
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present in a cm®-sized human pancreas sample. We find that
sections inside a tumor, sometimes just tens of microns apart,
can have completely different, uncorrelated cellular and non-
cellular structures. 2D assessments of “representative” slides
fail particularly in the enumeration of rare events, such as the
estimation of the density of cancer or cancer precursor cells in
samples known to have low neoplastic content.?”+*® This work
helps clarify the impact of tissue subsampling in the study of
the composition of normal and malignant tissues, using analysis
of 2D and 3D pancreatic human tissue samples as a testbed.

RESULTS

Construction of cohorts of 2D and 3D microanatomically
labeled pancreatic tissue
To interrogate the differences between inter-sample and intra-
sample compositional heterogeneity, pancreatic tissue from
149 individuals was retrospectively collected, consisting of 101
samples containing invasive pancreatic cancer and 48 samples
containing grossly normal pancreas (Figure 1A). Three cohorts
consist of (1) the “2D-WSI” cohort, which has 64 individual,
pathologist-curated WSiIs; the “3D-CODA” cohort, which has
14 samples containing serially sectioned 3D blocks (seven of
which contain invasive pancreatic cancer); and the “TMA”
cohort, which is a single TMA containing pancreas histology
from 30 individuals. Cohorts were matched between the TMA,
WS, and 3D cohorts according to age and gender (Table S1).
We used a segmentation algorithm to label microanatomical
components to a resolution of 1 pm (see STAR Methods). Inde-
pendent testing showed an overall accuracy of 93.2% across
all samples (Figure S1). For the 3D-CODA cohort, image registra-
tion was performed to create digital tissue volumes (Figure 1B).
The minimum number of sections for these 3D samples was
270 (mean: 297, interquartile range: 816). The median recon-
structed volume was 39.0 mm? (mean: 132.2 mm?, interquartile
range: 247.3 mm?®). Statistical sampling was conducted on the
2D and 3D cohorts to evaluate the impact of sampling on tissue
composition analysis of heterogeneous microanatomical tissue
components (Figure 1C).

Spatial correlation rapidly decays within pancreatic
tumors

To assess the structural continuity of tissues, we calculated how
rapidly tissue composition changed along a straight line through
the 3D tumors. To determine the correlation length of each tissue
component (PDAC, vasculature, fat, ducts, etc.)—i.e., the dis-
tance over which the composition remained significantly corre-
lated—we calculated the pixel-to-pixel correlation of these tis-
sue components in 3D (Figure 2A). If this correlation is high,
then the sampling of a tumor can be sparse. As a limit, if this cor-
relation is perfect, then a 2D section is sufficient to capture the
composition of the tumor.

This correlation was calculated for each tissue component and
for all WSIs spaced between 4 and 720 pm apart, averaged
across the seven 3D tumor samples, and plotted as a function
of distance (Figure 2B). Making intuitive sense, our analysis re-
vealed that more abundant structures, such as extracellular ma-
trix (ECM) and acini, remained spatially correlated over large



Please cite this article in press as: Forjaz et al., Three-dimensional assessments are necessary to determine the true, spatially resolved composition of
tissues, Cell Reports Methods (2025), https://doi.org/10.1016/j.crmeth.2025.101075

Cell Reports Methods

A Sampling cohorts

B CODA tissue segmentation

¢? CellPress

OPEN ACCESS

C statistical sampling analysis

TMA cohort

60 TMAs
(30 patients)

2D-WSI cohort 3D-CODA cohort

127 2D-WSls
(64 patients)

14 3D samples
(14 patients)

2D cohort

t
]
<
[<]
o
<
) ~1.5M cells ~1.6B cells a
Size |——i+ - } — 118
0 smm® 3.50m " 7
1 mm? 10 mm? 5cm a
Information = 8 o

3D H&E block

TMA

Compositional comparison of 2D-WSls
and TMAs from 3D-CODA block

WsI

3D segmented block

Tissue correlation Sampling error

5mm

Figure 1. Overview of statistical sampling analysis for assessment of inter- and intra-patient tumor heterogeneity

(A) Cohorts of 14 3D blocks, 127 WSIs from 64 individuals, and a TMA containing cores from 30 samples were collected.

(B) Tissues were surgically resected, formalin fixed and paraffin embedded, sectioned, stained with H&E, and digitized. CODA segmentation was used to label 10
different microanatomical components at a resolution of 1 um. For the processing of the 3D-CODA cohort, specimens were additionally registered into aligned

tissue volumes.

(C) Statistical sampling analysis was conducted to assess the importance of sampling and associated sampling error.

distances within the blocks, requiring >180 slides (or 720 pm) un-
til they reached a spatial correlation that had decreased by
>50%. For sparser tissues, such as nerves and vasculature,
this correlation dropped by >50% within just 24 pm, or six
4-mme-thick slices (Figure 2C). Hence, tissue composition be-
comes rapidly decorrelated within pancreatic tumors.

To determine whether this rapid decorrelation holds in non-
diseased organs, we conducted a similar analysis in seven 3D
samples of grossly normal pancreas. Interestingly, the spatial
correlation of ECM dropped more rapidly in normal tissue, with
aloss of >50% in just 24 um (compared to 720 pm in cancer tis-
sue). As expected, we found that the spatial correlation in acinar
tissue decayed more slowly in normal pancreas, reflecting the
marked acinar atrophy and desmoplastic stromal deposition
that occurs in pancreatic cancer.

We repeated this calculation for samples virtually cut to
6.5 x 6.5 mm?, the area used in some spatial transcriptomics an-
alyses (Figure S2). For tissue components such as ducts, PDAC,
islets of Langerhans, blood vessels, nerves, and fat, a decrease
in spatial correlation of 50% was observed within just 40 pm, or
10 sections.

In conclusion, tissue composition changes rapidly in both
normal and diseased tissues, highlighting the necessity of 3D as-
sessments to fully capture their spatial organization.

Limitations of core-needle biopsies in assessment of
tumor heterogeneity in tissue composition

TMA cores are often created following pathologist-selected
ROIs on a single histological section that contains a target
structure (e.g., cancer). Hundreds of sections may be subse-
quently cut from these cores for use by researchers who aim
to study the original structure chosen by the pathologist. We
hypothesized that due to the rapid changes in tissue composi-
tion across 3D tumors (Figure 2), the specific target structures
and cellular features selected by pathologists in the initial
ROls could quickly be lost in the cores as successive sections

are cut. To quantify this, we created virtual cores within our 3D
samples (Figure 3A). We manually chose 50 locations on the
first H&E section of two 3D samples containing visually high
cancer content. From these virtual cores, we digitally cut virtual
TMA (VTMA) sections and quantified the change in tissue
composition compared to the first (target) section (Figure 3B).

First, we considered the situation where researchers’ objec-
tive is to profile the composition of the tumor microenvironment
(Figure 3C). We quantified changes in stromal cell density across
VTMA sections to assess whether the number and identity of
stromal cells would vary greatly between slides, leading to the
possibility that two researchers, studying sections from the
same TMA cut hundreds of slides apart, could reach opposite
conclusions. We found that, as subsequential sections are cut
from the initial pathologist-selected ROI, stromal cell density er-
rored, on average, 25% within the first 100 sections (0.4 mm),
with many simulations nearing 100% change within 300 sections
(~1.2 mm).

Finally, we determined the average number of virtual sections
within which virtual cores lost their target structure altogether
(Figure 3D). In this case, core ROIs were chosen as containing
high cancer content. We thus determined how many of the 100
simulated cores no longer contained cancer for each virtual sec-
tion. We found that nearly 50% of cores contained no cancer
within 200 sections (0.8 mm), with this number approaching
75% after 300 sections.

This analysis demonstrates a rapid decorrelation in cancer
content even within expert-guided cores, suggesting that TMA
cores may rapidly lose the benefit of expert-guided ROl selection
as sections are cut.

Hundreds of TMAs are necessary to capture the true
tissue composition of WSIs and 3D tumors

Conventional histological analysis often relies on 2D tissue sec-
tions or TMAs to quantify the overall composition of tumors.
While practical for large-scale studies, this approach assumes

Cell Reports Methods 5, 101075, June 16, 2025 3




Please cite this article in press as: Forjaz et al., Three-dimensional assessments are necessary to determine the true, spatially resolved composition of
tissues, Cell Reports Methods (2025), https://doi.org/10.1016/j.crmeth.2025.101075

¢? CellPress

OPEN ACCESS

Combinations of slides that at d distance

Cell Reports Methods

Compute pixel to pixel correlation

A in all combinations
Starting in slide 1 Starting in slide 2
1
= d L2 All combinations
3 4 2 d at different distances
g d Es
= 3
7 = d
s S8
[53 =
3 § :
N N
B C
PDAC Ductal Epithelium Islet of Langerhans
1 N=7 3D blocks N=5 1 N=6 Decrease in spatial correlation to < 50%
N,=0 N,=7 N,=7
[ 24 ECM
05 05 I ———F—336
|o
PDAC
=60
0 120 360 720 720 0 120 360 720
| I 48
ECM Acini Fat Fat
1 Nes - 60
c =
g Nh=7
2 fl 12 N
I erve
= 24
£ [H
o
s [ 36
g |]'| 24 Blood vessels
(]
0 120 360 720 0 120 360 720 0 120 360 720 24
. . Islet of Langerhans
Blood Vessel Nerve Distance between sections (um) 24 9
1 1 _
N=5
N,=7 E=——— Non-diseased l 12
Ductal Epithelium
[]12
o5 05 . : : ; ;
' . 0 120 240 360 480
Diseased tissue
Distance (um)
0 120 360 720 0 120 360 720

Distance between sections (um)

Distance between sections (um)

Figure 2. Quantifying the length scale of decay in spatial correlation of tumors

(A) 2D spatial correlation in tissue composition was determined for all combinations of pairs of sections in the 3D samples.

(B) For each tissue type, correlation was plotted as a function of distance between section pairs (line: mean across 3D samples, shaded area: standard deviation
across 3D samples, colored plot: cancer samples, and gray: grossly normal samples).

(C) Distances at which the correlation falls below 50%, revealing that the length scale of compositional decorrelation in a normal and a cancer-containing

pancreatic tissue is extremely short.

that these limited samples are representative of entire heteroge-
neous 3D tumors. This can lead to a significant loss of informa-
tion, which can overlook important spatial tissue composition
variations and miss rare cell populations. Here, we aimed to
quantify information loss when subsampling a heterogeneous
3D sample through 2D histology. To do this, we randomly simu-
lated VTMAs with a 1 mm diameter in the 2D WSIs and the 3D
samples (Figure 4A). We quantified the error in tissue composi-
tion for various numbers of random, non-overlapping vTMAs
compared to the true, 3D tissue composition (Figure 4B). This
process was repeated to quantify the error between vTMAs
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and 2D WSI composition (Figure 4C) and the error between 2D
WSiIs and 3D tissues (Figure 4D).

As expected, increasing the number of TMAs taken from a
sample decreased the error of estimation of tissue composition
of that sample, and this error varied across different microana-
tomical tissues (Figures 4B-4D). By comparing the number of
2D sections necessary to reach <10% error, we identified tissue
components of high and low heterogeneity (Figures 4E-4G). We
identified ECM as the component with the lowest heterogeneity,
with an average of 19 TMAs necessary to reach <10% error in the
estimation of 2D-WSI composition, 22 TMAs necessary for the
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Figure 3. Error when TMA cores are used to assess spatial tissue content in a tumor

(A) Cartoon demonstrating the process of region selection and tissue coring for creation of TMAs.

(B) 50 ROIs containing cancer were manually selected from the top slide of two 3D samples.

(C) TMAs were virtually cut and the relative error in stromal cell density in comparison to the original ROl was calculated.
(D) TMAs were virtually cut and the percentage of TMAs with no cancer present on a given cut was calculated.

estimation of 3D-volume composition, and only 1 WSI necessary
to correctly estimate 3D-volume composition (within 10% error).
In contrast, we identified cancer as a much more heterogeneous
structure, with >500 TMAs necessary to estimate the true 3D
composition with <10% error.

We repeated this calculation for samples virtually cut to
6.5 x 6.5 mm?, the area often used in spatial transcriptomics an-
alyses (Figure S2).°'=°* Our analysis demonstrated that tissue
components such as acini, islets of Langerhans, PDAC, ducts,
and blood vessels required roughly 50 simulated sections to es-
timate true 3D tissue composition with <10% error. Overall, this
analysis demonstrates that subsampling heterogeneous tumors
leads to significant information loss and that this information loss
may be quantified through the simulation of 3D anatomical tis-
sue maps.

Sampling guidelines in pancreatic cancer determined
through 3D assessment of neoplastic content

In studies of pancreatic cancer initiation and its precursors
(pancreatic intraepithelial neoplasias [PanINs]), an accurate un-
derstanding of the number and composition of cancer precur-
sors in the ductal system is necessary to determine the risk of
a given precursor lesion to progress to cancer.”>’ Yet, it is
not currently feasible to profile entire human pancreases at
cellular resolution to quantify all precursors. Here, we demon-
strate that the amount of tissue necessary for incidence profiling
may be estimated using simulations of 3D tissue. To do this, we

assessed the sampling necessary to reach a preset error in the
estimation of neoplastic content.

For this calculation, we utilized a previously reported cohort of
48 large 3D reconstructed samples of human pancreas tissue
containing PanINs, the precursors to pancreatic cancer.® We
defined PanIN burden as the volume percent of PanINs within
the pancreatic ductal system. Next, we calculated PanIN
burden for all possible combinations of consecutive slides sub-
sampled from 3D and calculated the relative error of the sub-
sampled region to that of the full 3D sample (Figure 5A). Visual-
izing this as bar plots for low, medium, and high PanIN burden
revealed that fewer slides are needed to accurately determine
the neoplastic content of samples containing extensive
PanINs, while many slides are needed to accurately determine
the neoplastic content of samples containing fewer PanINs
(Figure 5B).

We conducted the same calculation for cancer content. We
defined cancer burden as the percentage of epithelial cells that
were classified as PDAC. Again, we found that fewer slides are
needed to estimate the composition of cancer in samples with
high cancer burden but that many slides are necessary to esti-
mate cancer composition in samples with low neoplastic content
(Figure 5C).

These results suggest the rather intuitive guideline that the
rarer the tissue component being studied, the larger the number
of sections required for a rigorous assessment of that compo-
nent’s content. This calculation may be used in the design of
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Figure 4. Hundreds of TMAs and tens of WSIs are needed to accurately estimate the true composition of 3D tumors

(A) Representation of 3D-CODA H&E-stained volume, comprised of serial, 2D-WSiIs, from which virtual TMAs may be extracted.

(B) The loss in the accuracy of calculation of tissue composition due to TMA subsampling was measured through 200 simulations of 1-100 virtual TMAs (vTMASs) in
the 2D-WSI cohort. Tissue composition of the generated vVTMAs was compared to the average 2D-WSI (black line).

(legend continued on next page)
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Figure 5. Quantification of error in estimation of neoplastic content when subsampling 3D tissues

(A and B) 3D renderings of pancreata containing (A) low or high PanIN content and (B) low or high PDAC content.

(C) For 48 3D samples containing PanINs (precursors to pancreatic cancer), the error in estimation of overall PanIN content plotted as a function of the number of
consecutive sections subsampled. Lines are color coded according to the PanIN content of the 3D sample.

(D) The data in (C) binned according to overall PanIN content in equal thirds as low PanIN burden (0%-33%, LP), Moderate PanIN burden (34%-67%, MP), and
high PanIN burden (68%-100%, HP) to show that fewer sections are needed to accurately estimate the PanIN content of samples that contain many PanIN
lesions, and vice versa. p values: LP compared to MP = 1.3E—4; LP compared to HP = 5E—6; MP compared to HP = 7E—6.

(E) The calculation of (C) repeated for the seven samples containing PDAC to show that fewer sections are needed to accurately estimate cancer content in

samples that contain high cancer composition. Data are represented as mean + SEM.

studies seeking to minimize the amount of tissue collected for
accurate estimation of rare structures.

DISCUSSION

Methods for spatially resolved cellular profiling have enabled in-
depth quantitative mapping of tissues and tumors to study inter-
patient and intra-patient differences in normal human anatomy
and disease onset and progression. These methods profile
extremely limited regions, which may impact the evaluation of
tissue content and local heterogeneity due to tissue
subsampling.

Here, we used CODA to quantitatively compare inter- and intra-
sample heterogeneity through the lens of tissue composition. Us-
ing the pancreas as a model system, we demonstrated that the
correlation of tissue structures decays within tens of microns,
even in normal tissues; that the target ROI selected by expert pa-
thologists in the design of tissue cores may be rapidly lost within
tens of sections; and that tens of WSIs and hundreds of TMAs
are needed to recapitulate the true, 3D tissue composition. Further,

we demonstrated that quantification of 3D-mapped tissues may
be used to estimate the number of sections necessary for accurate
2D experimentation. Given that spatial heterogeneity is commonin
many tumors, similar patterns of rapid tissue structure decay and
sampling challenges are also likely to be present in other cancers.
Toimprove tissue analysis accuracy and reduce information loss, it
is crucial to account for these subsampling factors.

While this work studies inter- and intra-tumoral heterogeneity
through meticulous enumeration of tissue composition, it is likely
that molecular, genomic, and transcriptomic heterogeneity is
also high within 3D tissue samples. For example, recent work
has shown that PanINs (precursors to pancreatic cancer) exhibit
great inter- and intra-lesional heterogeneity in KRAS mutations,
suggesting that these lesions develop primarily from independent
genetic events and may meet and merge within the ductal sys-
tem.®>“® Using CyCIF to measure cellular heterogeneity, groups
have also shown alterations in marker-positive cells from TMAs
to WSls.*®

The impact of transitioning from 2D to 3D analysis has been
shown to be important in clinically relevant features, such as

(C and D) The calculation of (A) was repeated for the calculation of (C) the loss in accuracy between TMAs and 3D tumors and (D) the loss in accuracy between 2D
WSIs and 3D tumors.

(E-G) Distilling the information from the simulations shown in (A)-(C), we determined the number of TMAs and WSIs necessary to estimate WSI and 3D-tumor
composition with <10% error. Some structures, such as blood vessels, nerves, and PanINs, take tens to hundreds of 2D sections to reach <10% error. Data are
represented as mean + SEM.
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the Gleason grade in prostate cancer, which can vary greatly
across short distances of a 3D sample. 2729854 Additionally,
recent work on pancreatic precursor lesions indicates that diag-
nostic criteria for intraductal papillary mucinous neoplasms
(IPMNs), primarily based on 2D planar cross-sectional dimen-
sions, may be inaccurate when moving to 3D, potentially
requiring the reclassification of some lesions as PanlINs.?’

Despite the potential of 3D imaging, its widespread adoption
in basic and clinical research has been limited by high opera-
tional costs and the technical expertise necessary for sample
processing, imaging, and computational analysis. However,
several technological developments are reducing these barriers.
The decreasing cost of chemical reagents for optical tissue
clearing,®®*®° optimized software,’”’" and the integration of
generative artificial intelligence for interpolation of missing or
damaged images in volumetric stacks are collectively enhancing
scalability.”” In parallel, the emergence of open-source GUIs for
light-sheet fluorescence microscopy and serial section histology
reconstruction has accelerated the use of 3D in tissue analysis in
biomedical and oncologic research.®®"®

In sum, we demonstrate in this work that 3D assessments are
necessary to accurately assess tissue composition and tumor
content and provide guidelines for the rate of sampling neces-
sary to rigorously assess spatially resolved tissue composition
and associated tissue density and intercellular distances.

Limitations of the study

This study primarily evaluates tissue composition heterogeneity
and does not directly assess genomic, transcriptomic, or molec-
ular variability, which also significantly contributes to spatial dif-
ferences. The analysis was performed only on pancreatic tissue,
potentially limiting the generalizability of the findings to other tis-
sues or cancers. Additionally, the practical constraints of cost
and specialized expertise required for the widespread adoption
of 3D methodologies remain notable factors.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Tissue Microarray of human pancreas TissueArray PA803

Adult human pancreas This paper N/A

Chemicals, peptides, and recombinant proteins

Molecular biology grade water Corning Catalog #46-000-Cl

Xylene, Histological Grade Milipore Sigma Catalog #534056

Hematoxylin Solution, Mayer’s Milipore Sigma Catalog #MHS16

Bluing reagent Dako Catalog #CS70230-2

Ethyl Alcohol, Pure (200proof, anhydrous) Milipore Sigma Catalog #E7023-500ML

Eosin Y-solution, Alcoholic Milipore Sigma Catalog #HT110116

Deposited data

3D human pancreas CODA blocks This paper Zenodo: doi: https://zenodo.org/records/
15337577

Software and algorithms

Openslide Goode et al. https://github.com/openslide/openslide

Imagescope Leica https://www.leicabiosystems.com/us/digital-
pathology/manage/aperio-imagescope/

CODA Kiemen et al. Zenodo: doi: https://zenodo.org/records/
11130691

MATLAB The MathWorks Inc. https://www.mathworks.com

Other

NanoZoomer S210 Hamamatsu Catalog #C13239-01

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

This retrospective study was approved by the Institutional Review Board (IRB) at the Johns Hopkins University School of Medicine.
Human pancreatic tissue specimens were analyzed across three independent cohorts: a commercially acquired tissue microarray
(TMA), whole-slide images (WSI), and a three-dimensionally reconstructed specimens processed using the CODA imaging pipe-
line."” All samples were obtained from archived, de-identified surgical resections and used in accordance with institutional ethical
regulations and informed consent protocols.

The TMA cohort consisted of 60 cores, each 1.5 mm in diameter, sampled from the pancreata of 30 individuals with pancreatic
cancer. Each case was represented by two cores. The patients ranged in age from 40 to 84 years, with a mean of 58.4 years and
a median of 60 years. Equal numbers of 30 male and 30 female donors were included in this group. These samples were obtained
from a commercial vendor TissueArray. The WSI cohort comprises 64 surgical resections from patients treated at Johns Hopkins
Hospital for pancreatic cancer, and is a cohort that was previously published.”* One representative FFPE slide per case was
analyzed. Patient ages in this group ranged from 48 to 90 years, with a mean age of 64.4 years and a median age of 67 years. Of
the patients, 22 were female and 25 were male, and gender information was not available for 17 individuals. The 3D-CODA cohort
included pancreas resections from 14 individuals, also treated at Johns Hopkins Hospital, and is a cohort that was previously pub-
lished.'”**® Seven of these samples were processed using serial sectioning, computational alignment, and microanatomical segmen-
tation for 3D reconstruction. The mean number of histological sections per case was 393 slides, with a total of 5,503 images across
the cohort. Patient ages ranged from 41 to 75 years, with a mean of 61.4 and a median of 58 years. Six of the patients were female
and eight were male. Histological. Sex and age data are summarized in Table S1. All tissue handling and data analysis procedures
conformed to institutional and national research standards.

METHOD DETAILS
Computational resources

For the execution of computational methods in this work, we used a computer with the following specifications: Intel i9 12t gen CPU,
128GB DDR4 memory RAM, and 3090 RTX Nvidia GPU. For implementation of the workflow by bench scientists, the CODA workflow
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has been modularly optimized to support scalability and accessibility, allowing streamlined execution on standard laptop configu-
rations with reduced computational overhead.*®

Tissue processing

Resected tissues were formalin-fixed, paraffin embedded, and sectioned at a thickness of 4 um. For the TMA and 2D-WSI cohorts, a
single histological section was stained with H&E. For the 3D-CODA cohort, a minimum of 270 serial sections were taken, and every
third section was stained with H&E, for a minimum of 90 H&E-stained tissue sections per sample. H&E-stained images were digitized
at 20x magnification using a Hamamatsu S360 scanner.

Segmentation of pancreatic microanatomy in 2D

A previously developed deep learning semantic segmentation pipeline for the labeling of distinct microanatomical components in
histological images was adapted here to label ten microanatomical components of human pancreatic cancer histology at 1 pm
per pixel resolution: pancreatic cancer, pancreatic cancer precursor lesions, normal ductal epithelium, acinar tissue, islets of Lang-
erhans, vasculature, nerves, fat, and extracellular matrix (ECM)."”-”® Convolutional neural networks were trained in MATLAB2023b to
classify the TMA cores, 2D-WSI, and 3D-CODA cohorts of tissues. Manual annotations of the ten microanatomical tissue compo-
nents were generated on a subset of histological images, and fed into the CODA-segmentation workflow for retraining of a re-
snet-50 network. Resulting networks were deemed acceptable if the overall accuracy exceeded 90% and minimum per-class pre-
cision and recall exceeded 85%.

Reconstruction of pancreatic microanatomy in 3D

CODA image registration was used to create digital tissue volumes from the serial H&E images for the seven samples in the 3D-CODA
cohort.'” This nonlinear registration workflow iteratively aligns serial stacks of images (with the reference coordinates at the center of
the stack), and utilizes a two-step global and local calculation in MATLAB2023b. Images are downsampled to a resolution of eight pm
per pixel, converted to greyscale, and Gaussian-filtered. Global registration angle is calculated through maximization of the cross
correlation of radon-transforms of the filtered images taken at discrete angles from 0° to 360°, and registration translation is calcu-
lated through maximization of the cross correlation of the rotated, filtered images. Local registration is computed by repeating this
process along subsampled regions of the two globally registered images. This registration is repeated for all images in the serial sam-
ples and is subsequently rescaled and applied to the high resolution (1 um per pixel resolution) H&E and microanatomically
segmented H&E images.

Calculation of variation in tissue composition in 2D and 3D

For each discrete sample in the TMA, 2D-WSI and 3D-CODA cohort, overall microanatomical composition was assessed. First, the
number of pixels classified as each of the 10 microanatomical tissue types segmented by the deep learning model was determined.
Next, composition was defined as the area percent of each tissue type in each sample. Variation in tissue composition in the 2D-WSI
cohort was defined as the distribution of composition of each tissue type segmented by the deep learning model. Variation in tissue
composition in the 3D-CODA cohort was defined as the distribution of composition of each tissue type along the z-dimension of the
serial stack of images, taking each serial histological image as an independent measurement. Minimum, maximum, mean, median,
standard deviation, and histogram bin counts of each tissue component composition in the 2D-WSI and 3D-CODA cohorts were
determined. In determination of the distribution of tissue composition in the 3D-CODA cohort, samples containing >90 serial images
were randomly subsampled to contain 90 consecutive images.

Calculation of the number of tissue microarrays necessary to understand WSI and 3D tissue composition

Virtual TMAs (VTMASs) were generated in the 2D-WSI and 3D-CODA sampiles. First, a 2D or 3D coordinate was generated. Pixels
were extracted corresponding to a 1 x 1 mm? square surrounding the coordinates. A circular filter was applied to this extracted
square to leave a 1-mm diameter disk representing a vTMA taken from the 2D or 3D image. To determine the number of vTMAs
necessary to accurately estimate the tissue composition of a WSI or 3D pancreatic cancer tissue sample, random coordinates
were determined, virtual TMAs were generated, and the tissue composition of each vTMA was recorded. Error was calculated be-
tween the per-class VTMA tissue composition and the overall composition of the WSI or 3D tissue sample. Another random vTMA
was generated, added to the first vTMA, and error was recalculated for the combined sampling of two vTMAs. This process was
repeated for sampling of up to 800 vTMAs on the 3D tissue samples and up to 100 vTMAs on 2D-WSiIs. One thousand such sim-
ulations were performed to determine the general trend of per-class TMA error in assessment of WSI and 3D sample tissue
composition.

Calculation of the decay in spatial correlation within 2D and 3D samples

In each sample of the 3D-CODA cohort, 2D planes of pixels were extracted from each classified tissue volume. For each segmented
tissue component, the cross-correlation of the pixels classified as that component in that plane to all other planes of the 3D-sample
was determined, and this correlation along with the distance between the planes was recorded. This process was repeated for all
possible combinations of z-planes in a volume, and was repeated for each of the seven tissue samples. Aggregate correlation of
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composition of a single tissue component as a function of distance within a 3D sample was defined as the mean cross-correlation of
that tissue component across all images of all samples.

Calculation of the change in tissue composition along vTMA cores

Change in tissue composition along serial sections of a vTMA core was determined. First, manual selection of coordinates on the first
image of a sample was selected corresponding to a region visibly seen to contain invasive cancer. Next, a virtual core was extracted
from the 3D segmented tissue volume corresponding to a cylinder of 3 mm diameter. Serial vTMAs were taken from each core, and
the tissue composition of each serial vVTMA was determined. Error in composition of each tissue type between the initial, manually
selected VTMA and each serial TMA was calculated, and recorded along with the section number of that virtual serial TMA.

Calculation of the number of sections necessary to understand neoplastic content

Pancreatic neoplastic content was defined in two ways. For pancreatic cancer precursor lesions, PanIN content was defined as the
volume of PanIN normalized by the combined volume of PanIN and normal ductal epithelium. For pancreatic cancer, PDAC content
was defined as the volume of PDAC normalized by all PDAC, epithelial ducts, and PanIN total volume of the 3D sample. For each 3D
sample, subvolumes were extracted corresponding to all combinations of between 1 and 90 serial tissue images. For each unique
combination, the neoplastic content of the subvolume was calculated, and the relative error of this content was determined in relation
to the neoplastic content of the whole 3D volume. For each 3D sample, measurements were grouped by the number of serial images
contained in each subvolume.

QUANTIFICATION AND STATISTICAL ANALYSIS
All statistical analyses were performed using MATLAB scripts, with specific test employed as indicated. All significance tests were
performed using the Wilcoxon rank-sum test. To compare metrics within and between cohorts, median, mean, standard deviation,

and interquartile range were determined. Relative error was defined as [measured value — expected value)/expected value. No other
statistical calculations were performed in this work.
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