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In brief

We developed a plain text modeling
language—a cell behavior hypothesis
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responds to the cells in its environment
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development.
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SUMMARY

Cells interact as dynamically evolving ecosystems. While recent single-cell and spatial multi-omics technol-
ogies quantify individual cell characteristics, predicting their evolution requires mathematical modeling. We
propose a conceptual framework—a cell behavior hypothesis grammar—that uses natural language state-
ments (cell rules) to create mathematical models. This enables systematic integration of biological knowl-
edge and multi-omics data to generate in silico models, enabling virtual “thought experiments” that test
and expand our understanding of multicellular systems and generate new testable hypotheses. This paper
motivates and describes the grammar, offers a reference implementation, and demonstrates its use in devel-
oping both de novo mechanistic models and those informed by multi-omics data. We show its potential
through examples in cancer and its broader applicability in simulating brain development. This approach
bridges biological, clinical, and systems biology research for mathematical modeling at scale, allowing the
community to predict emergent multicellular behavior.

INTRODUCTION more complex temporal changes throughout multicellular eco-

systems. More advanced computational tools are needed to fill

Generating temporally resolved multicellular predictions remains
an open computational challenge.'™ Bioinformatics techniques
and machine learning can predict cellular trajectories and dy-
namic phenotypic changes in individual cell types from snap-
shots in single-cell assays,*® but they cannot account for

the gaps between measurement times and leverage biological
knowledge and mechanism to forecast unseen emergent behav-
iors in multicellular systems de novo. Mechanistic mathematical
modeling can extend static high-resolution data to multicellular
dynamics. Agent-based modeling is a powerful mathematical
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modeling technique to predict emergent complex behaviors
from populations of individual software agents that follow prede-
fined rules based on their identity, state, and nearby conditions.”
Over a series of simulation time increments, each agent calcu-
lates its next action by evaluating its surroundings and internal
state variables to calculate its next action. Agent-based models
(ABMs) are well suited to studying the dynamics of multicellular
biology, as each agent can encode a cell based on its
state, type, and associated rules of behavior, including
their actions upon or in response to nearby cells (i.e., cell-cell in-
teractions).®>'" By encoding the rules of multicellular systems,
ABMs empower in silico experimentation and modeling
of cellular dynamics, even in the absence of temporal measure-
ments.®'> ABMs have been used as powerful in silico models to
test hypotheses in human development and disease where
comprehensive experimentation is not possible. ' By predict-
ing the future state of cells and the impact of perturbations,
ABMs provide a powerful toolset to generate digital twins and
virtual clinical trials.>'%?9%® Furthermore, the ability to run
ABM simulations at scale across diverse biological condi-
tions®*®~*° can refine biological understanding and predict future
cellular behaviors in these complex systems. Altogether, these in
silico models can prioritize bench experiments or clinical trials,
addressing the costs and practical constraints of real-world
experimentation.

While powerful, mathematical modeling lacks the language to
directly connect to the vast accumulated knowledge of the bio-
logical community and to easily transform data into equations.
As a result, widespread application of ABMs for modeling bio-
logical systems is currently limited both by the highly technical
nature of most software implementations and the ability to inte-
grate molecular data to ground simulations in the real world.
The former issue gatekeeps ABMs away from those without
significant computational experience, limiting widespread
application and even posing a barrier for many potential users
with extensive knowledge of the biological systems already en-
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coded in ABMs. Even for advanced computational users, the
custom coding required can limit reproducibility. Software im-
plementing ABMs has been developed to overcome these lim-
itations.*'™° Still, disease etiology and operating biological hy-
potheses are often hidden deep in source code, obscuring the
assumptions about the system and the full set of hypotheses
being simulated. These technical challenges to ABMs also limit
the ability to embed molecular datasets, which are often too
high-dimensional to manually encode into equations of agents
and rules. A conceptual framing that can abstract cellular phe-
notypes and their interactions—combined with a simplifying
coding infrastructure—is essential for the integration of molec-
ular measurements to personalize model predictions. Facili-
tating in silico modeling requires both an intuitive language—
to concisely express expert knowledge as plain text
descriptions of the rules of cell interactions that “encode” a
system—and also software to translate these plain text de-
scriptions into mathematical expressions and executable
models for immediate exploration of a digitized copy of the bio-
logical system.*’

To enable human-interpretable construction of ABMs, we
developed a cell behavior hypothesis grammar that bridges the
divide between biology and mathematical modeling, by
embracing well-defined human language hypotheses on cell
behavior as a logical model that can be translated directly into
the language of mathematical equations in an ABM. This one-
for-one relationship between human language and mathematics
allows us to systematically curate and integrate biological knowl-
edge and high-throughput data to make biology computable.”"
Briefly, our grammar defines the components of ABMs based
on labeled cell types and behaviors. Rules can be both knowl-
edge driven (e.g., expert statements drawing from literature
and prior training) or data driven (directly measured from
experimental data). This in turn enables virtual “thought experi-
ments”°? that challenge and extend our understanding of multi-
cellular systems and that generate new testable hypotheses.
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Figure 1. Using agent-based models to digitize cell knowledge

(A) Agent-based models (ABMs) simulate cells as individual objects with separate states and processes.
(B) Cell agents use rules that process biophysical signals in their microenvironment—including other cells—to drive changes in their behaviors. These rules are

based on our biological hypotheses.

(C) The cell behavior grammar combines signals and behaviors from well-defined dictionaries (1 and 2) to create interpretable hypothesis statements (3), which
can be automatically transformed into mathematical models (4) for use in computer models.

Thus, the grammar allows for broad application of ABMs in a
reproducible, modular, and extensible manner. We demonstrate
how this grammar’s reliance on annotated cellular states enables
both encoding of expert-curated biological knowledge as well as
high-throughput molecular profiling data, applying these tech-
niques to sample models in cancer biology. These examples
are progressively more complex and designed to span tumor
cell growth, invasion, and response to immunotherapy. We
then extend this grammar to a further example simulating brain
development with models parameterized from spatial transcrip-
tomics (ST) data in the Allen Brain Atlas,®® showing the broad
applicability of our hypothesis grammar to biological systems
beyond cancer. The cases embedding multi-omics and spatial
molecular data enabled by this grammar demonstrate how to
ground simulations in data to form more accurate digital models
of multicellular dynamics.

RESULTS

A grammar encoding cell behavioral responses to
extracellular signals

In this paper, we implement our new hypothesis grammar for
ABMs in the well-calibrated, robust agent-based modeling
ecosystem of PhysiCell.*” ABM frameworks® like PhysiCell*’
model individual cells as software agents with independent
states (e.g., position, cycle status) and processes (e.g.,
motility, secretion); see Figure 1A. Each cell agent responds
to stimuli (signals) in their microenvironment, which effect
changes in their behaviors (Figure 1B). Previous implementa-
tions of PhysiCell were limited to pre-defined models and
interactions or required users to have expert knowledge
across the diverse domains of biology, mathematics, and
computer science to hand-code models with customized
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cellular agents, stimuli, and interactions. Here, we simplify this
encoding by expanding the PhysiCell software to encode the
agents and stimuli as human-readable sentences that are then
parsed into ABMs. Briefly, this abstraction is enabled by
writing cell hypotheses relating cell behavioral responses to
signals in a grammar that can be translated into mathematics
and executable code, as summarized below (e.g., typical rule
in Figure 1C) and in detail in STAR Methods and Methods S1.
In this hypothesis grammar, cellular behaviors and stimuli are
expressed as nouns and their regulatory relationships as
verbs, and parameters quantify these relationships. Hypothe-
ses can be drawn from a variety of sources, including domain
expertise, mining of prior literature, and analysis of transcrip-
tomic and other data. Due to our uniform knowledge repre-
sentation, all these rules can be compatibly integrated
(Figures S1, S2, and S3) in mathematical models. Moreover,
the use of plain language for cellular phenotypes also facili-
tates the direct mapping of ABM variables to the cellular la-
bels inferred in analyses of single-cell and spatial multi-omics
datasets.

In addition to the stimuli and cell types in the grammar and
optional initial conditions provided from high-throughput molecu-
lar datasets, cellular behaviors simulated from ABMs also depend
on both the parameters for the equations in these rules and the
initial conditions of cellular phenotypes. While we implement the
grammar using the PhysiCell agent-based modeling framework*’
as areference implementation, it can be translated to other agent-
based modeling systems.*'+43~46:48-50 gj|| an advantage of build-
ing this hypothesis grammar on top of PhysiCell is that it enables
us to use a broad set of biochemical and biophysical parameters,
which has been previously quantified and experimentally vali-
dated in the extensive literature and community-based develop-
ment using this modeling framework.*’

The hypothesis grammar parses numeric variables for model
parameters. Ideally, these parameters would be inferred from
the literature or quantified from experimental data of the biolog-
ical systems they seek to model. Parameter selection is a crit-
ical aspect of ABMs, as it can significantly affect simulation
outcomes. While many parameters can be estimated experi-
mentally or from the literature, the cellular and molecular het-
erogeneity of biological systems can differ between individuals
and contexts. Throughout the development of PhysiCell, we
have refined parameter selection processes in several ways
(e.g., Bayesian approaches,® large-scale parameter space
sweeps,**° and community-developed tools®®), laying the
foundation for our hypothesis-based grammar and commu-
nity-based outreach. Performing parameter sensitivity analysis
remains a fundamental step in evaluating model performance.
Prior to the grammar, implementing parameter sensitivity ana-
lyses generally required custom code to alter each model var-
iable. We extend our software to include a graphical tool*® for
exploring and tuning parameters of rules governing signals
and behaviors to simplify in silico parameter exploration. Addi-
tionally, we created software for analysis across the entire input
space of models (parameters, initial conditions, and hypothe-
ses; see Methods S1). This additional software module®” is
focused on in silico perturbations of parameters to test their
sensitivity on model behavior.
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Order-of-magnitude parameter estimates robustly
predict qualitative behaviors of oxygen-dependent
tumor cell proliferation, with greatest sensitivity to cell
motility

In cancer, cell proliferation becomes unchecked, exhausting ox-
ygen and nutrients in non-vascularized tumors. Modeling
resource consumption provides a foundation for mathematical
modeling of tumors, and this serves as the base example of tu-
mor cell behavior in the absence of an immune response, from
which other modeling examples are built.*”->*°®"%* Following
prior work developing a custom mathematical model of this sys-
tem,>* we now adapt our hypothesis grammar to model hypoxia-
induced migration, where low oxygen conditions can “repro-
gram” tumor cells to a transient, post-hypoxic phenotype of
increased chemotactic migration and where subsequent pro-
longed exposure to non-hypoxic conditions can “revert” those
cells back to a less motile phenotype (Figure 2A). The language
encodes these cell behaviors by using the language “oxygen de-
creases necrosis” and “oxygen decreases transformation to
motile tumor cells.”

We used these rules to simulate 5 days of growth of a 2D tumor
in an environment of 38 mmHg oxygenation (physioxia®), start-
ing from 2,000 viable cells seeded randomly in a virtual disk with
a 400-um radius (Figure 2B). The ABM generated from these
rules simulates a virtual tumor with an oxygen-poor necrotic
core, while hypoxic cells disseminate throughout the virtual tu-
mor with increasing frequency near the peri-necrotic boundary.
Here, we observe an in silico model of a transient post-hypoxic
phenotype of increased chemotactic migration, where cells
eventually return to their baseline phenotype upon reoxygena-
tion. Consistent with prior modeling predictions and experi-
mental validation,®*® these motile cells form invasive “plumes”
in non-hypoxic tumor regions, but they can fail to exit the tumor
and invade the surrounding tissue when their hypoxic adapta-
tions do not persist in higher oxygen conditions (Figure 2B).

In this model, we selected parameters from our prior calibra-
tion of this model from literature-derived parameters and
experimental validation to simulate the dynamics of an MDA-
MB-231-derived orthotopic murine breast tumor model.>*®
We investigated the sensitivity of the model results to the param-
eter values, by computing the impact of varying parameter vari-
ations by 1% to 20% on key quantities of interest (Qols). We as-
sessed population growth by analyzing the area under curve
(AUC) of non-motile and motile tumor cell populations and eval-
uated the differences in the radial distribution between live motile
and non-motile cells (Figure 2C). The median values of the Qols
remained relatively stable across different perturbation levels in
parameter space, indicating that the overall model behavior
was not strongly influenced by small changes in these parame-
ters. The variability of these outputs increased with higher pertur-
bation levels, suggesting that while average behavior might be
robust, individual simulations could exhibit greater variation
(Figure 2D). Although individual simulation replicates showed
variability consistent with the stochastic nature of tumor growth,
key qualitative behaviors—such as the emergence of necrotic
cores and the spatial gradients of cell proliferation and migra-
tion—were consistently observed across multiple replicates
(Figure S4; Methods S1). This finding aligns with our recent
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(A) Schematic of the tumor hypoxia model. Initially, the tumor is homogeneous without immune infiltration.

(B) Simulation of tumor hypoxia dynamics over 5 days, using reference parameters. (Bar: 400 pm.)

(C) Metrics extracted from the simulation, including area under the curve (AUC) for cell populations over 5 days, the radial distribution of live non-motile and live
motile tumor cells at endpoint, and the Wasserstein distance of these distributions.

(D) Variation of quantities of interest (Qols) under multiplicative perturbations in the 24D parameter space.

(E) Mean and standard deviation of the sensitivity index for each parameter across all Qols. Model rules are enumerated in the order of their insertion. Each rule
includes parameters representing the base behavior (base), saturation level (sat), half-max signal value (hfm), and hill power (hp). Parameters such as rule3_hfm
and rule7_hfm denote the oxygen half-max values that trigger necrosis in non-motile and motile cells, respectively. Similarly, rule8_hfm and rule4_hfm represent
the oxygen half-max values for phenotype transitions between motile and non-motile cells. A full description of all parameters can be found in Methods S1.

large-scale investigation of highly stochastic tumor-immune
ABMSs,*® which found that the outcome of individual simulation
replicates can vary widely, while large sets of replicates can
remain concordant.

Perturbations to the base values of the rules did not lead to sig-
nificant changes in the Qols. Half-max values — particularly those
associated with necrosis onset and transitions between motile
and non-motile phenotypes—significantly influenced both the
magnitude and timing of tumor growth and the spatial distribu-
tions of cell populations (Figure 2E). These findings underscore

the importance of careful parameter estimation and rigorous
sensitivity analysis in the application of ABMs, emphasizing the
need for experimental quantification of the contribution of indi-
vidual parameters to emergent behaviors in tumors.*®

Rules simulating fibroblast and neoplastic cells in
pancreatic cancer demonstrate that fibroblasts

promote invasion and physically block progression

In contrast to the hypoxia-derived tumor progression in our pre-
vious model, pancreatic ductal adenocarcinoma (PDAC) tumors
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are characterized by a dense stroma consisting of cancer asso-
ciated fibroblasts (CAFs) that have a dual role in promoting and
hindering tumor growth. We sought to adapt the rules framework
to model CAF and tumor cell interactions informed by ST and
single-cell RNA sequencing (scRNA-seq) datasets of PDAC.
Our previous studies of cell-cell interactions in scRNA-seq anal-
ysis and organoid co-cultures found that fibroblasts induce
epithelial-to-mesenchymal transition (EMT) in neoplastic cells
through communication via the extracellular matrix (ECM)-
sensing integrin receptor ITGB1.°” This neoplastic cell pheno-
type was mutually exclusive with proliferative signaling in epithe-
lial cells. Therefore, we encoded two neoplastic cell subtypes in
our model: an epithelial cell type that proliferates and a mesen-
chymal cell type that undergoes EMT but does not proliferate
(Figure 3A).

The tumor cell states and parameters in our oxygen-depen-
dent tumor growth model provided a foundation for modeling
the neoplastic cell states in PDAC, particularly the proliferative
phenotype associated with the more epithelial-like neoplastic
cells. The more complex biophysical impact of fibroblast and
ECM interactions and the precise cellular behavior of EMT in
this mesenchymal subtype of cells were not sufficiently well
described to encode model rules or parameters. To address
this limitation, we performed single-cell tracking experiments®®
to assess the impact of both the ECM and fibroblasts on human
pancreatic tumor cells. Co-culturing PDAC cells with CAFs
increased motility except in the highest ECM concentrations,
as compared with monoculture, leading us to hypothesize that
increased cell motility is a dominant feature of fibroblast-medi-
ated signaling on neoplastic cells (Figures 3B, S5, S6, S7, and
S8; Methods S1). These data also showed that ECM density
has a complex effect on neoplastic cell motility: as collagen-I
density was increased in monoculture, tumor cell motility first
increased and then decreased, which was consistent with prior
published observations from other cancer types.®®%°

Based on our gene expression analysis and these experi-
mental data, we hypothesized that fibroblasts secrete factors
that both alter ECM density and promote neoplastic cell pheno-
type changes to increase motility in the co-culture condition. We
encoded these 2-fold effects in the ABM (where signaling from
fibroblasts promotes EMT in neoplastic cells) by adding secre-
tion of a simulated factor from fibroblasts, which promotes a
phenotypic shift from epithelial-like to mesenchymal-like. This
transformation rate depended on the local ECM density, with
the rate increasing from 0 to 0.01 min~" as the ECM density in-
creases. We described the neoplastic cell motility response to
its local ECM density using two Hill functions, which combined
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to produce the biphasic motility behavior observed in our exper-
iments (Figure S9; Methods S1). Based on the notable sensitivity
of our ABM to motile neoplastic cells, we sought to further use
our experimental data to parameterize motility rates in this
ABM to more accurately reflect PDAC biology. To isolate the
CAF signaling effect on mesenchymal-like neoplastic cell motility
from the effect on EMT induction, we used the in vitro PDAC
monoculture cell motility data to parameterize the in silico migra-
tion rate of mesenchymal cells as a function of ECM density
(Figures S3 and S9; Methods S1). In this way, the fibroblasts in
this model could shift the microenvironment in favor of tumor
progression, consistent with the hypothesis generated from
our transcriptional signatures and the in vitro cell motility data.
Finally, to encode the switch between this mesenchymal pheno-
type and the alternative epithelial-like subtype, we simulated a
simple (generalized) pro-inflammatory factor which was pro-
tumorigenic and induced proliferative signaling in the epithelial-
type neoplastic cells.

To first simulate the impact of CAF density on cancer progres-
sion, we generated a series of ABMs of virtual co-culture exper-
iments at varying cell densities. We initialized the model by seed-
ing a total of 1,000 cells at various PANC:CAF ratios (using the
rules and parameters derived above to simulate Panc 10.05
and HT-231 cell behavior) for 7 simulated days (Figure 3C;
Videos S1-S8). In the simulations, fibroblasts promoted tumor
cell invasion. We sought to quantify the impact of fibroblast den-
sity on this invasion by counting the number of invasive projec-
tions of simulated tumor cells away from the central tumor
mass over time (STAR Methods). By 24 h, the simulated co-cul-
tures all had a significant increase in invasion relative to simu-
lated monoculture, with the highest levels of invasion observed
in the 10:1 and 5:1 PANC:CAF ratio simulations (Figure 3D).
This enhanced invasion in the 10:1 and 5:1 PANC:CAF ratio sim-
ulations was observed across all time points, while the 2:1
PANC:CAF simulation reached a similar level of invasion at later
time points. On the other hand, the 1:5 and 1:10 PANC:CAF ratio
simulations reach similar levels of invasion to monoculture at
later time points.

To validate the observed impact of CAF-related signaling on
neoplastic cell invasion, we also performed in vitro cultures of
a panel of patient-derived PDAC organoids in CAF-conditioned
media and measured the change in invasion (Figure 3E). While
PDAC organoids invaded when embedded in collagen alone,”®
we observed significantly increased invasion in the CAF-condi-
tioned media in these experiments, consistent with the hypothe-
sis that secreted factors from CAFs are sufficient to induce inva-
sion. One limitation of our model was its abstraction into a single

Figure 3. CAFs support the epithelial-to-mesenchymal transition in simulated pancreatic epithelial cells, which promotes invasive growth

and the establishment of new epithelial-like foci
A) Schematic of the CAF-epithelial model.
B) Monoculture and co-culture PANC migration speed vs. ECM density.

D) Mean invasiveness for each simulated admixture (PDAC:CAF).

¢
(
(C) Simulation of CAF-epithelial dynamics initialized at a CAF:epithelial ratio of 1:1 over 7 days.
(
(

E) Patient-derived pancreatic organoids (PDOs) are significantly more invasive when cultured in inflammatory CAF (iCAF)-conditioned media as compared with

control.

(F) Schematic of the extended CAF-epithelial model for integration with Visium data.
(G) Simulations of samples PDACO01 (bottom row) and PDACO2 (top row) Visium tissue over 15 days. (Bar: 200 pm.)
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CAF subtype. To test whether this was sufficient to capture the
invasive process, the invasion assays in PDAC organoids were
performed in conditioned media from inflammatory CAFs (iCAFs)
and myofibroblastic CAFs (myCAFs).”" We observed similar
levels of invasion with both CAF subtypes, supporting the
abstraction of a single subtype of CAFs for our initial models
(Figure S10).

We next sought to identify the potential of adapting our ABM to
forecast cellular states based on initial conditions from human
tissue. For this mathematical model, we initialized cell positions
in a virtual tissue based on Visium ST data from two human
PDAC lesions selected for their high fibroblast density’®
(Figures 3F and 3G). Our bioinformatics methods for three-way
integration between H&E imaging data, ST, and transcriptional
signatures of cellular phenotypes’ (see STAR Methods) were
used to categorize and position the epithelial-like and mesen-
chymal-like neoplastic cell phenotypes, fibroblasts, and ECM
in our model. Other cell types identified in the Visium data
were modeled as essentially inert, providing structure and scaf-
folding for the tumor cells and CAFs. Cellular phenotypes anno-
tated in the two Visium datasets were input into PhysiCell and
used to initialize two distinct ABMs. Each lesion’s development
was forecasted for 15 days (Figure 3G; Videos S9 and S10).
We observed a transitory state in which the neoplastic cells tran-
sitioned from mixed epithelial and mesenchymal states to
become nearly uniformly mesenchymal due to interactions with
fibroblasts. Subsequently, groups of epithelial neoplastic cells
arose in both models and even invaded beyond the tumor
boundary.

Initializing the ABM from ST data could also estimate regional
changes to cellular phenotypes and the impact of tumor hetero-
geneity. In both simulations, an interface of mesenchymal
neoplastic cells was maintained between the epithelial
neoplastic cell and fibroblast cell masses. In PDACO02, rapidly
dividing epithelial neoplastic cell clusters arose from lesions
not surrounded by fibroblasts and invaded the bounding pancre-
atic cells. In contrast, the dense, uniform fibroblasts surrounding
all of the lesions in PDACO1 slowed invasion. The reduced rate of
invasion resulted in smaller invasive lesions at 15 days in the
PDACO01 sample compared with PDAC02. Whereas all the le-
sions in PDACO2 invaded the bounding pancreatic cells,
PDACO01 developed an epithelial neoplastic cell mass con-
strained from further motility by the surrounding CAFs and dense
ECM they had constructed. These computational predictions
showed the hypothesized neoplastic-fibroblast interactions
inducing the transition between classical (epithelial-like) and
basal (mesenchymal-like) pancreatic transcriptional subtypes,
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as observed in primary human pancreatic tumor progression,
and the return to a more epithelial-like classical subtype at met-
astatic sites.”*’> Moreover, the spatially resolved simulations
from tissue also demonstrated how CAFs, despite their tumor-
promoting behavior, can also serve as a physical barrier to pre-
vent neoplastic cell invasion. These simulations of PDAC
showed how we can parameterize ABMs from transcriptional
analysis and cellular-level biophysical measurements, yielding
simulations that inform experimentally testable hypotheses.

Development of immune resistance in a diverse TME of
T cells and macrophages

To introduce virtual immune cells, we extended the ABM by
including CD8* T cell agents capable of contact-mediated cyto-
toxic killing, as well as phenotypically diverse macrophage pop-
ulations. We developed the rules so that CD8" T cells were also
stimulated by pro- and anti-inflammatory factors that modulate
the probability that killing will occur after a given cell contact.
Simulated macrophages switched between promoting and sup-
pressing tumor killing (secreting a pro- or anti-inflammatory
factor, respectively) depending on the oxygenation in their im-
mediate surroundings and as described in the literature.”®"®
Macrophages were also responsible for phagocytosing dead
cells and could increase secretion of pro-inflammatory factors,
attracting CD8* T cells that homed to the tumor by following
this chemokine. CD8"* T cells could attack and damage malig-
nant epithelial cells, and accumulated damage could cause tu-
mor cell death. In tissue culture, macrophages can be polarized
into cell states commonly referred to as M1 and M2. These phe-
notypes are plastic, and in our ABM, macrophages could transi-
tion between M1-like and M2-like depending on the signals in its
environment, consistent with the literature”®~"® (Figure 4A).

We used these rules to simulate 5 days of growth of a 2D tumor
in tissue culture in a virtual environment of 38 mmHg oxygenation
(physioxic conditions®®), starting with 2,000 viable tumor cells
seeded randomly, surrounded by a ring of immune cells seeded
with 100 of each non-tumor cell type (Figure 4B). Through these
simulations, we observed that CD8" T cells clustered together
and migrated throughout the tumor along with macrophages to
accomplish tumor clearance, with a corresponding dominance
of pro-inflammatory factor as the simulation proceeded
(Figures 4C and 4D). This model showed how the innate and
adaptive immune systems cooperated in the task of tumor
sensing and clearance and demonstrated a simplified, plastic
M1-like to M2-like axis of macrophage behavior in tissue culture,
marked by rapid and reversible changes along this axis. We
anticipated that the parameterization of immune cell models

Figure 4. A simulated tumor evades cytotoxic killing by manipulating its immune microenvironment

(A) Schematic of the tumor-immune interaction model.
B
(C
(D
(
(

E

state.

Simulation of tumor-immune interaction model over 5 days showing tumor killing.

Time series of average substrate levels surrounding CD8" T cells. Shaded regions indicate one standard deviation.

Time series of tumor cell count. Shaded regions indicate one standard deviation.

Schematic of the extended tumor-immune model, with three possible macrophage states and three CD8* T cell states.

F) Simulation of extended tumor-immune model over 5 days, showing tumor survival after exhausting T cells and pushing more macrophages to the M2-like

(G) Time series of average substrate levels surrounding CD8* T cells. Shaded regions indicate one standard deviation.
(H) Growth curves for all populations; the right plot zooms in to show just the immune dynamics, the exhaustion of T cells, and the switch toward M2-like

macrophages. Shaded regions indicate one standard deviation.
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would also impact simulations results. By default, we chose
parameter values based on existing literature”® 2 to ensure bio-
logical relevance. To further investigate parameter sensitivity, we
applied our new parameter sensitivity toolbox enabled by our
rules to perform a local sensitivity analysis around the selected
parameters using multiplicative perturbations of 1%, 5%, 10%,
and 20%. We observed that while these perturbations intro-
duced variation in the Qols, they preserved the central tendency
of the model outputs. We found that the half-max oxygen value
for macrophage polarization had the greatest impact on the
selected Qols (Figures S11 and S12). This uncertainty quantifica-
tion was consistent with the significant impact of macrophages
on immune response and immunosuppressive progression dur-
ing carcinogenesis.

To further model immune response initiation and macro-
phage-mediated resistance in tissue culture, we extended the
immune cell subtypes in our model to represent MO-like, M1-
like, and M2-like macrophages and naive, activated, and ex-
hausted CD8™ T cell subtypes (Figure 4E). While in vivo macro-
phage populations do not polarize into discrete states in this
way, we applied these categories as ways of broadly character-
izing macrophages as either pro- or anti-inflammatory. Inter-
leukin-10 (IL-10) and interferon (IFN)-y modulated the activation
of naive T cells with (pro-inflammatory) IFN-y promoting and
(anti-inflammatory) IL-10 inhibiting this activation. In the acti-
vated CD8" T cell compartment, IFN-y and IL-10 promoted pro-
liferation and exhaustion, respectively. We initialized the tumor
as before with 2,000 tumor cells inside a disc. The immune
compartment was initialized with 400 MO-like macrophages
and 400 naive CD8* T cells in aring around the disc of tumor cells
(Figure 4F). ABM simulations demonstrated dynamics where
pro- and anti-inflammatory factors occupied the neighborhood
of the CD8" T cells in roughly equal proportions throughout the
simulation (Figure 4G) that initially caused the tumor population
to shrink by more than 50% before recovering to nearly its orig-
inal volume by day 5 (Figure 4H). This was facilitated by an im-
mune compartment that initially had a rapid activation of naive
T cells and a slower exhaustion of these newly activated CD8"
T cells (Figure 4H). The macrophage compartment accelerated
both shifts with M1-like macrophages secreting IFN-y to help
activate T cells and later M2-like macrophages secreting IL-10
toinduce CD8™ T cell exhaustion. The level of hypoxia modulated
the balance between the M1-like and M2-like macrophage pop-
ulations through its regulation of the transition from the pro-in-
flammatory M1-like state to the anti-inflammatory M2-like state.
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By the end of the simulation, the CD8" T cell compartment was
entirely exhausted, and the macrophage compartment inside
the tumor boundaries was entirely M2-like (Figures 4F, later
time points and 4H), permitting significant tumor regrowth.
These immune dynamics were responsible for the initial CD8*
T cell-induced regression of the tumor and subsequent resis-
tance to immune attack, as commonly observed in late-stage,
immunosuppressive tumors.

Modeling macrophage-induced invasion generates the
experimentally testable hypothesis that EGFR signaling
promotes neoplastic cell motility in breast cancer
Because CD4" helper T cells are a major component of the tumor
immune ecosystem that modulates the immune response on tu-
mor progression,®® we sought to extend our ABM investigation
to uncover mechanisms associated with immune-induced tumor
progression by simulating the influence of CD4* helper T cells on
epithelial cell behaviors. Notably, DeNardo et al. previously
demonstrated that signaling from Th2 CD4* T cells to macro-
phages can induce pro-tumorigenic effects in the MMTV-PyMT
murine breast cancer spheroid model.?* Briefly, the study
demonstrated that Th2 CD4* T cell signaling promotes changes
in macrophage phenotype, making them more likely to produce
EGF and therefore stimulate EGFR signaling in tumor cells driven
by immunosuppressive macrophages, promoting invasive
behavior via EGFR signaling (Figure 5A). We sought to determine
if our ABM simulations can reproduce this emergent, seemingly
counter-intuitive tumor-promoting behavior arising during im-
mune response.

We first sought to simulate the series of experiments from
DeNardo et al.®* that used a tumor spheroid co-culture model
to evaluate the impact of macrophage phenotypes on invasion.
Briefly, we simulated the M1-like macrophages as pro-inflam-
matory and M2-like macrophages as anti-inflammatory, and
we encoded their role in phagocytosing dead cells and secreting
pro- and anti-inflammatory factors. In this system, the M2-like
macrophages also promoted pro-tumorigenic signaling in the
neoplastic cells through the EGF-EGFR signaling pathway
(Figure 5B). We used these rules to simulate 5 days of virtual
spheroid growth in 38 mmHg oxygenation (physioxia®®), starting
from 200 viable tumor cells seeded randomly, surrounded by
macrophages overlaid in co-culture where 10 of each immune
cell type (macrophage, T cell) are seeded. As a first step in mir-
roring the macrophage promotion of tumor invasion, we simu-
lated EGF secretion from M2-like macrophages activating

Figure 5. Tumor-associated macrophages in M2-like polarization state assist simulated invasive breast cancer spheroids through EGF

signaling

(A) Example fluorescence microscopy image showing macrophages (red) proximal to an invading PyMT organoid (green), with DAPI shown in blue indicating cell
nuclei, as an additional replicate image of the experiments described originally in DeNardo et al.®* (Bar: 20 pm.)

(B) Schematic of the tumor-associated macrophage (TAM)-EGF model, including TAMs, CD4™" T cells, and neoplastic epithelial cells.

(C-E) Endpoint snapshots of simulations in which EGF signaling causes neoplastic cells to increase proliferation (C), increase motility (D), and increase both

proliferation and motility (E).

(F) EGFR inhibitor inhibits MMTV-PyMT invasion into 3D collagen | in a dose-dependent manner. ***p < 0.0001 (Kruskal-Wallis followed by Dunn’s multiple

comparisons test).

(G) Stimulated MFC10a breast epithelial cells exhibit increased motility when exposed to EGF, with increasing median migration speed as more cells escape the

tumor bulk for unrestricted migration.
(H) Endpoint snapshots treated with IFN-y (left panel) and IL-4 (right panel).
(I) Endpoint snapshot with Th2-like CD4* T cells.
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pro-tumorigenic behavior of neoplastic cells through EGFR.
Canonically, EGFR signaling is hypothesized to act primarily by
promoting tumor progression by inducing neoplastic epithelial
cell proliferation, which we term the “grow hypothesis.” We
simulated this by specifying a Hill response rule with the signal
of EGF modulating cell-cycle entry in malignant epithelial cells,
using the hypothesis grammar (Figure 5C; Video S11). However,
these simulations did not demonstrate the macrophage-induced
invasive tumor structures from DeNardo et al.> Our PDAC sim-
ulations demonstrated that enhanced cellular motility was critical
to simulate invasion. We modeled EGFR signaling from macro-
phages as promoting motility in breast cancer cells, a hypothesis
supported experimentally.®>:#¢ We term this the “go hypothesis”
(Figure 5D; Video S12). We simulated this increase in motility us-
ing a grammar rule specifying a Hill response function between
EGF and malignant epithelial cell motility. The experimentally
observed invasive phenotype was recapitulated in models in
which EGF induced only changes to motility (Figure 5D) and
models where EGF induced both motility and proliferation
(Figure 5E; Video S13).

Our simulations led to the hypothesis that EGF-EGFR
signaling in breast cancer cells promotes invasive outcomes pri-
marily through modulating malignant epithelial cellular motility.
To test these computational predictions experimentally, we
treated organoids derived from the same MMTV-PyMT model
with the EGFR inhibitor gefitinib. These experiments demon-
strated that inhibition of EGF receptor signaling reduced the abil-
ity of neoplastic cells to form invasive protrusions (Figure 5F) and
only reduced colony formation at extremely high doses of gefiti-
nib treatment (Figure S13). In addition, MCF10A mammary
epithelial cells exposed to EGF showed both increased prolifer-
ation and increased motility (Figures 5G and S14). Together,
these experiments confirmed our computationally driven hy-
pothesis that macrophage-induced invasion arises from EGFR
signaling promoting neoplastic cell motility, consistent with the
go hypothesis or go and grow hypotheses.

We next sought to integrate the effect of Th2-like CD4 helper
T cells that secrete cytokines, which we®* and others®” have
shown skew macrophages toward M2-like phenotypes and
induce their proliferation. Mirroring the DeNardo et al. experi-
ments, we performed in silico stimulation of the MMTV-PyMT-
macrophage co-culture system first with the cytokine IFN-y
and then with IL-4. In our simulations, we observed that IFN-y
completely constrained tumor growth, whereas IL-4 promoted
macrophage polarization toward an M2-like phenotype,
inducing their proliferation and secretion of EGF into the local
environment. The increased EGF levels then promoted tumor
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proliferation and moatility, resulting in an expansion of tumor vol-
ume, compared with the IFN-y condition (Figure 5H). Finally, we
layered Th2-like CD4* T cell agents into our model, which acted
as cellular sources of IL-4 and promoted invasion similarly to the
simulated high IL-4 dose, but with a more irregular shape result-
ing from a more irregular supply of IL-4 and subsequently EGF
around the tumor boundary (Figure 5I). Taken together, these re-
sults support a dual role for EGF in promoting invasion. They also
demonstrated how the rules-based modeling framework allows
for in silico testing of cellular hypotheses of experimental phe-
nomena and how it supports distinguishing alternative mecha-
nistic hypotheses that can subsequently be tested experimen-
tally to build toward a systems-level model of emergent,
unanticipated cell behavior.

Leveraging the hypothesis grammar for virtual clinical
trials: Using human scRNA-seq data from PDAC to
simulate immunotherapy combinations

Encoding the tumor microenvironment (TME) in our ABM can
simulate the impact of immune cell composition and perturba-
tions on tumor growth. We sought to adapt this framework to
simulate the impact of different immune-targeted therapies in
the PDAC microenvironment to develop a virtual simulation of
a clinical trial. In particular, we were motivated by a recent neo-
adjuvant clinical trial®®®° that sought to enhance T cell-mediated
cytotoxicity in PDAC by adding Urulemab (an anti-CD137
agonist therapy) to a combination of GVAX (an irradiated, granu-
locyte-macrophage colony-stimulating factor [GM-CSF]-
secreting, allogeneic PDAC vaccine)®® and Nivolumab (an anti-
PD-1 immune checkpoint inhibitor). To generate the model rules
reflecting this clinical trial, we used observations from high-
throughput transcriptomic data (Figure 6A), our preceding im-
mune cell models, and additional literature-derived hypotheses
about the phenotypes of immune cells (Figure 6B). Owing to
the nature of these therapies, we implemented rules to model
T cell, tumor cell, and macrophage behavior. We used template
rules for tumor cells and macrophages, modeling proliferative tu-
mor cells as in previous ABM examples and macrophages as
plastic between pro- and anti-inflammatory states but biased to-
ward anti-inflammatory factor secretion. We then developed
rules for T cells. To reflect the therapeutics in the trial design,
we modeled CD4* and CD8" T cells subtyped based on their
PD-1 and CD137 expression. Multi-omics data from the arms
of this trial, comparing GVAX monotherapy with the combination
with Nivolumab, demonstrated that PD-1 inhibition activates
chemokine signaling in CD4* T cells, thereby signaling to CD8"
T cells to promote changes in lymphocyte chemotaxis.®' Based

Figure 6. Combination immunotherapies simulated for a cohort of untreated pancreatic adenocarcinomas based on immune cell pro-

portions estimated from scRNA-seq data

(A) Expression of marker genes of interest within immune populations in immune-enriched scRNA-seq data in a cohort of PDAC tumors from Steele et al.®”

B) Schematic of the combination immunotherapy model.

C) Populations of interest identified for each tumor profiled in the reference scRNA-seq data.

E) Growth curves under each therapy condition for three example tissues, with endpoints shown.

(
(
(D) Tumor growth curves per each tissue initial conditions without therapy, with images shown at the simulation endpoint for select samples.
(
(

F) Tumor growth curves for the triple-therapy treatment condition (ICI + URU + GVAX), images shown at simulation endpoint for select samples.

(G) Macrophage and CD8 T cell population relative abundances in tissues, binned by whether the simulation with GVAX + ICIl + URU reached the tumor clearance
threshold (final/initial x 100% < 50%). Macrophage abundance was significantly higher in tissues whose simulations reached the tumor clearance threshold (p =
0.005606), while CD8" T cell abundance did not show a significant difference (o = 0.5509).
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on these data, we created distinct model rules for T cells based
on their PD-1 expression, specifically that CD4* T cells secrete
chemokines that attract CD8"* T cells (here designated pro-in-
flammatory factor). We performed further ligand-receptor anal-
ysis of cell-cell signaling associated with CD137" CD8" T cells
using scRNA-seq data from untreated PDAC tumors and found
that CD137" CD8* T cells have higher signaling through IFN
expression than their CD137"° counterparts.®’ We modeled this
subtype-specific IFN expression by specifying that CD137* cell
agents secrete an inflammatory factor substrate into the sur-
rounding environment. Stimulation through the CD137 trans-
membrane receptor is also known to make CD8" T cells more
effective at killing, which we simulated by modeling CD137"
CD8* T cells as having a higher killing rate than their CD137'°
counterparts and having the ability to kill tumor cells indepen-
dent of their PD-L1 status.

We then simulated the effect of therapy on different microen-
vironments—a key step to creating virtual clinical trials that
explore therapeutic response across a variety of tissue condi-
tions. Using the rules to generate virtual clinical trials requires
having both a mechanism of action of the therapies in our rules
and the immune cell compositions for a cohort of virtual PDAC
tumors. We simulated the effect of therapy by modifying the pro-
portion of each T cell subtype consistent with the canonical
mechanism of action of that therapy. Specifically, we simulated
GVAX treatment by a doubling of all T cell populations in the
TME, Nivolumab therapy by turning PD-1"" agents into their
PD-1' counterparts and PD-L1" agents into PD-1'°, and Urelu-
mab by turning all CD137'° agents into CD137™ agents. We
kept these cellular interaction rules consistent across all individ-
ual simulated patients; the efficacy of a simulated treatment thus
depended upon the proportion of immune cell populations in
each virtual patient. To simulate clinically relevant immune com-
partments, we generated an in silico cohort of tumors based on
the immune cell-type distributions in untreated scRNA-seq data
from Steele et al.®” To mirror the cellular phenotypes in our model
rules, we re-annotated the scRNA-seq data from Steele et al.””
as described by Guinn et al.®” and Li et al.,°' sorting T cells
into hi/lo categories based on TNFRSF9 (CD137) and PDCD1
(PD-1) gene expression®’ (Figure 6C). Tumor cells were classi-
fied as PD-L1" and PD-L1', based on scRNA-seq measure-
ments of CD274 (PD-L1). In our simulations, we initialized each
microenvironment with 1,000 tumor cells, with the proportion
of PD-L1'"° to PD-L1" expression from the scRNA-seq data.

We then combined our cell rules and TME composition from
the scRNA-seq cohort to demonstrate how our modeling frame-
work can be applied to test hypotheses about the impact of the
TME composition on response to different therapies. As a virtual
control to test the impact of therapeutics, we also ran these sim-
ulations for the baseline TMEs without therapy. The simulations
from most patient microenvironments predicted neoplastic cell
population growth without treatment after 7 simulated days.
We then applied the simulations for each candidate therapy
alone or in combination to each microenvironment; these simu-
lations demonstrated inter-patient heterogeneity of treatment
effects (Figures 6D-6F, S15 and S16). The baseline tumor growth
profiles vary from near elimination (tissue 8) to uncontrolled
tumor growth (tissue 11A), with others falling in between
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(Figure 6D). At endpoint, several simulated tissues displayed
local aggregations of T cells, which were enriched in our simu-
lated treatments, similar to the lymphoid aggregates found after
immunotherapy treatment in biospecimens from human clinical
trials®®°® (Figures 6D-6F, S17 and S18).

An advantage of our modeling framework is that it can simu-
late the temporal dynamics of cellular phenotypes observed in
the TME. These temporal simulations provide the opportunity
to evaluate the impact of the TME composition on simulated
reduction in tumor volume (Figures S19-S26). In our simulations,
we observed a statistically significant higher abundance of mac-
rophages between responders and non-responders to triple
combination (Figure 6G). While the triple combination converted
the most T cells to the best killing state, we found that single or
double combinations outperformed the triple combination for
several tissue ABMs in the cohort. These simulations led to a
new biological hypothesis that macrophage clearing of tumor
cells is essential for lymphocyte trafficking and tumor cell killing
in PDAC. We note that this hypothesis generated from our math-
ematical simulations is consistent with clinical observations of
increased TREM2+ macrophage signaling to tumor cells in the
triple combination.®®

Encoding asymmetric cell division in rules enables
extension of the hypothesis grammar beyond cancer to
simulate formulation of layers in brain development

To demonstrate the generalizability of our hypothesis grammar
coded in PhysiCell across biological systems, we sought to
apply it to simulate layer formation during cortical development
in the brain. The laminar organization of different cell types is
an archetypal property of vertebrate neural systems. This cy-
toarchitecture not only replicates across species but across mul-
tiple tissues (e.g., retina, hippocampus, cortex) within the central
nervous system. Modeling this formation is particularly signifi-
cant, as disruption and disorganization of the layers is found in
both neurodevelopmental and neurodegenerative diseases.®
We modeled the formation of this laminar structure by leveraging
the rules grammar. While the previous examples in cancer all
relied on symmetric cell division, this phenomenon is driven by
a combination of symmetric and asymmetric division of progen-
itors. Specifically, stem cells undergo asymmetric division in
which one daughter cell retains its stemness while the other dif-
ferentiates into a cell fated to a specific layer of the developing
brain (Figure 7A). After differentiation, the cells begin migrating
toward the pial layer, ending their migration upon contact with
the pial layer. The sequence of differentiation into the cortical
layers is controlled by the time passed in the neural development
using the hypothesis grammar. Additionally, the grammar con-
trols the stem cell division rate, slowing their cycling as time elap-
ses. This in turn increases the overall length of the cell cycle,
replicating what is observed in vivo. Together with the previously
described functionalities, these parameters can generate the
cellular diversity and tissue structures prototypical in neural
development.

To demonstrate the flexibility of the rules grammar to model
neural development, we used the Allen Brain Atlas® to quantify
the laminar structure of two regions in the adult mouse brain and
calibrate the rules parameters to match each of these regions in
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(A) Schematic of the formation of the cortical layers in the neuro-development model.
B) Storyboard of the formation of the somatosensory cortex (SOM) after calibration.
C) Extraction of layer counts in the SOM from a single z slice in the Allen Brain Atlas.**

E) Extraction of the layer counts in the AUD from a single z slice in the Allen Brain Atlas."*

(
(
(D) Layer counts after calibration for both the SOM and auditory complex (AUD). Black dots represent the counts found from the atlas.
(
(

F) Storyboard of the formation of the AUD after calibration.

turn. We chose the somatosensory cortex (SOM) and the audi-
tory cortex (AUD). Specifically, we used single z slices of the
atlas, extracting all cells in that slice from the given region. To
quantify the relative abundance of cells within each layer of a
given region, we further subset to a rectilinear subspace of the
section. Whereas our previous models used spatial data to
initialize the model states, here, we fit model parameters to mini-
mize the residual sum of squares of the thickness of the layers at
the final time point of the simulation. By fitting the rule parame-
ters to datasets representative of the endpoint of the simulation
when the brain regions have fully formed, we are able to suc-
cessfully produce the laminar structure of both the SOM (repre-
sentative simulation in Figure 7B, extracted brain atlas data in
Figure 7C, and calibrated cell counts in Figure 7D, left) and the
AUD (brain atlas data in Figure 7E, compared with a representa-
tive simulation in Figure 7F, with calibrated cell counts in
Figure 7D, right) in our ABM. These simulations demonstrate
that we can use static, spatial multi-omics data to extend beyond
model initialization to more complex model calibration for
parameter fitting shown here.

DISCUSSION

The real-world limitations of characterizing the dynamics of
cellular and molecular changes in human-focused research,
especially for snapshots of spatial multi-omics, do not exist in sil-
ico. Computational models can guide and supplement lab ex-
periments. For example, the NCI digital twins initiative aims to
develop models of patient tumors to predict which therapies
will most benefit each individual,?**' by simulating many repli-
cates of their system’s behavior over time and under different
sets of conditions. The ability to perform large numbers of repli-
cates and numerous iterations cheaply and easily maximizes the
chance of capturing extremely rare critical events. ABMs ab-
stract biological systems to run in silico experiments thousands
or millions of times, whose parameters and in-built hypotheses
are all readily modifiable by the user. The new conceptual
framing (a grammar) for specifying cell behavior hypotheses
introduced in this study can systemize and facilitate our thinking
of how cells interact to drive tissue ecosystems. The grammar
made it possible to introduce new capabilities in the PhysiCell
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ABM framework, thus simplifying the workflow to generate
ABMs of multicellular systems.

Previously, custom hand-written code and a high level of tech-
nical knowledge were required to implement even basic models.
Our hypothesis grammar can encode complex cellular behaviors
and responses to signals in single lines of human-readable text.
When used in combination with graphical and cloud-based
modeling frameworks,”®°° the barrier to entry into using ABMs is
considerably reduced. In this implementation, it is simple to modu-
late and apply behaviors to different agents in the system in plain
text without requiring writing code or editing machine-readable
markup languages. Further, PhysiCell is open-source, commu-
nity-built ABM software that encodes a vast amount of biological
and computational knowledge at baseline; however, everything
is completely customizable, extensible, and modifiable. Moreover,
this cell behavior grammar affords an opportunity to systematically
collect, annotate, curate, and grow our knowledge of cellular be-
haviors and interactions for use as model templates.®"

We demonstrated a variety of models extending from carcino-
genesis and immune response to tumor growth and demon-
strating broader extensions to neurodevelopment. Some of
these models have all cellular agents following the same rules
and fate determined by the actions of those around them. In
other models, cell agents act at cross purposes and actively
seek to outcompete, evade, or hunt and kill each other. We
modeled immune processes such as macrophage plasticity,
T cell activation and expansion, antigen recognition, and inflam-
mation. The rules for these examples are all available to be re-run
on any user machine, providing sample case studies for new
users. These case studies also showcased how ABMs can be
applied for in silico experimentation of complex multicellular pro-
cesses, which can prioritize new hypotheses for experimental
validation or exploration.

The models in this study also directly translated cellular loca-
tion and identity from ST data to initialize an ABM. Thus, models
can now directly match the tissue structure and transcriptional
profile of samples. Spatial relationships between cells and
cellular neighborhoods significantly impact outcomes. This
strong dependence of many cancer systems and ABM trajec-
tories on initial conditions can complicate model inquiry and
impact critical system behaviors and model parameters obtained
through inference; by leveraging robust single-cell ST tissue pro-
files as initial conditions in the digital modeling stage, the hypoth-
esis-driven rules modeling paradigm is grounded in precise refer-
ential data but also offers a path to both stronger model inquiry
and more confident mathematical inference. These models
nonetheless still require annotation of a finite number of agents
identified in spatial molecular data, often annotating cells into
broad phenotypes and abstracting cellular subtypes. Future
work must evaluate the sensitivity of models to the granularity
of cellular phenotypes in these high-throughput datasets, accu-
rate inference of parameters in the resulting higher-dimensional
models, and curation of best parameter estimates for community
reuse of omics-informed ABMs.

The cell-based nature of our mathematical framework can
predict the impact of distinct immunotherapeutic combinations
on altering the TME. We also showed that these model predic-
tions can be further personalized by inputting baseline cellular
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abundance measurements, providing a powerful tool for select-
ing optimal combinations to overcome the immunosuppressive
landscape of many solid tumors. Limitations of testing combi-
nation therapies experimentally are the large number of exper-
iments required to test ordering, therapies with distinct mecha-
nisms of action, and biological variability of TMEs. The ability of
ABMs to simulate systems-level cellular behaviors entirely in
silico provides an effective means to pre-screen combinations
at scale to prioritize therapeutic selection and order of delivery
in preclinical and clinical studies. Metrics to benchmark math-
ematical models both qualitatively and quantitatively against
real-world preclinical and clinical studies are essential to fully
leverage these models to predict personalized biological condi-
tions. This grammar must also be extended to simulate the
pharmacokinetics and pharmacodynamics encoded in more
complex quantitative system pharmacology models to fully
empower virtual clinical trials.?” While our models demon-
strated the potential of our software to simulate virtual clinical
trials, translating these models to the clinic requires robust cali-
bration and validation of their ability to fully mimic the behavior
of human clinical trials. Moreover, the focus of our model on
simulating cellular perturbations in local tissue environments
limits our predictions to estimating local cellular landscape
only, requiring complementary preclinical or clinical studies.
We view our framework as ideally suited to prioritize candidate
targets for these combinations, still requiring extensive clinical
and regulatory evaluation prior to usage as precision medicine
tools beyond the scope of this study.

This language framework will be useful to those seeking to
build models of multicellular systems, and we are excited to
continue to move toward fuller biological completeness and
more complete integration with omics data, to increasingly define
agent behavior in an automated and a data-driven fashion. These
advancements expand the functionality, usability, and compati-
bility of our approach, empowering interdisciplinary researchers
in their computational or systems biology endeavors. These ad-
vancements expand the functionality, usability, and compatibility
of our approach, empowering researchers across disciplines to
unlock the full potential of their single-cell data. Armed with this
conceptual framing and tools, they can extrapolate beyond sin-
gle-cell characterizations for multicellular systems biology and
ultimately perform virtual cellular and tissue experiments.

Limitations of the study

In any computational framework, all required biology must be
built from the ground up. The hypothesis grammar for PhysiCell
enables many cellular behaviors, but many important aspects
remain to be added. In future work, we plan to further refine the
hypothesis grammar to expand its usability and flexibility. We
are considering incorporating keywords for “wild card” rules (e.
g., in all cells, mechanical pressure decreases cycle entry) and
other special cases using regular expression-type syntax, as
well as extensions (e.g., “low S” or “decreasing S”) that can
simplify the examples presented in this paper. Moreover, we
plan to add extensions for hysteresis and delayed activation in
our responses and for allowing cells to access the properties of
contacting cells as signals or inputs to rules (e.g., for delta-Notch
signaling or improved antigen recognition). While our software
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can use multi-omic and spatial molecular data for model initializa-
tion and some parameterization, the ability to encode rules
directly from inferred regulatory networks and to incorporate un-
certainty analyses in the input of these data remains an important
area of ongoing research. Moreover, emerging large language
models (LLMs) such as ChatGPT may facilitate “translation” of
familiar language (e.g., fibrosis) into the smaller set of symbols
in the current grammar. The language currently treats all state-
ments as independent (inclusive OR), but we may need additional
language operators to signify relationships between rules such as
AND or REQUIRES. Other generalizations and improvements to
the forms of response curves, consensus process models, and
default parameter values are likely to emerge from widespread
community use, feedback, and discussion.

Our current grammar is focused on cellular interactions, but it
does not yet incorporate gene regulatory networks, although
intracellular gene regulatory networks are supported in Physi-
Cell.?®°° While we demonstrated initialization and parameteriza-
tion from ST data, our software requires further extensions to
fully interoperate with omics data analysis ecosystems and
emerging high-throughput data modalities. In the models pre-
sented here, the connections with the data rely on macroscale
summaries of the data such as size of the tumor, cell-type anno-
tations, or thickness of cortical layers. Increasing the depth of
connection to the data—spatially, temporally, and phenotypi-
cally—will improve the accuracy and predictive power of these
models.'® %" Further parameter fitting and data assimilation
methods are also needed to fully embed experimental data
into the models to ensure biologically calibrated ABMs. For
example, we note that well-known developmental timings were
used to drive the evolution of fate specification in the corticode-
velopment example'%%"% to allow us to focus on key transitions
responsible for final cytoarchitecture; future work can integrate
Boolean networks®® or systems of ODEs to replace time as a
proxy signal. A key component of this endeavor is to uncover
the roles of all cells in the complex interaction network within
any given system and the effect of therapeutic perturbations
thereon. In this study, the various models include only a subset
of the cell types known to exist in the modeled microenviron-
ments and apply simplified frameworks of pharmacodynamic
response. A limitation of our approach is that it relies on cata-
loguing individual cell types and their behaviors,”"°¢ although
future work can leverage artificial intelligence to extend beyond
manual cataloging by automating discovery with expert quality
control. Additionally, future work will establish a community-
informed repository to collect and curate biological hypothesis
statements grouped as digital cell lines,>"°® enabling users to
contribute and share cell behavior statements for future reuse
in other models of the same system. Continued community input
will expand and refine digital cell templates and phenotypic be-
haviors to actualize virtual cell laboratories.
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directed to and will be fulfilled by the lead contact, Paul Macklin (macklinp@
iu.edu).
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Materials availability
This study did not create any new materials.

Data and code availability

@ PhysiCell Version 1.14.1"%“ and later includes a full reference implemen-
tation of the grammar and grammar-based simulation modeling, and
the specific models in the results are available from https://github.
com/physicell-models/grammar_samples.

® Raw data from the cell motility experiment in Figure 5G are provided at
https://zenodo.org/records/14106341. Spatial transcriptomics data of
PDAC tumors are available from GEO: GSE254829. scRNA-seq data
from PDAC tumors are available from GEO: GSE155698. Allen Brain
Atlas datasets used in this publication are available from https://
knowledge.brain-map.org/data/5C0201JSVE04WYBDMVC/summary.
All other datasets are available from the authors upon request. The
simulation sensitivity analysis data are available at https://doi.org/10.
5281/zenodo.14590311.
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Spheroid analysis software This paper https://github.com/emcramer/abm-
spheroid-invasiveness/releases/tag/v0.1.
0-beta

CODA Kiemen et al.’® https://doi.org/10.1038/s41592-022-
01650-9

ProjectR transfer learning software Sharma et al.’*” https://doi.org/10.1093/bioinformatics/
btaa183

CoGAPs non-negative matrix factorization Bell et al.”?, Johnson et al.'%%, Kinny-Késter https://doi.org/10.1038/s41596-023-

for scRNA-seq data etal.’® 00892-x

Seurat 4.1.0 Hao et al.'™® https://github.com/satijalab/seurat/

releases

METHOD DETAILS

Simulation Methods
PhysiCell agent-based modeling framework
PhysiCell*” is an open source, agent-based modeling framework written in C++ that can run on a broad variety of desktop platforms,
in the cloud,""" and on high performance computing resources.®**%""? PhysiCell simulates each cell as an agent with lattice-free
position and volume, individual birth and death rates, and motion driven by the balance of mechanical forces and biased random
migration. In more recent versions of PhysiCell, agents can also interact with built-in models of phagocytosis, effector attack, fusion,
and elastic cell-cell adhesion. PhysiCell is coupled to a reaction-diffusion solver (BioFVM''®) that models secretion and uptake (con-
sumption) of diffusible factors by individual cell agents at their individual positions, as well as diffusion and decay of these substrates
through extracellular spaces. PhysiCell bundles its key cell behavioral parameters as a phenotype object for simpler representation.
Modelers simulate biological hypotheses by writing custom C++ functions that dynamically vary the cell agent’s phenotype param-
eters based on conditions at the cell’s position, such as contact with other cells, mechanical pressure, and concentrations and gra-
dients of signaling factors. This paper extends PhysiCell with built-in functions that parse rules written with our grammar to operate on
cell phenotypes without writing C++ code.
Installation instructions
PhysiCell Version 1.14.1'%* and later includes a full reference implementation of the grammar and grammar-based simulation
modeling, and the specific models in the results are available from https://github.com/physicell-models/grammar_samples. To
get a list of all the example models:
make list-user-projects
To load and compile an example named myproject, use
make load PROJ=myproject && make

Similar to our prior work to create cloud-based training materials''* and cloud-based model dissemination,’'" and inspired by
other recent advances on “zero-install” models,''® we have created a cloud-based version®®'"® of PhysiCell based on the nanoHUB
platform.'% This cloud implementation allows scientists to create, execute, visualize, and explore grammar-based models interac-
tively in a web browser, without need for programming expertise or software setup. (See documentation and training materials in
Methods S1) The cloud-hosted model is available at https://nanohub.org/tools/pcstudio. Alternatively, scientists can download
the latest release of the PhysiCell Studio®® desktop application at https://github.com/PhysiCell-Tools/PhysiCell-Studio/releases.
Assuming an executable model has been compiled, the Studio allows interactive creation and editing of rules, running a simulation,
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and visualizing results. Refer to the Studio user guide at https://github.com/PhysiCell-Tools/Studio-Guide/blob/main/README.md
for more information.
Self-guided, hands-on training courses are available at https://physicell.org/Training.html. See further details in Methods S1.

Hypothesis grammar
Cell behaviors
To build this grammar, we require clear abstractions of key cell behaviors that frequently occur in multicellular observations and corre-
sponding reference models. In this context, a cell behavior is a cell-scale process, such as cycling, death, or phagocytosis. Generally,
each behavior can be represented by a small number of continuous phenotypic parameters, describing the rate, magnitude, or fre-
quency of the behavior. In earlier work, Sluka et al. developed the Cell Behavior Ontology (CBO)''” as a controlled vocabulary of indi-
vidual cell behaviors. More recently, we worked with a multidisciplinary coalition to extend and structure behaviors from the CBO and
other sources into MultiCellDS®® (multicellular data standard). In particular, this work defined a cell behavioral phenotype that collects of
biophysical characterizations of a cell’s behavior, organized hierarchically by function: cycling, death, volume, mechanics, secretion
(including uptake), and motility. Since releasing MultiCellDS as a preprint, we have tested this approach to cell behavior through a variety
of agent-based simulation and modeling projects,3¢0:47:54:58,99,114.118-122 Basad upon recent immunologic modeling work, 818121 we
extended phenotype to include cell-cell interactions (phagocytosis, effector attack, and fusion), as well as transitions between cell types
(e.g., differentiation, transdifferentiation, and other state changes that persist even when exogenous signals are removed). See Methods
S1 for a full description of these cell behaviors, including reference model implementation details in the PhysiCell framework.
Signals
Signals are (typically exogeneous but sometimes internal) stimuli or information that can be interpreted by a cell to drive behavioral or
state changes. In the context of mathematical modeling, signals are inputs to constitutive laws or agent rules. We broadly surveyed
mathematical and biological models from cancer biology,®®¢"'?>7"*? tissue morphogenesis,'>"%*"*” immunology, 618120138139
and microbial ecosystems, '“%'*" to generalize classes of inputs to cell behavioral rules, generally including chemical factors, mechan-
ical cues, cell volume (e.g., for volume-based cycle checkpoints), physical contact with cells, live/dead status, current simulation time
(for use in triggering events), and accumulated damage (e.g., from effector attack'**~'%*). See Methods S1 for a full description.
Behavioral statements
For any cell type T, we construct simple statements that relate changes in a single behavior B to a signal S: “In T, S increases/de-
creases B [with optional arguments].” Here B is a well-defined biophysical parameter in our dictionary of behaviors (see STAR
Methods and Methods S1), S is a well-defined biophysical variable in our dictionary of signals, and optional arguments further
specify the mathematical behavior of the responses. For example:

In MCF-7 breast cancer cells, cisplatin increases apoptosis.

In naive T cells, IL-10 decreases transition to CD8* T cells.

A full description of the grammar, optional arguments, and examples can be found in Methods S1.
Mathematical representation: individual rules
With clearly defined behaviors and signals and the grammar to connect them, we can uniquely map human-interpretable cell hypoth-
esis statements onto mathematical expressions that make the grammar both human interpretable and computable. Each individual
rule modulates a single behavioral parameter b as a function of a signal s. Given a response function R, we then mathematically repre-
sent the individual rule as a function b(s):

b(S) = bo + (bM — bg)H(S), (1)

where by is the base value of the parameter in the absence of signal, and by, is the maximally changed value of the parameter with
large signals. By default, we use sigmoidal (Hill) response functions R, due to their extensive use in signaling network models and
pharmacodynamics, as well as their smooth variation between 0 (at no response) and 1 (at maximum response). However, capped
linear response functions (varying between 0 and 1) and step functions are also possible (Figure S2). See Figure 1C for a typical rule.
Full mathematical details and additional detailed examples are available in Methods S1.

Generalized mathematical representation: multiple rules

Our full mathematical formulation allows new hypotheses to be directly added to models without modifying prior hypotheses, making
our framing extensible and scalable as new knowledge is acquired. Suppose that a behavior B (with corresponding behavioral
parameter b) is controlled by multiple rules subject to promoting (up-regulating) signals u and inhibiting (down-regulating) signals d:

® u4 increases B (with half-max uj and Hill power p+)
® U increases B (with half-max u; and Hill power p»)

® Up, increases B (with half-max u};, and Hill power py,;)
® d; decreases B (with half-max dj and Hill power g+)

® d, decreases B (with half-max dj and Hill power g5)

® d, decreases B (with half-max d};, and Hill power g,)
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Here, let by, be the maximum value of the behavior parameter b (under the combined influence of the up-regulating signals u), let bg
be its base value in the absence of signals, and let by, be its minimum value (under the combined influence of the down-regulating
signals d).

Similar to prior multi-variate response functions,'“>4¢

we define the total up response as:
U P1 U P2 Unm Pm
— + — +...+ —
uj u; u;,
P1 P2 Pm
uq Us u
1+(—*) +(—*) ++(—T)
ui ujs u,

(d1)(71 (dZ)q2 (dn)(h

d; d; To\d

1t (d1 ) a (dg) 9 (dn) an *
a; d; To\d

We combine the overall response of the behavioral parameter via bilinear interpolation in the nonlinear up- and down-responses
U and D:

U = Hy(u;uhar,p) = (2

and the total down response as:

D = Hy(d;dhat.q) = ()

bu,d)=(1—-D)-[(1 —U)-bo+U-by] + D-bp (4)
Notice that:

® In the presence of a single up-regulating signal u (or a single down-regulating signal d) only, b(u,d) reduces to a Hill response
curve b(u) (or b(d)) used in systems biology and pharmacodynamics studies.

® Generally, the combined up-regulating signals sets a “target” value of the parameter, which can then be inhibited by the com-
bined down-regulating signals.

® Both U and D vary between 0 and 1 representing the extent of up- and down-regulating signals, respectively. This means that
larger values of D represent larger decreases in behavior b.

Note also that adding and removing individual rules does not require alteration to the remaining rules. In this release, we use multi-
variate Hill response functions for clarity, but mixed linear and Hill responses could be used in the future. The PhysiCell implementa-
tion of this generalized response, additional mathematical details, and expanded examples can be found in Methods S1. Sample
multivariate response functions are in Figures S1 and S3.

PhysiCell rules implementation and parameterization. To implement these rules in PhysiCell, users generate a CSV file in which each
row is an individual rule and the columns correspond to specific elements of the grammar. The structure of such a row is as follows:

tumor, oxygen, increases, cycle entry, 0.0005 , 5.0 4 0
S—— —_—— Y
celltype  signal response behaior maxresponse half-max  Hill power applies to dead?

The graphical user interface (GUI) provided by PhysiCell Studio®®°®"'"® simplifies the creation of this CSV in alignment with the
framework. Within this GUI, users can also interactively visualize all the rules to assess their sensitivity to different input signals
and parameter values.

Our toolset also includes a Python package to analyze PhysiCell models, including sensitivity analysis, calibration, model selection,
and validation. These uncertainty quantification (UQ) tasks are critical for understanding how biological and mathematical variability
influence model behavior. Importantly, the addition of the grammar framework enables us to offer this to end users without requiring
bespoke C++ code or XML parsers. More details on these parameter tuning and parameter sensitivity tools are described in detail in
Methods S1. To help drive reproducibility, we generate and save a full description of all rules in HTML and text formats after initial
parsing.

Experimental details

Macrophage co-culture with 3D mammary organoids derived from MMTV-PyMT tumors

A previously unpublished replicate image of co-culture of organoids with tumor-associated macrophages is used as the basis of
the qualitative behavior of our ABM of macrophage-induced invasion of tumor cells. Experimental methods for the data generated
in this figure are described in the original DeNardo et al. publication®" describing these findings as follows “Primary nMEC and
PMEC pools were established by organoid centrifugation as previously described.'>? Briefly, mammary tissue biopsies were har-
vested from 76-day-old PyMT female or 12-week-old virgin negative littermates and digested with collagenase A 2.0 mg/mi
(Roche) and DNase 2.0 units/ml (Roche) for 2 hr. Organoids were then isolated by differen- tial centrifugation and grown in culture
conditions as previously described.'®? Primary nMECs were used within two passages and primary pMEC cells were used within
ten passages. Three-dimensional organotypic cultures were established as previously described.'*® Cultrex basement membrane
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extract (BME; R&D Systems) was utilized to limit endotoxin levels. Co-cultures with primary leukocytes were established only after
stable organoid structures had formed (approximately 3 weeks for nMEC, 2 weeks for pMEC). Leukocytes were overlaid in me-
dium containing 0.5% BME. Formation of invasive acini was assessed every 12 hr for 3 days. The cytokines IL-4 (20 ng/ml), IL-13
(20 ng/ ml), IL-10 (10 ng/ml), IFNg (5.0 ng/ml) (PeproTech), or LPS (1.0 mM/ml) were added to co-cultures 12 hr after leukocytes
overlay. Inhibitors PD153035 (0.1 mM, Calbiochem) or BIBX1382 (10 nM, Calbiochem) were added 1.0 hr prior to the addition of
leukocytes. All experiments were repeated two or three times with separate pMEC pools and individual experiments were run at
least in triplicate.

Invasion and colony formation assays of gefitinib treated organoids derived from MMTV-PyMT tumors

Primary mammary tumor organoids were isolated from female MMTV-PyMT mice (002374; Jackson Laboratory) using sequential
digestion and purification steps as previously described.'** Briefly, tumors were dissected, divided with a scalpel, and shaken in
a collagenase digestion solution for 1 hour at 37 °C. Following digestion, a series of differential centrifugations were used to separate
epithelial organoids from stromal cells, with resulting organoids between 100-250 cells in size. For invasion assays, organoids were
embedded at a density of 1.2 per pL into a collagen | extracellular matrix (354236; Corning) in glass bottom imaging plates (662892;
Grenier). The ECM was then polymerized for 1 hour at 37 °C, after which DMEM/F-12 media (10565-018; Thermo Fisher) containing
1.0% ITS (51500-056; Thermo Fisher), 1.0% Pen-Strep (P4333; Sigma Aldrich), and 2.5 nM FGF2 (F0291; Sigma Aldrich) was added.
Compounds dissolved in DMSO were added after overnight incubation, and assays were then incubated for 96 hours at 37 °C with
5.0% CO2. Cultures were fixed in 4.0% paraformaldehyde (15714-S; Electron Microscopy Sciences) on day 5 and then imaged on
laser scanning confocal microscope equipped with a tunable GaAsp detector, 2k resonant scanner, and LUA-S6 laser unit (AXR; Ni-
kon Instruments). Invasion was assessed by calculating the inverse circularity of each organoid using Nikon NIS-elements software
and results are normalized per biological replicate.

For colony formation assays, organoids were further digested to cancer cell clusters (2-10 cells in size) using 1X TryPLE (12604-
013; Thermo Fisher). Clusters were then isolated through differential centrifugations as previously described'** and embedded at a
density of 100 per pL in Matrigel (354230; Corning). After the Matrigel had polymerized, media was added and compounds in DMSO
were dosed the following day using a D300e Digital Dispenser (Tecan). The assay was then incubated at 37 °C with 5.0% CO2 and
fixed after 96 hours in 1.0% paraformaldehyde. To determine colony formation, the entire ECM was imaged in 3D, maximum intensity
projections were generated, and colonies were counted using custom ImageJ and Python scripts. Percent colony formation was
calculated as the number of colonies in each treatment condition normalized to the vehicle control.

Growth and motility of EGF treated MCF10A cells

As described previously,*® MCF10A cell culture and experimental procedures were conducted based on established methodolo-
gies."*® For routine maintenance and passaging, cells were cultured in a growth medium composed of DMEM/F12 (Invitrogen,
#11330-032) supplemented with 5% horse serum (Sigma, #H1138), 20 ng/ml EGF (R&D Systems, #236-EG), 0.5 pg/ml hydrocorti-
sone (Sigma, #H-4001), 100 ng/ml cholera toxin (Sigma, #C8052), 10 pg/ml insulin (Sigma, #19278), and 1% Penicillin/Streptomycin
(Invitrogen, #15070-063). For experiments involving EGF perturbation, a growth factor-free medium was prepared using DMEM/F12,
5% horse serum, 0.5 pg/ml hydrocortisone, 100 ng/ml cholera toxin, and 1% Pen/Strep.

Cells were cultured to 50-80% confluency before being detached with 0.05% trypsin-EDTA (Thermo Fisher Scientific, #25300-
054). Subsequently, 20,000 cells were seeded into 24-well plates (Thermo Fisher Scientific, #267062) coated with collagen-1
(Cultrex, #3442-050-01) in growth medium. After six hours, the cells were rinsed with PBS, and the medium was replaced with growth
factor-free medium. Following an 18-hour period of growth factor deprivation, cells were treated with either PBS or 10 ng/ml EGF
(R&D Systems, #236-EG).

Phenotypic responses to EGF treatment were assessed through live-cell imaging using the Incucyte S3 microscope (Essen
BioScience, #4647), which captured images every 30 minutes over a 24-hour period. The dataset includes an Excel spreadsheet
that documents the experimental conditions for each imaged well.

PDAC patient-derived tumor spheroid CAF co-culture invasion assay

Samples Acquisition. Patient-derived organoids (PDOs) and cancer-associated fibroblasts (CAFs) were isolated from freshly re-
sected pancreatic ductal adenocarcinoma (PDAC) tumor specimens obtained during pancreatectomy procedures at Johns Hopkins
University Hospital. All specimens were processed within 24 hours of surgical resection as previously described for pancreatic can-
cer organoids.'®” Written informed consent was obtained from all patients prior to sample collection.

Organoid Generation. PDAC tissue samples were rinsed, minced, and digested in a digestion medium containing Dispase (Gibco
17105-041) and Collagenase Type Il (Gibco 17101-015) at 37°C for 2-3 hours with 200 rpm shaking. The digested suspension was
centrifuged (1500 rpm, 5 minutes, 4°C) and washed multiple times with wash media (DMEM/F-12 supplemented with 1.25 mL Pri-
mocin, 5 mL 1M HEPES, 5 mL 100X Glutamax, and 2.5% FBS). Tumoral clusters and single cells were separated from stromal debris
and CAFs through differential centrifugation. Organoids were embedded in collagen | gel prepared by mixing collagen | (Corning, rat-
tail, 354236) with 10x DMEM and 1N NaOH to achieve a final concentration of 3.34 mg/mL. The collagen solution was incubated at
37°C for 60 minutes to allow polymerization before overlaying with growth media containing DMEM/F-12, Primocin, HEPES,
Glutamax, EGF (5 ng/mL), insulin (5 pg/mL), cholera toxin (10 ng/mL), and BSA (0.075%). CAF-containing supernatants were also
cultured separately in T75 flasks with RPMI containing 10% FBS. PDO growth was monitored over two weeks to reach an
appropriate size, and cultures that failed to expand were discarded.
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CAF Media Treatment and Invasion Assays. CAFs were cultured in 2D (T75 flask) and 3D (Matrigel in 24-well plates) environments to
induce differentiation into inflammatory (iCAF) and myofibroblast (myCAF) subtypes, respectively. Fibroblast differentiation was
validated using gPCR with iCAF and myCAF markers. Once the cells reached 70-80% confluence, the media were replaced with
RPMI containing 1% FBS. Conditioned media were collected after 36 hours and used for all 15 PDO cultures. CAF-conditioned
media were mixed with PDO growth media at a 1:1 ratio and RPMI with 1% FBS was used as a control. To assess invasion,
images of invasive and non-invasive organoids were captured using a Nikon Ti-E inverted microscope at x10 magnification
72 hours after conditioned media addition. Organoid invasion was quantified by calculating the percentage of PDOs invading
collagen fibers and analyzing invasive organoids’ circularity using Imaged software.

Cell motility tracking of PDAC cells and fibroblasts in varying ECM densities, alone and in co-culture

We embedded cells from the hT231 human cancer associated fibroblast cell line and the Panc10.05 pancreatic cancer cell line,"°®
either separately or in co-culture, into 3D collagen-I hydrogel and imaged individual cells at five-minute intervals for eight hours. The
cell tracking protocol was performed as previously described.®® Briefly, the Panc 10.05 and hT231 CAF co-cultures were prepared in
type | collagen-based gels that were polymerized for 1hr in a 37-degree incubator (during which time the gels turned from a liquid to
form a stable solid). At the end of the 1hr polymerization time, the gels are deemed solid/stable and are all gently hydrated with media
to keep them porous and feed the cells with nutrients, then placed in the cell culture incubator for approximately 2 hours prior to im-
aging. The gels (monocultures and co-cultures both) were then loaded onto our microscope and imaged soon after (within 2-3 hours
of hydrating), then were run in an overnight movie that elapsed a total time of about 12-16 hours. The trajectories in the .csv files
quantified cell movements over either 2.5hr (30 frame)-long or 8hr (96 frame)-long trajectories within this 12-hour movie.
Calibration of migration speed in ABM from motility assays

The 3D positions (x, y, z) of each cell—as recorded by the microscope at each timestep—were analyzed, and the motility of each cell
was fitted to a trajectory using the anisotropic random walk model described previously,®®'*° which yields metrics such as average
speed (um/hr) for each condition.A protocol for statistical analysis of cell migration in 3D was used to calibrate an anisotropic persis-
tent random walk model.®° This was performed at each collagen density used in the 2.5h motility assays. The average speed param-
eter was taken from this analysis as a function of the collagen density. The combined Hill response (see Results) is fit to this data. ECM
density is used as the increasing signal and the decreasing signal. MATLAB’s fmincon was used to minimize the sum of square re-
siduals and thus parameterize the Hill responses. The code is available in the GitHub repository associated with this article at https://
github.com/PhysiCell-Models/grammar_samples/tree/main/experimental_data_analysis/PancCAFAnalysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Model initialization from simulated distributions of cellular states and from multi-omics data

Another critical model input is the initialization of the cell types present in an ABM simulation and the initial positions of these cell
agents. PhysiCell allows users to initialize cells randomly in the environment or by supplying a user-created file with cell locations.
An advantage of the hypothesis grammar is that cellular agents are given human-interpretable names, providing a one-to-one map-
ping between the agents and cellular labels defined in classical single-cell and spatial molecular analyses. To leverage this mapping
and enable data-driven model initialization, we use cell type annotations from bioinformatics datasets to set the relative abundances
of the cell types included in our models. If the data also includes spatial coordinates, we use affine linear transformations to position
the cells in the simulation domain. By default, the cells are placed to fill the simulation domain while preserving the aspect ratio of
the data.

Spatial transcriptomics data of PDAC tumors

We selected two resected pancreatic lesions were subjected to the commercial Visium spatial transcriptomics (ST) sequencing FFPE
protocol generated in Bell et al.”® to initialize ABMs in this study. Slides were stained with H&E and imaged prior to RNA extraction,
and image analysis was performed in parallel with transcriptomic analysis. An artificial intelligence method for annotation of pancre-
atic tumor tissue regions called CODA'%® was used to annotate acinar cells, islet cells, smooth muscle cells, and the distribution of
collagen. This method was also used to distinguish normal ductal, neoplastic, and tumor cells from the H&E imaging, which were
further visually confirmed by a pathologist (E.D.T.). Spots with greater than 70% purity of ductal cells were further annotated to assign
agent types for the associated tumor and normal cells in each spot. For this annotation, we used our transfer learning method Proj-
ectR'%" version 1.8.0 to distinguish proliferative signaling (modeled as an epithelial phenotype) from co-occurrence of EMT and in-
flammatory signaling (modeled as the mesenchymal phenotype) as defined in CoGAPS non-negative matrix factorization analysis of
in scRNA-seq data PDAC tumors using methods described previously.”>'%%'%° To locate fibroblasts, Seurat version 4.1.0 was used
to compute module scores from a pan-CAF gene signature as described previously.”> ABM simulations were initialized from these
cellular states. In addition, ECM density was initialized using a heuristic from image-derived collagen and cancer-associated fibro-
blast annotations from the H&E imaging from CODA,'°° and the bounding cells were assumed to contain a similarly dense collagen
matrix, forming a niche around the known sample and abstractly reflecting the character of the solid pancreatic tissue. In the ABM,
other pancreatic cells in the spatial transcriptomics data were approximated as steady state (no net proliferation, death, motility, or
secretion) and were assumed to be essentially inert with regards to carcinogenesis, here primarily modeled in their role as structure
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and scaffolding within which the other cell types interact and representing acinar cells, islet cells, and smooth muscle cells. The
spatial transcriptomics data'“”'“® are available from GEO as GSE254829.

Deriving a metric to quantify the invasiveness of in silico tumor spheroids over time from in silico simulation
(PhysiCell model output)

Previous studies have quantified the invasiveness of tumor spheroids using microscopy images by assessing the perimeter (contour)
of the spheroid and counting cells migrating beyond a defined booundary.'“®"'*° These methods were adapted to enable comparison
between output from in silico PhysiCell models. To quantify invasiveness, the radial distance from the perimeter of the boundary of
the simulated tumor volume to the centroid of its contour was calculated. Projections of the spheroid’s perimeter extending beyond
the median radial distance measured at the initial time point were counted as invasive projections. The total number of invasive pro-
jections served as a measure of spheroid invasiveness. Results from simulation experiments of tumor spheroids in PhysiCell were
processed and quantified using a custom analytic pipeline'®" written in Python (version 3.11). The positions of cells in the ABM at
each time point were imported from xml output files produced by PhysiCell as MultiCellDS (MCDS) data structures in Python and
used to populate an empty array as individual points. Points were then dilated in the shape of a disk with a gradient of intensity.
The simulated outputs contain both images of the secreted factors from fibroblasts, abstracted as an extracellular matrix (ECM) var-
iable, and tumor cells. The locations of the ECM were then imported from the MCDS object, and the amount of ECM present at each
voxel in the simulation space was used to derive a contour by projecting onto a 2D mesh. The ECM contour was added to the dilated
cells and flattened into a 2D array. Arrays were processed analogously to images of tumor volume, by binarization with an Otsu
threshold and segmented to generate a mask. The morphology of mask contours was then quantified to determine the number of
invasive projections and determine spheroid invasiveness.

Single-cell RNA-seq of PDAC tumors as a reference dataset to initialize estimates of immune populations in ABM
simulations of treatment effects

Simulations of different treatment effects on PDAC in Figure 6 use immune-enriched single-cell RNA-seq data from Stelle et al
(GSE155698) and with preprocessing to further define immune cell subtypes in reference tumors as described previously.®”:°" Briefly,
to determine the by-tissue cell counts to initialize our simulations, the single-cell RNA sequencing data was preprocessed, clustered,
and annotated using the Seurat R package.”0 Cell identity clusters of interest ("Activated_CD4", "B cell", "CD4", "CD8",
"Effector_CD8", "Epithelial_cancer", "Macrophage", "Mast", "Neutrophil", "NK/CTL", "T cell", "Treg cell") were then thresholded
based on median normalized expression of genes of interest (here CD274/PD-L1, PDCD1/PD-1, TNFRSF9/CD137) and the number
of cells falling into lo/hi categories were reported as described previously.?’ The pre-treatment cell numbers for each immune pop-
ulation were adopted as the baseline count of that agent type, while the number of tumor cells was artificially adjusted to equal 1000,
with the relative number of PD-L1" vs PD-L1'° tumor cells determined by the ratio found in that tissue in the dataset.” Cell-cell
communication analysis was performed using the Domino package as described previously by Li et al.”" to extend the model rules
for immune cells to account for their function dependent on CD137 status. We further estimate the relationship of the baseline TME
composition on the ABM-simulated therapeutic response with a Pearson correlation computed with the R package ggpubr.

|.92

Allen Brain Atlas®® data as a reference dataset to calibrate parameters of an ABM of cortical development

The Allen Brain Atlas®® was used to find z-slices of cortical regions in the mouse brain and the cellularity in each layer to calibrate the
model. We selected z-slices that contained sufficient cellularity in the two chosen regions of interest, the somatosensory and auditory
cortices. Selecting from each z-slice a rectilinear subset within the target region, we used the Allen Brain Atlas layer annotations to
quantify the thickness of each layer.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS
This study involved no human subjects, and it developed agent-based simulations that form in silico simulations of tumors. All human
genomics datasets were taken from prior studies. The PyMT mouse model and MCF10A were used for breast cancer, and patient

derived organoids, Panc10.05, and hT231 cell lines were used for pancreatic cancer experimental models. Details of all of these and
protocols are described in the experimental methods section of STAR Methods.
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Figure S1. Multivariate response functions in STAR Methods

Left: a multivariate Hill response function, where s1 has half-max 2 and Hill power 8, and s2 has half-max 1 and Hill power 2. Half-maxes are plotted on each
variable as blue dashed lines, while the half-max across the multivariate function is plotted as a red contour. H(s1) and H(s2) are plotted as black curves along the
respective axes.

Right: a multivariate linear response function, where s1 has min and max thresholds 0.75 and 3.75, and s2 has thresholds 0 and 2. Half-maxes are plotted on each

variable as blue dashed lines, while the half-max across the multivariate function is plotted as a red contour. L(s1) and L (S2) are plotted as black curves along the
respective axes. Related to STAR Methods.



- ¢ CellPress Cell
OPEN ACCESS

Approximating a Hill response with a linear response Approximating a linear response with a Hill response
104 Linear resp 1.0 - Linear response
----- Hill response —— Hill response
0.8 0.8
0.6 0.6
o o
b3 a
2 2
S 5
a a
> @
e e
0.4 0.4
0.2 0.2
0.0 0.0
0.0 0.5 1.0 15 2.0 25 3.0 35 4.0 0.0 0.5 1.0 1.5 2.0 25 3.0 35 4.0
signal s signal s

Figure S2. Converting between linear and Hill response functions, related to STAR Methods
Left: approximating a linear response function (black dotted curve) with a Hill response function (red).
Right: approximating a Hill response function (black dotted) with a linear response function (red).
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Figure S3. Sample response functions, related to STAR Methods
Left: the behavioral response function for the statements “oxygen increases cycle entry” and “pressure decreases cycle entry,” using the multivariate Hill

response function.
Right: a non-monotonic response function from the statements “c increases migration bias” (for lower values of ¢) and “c decreases migration bias” (for higher

values of ¢), showing both linear and Hill response constructions.
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Figure S4. Convergence of Qols across the replicates in hypoxia model, related to Figure 2
AUC of live (A) and dead (B) non-motile tumor cells. AUC of live (C) and dead (D) motile tumor cells. (E) Wassertein distance of radial distributions between non-
motile and motile tumor cells.
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Figure S5. PANC10.05 cell motility in monoculture or co-culture, related to Figure 3

Comparing motility behavior of PANC10.05 cells in monoculture or in co-culture with HT-231 CAFs assayed using 30-frame-long trajectories (A-C) and 96-frame-
long trajectories (D-F). Average speed (um/h) (A), average turning angle (degrees/min) (B), and progressivity (C) of PANC10.05 monoculture and co-culture in
varying ECM densities. (D-F) equivalent metrics from the 96-frame trajectory experiment.
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Figure S6. PANC10.05 cell motility monoculture, related to Figure 3

Motility behavior of PANC10.05 cells in monoculture assayed using 30-frame-long trajectories (A-C) and 96-frame-long trajectories (D-F). Average speed (um/h)
(A), average turning angle (degrees/min) (B), and progressivity (C) of PANC10.05 monoculture in varying ECM densities. (D-F) equivalent metrics from the

96-frame trajectory experiment.
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(legend on next page)
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Figure S7. PANC10.05 cell motility in co-culture, related to Figure 3

Motility behavior of PANC10.05 cells in co-culture with HT-231 CAFs assayed using 30-frame-long trajectories (A—C) and 96-frame-long trajectories (D-F).
Average speed (um/h) (A), average turning angle (degrees/min) (B), and progressivity (C) of PANC10.05 in co-culture with HT-231 in varying ECM densities. (D-F)
equivalent metrics from the 96-frame trajectory experiment.
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Figure S8. HT-231 CAF motility in monoculture or co-culture, related to Figure 3

Comparing motility behavior of HT-231 CAFs in monoculture or in co-culture with PANC10.05 cells assayed using 30-frame-long trajectories (A-C) and 96-frame-
long trajectories (D-F). Average speed (um/h) (A), average turning angle (degrees/min) (B), and progressivity (C) of HT-231 monoculture and co-culture in varying
ECM densities. (D-F) equivalent metrics from the 96-frame trajectory experiment.
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Figure S9. Fibroblast and pancreatic cell motility response curves, related to Figure 3
Motility behavior of simulated fibroblasts and pancreatic tumor cells is specified using two Hill curves that come together to fit the experimental data describing
the relationship between migration speed and ECM density for each cell type (S5-S8).
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(B) Comparison of mean inverse circularity of PDOs between iCAF-conditioned and myCAF-conditioned media.
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Figure S11. Local sensitivity analysis of the simple tumor-immune model, related to Figure 4
(A) Simulation of a 5-day evolution using reference parameters.
(B) Area under curve (AUC) for cell populations, extracted from the time course.

(legend continued on next page)
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(C) Radial distributions at the final snapshot (day 5) are shown in left plot, while the Wassertein distances extracted from these distributions are presented in the
middle plot (macrophages vs. tumor cells) and the right plot (CD8 T cells vs. tumor cells).

(D) Variation in quantities of interest (Qols) under multiplicative perturbations in the 26D parameter space.

(E) Average and standard deviation of the sensitivity index for each parameter across all Qols.
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Figure S12. Convergence of Qols across the replicates in simple tumor-immune model, related to Figure 4
AUC of live (A) and dead (B) tumor cells. AUC of pro-inflammatory (C) and anti-inflammatory (D) secretion rate of macrophages. Wassertein distance of radial
distributions between tumor cells and macrophages (E) and tumor cells and CD8* T cells (F).
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Figure S13. Gefitinib colony formation assay, related to Figure 5

Tumor cells are seeded and the number of successful colonies formed is compared between control and gefitinib (EGFR inhibitor). This shows that inhibiting
EGFR signaling does not inhibit colony formation behavior in these tumor cells.
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Figure S14. EGF impact on MCF10A proliferation, related to Figure 5
EGF increases MCF10A cell proliferation vs. PBS control over a 24-h time frame.
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Figure S15. Simulated tumor cell growth under therapy combinations vs. untreated virtual control, related to Figure 6
Time series of simulated tumor cell counts under baseline and combination therapy conditions for PDAC tissues 1-8.
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Figure S16. Simulated tumor cell growth under treatment and control for PDAC tissues 9-16, related to Figure 6
Time series of simulated tumor cell counts under baseline and combination therapy conditions for PDAC tissues 9-16.
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Figure S17. Simulated tissue endpoints under single- and triple-combination treatments and virtual control, related to Figure 6
Snapshots of agents at simulation endpoints for each tissue, baseline, single therapies, and triple-combination therapy shown.
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Figure S18. Simulated tissue endpoints under double-combination treatments, related to Figure 6
Snapshots of agents at simulation endpoints for each tissue, double-combination therapies shown.
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Figure S19. Waterfall plots of treatment efficacy for simulated tissue, related to Figure 6
Waterfall plots showing efficacy of each simulated therapy in each tissue. Positive values indicated tumor grew relative to baseline final volume; negative values
indicate tumor shrinkage.
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Figure S20. Immune cell abundances in GVAX + ICl + URU treatment, related to Figure 6
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abundance was significantly higher in tissues whose simulations reached the tumor clearance threshold.
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Figure S22. Immune cell abundances in ICI treatment, related to Figure 6

Immune population abundances in tissues, binned by whether the simulation with immune checkpoint inhibitor (ICI, Nivolumab) reached the tumor clearance
threshold. Not enough tissues met the clearance threshold for significance test.
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Figure $S23. Immune cell abundances in GVAX + ICI treatment, related to Figure 6

Boxplots comparing baseline immune population abundances in each tissue simulation with efficacy of GVAX + ICI, contrasting tissues that grew relative to
baseline vs. those that shrank (threshold =TRUE means the relative tumor volume change is <—0.5 or the tumor shrank; FALSE is the opposite, tumor growth did
not meet our threshold).
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Figure S24. Immune cell abundances in URU treatment, related to Figure 6
Immune population abundances in tissues, binned by whether the simulation with CD137 agonist (Urelemab/URU) reached the tumor clearance threshold. None

of these comparisons were significant.
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Immune population abundances in tissues, binned by whether the simulation with GVAX + URU reached the tumor clearance threshold. None of these com-
parisons were significant.
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Figure S26. Immune cell abundances in ICI + URU treatment, related to Figure 6

Immune population abundances in tissues, binned by whether the simulation with ICI + URU reached the tumor clearance threshold. None of these comparisons
were significant.
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