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SUMMARY

Cells interact as dynamically evolving ecosystems. While recent single-cell and spatial multi-omics technol-

ogies quantify individual cell characteristics, predicting their evolution requires mathematical modeling. We

propose a conceptual framework—a cell behavior hypothesis grammar—that uses natural language state-

ments (cell rules) to create mathematical models. This enables systematic integration of biological knowl-

edge and multi-omics data to generate in silico models, enabling virtual ‘‘thought experiments’’ that test

and expand our understanding of multicellular systems and generate new testable hypotheses. This paper

motivates and describes the grammar, offers a reference implementation, and demonstrates its use in devel-

oping both de novo mechanistic models and those informed by multi-omics data. We show its potential

through examples in cancer and its broader applicability in simulating brain development. This approach

bridges biological, clinical, and systems biology research for mathematical modeling at scale, allowing the

community to predict emergent multicellular behavior.

INTRODUCTION

Generating temporally resolved multicellular predictions remains

an open computational challenge.1–3 Bioinformatics techniques

and machine learning can predict cellular trajectories and dy-

namic phenotypic changes in individual cell types from snap-

shots in single-cell assays,4–6 but they cannot account for

more complex temporal changes throughout multicellular eco-

systems. More advanced computational tools are needed to fill

the gaps between measurement times and leverage biological

knowledge and mechanism to forecast unseen emergent behav-

iors in multicellular systems de novo. Mechanistic mathematical

modeling can extend static high-resolution data to multicellular

dynamics. Agent-based modeling is a powerful mathematical
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modeling technique to predict emergent complex behaviors

from populations of individual software agents that follow prede-

fined rules based on their identity, state, and nearby conditions.7

Over a series of simulation time increments, each agent calcu-

lates its next action by evaluating its surroundings and internal

state variables to calculate its next action. Agent-based models

(ABMs) are well suited to studying the dynamics of multicellular

biology, as each agent can encode a cell based on its

state, type, and associated rules of behavior, including

their actions upon or in response to nearby cells (i.e., cell-cell in-

teractions).8–11 By encoding the rules of multicellular systems,

ABMs empower in silico experimentation and modeling

of cellular dynamics, even in the absence of temporal measure-

ments.9,12 ABMs have been used as powerful in silico models to

test hypotheses in human development and disease where

comprehensive experimentation is not possible.13–28 By predict-

ing the future state of cells and the impact of perturbations,

ABMs provide a powerful toolset to generate digital twins and

virtual clinical trials.3,10,29–38 Furthermore, the ability to run

ABM simulations at scale across diverse biological condi-

tions38–40 can refine biological understanding and predict future

cellular behaviors in these complex systems. Altogether, these in

silico models can prioritize bench experiments or clinical trials,

addressing the costs and practical constraints of real-world

experimentation.

While powerful, mathematical modeling lacks the language to

directly connect to the vast accumulated knowledge of the bio-

logical community and to easily transform data into equations.

As a result, widespread application of ABMs for modeling bio-

logical systems is currently limited both by the highly technical

nature of most software implementations and the ability to inte-

grate molecular data to ground simulations in the real world.

The former issue gatekeeps ABMs away from those without

significant computational experience, limiting widespread

application and even posing a barrier for many potential users

with extensive knowledge of the biological systems already en-

coded in ABMs. Even for advanced computational users, the

custom coding required can limit reproducibility. Software im-

plementing ABMs has been developed to overcome these lim-

itations.41–50 Still, disease etiology and operating biological hy-

potheses are often hidden deep in source code, obscuring the

assumptions about the system and the full set of hypotheses

being simulated. These technical challenges to ABMs also limit

the ability to embed molecular datasets, which are often too

high-dimensional to manually encode into equations of agents

and rules. A conceptual framing that can abstract cellular phe-

notypes and their interactions—combined with a simplifying

coding infrastructure—is essential for the integration of molec-

ular measurements to personalize model predictions. Facili-

tating in silico modeling requires both an intuitive language—

to concisely express expert knowledge as plain text

descriptions of the rules of cell interactions that ‘‘encode’’ a

system—and also software to translate these plain text de-

scriptions into mathematical expressions and executable

models for immediate exploration of a digitized copy of the bio-

logical system.47

To enable human-interpretable construction of ABMs, we

developed a cell behavior hypothesis grammar that bridges the

divide between biology and mathematical modeling, by

embracing well-defined human language hypotheses on cell

behavior as a logical model that can be translated directly into

the language of mathematical equations in an ABM. This one-

for-one relationship between human language and mathematics

allows us to systematically curate and integrate biological knowl-

edge and high-throughput data to make biology computable.51

Briefly, our grammar defines the components of ABMs based

on labeled cell types and behaviors. Rules can be both knowl-

edge driven (e.g., expert statements drawing from literature

and prior training) or data driven (directly measured from

experimental data). This in turn enables virtual ‘‘thought experi-

ments’’52 that challenge and extend our understanding of multi-

cellular systems and that generate new testable hypotheses.
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Thus, the grammar allows for broad application of ABMs in a

reproducible, modular, and extensible manner. We demonstrate

how this grammar’s reliance on annotated cellular states enables

both encoding of expert-curated biological knowledge as well as

high-throughput molecular profiling data, applying these tech-

niques to sample models in cancer biology. These examples

are progressively more complex and designed to span tumor

cell growth, invasion, and response to immunotherapy. We

then extend this grammar to a further example simulating brain

development with models parameterized from spatial transcrip-

tomics (ST) data in the Allen Brain Atlas,53 showing the broad

applicability of our hypothesis grammar to biological systems

beyond cancer. The cases embedding multi-omics and spatial

molecular data enabled by this grammar demonstrate how to

ground simulations in data to form more accurate digital models

of multicellular dynamics.

RESULTS

A grammar encoding cell behavioral responses to

extracellular signals

In this paper, we implement our new hypothesis grammar for

ABMs in the well-calibrated, robust agent-based modeling

ecosystem of PhysiCell.47 ABM frameworks8 like PhysiCell47

model individual cells as software agents with independent

states (e.g., position, cycle status) and processes (e.g.,

motility, secretion); see Figure 1A. Each cell agent responds

to stimuli (signals) in their microenvironment, which effect

changes in their behaviors (Figure 1B). Previous implementa-

tions of PhysiCell were limited to pre-defined models and

interactions or required users to have expert knowledge

across the diverse domains of biology, mathematics, and

computer science to hand-code models with customized

A

C

B

Figure 1. Using agent-based models to digitize cell knowledge

(A) Agent-based models (ABMs) simulate cells as individual objects with separate states and processes.

(B) Cell agents use rules that process biophysical signals in their microenvironment—including other cells—to drive changes in their behaviors. These rules are

based on our biological hypotheses.

(C) The cell behavior grammar combines signals and behaviors from well-defined dictionaries (1 and 2) to create interpretable hypothesis statements (3), which

can be automatically transformed into mathematical models (4) for use in computer models.
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cellular agents, stimuli, and interactions. Here, we simplify this

encoding by expanding the PhysiCell software to encode the

agents and stimuli as human-readable sentences that are then

parsed into ABMs. Briefly, this abstraction is enabled by

writing cell hypotheses relating cell behavioral responses to

signals in a grammar that can be translated into mathematics

and executable code, as summarized below (e.g., typical rule

in Figure 1C) and in detail in STAR Methods and Methods S1.

In this hypothesis grammar, cellular behaviors and stimuli are

expressed as nouns and their regulatory relationships as

verbs, and parameters quantify these relationships. Hypothe-

ses can be drawn from a variety of sources, including domain

expertise, mining of prior literature, and analysis of transcrip-

tomic and other data. Due to our uniform knowledge repre-

sentation, all these rules can be compatibly integrated

(Figures S1, S2, and S3) in mathematical models. Moreover,

the use of plain language for cellular phenotypes also facili-

tates the direct mapping of ABM variables to the cellular la-

bels inferred in analyses of single-cell and spatial multi-omics

datasets.

In addition to the stimuli and cell types in the grammar and

optional initial conditions provided from high-throughput molecu-

lar datasets, cellular behaviors simulated from ABMs also depend

on both the parameters for the equations in these rules and the

initial conditions of cellular phenotypes. While we implement the

grammar using the PhysiCell agent-based modeling framework47

as a reference implementation, it can be translated to other agent-

based modeling systems.41,43–46,48–50 Still, an advantage of build-

ing this hypothesis grammar on top of PhysiCell is that it enables

us to use a broad set of biochemical and biophysical parameters,

which has been previously quantified and experimentally vali-

dated in the extensive literature and community-based develop-

ment using this modeling framework.47

The hypothesis grammar parses numeric variables for model

parameters. Ideally, these parameters would be inferred from

the literature or quantified from experimental data of the biolog-

ical systems they seek to model. Parameter selection is a crit-

ical aspect of ABMs, as it can significantly affect simulation

outcomes. While many parameters can be estimated experi-

mentally or from the literature, the cellular and molecular het-

erogeneity of biological systems can differ between individuals

and contexts. Throughout the development of PhysiCell, we

have refined parameter selection processes in several ways

(e.g., Bayesian approaches,54 large-scale parameter space

sweeps,38–40 and community-developed tools55), laying the

foundation for our hypothesis-based grammar and commu-

nity-based outreach. Performing parameter sensitivity analysis

remains a fundamental step in evaluating model performance.

Prior to the grammar, implementing parameter sensitivity ana-

lyses generally required custom code to alter each model var-

iable. We extend our software to include a graphical tool56 for

exploring and tuning parameters of rules governing signals

and behaviors to simplify in silico parameter exploration. Addi-

tionally, we created software for analysis across the entire input

space of models (parameters, initial conditions, and hypothe-

ses; see Methods S1). This additional software module57 is

focused on in silico perturbations of parameters to test their

sensitivity on model behavior.

Order-of-magnitude parameter estimates robustly

predict qualitative behaviors of oxygen-dependent

tumor cell proliferation, with greatest sensitivity to cell

motility

In cancer, cell proliferation becomes unchecked, exhausting ox-

ygen and nutrients in non-vascularized tumors. Modeling

resource consumption provides a foundation for mathematical

modeling of tumors, and this serves as the base example of tu-

mor cell behavior in the absence of an immune response, from

which other modeling examples are built.47,54,58–64 Following

prior work developing a custom mathematical model of this sys-

tem,54 we now adapt our hypothesis grammar to model hypoxia-

induced migration, where low oxygen conditions can ‘‘repro-

gram’’ tumor cells to a transient, post-hypoxic phenotype of

increased chemotactic migration and where subsequent pro-

longed exposure to non-hypoxic conditions can ‘‘revert’’ those

cells back to a less motile phenotype (Figure 2A). The language

encodes these cell behaviors by using the language ‘‘oxygen de-

creases necrosis’’ and ‘‘oxygen decreases transformation to

motile tumor cells.’’

We used these rules to simulate 5 days of growth of a 2D tumor

in an environment of 38 mmHg oxygenation (physioxia65), start-

ing from 2,000 viable cells seeded randomly in a virtual disk with

a 400-μm radius (Figure 2B). The ABM generated from these

rules simulates a virtual tumor with an oxygen-poor necrotic

core, while hypoxic cells disseminate throughout the virtual tu-

mor with increasing frequency near the peri-necrotic boundary.

Here, we observe an in silico model of a transient post-hypoxic

phenotype of increased chemotactic migration, where cells

eventually return to their baseline phenotype upon reoxygena-

tion. Consistent with prior modeling predictions and experi-

mental validation,54,66 these motile cells form invasive ‘‘plumes’’

in non-hypoxic tumor regions, but they can fail to exit the tumor

and invade the surrounding tissue when their hypoxic adapta-

tions do not persist in higher oxygen conditions (Figure 2B).

In this model, we selected parameters from our prior calibra-

tion of this model from literature-derived parameters and

experimental validation to simulate the dynamics of an MDA-

MB-231-derived orthotopic murine breast tumor model.54,66

We investigated the sensitivity of the model results to the param-

eter values, by computing the impact of varying parameter vari-

ations by 1% to 20% on key quantities of interest (QoIs). We as-

sessed population growth by analyzing the area under curve

(AUC) of non-motile and motile tumor cell populations and eval-

uated the differences in the radial distribution between live motile

and non-motile cells (Figure 2C). The median values of the QoIs

remained relatively stable across different perturbation levels in

parameter space, indicating that the overall model behavior

was not strongly influenced by small changes in these parame-

ters. The variability of these outputs increased with higher pertur-

bation levels, suggesting that while average behavior might be

robust, individual simulations could exhibit greater variation

(Figure 2D). Although individual simulation replicates showed

variability consistent with the stochastic nature of tumor growth,

key qualitative behaviors—such as the emergence of necrotic

cores and the spatial gradients of cell proliferation and migra-

tion—were consistently observed across multiple replicates

(Figure S4; Methods S1). This finding aligns with our recent
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large-scale investigation of highly stochastic tumor-immune

ABMs,38 which found that the outcome of individual simulation

replicates can vary widely, while large sets of replicates can

remain concordant.

Perturbations to the base values of the rules did not lead to sig-

nificant changes in the QoIs. Half-max values—particularly those

associated with necrosis onset and transitions between motile

and non-motile phenotypes—significantly influenced both the

magnitude and timing of tumor growth and the spatial distribu-

tions of cell populations (Figure 2E). These findings underscore

the importance of careful parameter estimation and rigorous

sensitivity analysis in the application of ABMs, emphasizing the

need for experimental quantification of the contribution of indi-

vidual parameters to emergent behaviors in tumors.38

Rules simulating fibroblast and neoplastic cells in

pancreatic cancer demonstrate that fibroblasts

promote invasion and physically block progression

In contrast to the hypoxia-derived tumor progression in our pre-

vious model, pancreatic ductal adenocarcinoma (PDAC) tumors

A

D

B

C

E

Figure 2. The hypoxia model captures the post-hypoxic dynamics

(A) Schematic of the tumor hypoxia model. Initially, the tumor is homogeneous without immune infiltration.

(B) Simulation of tumor hypoxia dynamics over 5 days, using reference parameters. (Bar: 400 μm.)

(C) Metrics extracted from the simulation, including area under the curve (AUC) for cell populations over 5 days, the radial distribution of live non-motile and live

motile tumor cells at endpoint, and the Wasserstein distance of these distributions.

(D) Variation of quantities of interest (QoIs) under multiplicative perturbations in the 24D parameter space.

(E) Mean and standard deviation of the sensitivity index for each parameter across all QoIs. Model rules are enumerated in the order of their insertion. Each rule

includes parameters representing the base behavior (base), saturation level (sat), half-max signal value (hfm), and hill power (hp). Parameters such as rule3_hfm

and rule7_hfm denote the oxygen half-max values that trigger necrosis in non-motile and motile cells, respectively. Similarly, rule8_hfm and rule4_hfm represent

the oxygen half-max values for phenotype transitions between motile and non-motile cells. A full description of all parameters can be found in Methods S1.
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are characterized by a dense stroma consisting of cancer asso-

ciated fibroblasts (CAFs) that have a dual role in promoting and

hindering tumor growth. We sought to adapt the rules framework

to model CAF and tumor cell interactions informed by ST and

single-cell RNA sequencing (scRNA-seq) datasets of PDAC.

Our previous studies of cell-cell interactions in scRNA-seq anal-

ysis and organoid co-cultures found that fibroblasts induce

epithelial-to-mesenchymal transition (EMT) in neoplastic cells

through communication via the extracellular matrix (ECM)-

sensing integrin receptor ITGB1.67 This neoplastic cell pheno-

type was mutually exclusive with proliferative signaling in epithe-

lial cells. Therefore, we encoded two neoplastic cell subtypes in

our model: an epithelial cell type that proliferates and a mesen-

chymal cell type that undergoes EMT but does not proliferate

(Figure 3A).

The tumor cell states and parameters in our oxygen-depen-

dent tumor growth model provided a foundation for modeling

the neoplastic cell states in PDAC, particularly the proliferative

phenotype associated with the more epithelial-like neoplastic

cells. The more complex biophysical impact of fibroblast and

ECM interactions and the precise cellular behavior of EMT in

this mesenchymal subtype of cells were not sufficiently well

described to encode model rules or parameters. To address

this limitation, we performed single-cell tracking experiments68

to assess the impact of both the ECM and fibroblasts on human

pancreatic tumor cells. Co-culturing PDAC cells with CAFs

increased motility except in the highest ECM concentrations,

as compared with monoculture, leading us to hypothesize that

increased cell motility is a dominant feature of fibroblast-medi-

ated signaling on neoplastic cells (Figures 3B, S5, S6, S7, and

S8; Methods S1). These data also showed that ECM density

has a complex effect on neoplastic cell motility: as collagen-I

density was increased in monoculture, tumor cell motility first

increased and then decreased, which was consistent with prior

published observations from other cancer types.68,69

Based on our gene expression analysis and these experi-

mental data, we hypothesized that fibroblasts secrete factors

that both alter ECM density and promote neoplastic cell pheno-

type changes to increase motility in the co-culture condition. We

encoded these 2-fold effects in the ABM (where signaling from

fibroblasts promotes EMT in neoplastic cells) by adding secre-

tion of a simulated factor from fibroblasts, which promotes a

phenotypic shift from epithelial-like to mesenchymal-like. This

transformation rate depended on the local ECM density, with

the rate increasing from 0 to 0.01 min− 1 as the ECM density in-

creases. We described the neoplastic cell motility response to

its local ECM density using two Hill functions, which combined

to produce the biphasic motility behavior observed in our exper-

iments (Figure S9; Methods S1). Based on the notable sensitivity

of our ABM to motile neoplastic cells, we sought to further use

our experimental data to parameterize motility rates in this

ABM to more accurately reflect PDAC biology. To isolate the

CAF signaling effect on mesenchymal-like neoplastic cell motility

from the effect on EMT induction, we used the in vitro PDAC

monoculture cell motility data to parameterize the in silico migra-

tion rate of mesenchymal cells as a function of ECM density

(Figures S3 and S9; Methods S1). In this way, the fibroblasts in

this model could shift the microenvironment in favor of tumor

progression, consistent with the hypothesis generated from

our transcriptional signatures and the in vitro cell motility data.

Finally, to encode the switch between this mesenchymal pheno-

type and the alternative epithelial-like subtype, we simulated a

simple (generalized) pro-inflammatory factor which was pro-

tumorigenic and induced proliferative signaling in the epithelial-

type neoplastic cells.

To first simulate the impact of CAF density on cancer progres-

sion, we generated a series of ABMs of virtual co-culture exper-

iments at varying cell densities. We initialized the model by seed-

ing a total of 1,000 cells at various PANC:CAF ratios (using the

rules and parameters derived above to simulate Panc 10.05

and HT-231 cell behavior) for 7 simulated days (Figure 3C;

Videos S1–S8). In the simulations, fibroblasts promoted tumor

cell invasion. We sought to quantify the impact of fibroblast den-

sity on this invasion by counting the number of invasive projec-

tions of simulated tumor cells away from the central tumor

mass over time (STAR Methods). By 24 h, the simulated co-cul-

tures all had a significant increase in invasion relative to simu-

lated monoculture, with the highest levels of invasion observed

in the 10:1 and 5:1 PANC:CAF ratio simulations (Figure 3D).

This enhanced invasion in the 10:1 and 5:1 PANC:CAF ratio sim-

ulations was observed across all time points, while the 2:1

PANC:CAF simulation reached a similar level of invasion at later

time points. On the other hand, the 1:5 and 1:10 PANC:CAF ratio

simulations reach similar levels of invasion to monoculture at

later time points.

To validate the observed impact of CAF-related signaling on

neoplastic cell invasion, we also performed in vitro cultures of

a panel of patient-derived PDAC organoids in CAF-conditioned

media and measured the change in invasion (Figure 3E). While

PDAC organoids invaded when embedded in collagen alone,70

we observed significantly increased invasion in the CAF-condi-

tioned media in these experiments, consistent with the hypothe-

sis that secreted factors from CAFs are sufficient to induce inva-

sion. One limitation of our model was its abstraction into a single

Figure 3. CAFs support the epithelial-to-mesenchymal transition in simulated pancreatic epithelial cells, which promotes invasive growth

and the establishment of new epithelial-like foci

(A) Schematic of the CAF-epithelial model.

(B) Monoculture and co-culture PANC migration speed vs. ECM density.

(C) Simulation of CAF-epithelial dynamics initialized at a CAF:epithelial ratio of 1:1 over 7 days.

(D) Mean invasiveness for each simulated admixture (PDAC:CAF).

(E) Patient-derived pancreatic organoids (PDOs) are significantly more invasive when cultured in inflammatory CAF (iCAF)-conditioned media as compared with

control.

(F) Schematic of the extended CAF-epithelial model for integration with Visium data.

(G) Simulations of samples PDAC01 (bottom row) and PDAC02 (top row) Visium tissue over 15 days. (Bar: 200 μm.)
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CAF subtype. To test whether this was sufficient to capture the

invasive process, the invasion assays in PDAC organoids were

performed in conditioned media from inflammatory CAFs (iCAFs)

and myofibroblastic CAFs (myCAFs).71 We observed similar

levels of invasion with both CAF subtypes, supporting the

abstraction of a single subtype of CAFs for our initial models

(Figure S10).

We next sought to identify the potential of adapting our ABM to

forecast cellular states based on initial conditions from human

tissue. For this mathematical model, we initialized cell positions

in a virtual tissue based on Visium ST data from two human

PDAC lesions selected for their high fibroblast density72

(Figures 3F and 3G). Our bioinformatics methods for three-way

integration between H&E imaging data, ST, and transcriptional

signatures of cellular phenotypes72 (see STAR Methods) were

used to categorize and position the epithelial-like and mesen-

chymal-like neoplastic cell phenotypes, fibroblasts, and ECM

in our model. Other cell types identified in the Visium data

were modeled as essentially inert, providing structure and scaf-

folding for the tumor cells and CAFs. Cellular phenotypes anno-

tated in the two Visium datasets were input into PhysiCell and

used to initialize two distinct ABMs. Each lesion’s development

was forecasted for 15 days (Figure 3G; Videos S9 and S10).

We observed a transitory state in which the neoplastic cells tran-

sitioned from mixed epithelial and mesenchymal states to

become nearly uniformly mesenchymal due to interactions with

fibroblasts. Subsequently, groups of epithelial neoplastic cells

arose in both models and even invaded beyond the tumor

boundary.

Initializing the ABM from ST data could also estimate regional

changes to cellular phenotypes and the impact of tumor hetero-

geneity. In both simulations, an interface of mesenchymal

neoplastic cells was maintained between the epithelial

neoplastic cell and fibroblast cell masses. In PDAC02, rapidly

dividing epithelial neoplastic cell clusters arose from lesions

not surrounded by fibroblasts and invaded the bounding pancre-

atic cells. In contrast, the dense, uniform fibroblasts surrounding

all of the lesions in PDAC01 slowed invasion. The reduced rate of

invasion resulted in smaller invasive lesions at 15 days in the

PDAC01 sample compared with PDAC02. Whereas all the le-

sions in PDAC02 invaded the bounding pancreatic cells,

PDAC01 developed an epithelial neoplastic cell mass con-

strained from further motility by the surrounding CAFs and dense

ECM they had constructed. These computational predictions

showed the hypothesized neoplastic-fibroblast interactions

inducing the transition between classical (epithelial-like) and

basal (mesenchymal-like) pancreatic transcriptional subtypes,

as observed in primary human pancreatic tumor progression,

and the return to a more epithelial-like classical subtype at met-

astatic sites.73–75 Moreover, the spatially resolved simulations

from tissue also demonstrated how CAFs, despite their tumor-

promoting behavior, can also serve as a physical barrier to pre-

vent neoplastic cell invasion. These simulations of PDAC

showed how we can parameterize ABMs from transcriptional

analysis and cellular-level biophysical measurements, yielding

simulations that inform experimentally testable hypotheses.

Development of immune resistance in a diverse TME of

T cells and macrophages

To introduce virtual immune cells, we extended the ABM by

including CD8+ T cell agents capable of contact-mediated cyto-

toxic killing, as well as phenotypically diverse macrophage pop-

ulations. We developed the rules so that CD8+ T cells were also

stimulated by pro- and anti-inflammatory factors that modulate

the probability that killing will occur after a given cell contact.

Simulated macrophages switched between promoting and sup-

pressing tumor killing (secreting a pro- or anti-inflammatory

factor, respectively) depending on the oxygenation in their im-

mediate surroundings and as described in the literature.76–78

Macrophages were also responsible for phagocytosing dead

cells and could increase secretion of pro-inflammatory factors,

attracting CD8+ T cells that homed to the tumor by following

this chemokine. CD8+ T cells could attack and damage malig-

nant epithelial cells, and accumulated damage could cause tu-

mor cell death. In tissue culture, macrophages can be polarized

into cell states commonly referred to as M1 and M2. These phe-

notypes are plastic, and in our ABM, macrophages could transi-

tion between M1-like and M2-like depending on the signals in its

environment, consistent with the literature76–78 (Figure 4A).

We used these rules to simulate 5 days of growth of a 2D tumor

in tissue culture in a virtual environment of 38 mmHg oxygenation

(physioxic conditions65), starting with 2,000 viable tumor cells

seeded randomly, surrounded by a ring of immune cells seeded

with 100 of each non-tumor cell type (Figure 4B). Through these

simulations, we observed that CD8+ T cells clustered together

and migrated throughout the tumor along with macrophages to

accomplish tumor clearance, with a corresponding dominance

of pro-inflammatory factor as the simulation proceeded

(Figures 4C and 4D). This model showed how the innate and

adaptive immune systems cooperated in the task of tumor

sensing and clearance and demonstrated a simplified, plastic

M1-like to M2-like axis of macrophage behavior in tissue culture,

marked by rapid and reversible changes along this axis. We

anticipated that the parameterization of immune cell models

Figure 4. A simulated tumor evades cytotoxic killing by manipulating its immune microenvironment

(A) Schematic of the tumor-immune interaction model.

(B) Simulation of tumor-immune interaction model over 5 days showing tumor killing.

(C) Time series of average substrate levels surrounding CD8+ T cells. Shaded regions indicate one standard deviation.

(D) Time series of tumor cell count. Shaded regions indicate one standard deviation.

(E) Schematic of the extended tumor-immune model, with three possible macrophage states and three CD8+ T cell states.

(F) Simulation of extended tumor-immune model over 5 days, showing tumor survival after exhausting T cells and pushing more macrophages to the M2-like

state.

(G) Time series of average substrate levels surrounding CD8+ T cells. Shaded regions indicate one standard deviation.

(H) Growth curves for all populations; the right plot zooms in to show just the immune dynamics, the exhaustion of T cells, and the switch toward M2-like

macrophages. Shaded regions indicate one standard deviation.
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would also impact simulations results. By default, we chose

parameter values based on existing literature79–82 to ensure bio-

logical relevance. To further investigate parameter sensitivity, we

applied our new parameter sensitivity toolbox enabled by our

rules to perform a local sensitivity analysis around the selected

parameters using multiplicative perturbations of 1%, 5%, 10%,

and 20%. We observed that while these perturbations intro-

duced variation in the QoIs, they preserved the central tendency

of the model outputs. We found that the half-max oxygen value

for macrophage polarization had the greatest impact on the

selected QoIs (Figures S11 and S12). This uncertainty quantifica-

tion was consistent with the significant impact of macrophages

on immune response and immunosuppressive progression dur-

ing carcinogenesis.

To further model immune response initiation and macro-

phage-mediated resistance in tissue culture, we extended the

immune cell subtypes in our model to represent M0-like, M1-

like, and M2-like macrophages and naive, activated, and ex-

hausted CD8+ T cell subtypes (Figure 4E). While in vivo macro-

phage populations do not polarize into discrete states in this

way, we applied these categories as ways of broadly character-

izing macrophages as either pro- or anti-inflammatory. Inter-

leukin-10 (IL-10) and interferon (IFN)-γ modulated the activation

of naive T cells with (pro-inflammatory) IFN-γ promoting and

(anti-inflammatory) IL-10 inhibiting this activation. In the acti-

vated CD8+ T cell compartment, IFN-γ and IL-10 promoted pro-

liferation and exhaustion, respectively. We initialized the tumor

as before with 2,000 tumor cells inside a disc. The immune

compartment was initialized with 400 M0-like macrophages

and 400 naive CD8+ T cells in a ring around the disc of tumor cells

(Figure 4F). ABM simulations demonstrated dynamics where

pro- and anti-inflammatory factors occupied the neighborhood

of the CD8+ T cells in roughly equal proportions throughout the

simulation (Figure 4G) that initially caused the tumor population

to shrink by more than 50% before recovering to nearly its orig-

inal volume by day 5 (Figure 4H). This was facilitated by an im-

mune compartment that initially had a rapid activation of naive

T cells and a slower exhaustion of these newly activated CD8+

T cells (Figure 4H). The macrophage compartment accelerated

both shifts with M1-like macrophages secreting IFN-γ to help

activate T cells and later M2-like macrophages secreting IL-10

to induce CD8+ T cell exhaustion. The level of hypoxia modulated

the balance between the M1-like and M2-like macrophage pop-

ulations through its regulation of the transition from the pro-in-

flammatory M1-like state to the anti-inflammatory M2-like state.

By the end of the simulation, the CD8+ T cell compartment was

entirely exhausted, and the macrophage compartment inside

the tumor boundaries was entirely M2-like (Figures 4F, later

time points and 4H), permitting significant tumor regrowth.

These immune dynamics were responsible for the initial CD8+

T cell-induced regression of the tumor and subsequent resis-

tance to immune attack, as commonly observed in late-stage,

immunosuppressive tumors.

Modeling macrophage-induced invasion generates the

experimentally testable hypothesis that EGFR signaling

promotes neoplastic cell motility in breast cancer

Because CD4+ helper T cells are a major component of the tumor

immune ecosystem that modulates the immune response on tu-

mor progression,83 we sought to extend our ABM investigation

to uncover mechanisms associated with immune-induced tumor

progression by simulating the influence of CD4+ helper T cells on

epithelial cell behaviors. Notably, DeNardo et al. previously

demonstrated that signaling from Th2 CD4+ T cells to macro-

phages can induce pro-tumorigenic effects in the MMTV-PyMT

murine breast cancer spheroid model.84 Briefly, the study

demonstrated that Th2 CD4+ T cell signaling promotes changes

in macrophage phenotype, making them more likely to produce

EGF and therefore stimulate EGFR signaling in tumor cells driven

by immunosuppressive macrophages, promoting invasive

behavior via EGFR signaling (Figure 5A). We sought to determine

if our ABM simulations can reproduce this emergent, seemingly

counter-intuitive tumor-promoting behavior arising during im-

mune response.

We first sought to simulate the series of experiments from

DeNardo et al.84 that used a tumor spheroid co-culture model

to evaluate the impact of macrophage phenotypes on invasion.

Briefly, we simulated the M1-like macrophages as pro-inflam-

matory and M2-like macrophages as anti-inflammatory, and

we encoded their role in phagocytosing dead cells and secreting

pro- and anti-inflammatory factors. In this system, the M2-like

macrophages also promoted pro-tumorigenic signaling in the

neoplastic cells through the EGF-EGFR signaling pathway

(Figure 5B). We used these rules to simulate 5 days of virtual

spheroid growth in 38 mmHg oxygenation (physioxia65), starting

from 200 viable tumor cells seeded randomly, surrounded by

macrophages overlaid in co-culture where 10 of each immune

cell type (macrophage, T cell) are seeded. As a first step in mir-

roring the macrophage promotion of tumor invasion, we simu-

lated EGF secretion from M2-like macrophages activating

Figure 5. Tumor-associated macrophages in M2-like polarization state assist simulated invasive breast cancer spheroids through EGF

signaling

(A) Example fluorescence microscopy image showing macrophages (red) proximal to an invading PyMT organoid (green), with DAPI shown in blue indicating cell

nuclei, as an additional replicate image of the experiments described originally in DeNardo et al.84 (Bar: 20 μm.)

(B) Schematic of the tumor-associated macrophage (TAM)-EGF model, including TAMs, CD4+ T cells, and neoplastic epithelial cells.

(C–E) Endpoint snapshots of simulations in which EGF signaling causes neoplastic cells to increase proliferation (C), increase motility (D), and increase both

proliferation and motility (E).

(F) EGFR inhibitor inhibits MMTV-PyMT invasion into 3D collagen I in a dose-dependent manner. ****p < 0.0001 (Kruskal-Wallis followed by Dunn’s multiple

comparisons test).

(G) Stimulated MFC10a breast epithelial cells exhibit increased motility when exposed to EGF, with increasing median migration speed as more cells escape the

tumor bulk for unrestricted migration.

(H) Endpoint snapshots treated with IFN-γ (left panel) and IL-4 (right panel).

(I) Endpoint snapshot with Th2-like CD4+ T cells.
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pro-tumorigenic behavior of neoplastic cells through EGFR.

Canonically, EGFR signaling is hypothesized to act primarily by

promoting tumor progression by inducing neoplastic epithelial

cell proliferation, which we term the ‘‘grow hypothesis.’’ We

simulated this by specifying a Hill response rule with the signal

of EGF modulating cell-cycle entry in malignant epithelial cells,

using the hypothesis grammar (Figure 5C; Video S11). However,

these simulations did not demonstrate the macrophage-induced

invasive tumor structures from DeNardo et al.84 Our PDAC sim-

ulations demonstrated that enhanced cellular motility was critical

to simulate invasion. We modeled EGFR signaling from macro-

phages as promoting motility in breast cancer cells, a hypothesis

supported experimentally.85,86 We term this the ‘‘go hypothesis’’

(Figure 5D; Video S12). We simulated this increase in motility us-

ing a grammar rule specifying a Hill response function between

EGF and malignant epithelial cell motility. The experimentally

observed invasive phenotype was recapitulated in models in

which EGF induced only changes to motility (Figure 5D) and

models where EGF induced both motility and proliferation

(Figure 5E; Video S13).

Our simulations led to the hypothesis that EGF-EGFR

signaling in breast cancer cells promotes invasive outcomes pri-

marily through modulating malignant epithelial cellular motility.

To test these computational predictions experimentally, we

treated organoids derived from the same MMTV-PyMT model

with the EGFR inhibitor gefitinib. These experiments demon-

strated that inhibition of EGF receptor signaling reduced the abil-

ity of neoplastic cells to form invasive protrusions (Figure 5F) and

only reduced colony formation at extremely high doses of gefiti-

nib treatment (Figure S13). In addition, MCF10A mammary

epithelial cells exposed to EGF showed both increased prolifer-

ation and increased motility (Figures 5G and S14). Together,

these experiments confirmed our computationally driven hy-

pothesis that macrophage-induced invasion arises from EGFR

signaling promoting neoplastic cell motility, consistent with the

go hypothesis or go and grow hypotheses.

We next sought to integrate the effect of Th2-like CD4 helper

T cells that secrete cytokines, which we84 and others87 have

shown skew macrophages toward M2-like phenotypes and

induce their proliferation. Mirroring the DeNardo et al. experi-

ments, we performed in silico stimulation of the MMTV-PyMT-

macrophage co-culture system first with the cytokine IFN-γ
and then with IL-4. In our simulations, we observed that IFN-γ
completely constrained tumor growth, whereas IL-4 promoted

macrophage polarization toward an M2-like phenotype,

inducing their proliferation and secretion of EGF into the local

environment. The increased EGF levels then promoted tumor

proliferation and motility, resulting in an expansion of tumor vol-

ume, compared with the IFN-γ condition (Figure 5H). Finally, we

layered Th2-like CD4+ T cell agents into our model, which acted

as cellular sources of IL-4 and promoted invasion similarly to the

simulated high IL-4 dose, but with a more irregular shape result-

ing from a more irregular supply of IL-4 and subsequently EGF

around the tumor boundary (Figure 5I). Taken together, these re-

sults support a dual role for EGF in promoting invasion. They also

demonstrated how the rules-based modeling framework allows

for in silico testing of cellular hypotheses of experimental phe-

nomena and how it supports distinguishing alternative mecha-

nistic hypotheses that can subsequently be tested experimen-

tally to build toward a systems-level model of emergent,

unanticipated cell behavior.

Leveraging the hypothesis grammar for virtual clinical

trials: Using human scRNA-seq data from PDAC to

simulate immunotherapy combinations

Encoding the tumor microenvironment (TME) in our ABM can

simulate the impact of immune cell composition and perturba-

tions on tumor growth. We sought to adapt this framework to

simulate the impact of different immune-targeted therapies in

the PDAC microenvironment to develop a virtual simulation of

a clinical trial. In particular, we were motivated by a recent neo-

adjuvant clinical trial88,89 that sought to enhance T cell-mediated

cytotoxicity in PDAC by adding Urulemab (an anti-CD137

agonist therapy) to a combination of GVAX (an irradiated, granu-

locyte-macrophage colony-stimulating factor [GM-CSF]-

secreting, allogeneic PDAC vaccine)90 and Nivolumab (an anti-

PD-1 immune checkpoint inhibitor). To generate the model rules

reflecting this clinical trial, we used observations from high-

throughput transcriptomic data (Figure 6A), our preceding im-

mune cell models, and additional literature-derived hypotheses

about the phenotypes of immune cells (Figure 6B). Owing to

the nature of these therapies, we implemented rules to model

T cell, tumor cell, and macrophage behavior. We used template

rules for tumor cells and macrophages, modeling proliferative tu-

mor cells as in previous ABM examples and macrophages as

plastic between pro- and anti-inflammatory states but biased to-

ward anti-inflammatory factor secretion. We then developed

rules for T cells. To reflect the therapeutics in the trial design,

we modeled CD4+ and CD8+ T cells subtyped based on their

PD-1 and CD137 expression. Multi-omics data from the arms

of this trial, comparing GVAX monotherapy with the combination

with Nivolumab, demonstrated that PD-1 inhibition activates

chemokine signaling in CD4+ T cells, thereby signaling to CD8+

T cells to promote changes in lymphocyte chemotaxis.91 Based

Figure 6. Combination immunotherapies simulated for a cohort of untreated pancreatic adenocarcinomas based on immune cell pro-

portions estimated from scRNA-seq data

(A) Expression of marker genes of interest within immune populations in immune-enriched scRNA-seq data in a cohort of PDAC tumors from Steele et al.92

(B) Schematic of the combination immunotherapy model.

(C) Populations of interest identified for each tumor profiled in the reference scRNA-seq data.

(D) Tumor growth curves per each tissue initial conditions without therapy, with images shown at the simulation endpoint for select samples.

(E) Growth curves under each therapy condition for three example tissues, with endpoints shown.

(F) Tumor growth curves for the triple-therapy treatment condition (ICI + URU + GVAX), images shown at simulation endpoint for select samples.

(G) Macrophage and CD8 T cell population relative abundances in tissues, binned by whether the simulation with GVAX + ICI + URU reached the tumor clearance

threshold (final/initial × 100% < 50%). Macrophage abundance was significantly higher in tissues whose simulations reached the tumor clearance threshold (p =

0.005606), while CD8+ T cell abundance did not show a significant difference (p = 0.5509).
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on these data, we created distinct model rules for T cells based

on their PD-1 expression, specifically that CD4+ T cells secrete

chemokines that attract CD8+ T cells (here designated pro-in-

flammatory factor). We performed further ligand-receptor anal-

ysis of cell-cell signaling associated with CD137hi CD8+ T cells

using scRNA-seq data from untreated PDAC tumors and found

that CD137hi CD8+ T cells have higher signaling through IFN

expression than their CD137lo counterparts.91 We modeled this

subtype-specific IFN expression by specifying that CD137+ cell

agents secrete an inflammatory factor substrate into the sur-

rounding environment. Stimulation through the CD137 trans-

membrane receptor is also known to make CD8+ T cells more

effective at killing, which we simulated by modeling CD137hi

CD8+ T cells as having a higher killing rate than their CD137lo

counterparts and having the ability to kill tumor cells indepen-

dent of their PD-L1 status.

We then simulated the effect of therapy on different microen-

vironments—a key step to creating virtual clinical trials that

explore therapeutic response across a variety of tissue condi-

tions. Using the rules to generate virtual clinical trials requires

having both a mechanism of action of the therapies in our rules

and the immune cell compositions for a cohort of virtual PDAC

tumors. We simulated the effect of therapy by modifying the pro-

portion of each T cell subtype consistent with the canonical

mechanism of action of that therapy. Specifically, we simulated

GVAX treatment by a doubling of all T cell populations in the

TME, Nivolumab therapy by turning PD-1hi agents into their

PD-1lo counterparts and PD-L1hi agents into PD-1lo, and Urelu-

mab by turning all CD137lo agents into CD137hi agents. We

kept these cellular interaction rules consistent across all individ-

ual simulated patients; the efficacy of a simulated treatment thus

depended upon the proportion of immune cell populations in

each virtual patient. To simulate clinically relevant immune com-

partments, we generated an in silico cohort of tumors based on

the immune cell-type distributions in untreated scRNA-seq data

from Steele et al.92 To mirror the cellular phenotypes in our model

rules, we re-annotated the scRNA-seq data from Steele et al.92

as described by Guinn et al.67 and Li et al.,91 sorting T cells

into hi/lo categories based on TNFRSF9 (CD137) and PDCD1

(PD-1) gene expression91 (Figure 6C). Tumor cells were classi-

fied as PD-L1hi and PD-L1lo, based on scRNA-seq measure-

ments of CD274 (PD-L1). In our simulations, we initialized each

microenvironment with 1,000 tumor cells, with the proportion

of PD-L1lo to PD-L1hi expression from the scRNA-seq data.

We then combined our cell rules and TME composition from

the scRNA-seq cohort to demonstrate how our modeling frame-

work can be applied to test hypotheses about the impact of the

TME composition on response to different therapies. As a virtual

control to test the impact of therapeutics, we also ran these sim-

ulations for the baseline TMEs without therapy. The simulations

from most patient microenvironments predicted neoplastic cell

population growth without treatment after 7 simulated days.

We then applied the simulations for each candidate therapy

alone or in combination to each microenvironment; these simu-

lations demonstrated inter-patient heterogeneity of treatment

effects (Figures 6D–6F, S15 and S16). The baseline tumor growth

profiles vary from near elimination (tissue 8) to uncontrolled

tumor growth (tissue 11A), with others falling in between

(Figure 6D). At endpoint, several simulated tissues displayed

local aggregations of T cells, which were enriched in our simu-

lated treatments, similar to the lymphoid aggregates found after

immunotherapy treatment in biospecimens from human clinical

trials88,93 (Figures 6D–6F, S17 and S18).

An advantage of our modeling framework is that it can simu-

late the temporal dynamics of cellular phenotypes observed in

the TME. These temporal simulations provide the opportunity

to evaluate the impact of the TME composition on simulated

reduction in tumor volume (Figures S19–S26). In our simulations,

we observed a statistically significant higher abundance of mac-

rophages between responders and non-responders to triple

combination (Figure 6G). While the triple combination converted

the most T cells to the best killing state, we found that single or

double combinations outperformed the triple combination for

several tissue ABMs in the cohort. These simulations led to a

new biological hypothesis that macrophage clearing of tumor

cells is essential for lymphocyte trafficking and tumor cell killing

in PDAC. We note that this hypothesis generated from our math-

ematical simulations is consistent with clinical observations of

increased TREM2+ macrophage signaling to tumor cells in the

triple combination.89

Encoding asymmetric cell division in rules enables

extension of the hypothesis grammar beyond cancer to

simulate formulation of layers in brain development

To demonstrate the generalizability of our hypothesis grammar

coded in PhysiCell across biological systems, we sought to

apply it to simulate layer formation during cortical development

in the brain. The laminar organization of different cell types is

an archetypal property of vertebrate neural systems. This cy-

toarchitecture not only replicates across species but across mul-

tiple tissues (e.g., retina, hippocampus, cortex) within the central

nervous system. Modeling this formation is particularly signifi-

cant, as disruption and disorganization of the layers is found in

both neurodevelopmental and neurodegenerative diseases.94

We modeled the formation of this laminar structure by leveraging

the rules grammar. While the previous examples in cancer all

relied on symmetric cell division, this phenomenon is driven by

a combination of symmetric and asymmetric division of progen-

itors. Specifically, stem cells undergo asymmetric division in

which one daughter cell retains its stemness while the other dif-

ferentiates into a cell fated to a specific layer of the developing

brain (Figure 7A). After differentiation, the cells begin migrating

toward the pial layer, ending their migration upon contact with

the pial layer. The sequence of differentiation into the cortical

layers is controlled by the time passed in the neural development

using the hypothesis grammar. Additionally, the grammar con-

trols the stem cell division rate, slowing their cycling as time elap-

ses. This in turn increases the overall length of the cell cycle,

replicating what is observed in vivo. Together with the previously

described functionalities, these parameters can generate the

cellular diversity and tissue structures prototypical in neural

development.

To demonstrate the flexibility of the rules grammar to model

neural development, we used the Allen Brain Atlas53 to quantify

the laminar structure of two regions in the adult mouse brain and

calibrate the rules parameters to match each of these regions in
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turn. We chose the somatosensory cortex (SOM) and the audi-

tory cortex (AUD). Specifically, we used single z slices of the

atlas, extracting all cells in that slice from the given region. To

quantify the relative abundance of cells within each layer of a

given region, we further subset to a rectilinear subspace of the

section. Whereas our previous models used spatial data to

initialize the model states, here, we fit model parameters to mini-

mize the residual sum of squares of the thickness of the layers at

the final time point of the simulation. By fitting the rule parame-

ters to datasets representative of the endpoint of the simulation

when the brain regions have fully formed, we are able to suc-

cessfully produce the laminar structure of both the SOM (repre-

sentative simulation in Figure 7B, extracted brain atlas data in

Figure 7C, and calibrated cell counts in Figure 7D, left) and the

AUD (brain atlas data in Figure 7E, compared with a representa-

tive simulation in Figure 7F, with calibrated cell counts in

Figure 7D, right) in our ABM. These simulations demonstrate

that we can use static, spatial multi-omics data to extend beyond

model initialization to more complex model calibration for

parameter fitting shown here.

DISCUSSION

The real-world limitations of characterizing the dynamics of

cellular and molecular changes in human-focused research,

especially for snapshots of spatial multi-omics, do not exist in sil-

ico. Computational models can guide and supplement lab ex-

periments. For example, the NCI digital twins initiative aims to

develop models of patient tumors to predict which therapies

will most benefit each individual,29,31 by simulating many repli-

cates of their system’s behavior over time and under different

sets of conditions. The ability to perform large numbers of repli-

cates and numerous iterations cheaply and easily maximizes the

chance of capturing extremely rare critical events. ABMs ab-

stract biological systems to run in silico experiments thousands

or millions of times, whose parameters and in-built hypotheses

are all readily modifiable by the user. The new conceptual

framing (a grammar) for specifying cell behavior hypotheses

introduced in this study can systemize and facilitate our thinking

of how cells interact to drive tissue ecosystems. The grammar

made it possible to introduce new capabilities in the PhysiCell

A B

C D

E F

Figure 7. Region-specific laminarization of the cortex

(A) Schematic of the formation of the cortical layers in the neuro-development model.

(B) Storyboard of the formation of the somatosensory cortex (SOM) after calibration.

(C) Extraction of layer counts in the SOM from a single z slice in the Allen Brain Atlas.53

(D) Layer counts after calibration for both the SOM and auditory complex (AUD). Black dots represent the counts found from the atlas.

(E) Extraction of the layer counts in the AUD from a single z slice in the Allen Brain Atlas.53

(F) Storyboard of the formation of the AUD after calibration.
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ABM framework, thus simplifying the workflow to generate

ABMs of multicellular systems.

Previously, custom hand-written code and a high level of tech-

nical knowledge were required to implement even basic models.

Our hypothesis grammar can encode complex cellular behaviors

and responses to signals in single lines of human-readable text.

When used in combination with graphical and cloud-based

modeling frameworks,56,95 the barrier to entry into using ABMs is

considerably reduced. In this implementation, it is simple to modu-

late and apply behaviors to different agents in the system in plain

text without requiring writing code or editing machine-readable

markup languages. Further, PhysiCell is open-source, commu-

nity-built ABM software that encodes a vast amount of biological

and computational knowledge at baseline; however, everything

is completely customizable, extensible, and modifiable. Moreover,

this cell behavior grammar affords an opportunity to systematically

collect, annotate, curate, and grow our knowledge of cellular be-

haviors and interactions for use as model templates.51,96

We demonstrated a variety of models extending from carcino-

genesis and immune response to tumor growth and demon-

strating broader extensions to neurodevelopment. Some of

these models have all cellular agents following the same rules

and fate determined by the actions of those around them. In

other models, cell agents act at cross purposes and actively

seek to outcompete, evade, or hunt and kill each other. We

modeled immune processes such as macrophage plasticity,

T cell activation and expansion, antigen recognition, and inflam-

mation. The rules for these examples are all available to be re-run

on any user machine, providing sample case studies for new

users. These case studies also showcased how ABMs can be

applied for in silico experimentation of complex multicellular pro-

cesses, which can prioritize new hypotheses for experimental

validation or exploration.

The models in this study also directly translated cellular loca-

tion and identity from ST data to initialize an ABM. Thus, models

can now directly match the tissue structure and transcriptional

profile of samples. Spatial relationships between cells and

cellular neighborhoods significantly impact outcomes. This

strong dependence of many cancer systems and ABM trajec-

tories on initial conditions can complicate model inquiry and

impact critical system behaviors and model parameters obtained

through inference; by leveraging robust single-cell ST tissue pro-

files as initial conditions in the digital modeling stage, the hypoth-

esis-driven rules modeling paradigm is grounded in precise refer-

ential data but also offers a path to both stronger model inquiry

and more confident mathematical inference. These models

nonetheless still require annotation of a finite number of agents

identified in spatial molecular data, often annotating cells into

broad phenotypes and abstracting cellular subtypes. Future

work must evaluate the sensitivity of models to the granularity

of cellular phenotypes in these high-throughput datasets, accu-

rate inference of parameters in the resulting higher-dimensional

models, and curation of best parameter estimates for community

reuse of omics-informed ABMs.

The cell-based nature of our mathematical framework can

predict the impact of distinct immunotherapeutic combinations

on altering the TME. We also showed that these model predic-

tions can be further personalized by inputting baseline cellular

abundance measurements, providing a powerful tool for select-

ing optimal combinations to overcome the immunosuppressive

landscape of many solid tumors. Limitations of testing combi-

nation therapies experimentally are the large number of exper-

iments required to test ordering, therapies with distinct mecha-

nisms of action, and biological variability of TMEs. The ability of

ABMs to simulate systems-level cellular behaviors entirely in

silico provides an effective means to pre-screen combinations

at scale to prioritize therapeutic selection and order of delivery

in preclinical and clinical studies. Metrics to benchmark math-

ematical models both qualitatively and quantitatively against

real-world preclinical and clinical studies are essential to fully

leverage these models to predict personalized biological condi-

tions. This grammar must also be extended to simulate the

pharmacokinetics and pharmacodynamics encoded in more

complex quantitative system pharmacology models to fully

empower virtual clinical trials.97 While our models demon-

strated the potential of our software to simulate virtual clinical

trials, translating these models to the clinic requires robust cali-

bration and validation of their ability to fully mimic the behavior

of human clinical trials. Moreover, the focus of our model on

simulating cellular perturbations in local tissue environments

limits our predictions to estimating local cellular landscape

only, requiring complementary preclinical or clinical studies.

We view our framework as ideally suited to prioritize candidate

targets for these combinations, still requiring extensive clinical

and regulatory evaluation prior to usage as precision medicine

tools beyond the scope of this study.

This language framework will be useful to those seeking to

build models of multicellular systems, and we are excited to

continue to move toward fuller biological completeness and

more complete integration with omics data, to increasingly define

agent behavior in an automated and a data-driven fashion. These

advancements expand the functionality, usability, and compati-

bility of our approach, empowering interdisciplinary researchers

in their computational or systems biology endeavors. These ad-

vancements expand the functionality, usability, and compatibility

of our approach, empowering researchers across disciplines to

unlock the full potential of their single-cell data. Armed with this

conceptual framing and tools, they can extrapolate beyond sin-

gle-cell characterizations for multicellular systems biology and

ultimately perform virtual cellular and tissue experiments.

Limitations of the study

In any computational framework, all required biology must be

built from the ground up. The hypothesis grammar for PhysiCell

enables many cellular behaviors, but many important aspects

remain to be added. In future work, we plan to further refine the

hypothesis grammar to expand its usability and flexibility. We

are considering incorporating keywords for ‘‘wild card’’ rules (e.

g., in all cells, mechanical pressure decreases cycle entry) and

other special cases using regular expression-type syntax, as

well as extensions (e.g., ‘‘low S’’ or ‘‘decreasing S’’) that can

simplify the examples presented in this paper. Moreover, we

plan to add extensions for hysteresis and delayed activation in

our responses and for allowing cells to access the properties of

contacting cells as signals or inputs to rules (e.g., for delta-Notch

signaling or improved antigen recognition). While our software
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can use multi-omic and spatial molecular data for model initializa-

tion and some parameterization, the ability to encode rules

directly from inferred regulatory networks and to incorporate un-

certainty analyses in the input of these data remains an important

area of ongoing research. Moreover, emerging large language

models (LLMs) such as ChatGPT may facilitate ‘‘translation’’ of

familiar language (e.g., fibrosis) into the smaller set of symbols

in the current grammar. The language currently treats all state-

ments as independent (inclusive OR), but we may need additional

language operators to signify relationships between rules such as

AND or REQUIRES. Other generalizations and improvements to

the forms of response curves, consensus process models, and

default parameter values are likely to emerge from widespread

community use, feedback, and discussion.

Our current grammar is focused on cellular interactions, but it

does not yet incorporate gene regulatory networks, although

intracellular gene regulatory networks are supported in Physi-

Cell.98,99 While we demonstrated initialization and parameteriza-

tion from ST data, our software requires further extensions to

fully interoperate with omics data analysis ecosystems and

emerging high-throughput data modalities. In the models pre-

sented here, the connections with the data rely on macroscale

summaries of the data such as size of the tumor, cell-type anno-

tations, or thickness of cortical layers. Increasing the depth of

connection to the data—spatially, temporally, and phenotypi-

cally—will improve the accuracy and predictive power of these

models.100,101 Further parameter fitting and data assimilation

methods are also needed to fully embed experimental data

into the models to ensure biologically calibrated ABMs. For

example, we note that well-known developmental timings were

used to drive the evolution of fate specification in the corticode-

velopment example102,103 to allow us to focus on key transitions

responsible for final cytoarchitecture; future work can integrate

Boolean networks99 or systems of ODEs to replace time as a

proxy signal. A key component of this endeavor is to uncover

the roles of all cells in the complex interaction network within

any given system and the effect of therapeutic perturbations

thereon. In this study, the various models include only a subset

of the cell types known to exist in the modeled microenviron-

ments and apply simplified frameworks of pharmacodynamic

response. A limitation of our approach is that it relies on cata-

loguing individual cell types and their behaviors,51,96 although

future work can leverage artificial intelligence to extend beyond

manual cataloging by automating discovery with expert quality

control. Additionally, future work will establish a community-

informed repository to collect and curate biological hypothesis

statements grouped as digital cell lines,51,96 enabling users to

contribute and share cell behavior statements for future reuse

in other models of the same system. Continued community input

will expand and refine digital cell templates and phenotypic be-

haviors to actualize virtual cell laboratories.
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STAR★METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

PDAC tumor specimens Johns Hopkins Hospital Not applicable

Patient-derived organoids (PDOs) This Study Not applicable

Cancer-associated fibroblasts (CAFs) This Study Not applicable

Chemicals, peptides, and recombinant proteins

Gefitinib MedChemExpress Cat#HY-50895

PD153035 inhibitor Calbiochem 23–449

IBIBX1382 inhibitor Calbiochem 324832

IL4 PeproTech 214–14

IL13 PeproTech 210–13

IL10 PeproTech AF-210-10

IFNγ PeproTech 315-05

LPS Invitrogen 00-4976

Collagenase A Roche 11088793001

DNase I Roche 10104159001

Cultrex BME R&D Systems 3431-005-01

Recombinant Human EGF Protein, CF R&D Systems 236-EG

Rat tail collagen type I Corning 354236

Dispase Gibco Cat #17105-041

Collagenase Type II Gibco Cat #17101-015

Collagen I (rat-tail) Corning Cat #354236

Human EGF Sigma-Aldrich E9644

Insulin Gibco Cat #12585

Cholera toxin Sigma-Aldrich C8052

Bovine Serum Albumin (BSA) Sigma-Aldrich A1595

Matrigel Corning Cat #: 354236

Critical commercial assays

Cell tracker Invitrogen C7025

Deposited data

Live-cell imaging from EGF or PBS treated

MCF10A cells

Zenodo https://zenodo.org/records/14106341

Sensitivity analysis simulation data Zenodo https://doi.org/10.5281/zenodo.14590311

Experimental models: Cell lines

Panc10.05 ATCC.org CRL-2547

hT231 Lab of Dr. David Tuveson N/A

Mouse: FVB/N-Tg(MMTV-PyVT)634Mul/J The Jackson Laboratory Cat#002374;RRID: IMSR_JAX:002374

Cell Line: MCF10A Gift from Gordon Mills (OHSU) N/A

Software and algorithms

NIS-Elements Nikon Instruments https://www.microscope.healthcare.nikon.

com/products/software/nis-elements

ImageJ NIH https://imagej.net/ij/

Baxtor Algorithm https://doi.org/10.1109/TMI.2014.2370951 N/A
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METHOD DETAILS

Simulation Methods

PhysiCell agent-based modeling framework

PhysiCell47 is an open source, agent-based modeling framework written in C++ that can run on a broad variety of desktop platforms,

in the cloud,111 and on high performance computing resources.38–40,112 PhysiCell simulates each cell as an agent with lattice-free

position and volume, individual birth and death rates, and motion driven by the balance of mechanical forces and biased random

migration. In more recent versions of PhysiCell, agents can also interact with built-in models of phagocytosis, effector attack, fusion,

and elastic cell-cell adhesion. PhysiCell is coupled to a reaction-diffusion solver (BioFVM113) that models secretion and uptake (con-

sumption) of diffusible factors by individual cell agents at their individual positions, as well as diffusion and decay of these substrates

through extracellular spaces. PhysiCell bundles its key cell behavioral parameters as a phenotype object for simpler representation.

Modelers simulate biological hypotheses by writing custom C++ functions that dynamically vary the cell agent’s phenotype param-

eters based on conditions at the cell’s position, such as contact with other cells, mechanical pressure, and concentrations and gra-

dients of signaling factors. This paper extends PhysiCell with built-in functions that parse rules written with our grammar to operate on

cell phenotypes without writing C++ code.

Installation instructions

PhysiCell Version 1.14.1104 and later includes a full reference implementation of the grammar and grammar-based simulation

modeling, and the specific models in the results are available from https://github.com/physicell-models/grammar_samples. To

get a list of all the example models:

make list-user-projects

To load and compile an example named myproject, use

make load PROJ=myproject && make

Similar to our prior work to create cloud-based training materials114 and cloud-based model dissemination,111 and inspired by

other recent advances on ‘‘zero-install’’ models,115 we have created a cloud-based version56,116 of PhysiCell based on the nanoHUB

platform.105 This cloud implementation allows scientists to create, execute, visualize, and explore grammar-based models interac-

tively in a web browser, without need for programming expertise or software setup. (See documentation and training materials in

Methods S1) The cloud-hosted model is available at https://nanohub.org/tools/pcstudio. Alternatively, scientists can download

the latest release of the PhysiCell Studio56 desktop application at https://github.com/PhysiCell-Tools/PhysiCell-Studio/releases.

Assuming an executable model has been compiled, the Studio allows interactive creation and editing of rules, running a simulation,

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

CellPose 2.0 https://doi.org/10.1038/s41592-022-

01663-4

N/A

PhysiCell Ghaffarizadeh et al. (2018)47 http://physicell.org/

PhysiCell Studio Heiland et al.56 https://nanohub.org/tools/pcstudio

nanoHUB platform Madhavan et al.105 https://nanohub.org/

Computational model in C++ This paper https://github.com/physicell-models/

grammar_samples

Migration speed calibration code This paper https://github.com/PhysiCell-Models/

grammar_samples/tree/main/

experimental_data_analysis/

PancCAFAnalysis

Uncertainty quantification software This paper https://github.com/heberlr/UQ_PhysiCell

Spheroid analysis software This paper https://github.com/emcramer/abm-

spheroid-invasiveness/releases/tag/v0.1.

0-beta

CODA Kiemen et al.106 https://doi.org/10.1038/s41592-022-

01650-9

ProjectR transfer learning software Sharma et al.107 https://doi.org/10.1093/bioinformatics/

btaa183

CoGAPs non-negative matrix factorization

for scRNA-seq data

Bell et al.72, Johnson et al.108, Kinny-Köster

et al.109

https://doi.org/10.1038/s41596-023-

00892-x

Seurat 4.1.0 Hao et al.110 https://github.com/satijalab/seurat/

releases
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and visualizing results. Refer to the Studio user guide at https://github.com/PhysiCell-Tools/Studio-Guide/blob/main/README.md

for more information.

Self-guided, hands-on training courses are available at https://physicell.org/Training.html. See further details in Methods S1.

Hypothesis grammar

Cell behaviors

To build this grammar, we require clear abstractions of key cell behaviors that frequently occur in multicellular observations and corre-

sponding reference models. In this context, a cell behavior is a cell-scale process, such as cycling, death, or phagocytosis. Generally,

each behavior can be represented by a small number of continuous phenotypic parameters, describing the rate, magnitude, or fre-

quency of the behavior. In earlier work, Sluka et al. developed the Cell Behavior Ontology (CBO)117 as a controlled vocabulary of indi-

vidual cell behaviors. More recently, we worked with a multidisciplinary coalition to extend and structure behaviors from the CBO and

other sources into MultiCellDS96 (multicellular data standard). In particular, this work defined a cell behavioral phenotype that collects of

biophysical characterizations of a cell’s behavior, organized hierarchically by function: cycling, death, volume, mechanics, secretion

(including uptake), and motility. Since releasing MultiCellDS as a preprint, we have tested this approach to cell behavior through a variety

of agent-based simulation and modeling projects.38–40,47,54,58,99,114,118–122 Based upon recent immunologic modeling work,38,118–121 we

extended phenotype to include cell-cell interactions (phagocytosis, effector attack, and fusion), as well as transitions between cell types

(e.g., differentiation, transdifferentiation, and other state changes that persist even when exogenous signals are removed). See Methods

S1 for a full description of these cell behaviors, including reference model implementation details in the PhysiCell framework.

Signals

Signals are (typically exogeneous but sometimes internal) stimuli or information that can be interpreted by a cell to drive behavioral or

state changes. In the context of mathematical modeling, signals are inputs to constitutive laws or agent rules. We broadly surveyed

mathematical and biological models from cancer biology,36,61,123–132 tissue morphogenesis,123,133–137 immunology,36,118–120,138,139

and microbial ecosystems,140,141 to generalize classes of inputs to cell behavioral rules, generally including chemical factors, mechan-

ical cues, cell volume (e.g., for volume-based cycle checkpoints), physical contact with cells, live/dead status, current simulation time

(for use in triggering events), and accumulated damage (e.g., from effector attack142–144). See Methods S1 for a full description.

Behavioral statements

For any cell type T, we construct simple statements that relate changes in a single behavior B to a signal S: ‘‘In T, S increases/de-

creases B [with optional arguments].’’ Here B is a well-defined biophysical parameter in our dictionary of behaviors (see STAR

Methods and Methods S1), S is a well-defined biophysical variable in our dictionary of signals, and optional arguments further

specify the mathematical behavior of the responses. For example:

In MCF-7 breast cancer cells, cisplatin increases apoptosis.

In naı̈ve T cells, IL-10 decreases transition to CD8+ T cells.

A full description of the grammar, optional arguments, and examples can be found in Methods S1.

Mathematical representation: individual rules

With clearly defined behaviors and signals and the grammar to connect them, we can uniquely map human-interpretable cell hypoth-

esis statements onto mathematical expressions that make the grammar both human interpretable and computable. Each individual

rule modulates a single behavioral parameter b as a function of a signal s. Given a response function R, we then mathematically repre-

sent the individual rule as a function b(s):

b(s) = b0 + (bM − b0)R(s); (1)

where b0 is the base value of the parameter in the absence of signal, and bM is the maximally changed value of the parameter with

large signals. By default, we use sigmoidal (Hill) response functions R, due to their extensive use in signaling network models and

pharmacodynamics, as well as their smooth variation between 0 (at no response) and 1 (at maximum response). However, capped

linear response functions (varying between 0 and 1) and step functions are also possible (Figure S2). See Figure 1C for a typical rule.

Full mathematical details and additional detailed examples are available in Methods S1.

Generalized mathematical representation: multiple rules

Our full mathematical formulation allows new hypotheses to be directly added to models without modifying prior hypotheses, making

our framing extensible and scalable as new knowledge is acquired. Suppose that a behavior B (with corresponding behavioral

parameter b) is controlled by multiple rules subject to promoting (up-regulating) signals u and inhibiting (down-regulating) signals d:

• u1 increases B (with half-max u∗
1 and Hill power p1)

• u2 increases B (with half-max u∗
2 and Hill power p2)

…
• um increases B (with half-max u∗

m and Hill power pm)

• d1 decreases B (with half-max d∗
1 and Hill power q1)

• d2 decreases B (with half-max d∗
2 and Hill power q2)

…
• dn decreases B (with half-max d∗

m and Hill power qn)
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Here, let bM be the maximum value of the behavior parameter b (under the combined influence of the up-regulating signals u), let b0

be its base value in the absence of signals, and let bm be its minimum value (under the combined influence of the down-regulating

signals d).

Similar to prior multi-variate response functions,145,146 we define the total up response as:

U = HM(u; uhalf;p) =

(
u1

u∗
1

)p1

+

(
u2

u∗
2

)p2

+…+

(
um

u∗
m

)pm

1+

(
u1

u∗
1

)p1

+

(
u2

u∗
2

)p2

+…+

(
um

u∗
m

)pm
(2)

and the total down response as:

D = HM(d; dhalf;q) =

(
d1

d∗
1

)q1

+

(
d2

d∗
2

)q2

+…+

(
dn

d∗
n

)qn

1+

(
d1

d∗
1

)q1

+

(
d2

d∗
2

)q2

+…+

(
dn

d∗
n

)qn
: (3)

We combine the overall response of the behavioral parameter via bilinear interpolation in the nonlinear up- and down-responses

U and D:

b(u;d) = (1 − D) ⋅ [(1 − U) ⋅ b0 + U ⋅ bM ] + D⋅bm (4)

Notice that:

• In the presence of a single up-regulating signal u (or a single down-regulating signal d) only, b(u,d) reduces to a Hill response

curve b(u) (or b(d)) used in systems biology and pharmacodynamics studies.

• Generally, the combined up-regulating signals sets a ‘‘target’’ value of the parameter, which can then be inhibited by the com-

bined down-regulating signals.

• Both U and D vary between 0 and 1 representing the extent of up- and down-regulating signals, respectively. This means that

larger values of D represent larger decreases in behavior b.

Note also that adding and removing individual rules does not require alteration to the remaining rules. In this release, we use multi-

variate Hill response functions for clarity, but mixed linear and Hill responses could be used in the future. The PhysiCell implementa-

tion of this generalized response, additional mathematical details, and expanded examples can be found in Methods S1. Sample

multivariate response functions are in Figures S1 and S3.

PhysiCell rules implementation and parameterization. To implement these rules in PhysiCell, users generate a CSV file in which each

row is an individual rule and the columns correspond to specific elements of the grammar. The structure of such a row is as follows:

tumor⏟̅̅⏞⏞̅̅⏟
cell type

; oxygen
⏟̅̅̅̅ ⏞⏞̅̅̅̅ ⏟

signal

; increases⏟̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅⏟
response

; cycle entry
⏟̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅⏟

behaior

; 0:0005⏟̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅ ⏟
maxresponse

; 5:0⏟̅̅̅̅̅⏞⏞̅̅̅̅̅⏟
half− max

; 4⏟̅̅̅̅̅⏞⏞̅̅̅̅̅⏟
Hill power

; 0⏟̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅⏟
applies to dead?

The graphical user interface (GUI) provided by PhysiCell Studio56,95,116 simplifies the creation of this CSV in alignment with the

framework. Within this GUI, users can also interactively visualize all the rules to assess their sensitivity to different input signals

and parameter values.

Our toolset also includes a Python package to analyze PhysiCell models, including sensitivity analysis, calibration, model selection,

and validation. These uncertainty quantification (UQ) tasks are critical for understanding how biological and mathematical variability

influence model behavior. Importantly, the addition of the grammar framework enables us to offer this to end users without requiring

bespoke C++ code or XML parsers. More details on these parameter tuning and parameter sensitivity tools are described in detail in

Methods S1. To help drive reproducibility, we generate and save a full description of all rules in HTML and text formats after initial

parsing.

Experimental details

Macrophage co-culture with 3D mammary organoids derived from MMTV-PyMT tumors

A previously unpublished replicate image of co-culture of organoids with tumor-associated macrophages is used as the basis of

the qualitative behavior of our ABM of macrophage-induced invasion of tumor cells. Experimental methods for the data generated

in this figure are described in the original DeNardo et al. publication84 describing these findings as follows ‘‘Primary nMEC and

pMEC pools were established by organoid centrifugation as previously described.152 Briefly, mammary tissue biopsies were har-

vested from 76-day-old PyMT female or 12-week-old virgin negative littermates and digested with collagenase A 2.0 mg/ml

(Roche) and DNase 2.0 units/ml (Roche) for 2 hr. Organoids were then isolated by differen- tial centrifugation and grown in culture

conditions as previously described.152 Primary nMECs were used within two passages and primary pMEC cells were used within

ten passages. Three-dimensional organotypic cultures were established as previously described.153 Cultrex basement membrane
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extract (BME; R&D Systems) was utilized to limit endotoxin levels. Co-cultures with primary leukocytes were established only after

stable organoid structures had formed (approximately 3 weeks for nMEC, 2 weeks for pMEC). Leukocytes were overlaid in me-

dium containing 0.5% BME. Formation of invasive acini was assessed every 12 hr for 3 days. The cytokines IL-4 (20 ng/ml), IL-13

(20 ng/ ml), IL-10 (10 ng/ml), IFNg (5.0 ng/ml) (PeproTech), or LPS (1.0 mM/ml) were added to co-cultures 12 hr after leukocytes

overlay. Inhibitors PD153035 (0.1 mM, Calbiochem) or BIBX1382 (10 nM, Calbiochem) were added 1.0 hr prior to the addition of

leukocytes. All experiments were repeated two or three times with separate pMEC pools and individual experiments were run at

least in triplicate.

Invasion and colony formation assays of gefitinib treated organoids derived from MMTV-PyMT tumors

Primary mammary tumor organoids were isolated from female MMTV-PyMT mice (002374; Jackson Laboratory) using sequential

digestion and purification steps as previously described.154 Briefly, tumors were dissected, divided with a scalpel, and shaken in

a collagenase digestion solution for 1 hour at 37 ◦C. Following digestion, a series of differential centrifugations were used to separate

epithelial organoids from stromal cells, with resulting organoids between 100-250 cells in size. For invasion assays, organoids were

embedded at a density of 1.2 per μL into a collagen I extracellular matrix (354236; Corning) in glass bottom imaging plates (662892;

Grenier). The ECM was then polymerized for 1 hour at 37 ◦C, after which DMEM/F-12 media (10565-018; Thermo Fisher) containing

1.0% ITS (51500-056; Thermo Fisher), 1.0% Pen-Strep (P4333; Sigma Aldrich), and 2.5 nM FGF2 (F0291; Sigma Aldrich) was added.

Compounds dissolved in DMSO were added after overnight incubation, and assays were then incubated for 96 hours at 37 ◦C with

5.0% CO2. Cultures were fixed in 4.0% paraformaldehyde (15714-S; Electron Microscopy Sciences) on day 5 and then imaged on

laser scanning confocal microscope equipped with a tunable GaAsp detector, 2k resonant scanner, and LUA-S6 laser unit (AXR; Ni-

kon Instruments). Invasion was assessed by calculating the inverse circularity of each organoid using Nikon NIS-elements software

and results are normalized per biological replicate.

For colony formation assays, organoids were further digested to cancer cell clusters (2-10 cells in size) using 1X TryPLE (12604-

013; Thermo Fisher). Clusters were then isolated through differential centrifugations as previously described154 and embedded at a

density of 100 per μL in Matrigel (354230; Corning). After the Matrigel had polymerized, media was added and compounds in DMSO

were dosed the following day using a D300e Digital Dispenser (Tecan). The assay was then incubated at 37 ◦C with 5.0% CO2 and

fixed after 96 hours in 1.0% paraformaldehyde. To determine colony formation, the entire ECM was imaged in 3D, maximum intensity

projections were generated, and colonies were counted using custom ImageJ and Python scripts. Percent colony formation was

calculated as the number of colonies in each treatment condition normalized to the vehicle control.

Growth and motility of EGF treated MCF10A cells

As described previously,155 MCF10A cell culture and experimental procedures were conducted based on established methodolo-

gies.156 For routine maintenance and passaging, cells were cultured in a growth medium composed of DMEM/F12 (Invitrogen,

#11330-032) supplemented with 5% horse serum (Sigma, #H1138), 20 ng/ml EGF (R&D Systems, #236-EG), 0.5 μg/ml hydrocorti-

sone (Sigma, #H-4001), 100 ng/ml cholera toxin (Sigma, #C8052), 10 μg/ml insulin (Sigma, #I9278), and 1% Penicillin/Streptomycin

(Invitrogen, #15070-063). For experiments involving EGF perturbation, a growth factor-free medium was prepared using DMEM/F12,

5% horse serum, 0.5 μg/ml hydrocortisone, 100 ng/ml cholera toxin, and 1% Pen/Strep.

Cells were cultured to 50–80% confluency before being detached with 0.05% trypsin-EDTA (Thermo Fisher Scientific, #25300-

054). Subsequently, 20,000 cells were seeded into 24-well plates (Thermo Fisher Scientific, #267062) coated with collagen-1

(Cultrex, #3442-050-01) in growth medium. After six hours, the cells were rinsed with PBS, and the medium was replaced with growth

factor-free medium. Following an 18-hour period of growth factor deprivation, cells were treated with either PBS or 10 ng/ml EGF

(R&D Systems, #236-EG).

Phenotypic responses to EGF treatment were assessed through live-cell imaging using the Incucyte S3 microscope (Essen

BioScience, #4647), which captured images every 30 minutes over a 24-hour period. The dataset includes an Excel spreadsheet

that documents the experimental conditions for each imaged well.

PDAC patient-derived tumor spheroid CAF co-culture invasion assay

Samples Acquisition. Patient-derived organoids (PDOs) and cancer-associated fibroblasts (CAFs) were isolated from freshly re-

sected pancreatic ductal adenocarcinoma (PDAC) tumor specimens obtained during pancreatectomy procedures at Johns Hopkins

University Hospital. All specimens were processed within 24 hours of surgical resection as previously described for pancreatic can-

cer organoids.157 Written informed consent was obtained from all patients prior to sample collection.

Organoid Generation. PDAC tissue samples were rinsed, minced, and digested in a digestion medium containing Dispase (Gibco

17105-041) and Collagenase Type II (Gibco 17101-015) at 37◦C for 2–3 hours with 200 rpm shaking. The digested suspension was

centrifuged (1500 rpm, 5 minutes, 4◦C) and washed multiple times with wash media (DMEM/F-12 supplemented with 1.25 mL Pri-

mocin, 5 mL 1M HEPES, 5 mL 100X Glutamax, and 2.5% FBS). Tumoral clusters and single cells were separated from stromal debris

and CAFs through differential centrifugation. Organoids were embedded in collagen I gel prepared by mixing collagen I (Corning, rat-

tail, 354236) with 10× DMEM and 1N NaOH to achieve a final concentration of 3.34 mg/mL. The collagen solution was incubated at

37◦C for 60 minutes to allow polymerization before overlaying with growth media containing DMEM/F-12, Primocin, HEPES,

Glutamax, EGF (5 ng/mL), insulin (5 μg/mL), cholera toxin (10 ng/mL), and BSA (0.075%). CAF-containing supernatants were also

cultured separately in T75 flasks with RPMI containing 10% FBS. PDO growth was monitored over two weeks to reach an

appropriate size, and cultures that failed to expand were discarded.
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CAF Media Treatment and Invasion Assays. CAFs were cultured in 2D (T75 flask) and 3D (Matrigel in 24-well plates) environments to

induce differentiation into inflammatory (iCAF) and myofibroblast (myCAF) subtypes, respectively. Fibroblast differentiation was

validated using qPCR with iCAF and myCAF markers. Once the cells reached 70–80% confluence, the media were replaced with

RPMI containing 1% FBS. Conditioned media were collected after 36 hours and used for all 15 PDO cultures. CAF-conditioned

media were mixed with PDO growth media at a 1:1 ratio and RPMI with 1% FBS was used as a control. To assess invasion,

images of invasive and non-invasive organoids were captured using a Nikon Ti-E inverted microscope at ×10 magnification

72 hours after conditioned media addition. Organoid invasion was quantified by calculating the percentage of PDOs invading

collagen fibers and analyzing invasive organoids’ circularity using ImageJ software.

Cell motility tracking of PDAC cells and fibroblasts in varying ECM densities, alone and in co-culture

We embedded cells from the hT231 human cancer associated fibroblast cell line and the Panc10.05 pancreatic cancer cell line,158

either separately or in co-culture, into 3D collagen-I hydrogel and imaged individual cells at five-minute intervals for eight hours. The

cell tracking protocol was performed as previously described.68 Briefly, the Panc 10.05 and hT231 CAF co-cultures were prepared in

type I collagen-based gels that were polymerized for 1hr in a 37-degree incubator (during which time the gels turned from a liquid to

form a stable solid). At the end of the 1hr polymerization time, the gels are deemed solid/stable and are all gently hydrated with media

to keep them porous and feed the cells with nutrients, then placed in the cell culture incubator for approximately 2 hours prior to im-

aging. The gels (monocultures and co-cultures both) were then loaded onto our microscope and imaged soon after (within 2–3 hours

of hydrating), then were run in an overnight movie that elapsed a total time of about 12–16 hours. The trajectories in the .csv files

quantified cell movements over either 2.5hr (30 frame)-long or 8hr (96 frame)-long trajectories within this 12-hour movie.

Calibration of migration speed in ABM from motility assays

The 3D positions (x, y, z) of each cell—as recorded by the microscope at each timestep—were analyzed, and the motility of each cell

was fitted to a trajectory using the anisotropic random walk model described previously,68,159 which yields metrics such as average

speed (μm/hr) for each condition.A protocol for statistical analysis of cell migration in 3D was used to calibrate an anisotropic persis-

tent random walk model.160 This was performed at each collagen density used in the 2.5h motility assays. The average speed param-

eter was taken from this analysis as a function of the collagen density. The combined Hill response (see Results) is fit to this data. ECM

density is used as the increasing signal and the decreasing signal. MATLAB’s fmincon was used to minimize the sum of square re-

siduals and thus parameterize the Hill responses. The code is available in the GitHub repository associated with this article at https://

github.com/PhysiCell-Models/grammar_samples/tree/main/experimental_data_analysis/PancCAFAnalysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Model initialization from simulated distributions of cellular states and from multi-omics data

Another critical model input is the initialization of the cell types present in an ABM simulation and the initial positions of these cell

agents. PhysiCell allows users to initialize cells randomly in the environment or by supplying a user-created file with cell locations.

An advantage of the hypothesis grammar is that cellular agents are given human-interpretable names, providing a one-to-one map-

ping between the agents and cellular labels defined in classical single-cell and spatial molecular analyses. To leverage this mapping

and enable data-driven model initialization, we use cell type annotations from bioinformatics datasets to set the relative abundances

of the cell types included in our models. If the data also includes spatial coordinates, we use affine linear transformations to position

the cells in the simulation domain. By default, the cells are placed to fill the simulation domain while preserving the aspect ratio of

the data.

Spatial transcriptomics data of PDAC tumors

We selected two resected pancreatic lesions were subjected to the commercial Visium spatial transcriptomics (ST) sequencing FFPE

protocol generated in Bell et al.72 to initialize ABMs in this study. Slides were stained with H&E and imaged prior to RNA extraction,

and image analysis was performed in parallel with transcriptomic analysis. An artificial intelligence method for annotation of pancre-

atic tumor tissue regions called CODA106 was used to annotate acinar cells, islet cells, smooth muscle cells, and the distribution of

collagen. This method was also used to distinguish normal ductal, neoplastic, and tumor cells from the H&E imaging, which were

further visually confirmed by a pathologist (E.D.T.). Spots with greater than 70% purity of ductal cells were further annotated to assign

agent types for the associated tumor and normal cells in each spot. For this annotation, we used our transfer learning method Proj-

ectR107 version 1.8.0 to distinguish proliferative signaling (modeled as an epithelial phenotype) from co-occurrence of EMT and in-

flammatory signaling (modeled as the mesenchymal phenotype) as defined in CoGAPS non-negative matrix factorization analysis of

in scRNA-seq data PDAC tumors using methods described previously.72,108,109 To locate fibroblasts, Seurat version 4.1.0 was used

to compute module scores from a pan-CAF gene signature as described previously.72 ABM simulations were initialized from these

cellular states. In addition, ECM density was initialized using a heuristic from image-derived collagen and cancer-associated fibro-

blast annotations from the H&E imaging from CODA,106 and the bounding cells were assumed to contain a similarly dense collagen

matrix, forming a niche around the known sample and abstractly reflecting the character of the solid pancreatic tissue. In the ABM,

other pancreatic cells in the spatial transcriptomics data were approximated as steady state (no net proliferation, death, motility, or

secretion) and were assumed to be essentially inert with regards to carcinogenesis, here primarily modeled in their role as structure
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and scaffolding within which the other cell types interact and representing acinar cells, islet cells, and smooth muscle cells. The

spatial transcriptomics data147,148 are available from GEO as GSE254829.

Deriving a metric to quantify the invasiveness of in silico tumor spheroids over time from in silico simulation

(PhysiCell model output)

Previous studies have quantified the invasiveness of tumor spheroids using microscopy images by assessing the perimeter (contour)

of the spheroid and counting cells migrating beyond a defined booundary.149,150 These methods were adapted to enable comparison

between output from in silico PhysiCell models. To quantify invasiveness, the radial distance from the perimeter of the boundary of

the simulated tumor volume to the centroid of its contour was calculated. Projections of the spheroid’s perimeter extending beyond

the median radial distance measured at the initial time point were counted as invasive projections. The total number of invasive pro-

jections served as a measure of spheroid invasiveness. Results from simulation experiments of tumor spheroids in PhysiCell were

processed and quantified using a custom analytic pipeline151 written in Python (version 3.11). The positions of cells in the ABM at

each time point were imported from xml output files produced by PhysiCell as MultiCellDS (MCDS) data structures in Python and

used to populate an empty array as individual points. Points were then dilated in the shape of a disk with a gradient of intensity.

The simulated outputs contain both images of the secreted factors from fibroblasts, abstracted as an extracellular matrix (ECM) var-

iable, and tumor cells. The locations of the ECM were then imported from the MCDS object, and the amount of ECM present at each

voxel in the simulation space was used to derive a contour by projecting onto a 2D mesh. The ECM contour was added to the dilated

cells and flattened into a 2D array. Arrays were processed analogously to images of tumor volume, by binarization with an Otsu

threshold and segmented to generate a mask. The morphology of mask contours was then quantified to determine the number of

invasive projections and determine spheroid invasiveness.

Single-cell RNA-seq of PDAC tumors as a reference dataset to initialize estimates of immune populations in ABM

simulations of treatment effects

Simulations of different treatment effects on PDAC in Figure 6 use immune-enriched single-cell RNA-seq data from Stelle et al.92

(GSE155698) and with preprocessing to further define immune cell subtypes in reference tumors as described previously.67,91 Briefly,

to determine the by-tissue cell counts to initialize our simulations, the single-cell RNA sequencing data was preprocessed, clustered,

and annotated using the Seurat R package.110 Cell identity clusters of interest ("Activated_CD4", "B cell", "CD4", "CD8",

"Effector_CD8", "Epithelial_cancer", "Macrophage", "Mast", "Neutrophil", "NK/CTL", "T cell", "Treg cell") were then thresholded

based on median normalized expression of genes of interest (here CD274/PD-L1, PDCD1/PD-1, TNFRSF9/CD137) and the number

of cells falling into lo/hi categories were reported as described previously.91 The pre-treatment cell numbers for each immune pop-

ulation were adopted as the baseline count of that agent type, while the number of tumor cells was artificially adjusted to equal 1000,

with the relative number of PD-L1hi vs PD-L1lo tumor cells determined by the ratio found in that tissue in the dataset.92 Cell-cell

communication analysis was performed using the Domino package as described previously by Li et al.91 to extend the model rules

for immune cells to account for their function dependent on CD137 status. We further estimate the relationship of the baseline TME

composition on the ABM-simulated therapeutic response with a Pearson correlation computed with the R package ggpubr.

Allen Brain Atlas53 data as a reference dataset to calibrate parameters of an ABM of cortical development

The Allen Brain Atlas53 was used to find z-slices of cortical regions in the mouse brain and the cellularity in each layer to calibrate the

model. We selected z-slices that contained sufficient cellularity in the two chosen regions of interest, the somatosensory and auditory

cortices. Selecting from each z-slice a rectilinear subset within the target region, we used the Allen Brain Atlas layer annotations to

quantify the thickness of each layer.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

This study involved no human subjects, and it developed agent-based simulations that form in silico simulations of tumors. All human

genomics datasets were taken from prior studies. The PyMT mouse model and MCF10A were used for breast cancer, and patient

derived organoids, Panc10.05, and hT231 cell lines were used for pancreatic cancer experimental models. Details of all of these and

protocols are described in the experimental methods section of STAR Methods.
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Supplemental figures

Figure S1. Multivariate response functions in STAR Methods

Left: a multivariate Hill response function, where s1 has half-max 2 and Hill power 8, and s2 has half-max 1 and Hill power 2. Half-maxes are plotted on each

variable as blue dashed lines, while the half-max across the multivariate function is plotted as a red contour. H(s1) and H(s2) are plotted as black curves along the

respective axes.

Right: a multivariate linear response function, where s1 has min and max thresholds 0.75 and 3.75, and s2 has thresholds 0 and 2. Half-maxes are plotted on each

variable as blue dashed lines, while the half-max across the multivariate function is plotted as a red contour. L(s1) and L (S2) are plotted as black curves along the

respective axes. Related to STAR Methods.
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Figure S2. Converting between linear and Hill response functions, related to STAR Methods

Left: approximating a linear response function (black dotted curve) with a Hill response function (red).

Right: approximating a Hill response function (black dotted) with a linear response function (red).
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Figure S3. Sample response functions, related to STAR Methods

Left: the behavioral response function for the statements ‘‘oxygen increases cycle entry’’ and ‘‘pressure decreases cycle entry,’’ using the multivariate Hill

response function.

Right: a non-monotonic response function from the statements ‘‘c increases migration bias’’ (for lower values of c) and ‘‘c decreases migration bias’’ (for higher

values of c), showing both linear and Hill response constructions.
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Figure S4. Convergence of QoIs across the replicates in hypoxia model, related to Figure 2

AUC of live (A) and dead (B) non-motile tumor cells. AUC of live (C) and dead (D) motile tumor cells. (E) Wassertein distance of radial distributions between non-

motile and motile tumor cells.
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Figure S5. PANC10.05 cell motility in monoculture or co-culture, related to Figure 3

Comparing motility behavior of PANC10.05 cells in monoculture or in co-culture with HT-231 CAFs assayed using 30-frame-long trajectories (A–C) and 96-frame-

long trajectories (D–F). Average speed (μm/h) (A), average turning angle (degrees/min) (B), and progressivity (C) of PANC10.05 monoculture and co-culture in

varying ECM densities. (D–F) equivalent metrics from the 96-frame trajectory experiment.
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Figure S6. PANC10.05 cell motility monoculture, related to Figure 3

Motility behavior of PANC10.05 cells in monoculture assayed using 30-frame-long trajectories (A–C) and 96-frame-long trajectories (D–F). Average speed (μm/h)

(A), average turning angle (degrees/min) (B), and progressivity (C) of PANC10.05 monoculture in varying ECM densities. (D–F) equivalent metrics from the

96-frame trajectory experiment.
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(legend on next page)
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Figure S7. PANC10.05 cell motility in co-culture, related to Figure 3

Motility behavior of PANC10.05 cells in co-culture with HT-231 CAFs assayed using 30-frame-long trajectories (A–C) and 96-frame-long trajectories (D–F).

Average speed (μm/h) (A), average turning angle (degrees/min) (B), and progressivity (C) of PANC10.05 in co-culture with HT-231 in varying ECM densities. (D–F)

equivalent metrics from the 96-frame trajectory experiment.
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(legend on next page)
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Figure S8. HT-231 CAF motility in monoculture or co-culture, related to Figure 3

Comparing motility behavior of HT-231 CAFs in monoculture or in co-culture with PANC10.05 cells assayed using 30-frame-long trajectories (A–C) and 96-frame-

long trajectories (D–F). Average speed (μm/h) (A), average turning angle (degrees/min) (B), and progressivity (C) of HT-231 monoculture and co-culture in varying

ECM densities. (D–F) equivalent metrics from the 96-frame trajectory experiment.
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Figure S9. Fibroblast and pancreatic cell motility response curves, related to Figure 3

Motility behavior of simulated fibroblasts and pancreatic tumor cells is specified using two Hill curves that come together to fit the experimental data describing

the relationship between migration speed and ECM density for each cell type (S5–S8).
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Figure S10. Invasiveness of patient-derived organoids, related to Figure 3

(A) Comparison of mean inverse circularity of PDOs between myCAF-conditioned and control media.

(B) Comparison of mean inverse circularity of PDOs between iCAF-conditioned and myCAF-conditioned media.
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Figure S11. Local sensitivity analysis of the simple tumor-immune model, related to Figure 4

(A) Simulation of a 5-day evolution using reference parameters.

(B) Area under curve (AUC) for cell populations, extracted from the time course.

(legend continued on next page)

ll
OPEN ACCESSTheory



(C) Radial distributions at the final snapshot (day 5) are shown in left plot, while the Wassertein distances extracted from these distributions are presented in the

middle plot (macrophages vs. tumor cells) and the right plot (CD8 T cells vs. tumor cells).

(D) Variation in quantities of interest (QoIs) under multiplicative perturbations in the 26D parameter space.

(E) Average and standard deviation of the sensitivity index for each parameter across all QoIs.
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Figure S12. Convergence of QoIs across the replicates in simple tumor-immune model, related to Figure 4

AUC of live (A) and dead (B) tumor cells. AUC of pro-inflammatory (C) and anti-inflammatory (D) secretion rate of macrophages. Wassertein distance of radial

distributions between tumor cells and macrophages (E) and tumor cells and CD8+ T cells (F).
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Figure S13. Gefitinib colony formation assay, related to Figure 5

Tumor cells are seeded and the number of successful colonies formed is compared between control and gefitinib (EGFR inhibitor). This shows that inhibiting

EGFR signaling does not inhibit colony formation behavior in these tumor cells.
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Figure S14. EGF impact on MCF10A proliferation, related to Figure 5

EGF increases MCF10A cell proliferation vs. PBS control over a 24-h time frame.
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Figure S15. Simulated tumor cell growth under therapy combinations vs. untreated virtual control, related to Figure 6

Time series of simulated tumor cell counts under baseline and combination therapy conditions for PDAC tissues 1–8.
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Figure S16. Simulated tumor cell growth under treatment and control for PDAC tissues 9–16, related to Figure 6

Time series of simulated tumor cell counts under baseline and combination therapy conditions for PDAC tissues 9–16.
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Figure S17. Simulated tissue endpoints under single- and triple-combination treatments and virtual control, related to Figure 6

Snapshots of agents at simulation endpoints for each tissue, baseline, single therapies, and triple-combination therapy shown.

ll
OPEN ACCESS Theory



Figure S18. Simulated tissue endpoints under double-combination treatments, related to Figure 6

Snapshots of agents at simulation endpoints for each tissue, double-combination therapies shown.
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(legend on next page)
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Figure S19. Waterfall plots of treatment efficacy for simulated tissue, related to Figure 6

Waterfall plots showing efficacy of each simulated therapy in each tissue. Positive values indicated tumor grew relative to baseline final volume; negative values

indicate tumor shrinkage.
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Figure S20. Immune cell abundances in GVAX + ICI + URU treatment, related to Figure 6

Immune population abundances in tissues, binned by whether the simulation with GVAX + ICI + URU reached the tumor clearance threshold. Macrophage

abundance was significantly higher in tissues whose simulations reached the tumor clearance threshold.
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Figure S21. Immune cell abundances in GVAX treatment, related to Figure 6

Shown here is the abundance of macrophages and CD4 and CD8 T cells in each tissue. With the GVAX treatment, no tissues reached the threshold of 50%

clearance relative to baseline.
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Figure S22. Immune cell abundances in ICI treatment, related to Figure 6

Immune population abundances in tissues, binned by whether the simulation with immune checkpoint inhibitor (ICI, Nivolumab) reached the tumor clearance

threshold. Not enough tissues met the clearance threshold for significance test.
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Figure S23. Immune cell abundances in GVAX + ICI treatment, related to Figure 6

Boxplots comparing baseline immune population abundances in each tissue simulation with efficacy of GVAX + ICI, contrasting tissues that grew relative to

baseline vs. those that shrank (threshold =TRUE means the relative tumor volume change is <− 0.5 or the tumor shrank; FALSE is the opposite, tumor growth did

not meet our threshold).
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Figure S24. Immune cell abundances in URU treatment, related to Figure 6

Immune population abundances in tissues, binned by whether the simulation with CD137 agonist (Urelemab/URU) reached the tumor clearance threshold. None

of these comparisons were significant.
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Figure S25. Immune cell abundances in GVAX + URU treatment, related to Figure 6

Immune population abundances in tissues, binned by whether the simulation with GVAX + URU reached the tumor clearance threshold. None of these com-

parisons were significant.
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Figure S26. Immune cell abundances in ICI + URU treatment, related to Figure 6

Immune population abundances in tissues, binned by whether the simulation with ICI + URU reached the tumor clearance threshold. None of these comparisons

were significant.

ll
OPEN ACCESS Theory


	CELL14067_proof.pdf
	Human interpretable grammar encodes multicellular systems biology models to democratize virtual cell laboratories
	Introduction
	Results
	A grammar encoding cell behavioral responses to extracellular signals
	Order-of-magnitude parameter estimates robustly predict qualitative behaviors of oxygen-dependent tumor cell proliferation, ...
	Rules simulating fibroblast and neoplastic cells in pancreatic cancer demonstrate that fibroblasts promote invasion and phy ...
	Development of immune resistance in a diverse TME of T cells and macrophages
	Modeling macrophage-induced invasion generates the experimentally testable hypothesis that EGFR signaling promotes neoplast ...
	Leveraging the hypothesis grammar for virtual clinical trials: Using human scRNA-seq data from PDAC to simulate immunothera ...
	Encoding asymmetric cell division in rules enables extension of the hypothesis grammar beyond cancer to simulate formulatio ...

	Discussion
	Limitations of the study

	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	Supplemental information
	References
	STAR★Methods
	Key resources table
	Method details
	Simulation Methods
	PhysiCell agent-based modeling framework
	Installation instructions

	Hypothesis grammar
	Cell behaviors
	Signals
	Behavioral statements
	Mathematical representation: individual rules
	Generalized mathematical representation: multiple rules
	PhysiCell rules implementation and parameterization

	Experimental details
	Macrophage co-culture with 3D mammary organoids derived from MMTV-PyMT tumors
	Invasion and colony formation assays of gefitinib treated organoids derived from MMTV-PyMT tumors
	Growth and motility of EGF treated MCF10A cells
	PDAC patient-derived tumor spheroid CAF co-culture invasion assay
	Samples Acquisition
	Organoid Generation
	CAF Media Treatment and Invasion Assays
	Cell motility tracking of PDAC cells and fibroblasts in varying ECM densities, alone and in co-culture
	Calibration of migration speed in ABM from motility assays


	Quantification and Statistical Analysis
	Model initialization from simulated distributions of cellular states and from multi-omics data
	Spatial transcriptomics data of PDAC tumors
	Deriving a metric to quantify the invasiveness of in silico tumor spheroids over time from in silico simulation (PhysiCell  ...
	Single-cell RNA-seq of PDAC tumors as a reference dataset to initialize estimates of immune populations in ABM simulations  ...
	Allen Brain Atlas53 data as a reference dataset to calibrate parameters of an ABM of cortical development

	Experimental Model and Study Participant Details




