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Abstract 

Advances in spatial profiling have resulted in the generation of multi-omic atlases that span 

biological scales. In general, multiple workflows are required for image registration, coordinate 

registration, and spot deconvolution to integrate modalities. To improve the throughput of 

registration of multi-omic cohorts, we introduce PIVOT, a user-friendly and open-source interface 

for streamlined nonlinear registration. We demonstrate PIVOT’s strengths through registration 

of three multi-omic datasets, and show comparison of its performance to existing workflows.  
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Main text 

Technological advances have improved our ability to collect diverse spatial information from 

tissue at the proteomic, transcriptomic, metabolomic, and genomic level.1-5 These advances 

enable imaging tissue across ontological scales via serial sectioning.6-9 In tandem, advances in 

computing and analytic workflows have improved our ability to distill meaningful conclusions 

from these assays.10,11 Yet, challenges in integrating diverse multi-omic datasets remain.  

While teams have developed isolated methods to precisely co-register specific combinations of 

image modalities,12-17 there lacks a unified method for rapid and accurate co-registration across 

histological images with the assistance of an intuitive graphical user interface (GUI). Many 

automated image registration workflows incorporate nonlinear registration to correct for local 

tissue warping but may be applicable to only a select number of image types (hematoxylin and 

eosin [H&E], immunohistochemistry [IHC], etc.) and often fail in registration of small regions of 

interest (ROIs) to whole slide images (WSIs). On the other hand, fiducial-point-based registration 

workflows are applicable to any image type and excel at ROI to WSI registration, as they rely on 

human detection of structures. However, due to their reliance on fiducial point selection these 

methods are subject to inter-user variability. In general, to integrate complex multi-omic 

datasets, researchers combine multiple workflows, leading to inconsistent metadata formatting 

and requiring complex downstream synthesis of information. 

Here, we introduce PIVOT, an open-source and user-friendly interface for streamlined, semi-

automated registration of multi-omic images (Fig 1). PIVOT streamlines the registration process 

by combining image and coordinate registration into a single application, clustering datasets into 

projects that may be reloaded and modified at any time. PIVOT combines the advantages of 

fiducial-point based and automated nonlinear techniques, using user-guided affine registration 

followed by nonlinear finetuning, resulting in high-resolution registration across image types. We 

compared the performance of PIVOT to ImageJ landmark correspondence (affine registration 

using user selected fiducial points) and CODA (automated nonlinear registration designed for 

brightfield images) and showed that PIVOT outperforms both (Fig S1A). 
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One weakness of fiducial point-based registration algorithms is their reliance on the quality of 

the point pairs selected by users, introducing user-to-user variation. To evaluate the effect of 

user-accuracy in fiducial placement on registration accuracy, we simulated good and poor 

registration conditions. Two independent users registered ten pairs of images multiple times, 

allowing 30 seconds, 1 minute, and 2minutes for fiducial placement (Fig S1B). With 30 seconds, 

users had little time for accurate fiducial placement, resulting in poor affine alignment. Even so, 

using the nonlinear finetuning, all image pairs reached the equivalent accuracies, demonstrating 

that user-error has minimal effect on registration quality.  

To test the robustness of PIVOT across multi-omic image types, we analyzed three datasets 

spanning histological, molecular, proteomic, metabolomic, and transcriptomic data. We used 

PIVOT to register each dataset, using the high-resolution H&E image as the reference coordinate 

system (Fig 2A, Fig S1C-D). We obtained an average 2.5, 7.95, and 8.23 root-mean-squared-error 

(RMSE) following affine registration, and an improved 1.72, 7.47, and 5.22 RMSE following 

nonlinear adjustment, demonstrating the added value of the automated finetuning. 

We applied semantic segmentation cell-type prediction to the H&E image of each dataset for 

detection of tumor cells, inflammation, stroma, and other histologically recognizable features 

(Fig 2B, Fig S1C-D). By registering the per-cell protein expression from COMET Lunaphore and 

imaging mass cytometry (IMC), and registering the spots from Visium into fixed image space, we 

compared protein, RNA, and histological features (Fig 2C). We correlated the common protein 

markers between COMET and IMC to show strong agreement, demonstrating the power of this 

tool to validate protein expression across assays (Fig 2D). In two additional datasets, we similarly 

compared the per-cell protein expression from cycIF and COMET Lunaphore to H&E-based cell 

type prediction, finding strong agreement (correlation coefficients ranging from 0.43 – 0.84) 

between immune and epithelial markers (Fig S1B-C).  

Finally, we adapted a previously reported technique to deconvolve Visium spots using H&E-based 

cell type prediction to enable pseudo-bulk of protein expression from IMC data into Visium 

spots.18 We compared per-spot protein expression of key markers such as FOXP3 to per-spot 

transcript reads, clustering spots by their majority cell type as determined in H&E (Fig 2E, Fig S2). 
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Expression of lymphoid cell type markers (CD8, CD4, FOXP3, MS4A1) showed discordance 

between RNA and Protein modalities consistent with gene drop out in Visium spatial 

transcriptomics. CD8 protein expression was detected in ductal regions only in IMC, whereas RNA 

expression was primarily detected in spots with low cellularity, such as fat and stroma, suggesting 

poorer detection of lowly expressed transcripts in spots with high UMI counts. Similarly, 

regulatory T cell marker FOXP3 was lowly expressed at the RNA level across annotations, 

including regions with FOXP3 staining identified by IMC. 

In conclusion, PIVOT is a robust, open-source tool for spatial alignment of multi-omic datasets, 

enhancing the power of spatial assays by improving researchers’ ability to compare across 

ontological scales. 

Data availability statement 

The data analyzed here is available from the corresponding author upon request.  

Code availability statement 

The PIVOT software is available for download at the following address: 

https://github.com/Kiemen-Lab/CODA_pivot 

Acknowledgements 

The authors acknowledge the following sources of funding: BreakThrough Cancer Data Science, 

BreakThrough Cancer Demystifying Pancreatic Cancer Therapies, the Johns Hopkins University 

Data Science and Artificial Intelligence Institute (DSAI), NIHU54CA268083; Lustgarten 

Foundation-AACR Career development award for pancreatic cancer research in honor of Ruth 

Bader Ginsburg; Susan Wojcicki and Denis Troper; The Carl and Carol Nale Fund for Pancreatic 

Cancer Research; the Rolfe Pancreatic Cancer Foundation; Fight Cancer Stay Positive; The Sol 

Goldman Pancreatic Cancer Research Center. KC was supported by U2CCA233280 and Prospect 

Creek Foundation. JM was supported by a Seed Grant from the Hirshberg Foundation for 

Pancreatic Cancer Research. AM was supported by U54CA274371 and U24CA 274274. We thank 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2025. ; https://doi.org/10.1101/2025.06.08.658506doi: bioRxiv preprint 

https://doi.org/10.1101/2025.06.08.658506
http://creativecommons.org/licenses/by-nc-nd/4.0/


Francesca Paradiso for her assistance in the generation of COMET Lunaphore data. DNK was 

supported by the Maryland Cigarette Restitution Fund and the Lustgarten Foundation. 

Author contributions 

ALK conceived the project. HM, PG, JM, MW, DL, AV, SMS, XY, RS, KC, AM, EJF, WJH, LK, LDW, 

and DW generated the sample datasets. ALK led the design of the image registration 

application, with technical help from AF, VMR, IR, ME, DK, DH, and DS. AL wrote the first draft 

of the manuscript, which all authors edited and approved. 

Declaration of Interests 

AM is listed as an inventor on a patent that has been licensed from Johns Hopkins University to 

Exact Sciences Ltd.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2025. ; https://doi.org/10.1101/2025.06.08.658506doi: bioRxiv preprint 

https://doi.org/10.1101/2025.06.08.658506
http://creativecommons.org/licenses/by-nc-nd/4.0/


References 

1 Chang, Q. et al. Imaging Mass Cytometry. Cytometry A 91, 160-169 (2017). 
https://doi.org:10.1002/cyto.a.23053 

2 Liu, Y. et al. in Cell Vol. 183   1665-1681.e1618 (Cell, 2020). 
3 Stahl, P. L. et al. Visualization and analysis of gene expression in tissue sections by 

spatial transcriptomics. Science 353, 78-82 (2016). 
https://doi.org:10.1126/science.aaf2403 

4 Caprioli, R. M., Farmer, T. B. & Gile, J. Molecular imaging of biological samples: 
localization of peptides and proteins using MALDI-TOF MS. Anal Chem 69, 4751-4760 
(1997). https://doi.org:10.1021/ac970888i 

5 Shi, L. et al. Optical imaging of metabolic dynamics in animals. Nat Commun 9, 2995 
(2018). https://doi.org:10.1038/s41467-018-05401-3 

6 Zhang, D. W. et al. Inferring super-resolution tissue architecture by integrating spatial 
transcriptomics with histology. Nature Biotechnology 42 (2024). 
https://doi.org:10.1038/s41587-023-02019-9 

7 Braxton, A. M. et al. 3D genomic mapping reveals multifocality of human pancreatic 
precancers. Nature (2024). https://doi.org:10.1038/s41586-024-07359-3 

8 Kader, T. et al. Multimodal Spatial Profiling Reveals Immune Suppression and 
Microenvironment Remodeling in Fallopian Tube Precursors to High-Grade Serous 
Ovarian Carcinoma. Cancer Discov 15, 1180-1202 (2025). https://doi.org:10.1158/2159-
8290.CD-24-1366 

9 Chen, Y. et al. Long-chain sulfatide enrichment is an actionable metabolic vulnerability in 
intraductal papillary mucinous neoplasm (IPMN)-associated pancreatic cancers. Gut 
(2025). https://doi.org:10.1136/gutjnl-2025-335220 

10 Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of 
single-cell gene expression data. Nat Biotechnol 33, 495-502 (2015). 
https://doi.org:10.1038/nbt.3192 

11 Lin, J. R. et al. Multiplexed 3D atlas of state transitions and immune interaction in 
colorectal cancer. Cell 186, 363-381 e319 (2023). 
https://doi.org:10.1016/j.cell.2022.12.028 

12 Arganda-Carreras, I., Fernandez-Gonzalez, R., Munoz-Barrutia, A. & Ortiz-De-Solorzano, 
C. 3D reconstruction of histological sections: Application to mammary gland tissue. 
Microsc Res Tech 73, 1019-1029 (2010). https://doi.org:10.1002/jemt.20829 

13 Lotz, J. M. et al. in Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics Vol. 
1865   946-956 (Elsevier, 2017). 

14 Song, Y., Treanor, D., Bulpitt, A. J. & Magee, D. R. in Journal of Pathology Informatics Vol. 
4   7 (Wolters Kluwer -- Medknow Publications, 2013). 

15 Trede, D. et al. Exploring three-dimensional matrix-assisted laser desorption/ionization 
imaging mass spectrometry data: three-dimensional spatial segmentation of mouse 
kidney. Anal Chem 84, 6079-6087 (2012). https://doi.org:10.1021/ac300673y 

16 Tempest, N. et al. Histological 3D reconstruction and in vivo lineage tracing of the 
human endometrium. J Pathol 251, 440-451 (2020). https://doi.org:10.1002/path.5478 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2025. ; https://doi.org/10.1101/2025.06.08.658506doi: bioRxiv preprint 

https://doi.org:10.1002/cyto.a.23053
https://doi.org:10.1126/science.aaf2403
https://doi.org:10.1021/ac970888i
https://doi.org:10.1038/s41467-018-05401-3
https://doi.org:10.1038/s41587-023-02019-9
https://doi.org:10.1038/s41586-024-07359-3
https://doi.org:10.1158/2159-8290.CD-24-1366
https://doi.org:10.1158/2159-8290.CD-24-1366
https://doi.org:10.1136/gutjnl-2025-335220
https://doi.org:10.1038/nbt.3192
https://doi.org:10.1016/j.cell.2022.12.028
https://doi.org:10.1002/jemt.20829
https://doi.org:10.1021/ac300673y
https://doi.org:10.1002/path.5478
https://doi.org/10.1101/2025.06.08.658506
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 Kiemen, A. L. et al. 3D histology reveals that immune response to pancreatic precancers 
is heterogeneous and depends on global pancreas structure. bioRxiv (2024). 
https://doi.org:10.1101/2024.08.03.606493 

18 Bell, A. M., J.T.; , Kiemen, A. L. F., K.; Fedor, H.; ambichler, B.; Deshpande, A.; Wu, P.; 
Sidiropoulos, D.; Erbe, R.; Stern, J.; Chan, R.; Williams, S.; Chell, J.M.; Zimmerman, J.W.; 
Wirtz, D.; Jaffee, E.M.;  & Wood, L. D. F., E.J.; Kagohara, L.T.;. PanIN and CAF Transitions 
in Pancreatic Carcinogenesis Revealed with Spatial Data Integration. Cell Systems (2024). 
https://doi.org:10.1016/j.cels.2024.07.001 

19 ggpubr: 'ggplot2' Based Publication Ready Plots. 
20 Eng, J. R. et al. Highly multiplexed imaging reveals prognostic immune and stromal 

spatial biomarkers in breast cancer. Jci Insight 10 (2025). 
https://doi.org:10.1172/jci.insight.176749 

21 Eng, J. et al. Robust biomarker discovery through multiplatform multiplex image analysis 
of breast cancer clinical cohorts. bioRxiv (2023). 
https://doi.org:10.1101/2023.01.31.525753 

22 Bankhead, P. et al. in Scientific Reports 2017 7:1 Vol. 7   1-7 (Nature Publishing Group, 
2017). 

23 Kiemen, A. L. et al. CODA: quantitative 3D reconstruction of large tissues at cellular 
resolution. Nat Methods 19, 1490-1499 (2022). https://doi.org:10.1038/s41592-022-
01650-9 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2025. ; https://doi.org/10.1101/2025.06.08.658506doi: bioRxiv preprint 

https://doi.org:10.1101/2024.08.03.606493
https://doi.org:10.1016/j.cels.2024.07.001
https://doi.org:10.1172/jci.insight.176749
https://doi.org:10.1101/2023.01.31.525753
https://doi.org:10.1038/s41592-022-01650-9
https://doi.org:10.1038/s41592-022-01650-9
https://doi.org/10.1101/2025.06.08.658506
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figures and Captions 

 Fig 1. PIVOT: an open-source tool for multi-omic spatial data registration. 
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Fig 2 | Cross-platform integration enabled by PIVOT. (a) Guided nonlinear registration of Visium 

spatial transcriptomics, COMET Lunaphore, and imaging mass cytometry (IMC) to high-resolution 

hematoxylin and eosin (H&E) stained human pancreas tissue. Table containing raw, affine point-cloud 

(PC), and nonlinear fine-tuned (FT) root-mean-squared error (RMSE). (c) Cell-type prediction using 

CODA segmentation applied to high-resolution histology. (d) Overlay of Visium spots (purple) with protein 

expression from COMET Lunaphore (cyan) and IMC (red). (e) Two-dimensional cross-correlation of 

protein expression between co-registered IMC and COMET Lunaphore shows strong agreement. (f) IMC-

derived per spot pseudo-bulk protein expression of FOXP3 compared to Visium-derived per spot transcript 

count of FOXP3 demonstrates that poor detection of low abundance transcripts using spot-based spatial 

transcriptomics may be improved with proteomics. Violin plots show detection of protein and transcripts 

per cell-type predicted from H&E. 
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Fig S1 | Comparison to additional datasets. (a) Comparison of root mean squared error (RMSE) between 

fiducial point pairs of unregistered images and images registered using the CODA algorithm, ImageJ 

landmark correspondence, and PIVOT. (b) Comparison of RMSE in point-cloud affine registration (PC) 

and finetuned nonlinear registration (FT) on three datasets allowing 30 seconds, 1 minute, or 2 minutes for 

fiducial placement. (c) Registration of cyclic immunofluorescent (cycIF) to hematoxylin and eosin (H&E), 

with RMSE provided. Comparison of protein expression from cycIF to cell-type predictions derived from 

H&E. (d) Registration of COMET Lunaphore and Visium to H&E, with RMSE provided. Comparison of 

protein expression from COMET Lunaphore to cell-type predictions derived from H&E. 
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Fig S2 | Integration of spatial transcriptomics, imaging mass cytometry, and H&E-based cell type 

predictions. IMC-derived per spot pseudo-bulk protein expression of several markers compared to Visium-

derived per spot transcript counts and RNA expression demonstrates that poor detection of low abundance 

transcripts such as FOXP3, CD8, and CD20 using spot-based spatial transcriptomics may be improved 

using proteomics. Violin plots show detection of protein and transcripts per cell-type predicted from H&E. 

Cytokeratin protein expression and pan-cytokeratin RNA-expression show high abundance in cells 

predicted as epithelial (glandular tumor, discohesive tumor, and normal duct) in H&E. 
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Materials and Methods 

Generation of dataset A 

A sample of human pancreatic tissue containing invasive pancreatic ductal adenocarcinoma was 

prospectively collected from an individual treated with neoadjuvant chemotherapy and 

pancreatic resection at the Johns Hopkins Hospital. Acquisition of this sample was approved by 

the Johns Hopkins University Institutional Review Board. The resected tissue was formalin-fixed, 

paraffin-embedded, and serially sectioned at a thickness of 4µm. Various spatial profiling 

technologies were applied to the serial sections, including: (1) hematoxylin and eosin (H&E) 

staining, imaged at 20x magnification using a Hamamatsu S360; (2) 10x Genomics Visium spatial 

transcriptomics, with one 6.5 x 6.5 mm2 region of interest; (3) imaging mass cytometry, with four 

1 x 1 mm2 regions of interest; and (4) COMET Lunaphore, with one 8 x 8 mm2 region of interest. 

Generation of dataset B 

A human breast cancer tissue microarray (TMA) was created with a series of breast cancer 

subtypes (Hormone Receptor Positive, HER2 Positive, Triple Negative, and Lobular), subtype 

associated cell lines, and normal tissues (Breast, Tonsil, and Jejunum) at Pantomics (Fairfield, CA). 

All samples were collected at the time of surgical resection and underwent coring, formalin-

fixation, and paraffin embedding. The sample was serially sectioned. One section was stained 

with H&E and two sections were stained with cyclic immunofluorescence (cycIF). 

Generation of dataset C 

A sample of human pancreatic tissue containing invasive pancreatic ductal adenocarcinoma was 

retrospectively collected from the MD Anderson Cancer Center. Acquisition of this sample was 

approved by the MD Anderson Institutional Review Board. The resected tissue was formalin-

fixed, paraffin-embedded, and serially sectioned at a thickness of 4µm. Various spatial profiling 

technologies were applied to the serial sections, including: (1) hematoxylin and eosin staining, 

imaged at 20x magnification using a Hamamatsu S360; (2) 10x Genomics Visium spatial 
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transcriptomics, with one 6.5 x 6.5 mm2 region of interest; (3) COMET Lunaphore, with one 8 x 8 

mm2 region of interest. 

Spatial Transcriptomics 

Spatial transcriptomic data was processed using the Seurat R package (v5).5 Visium spatial RNA-

seq data (10x Genomics) was loaded with Load10X_Spatial. For each spot, the top CODA-

predicted cell type was assigned based on the highest proportion of pixels present within each 

spot. Gene module scores were calculated using AddModuleScore for curated epithelial and 

immune gene signatures (panCK: KRT genes detected in dataset; Tcyto: CD3E, CD3D, CD8A, 

GZMB; B cell: CD19, MS4A1, CD79A, CD22; NK: NCAM1, KLRD1, NCR1, PRF1, KLRK1; Treg: CD3E, 

CD3D, CD4, FOXP3, CTLA4, PDCD1). Raw counts of selected transcripts (e.g., CD3E, CD8A, MS4A1, 

KRT14, FOXP3) were extracted from the SCTransform assay, log-transformed, and scaled. 

Correlation between IMC markers and spatial transcriptomic expression was evaluated using 

linear regression and visualization via the ggpubr package.19 Spatial and violin plots were 

generated using Seurat functions, stratified by CODA-assigned top cell type. All outputs were 

compiled into a single PDF for visualization. R version 4.5.1 was used.  

Imaging Mass Cytometry 

Imaging mass cytometry images were ablated using a Hyperion Imaging System (Standard 

BioTools). Resulting MCD files were converted into ome.tiff format using MCD Viewer software 

(Standard BioTools; version 1.0.560.6). These files were analyzed using the HighPlex FL (version 

4.2.14) algorithm in HALO (Indica Labs; version 3.6.4134.396). The DNA1 channel was used as a 

nuclear marker to identify all cells. Expression of all markers within the adjacent region to the 

nuclear signal was averaged and recorded per cell. Algorithm parameters were manually adjusted 

for each marker to optimally detect signal with minimal nonspecific signal detection. The 

HighPlex FL algorithm allows for cell data to be stored as objects with X and Y coordinates 

retained to enable spatial analysis, and enabling cell-type prediction using a clustering algorithm. 

COMET Lunaphore 
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The COMET platform (Lunaphore Technologies) was used to capture serial immunofluorescence. 

FFPE tissue was baked, deparaffinized, and rehydrated, followed by autofluorescence quenching 

and antigen retrieval. The slide was loaded onto the COMET Stainer and processed according to 

manufacturer’s recommendations, undergoing iterative staining with primary antibodies, 

secondary antibodies, and subsequent imaging, followed by elution of the primary and secondary 

antibodies. After staining, imaging outputs from each cycle were automatically stitched and 

aligned. Images were viewed and cellular clusters were determined using the Lunaphore Viewer. 

Cyclic Immunofluorescence (cycIF)  

CycIF staining of tumor tissue was completed on TNP-TMA-7 and TNP-TMA-8 using our protocol: 

dx.doi.org/10.17504/protocols.io.23vggn6. Antibodies used for staining are available in the 

previously published source data.20 The whole tissue core was imaged using fluorescence 

microscopy as described.21 H&E staining was performed on TNP-TMA-9. The whole tissue core 

was imaged using fluorescence microscopy as described.21 

All images at full resolution and derived mask images in ome.tiff format, and all cell feature tables 

in three consecutive TMA tissues were generated under the funding initiatives from Human 

Tumor Atlas Network Phase 1 (HTAN; https://humantumoratlas.org/). All data will be fully 

released in public through the NCI-recognized repository: Cancer Data Service (CDS) and Seven 

Bridges cloud platform (SB-CGC) at Cancer Genomics Cloud 

(https://www.cancergenomicscloud.org/)  with associated identifies: HTAN TNP-TMA, 

OHSU_TMA1_XXX-YY, where XXX and YY represents TMA section ID and core ID, respectively. 

Mass Spectrometry Imaging (MSI)  

Tissue samples were sprayed with a solution of 10 mg/mL of 9-Aminoacridine in 70% methanol 

using the HTX M5 Sprayer (HTX imaging). MALDI-MS imaging was conducted on a MALDI Synapt 

G2-Si (Waters, USA) at 60 µm spatial resolution. After MALDI-MS imaging, the same and an 

adjacent tissue section were stained with H&E for pathological annotation. 
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Generation of standard-format downsampled images for PIVOT registration 

The PIVOT interface can read several image types including TIF, JPG, and PNG, but runs most 

efficiently on modestly sized images (<500 MB per file). In contrast, multi-omic images are very 

high-resolution with file sizes ranging from one to hundreds of GB, and come in many formats 

including NDPI, TIFF, and OME. To register very large image files, we suggest calculating 

registration transforms on downsampled copies for faster runtimes. We created a GROOVY script 

for streamlined down sampling of diverse image types using QuPath.22 QuPath is a powerful 

program that can efficiently read many image formats, and enables java-based programming of 

custom functions. Our GROOVY script helps users downsample a series of images loaded into a 

QuPath project to a maximum pixel dimension size. We suggest a user-input maximum dimension 

of 2000 – 3000 pixels, depending on each user’s resolution needs and RAM limitations. The 

program will save each downsampled image to a folder, including a CSV file containing the 

downsample scale factor which can be automatically loaded into the PIVOT program during 

coordinate registration. 

The PIVOT user interface 

PIVOT is an open-source program coded in python using the pyQT user-interface development 

package. This interface enables users to create registration projects, consisting of a single fixed 

image and one or a series of moving images, to perform various registration tasks. The functions 

of the user interface are split into five tabs, which we describe separately here. We also 

generated a user-guide (see supplementary materials) explaining the usage of each tab in 

extended detail. 

Tab 1. Input project settings: this tab allows users to define project settings or to import a 

previously defined project. A project consists of a single user-defined fixed image (the reference 

coordinate system for all registration tasks), one or a series of moving images (which will be 

registered into the fixed image’s coordinate space), and a folder where all job metadata 

(consisting of the job template file, registration transforms, registered images, and registered 

coordinate data) will be saved. Once defined, a user may load a previously defined project 
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template file to continue a previous project, incorporate new moving images, or apply 

registration transforms to coordinate files or high-resolution image files. 

Tab 2. Calculate registration of image pairs: this tab allows users to calculated point-cloud and 

fine-tuned elastic registration of multi-omic image pairs. First, the user will select a moving image 

to register from a drop-down list of all moving images. The image will load and display side-by-

side with the fixed image. Using a series of keyboard shortcuts, the user may rotate, scale, flip, 

and zoom on the fixed and moving image until similar regions of interest are displayed. If 

necessary, the user may adjust the brightness and contrast settings of either image to enhance 

visibility. Next, the user should select a minimum of six fiducial point pairs over similar regions in 

the fixed and moving image. Once at least six point pairs are selected, point-cloud-based 

registration may be calculated, optimizing the overlay of the points by transforming their scale, 

rotation, and translation. After calculation, the interface will display the pre- and post- registered 

images with calculated RMSE values. If the overlay quality is unacceptable, the user may return 

to the fiducial selection window. If the overlay quality is acceptable, the user can save these 

transforms and registered images.  

After saving the point-cloud registration transforms, the user has the option to fine-tune the 

registration through calculation of nonlinear registration using the CODA algorithm.23 This fine-

tune registration uses maximization of the cross-correlation of image intensity to attempt to 

correct for local warping between images. For image pairs with similar intensity profiles (such as 

registration of two brightfield images [H&E to H&E or H&E to IHC] or two fluorescent images, this 

is straightforward. For image pairs with dissimilar pixel intensity profiles (such as for registration 

of a brightfield image to a fluorescent image), the program will automatically complement the 

moving image to improve the performance of the automated registration. For the nonlinear 

registration calculation, the user may finetune parameters for patch tile size and tile spacing to 

improve performance. If the elastic registration appears to improve the image overlay, the user 

may save this transform information. If it does not appear to improve registration, the user may 

proceed with point-cloud-based affine registration only. 
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Tab 3. Align coordinate data using calculated registration transforms: this tab allows users to 

register coordinate data by applying the registration transforms calculated using the multi-omic 

image pairs. Examples of coordinate data that users may wish to register include per-cell protein 

expression information from spatial proteomic assays and per-spot coordinates from spatial 

transcriptomics assays. The tab allows users to import a coordinate file, assign which moving 

image the coordinates correspond to, and input the columns of the CSV file containing the X and 

Y coordinates. For example, for spot outputs from the 10x Genomics Visium platform, the X and 

Y coordinates are in columns ‘E’ and ‘F’, or ‘5’ and ‘6’ (the table accepts alphabetic or numerical 

inputs). Once these variables are assigned, the interface allows users to load the fixed image, 

moving image, and coordinate points. The points will be overlaid on the unregistered moving 

image, the registered moving image, and the fixed image. The user must confirm that the 

registration applies to the coordinates as expected, after which the registered points may be 

exported. The exported CSV file will mirror the format of the input CSV, retaining any columns 

containing associated information for transcriptomic spots or protein expression, and replacing 

the unregistered coordinate values with the updated registered values. The user may save the 

registered points in the point-cloud registered space or in the fine-tuned elastic registered space. 

Tab 4. Align high-resolution images using calculated registration transforms: this tab allows users 

to register high-resolution images by applying the registration transforms calculated using the 

low-resolution image pairs. Examples of high-resolution images that users may wish to register 

include segmentation masks for brightfield or immunofluorescent images. This tab allows users 

to import a list of image files and assign the corresponding moving image from the PIVOT project. 

The program will automatically calculate he scale between each high-resolution image and the 

lower-resolution image used for registration, and will load and register each file using nearest 

neighbor interpolation so as not to affect the precision of pixel-level labels in image masks. 

Tab 5. View job status: this tab allows users to view the status of each pair of images in the current 

job. The tab consists of a large table with a row for each moving image. Columns include the 

number of fiducial point pairs clicked per image, the RMSE calculated following point-cloud 

registration, the RMSE calculated following the fine-tuning elastic registration, and confirmation 
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of whether or not the resulting transforms have been used to align coordinate data. There are 

no user tasks on this tab. Instead, this tab allows users to rapidly determine for which image pairs 

registration has been calculated or needs to be calculated.  

Deconvolution of cellular and expression data into spatial transcriptomics spots 

While too specific of an application for incorporation into the user-interface, we consider 

grouping of cell counts, protein expression, and other coordinate resolved biological signals into 

spatial transcriptomics spots to be a major use enabled by this software. Expanding on the 

method originally developed for deconvolution of Visium spatial transcriptomics spots using cell 

types labelled using segmentation of H&E images,18 here we show that additional molecular 

information may be grouped into transcriptomic spot data from registered CSV coordinate data. 

In the PIVOT GitHub repository linked in this manuscript, we provide sample code which may be 

adapted to users’ specific applications. 

Comparison of the effect of time spent annotating to registration accuracy 

To determine the effect of poor fiducial placement on registration accuracy, we performed time 

trials on a subset of the images. For each of the three datasets, we selected a single pair of images 

for method comparison. From dataset A we chose the high-resolution H&E image and one of the 

IMC ROIs. From dataset B we chose the high-resolution H&E image and one of the cyclic IF 

images. From dataset C we chose the Visium-associated H&E image and the mass spectrometry 

image. For each image pair from the three datasets we meticulously generated 20 pairs of high-

accuracy fiducial points per fixed and moving image to serve as validation of method 

performances. For each image pair, two users additionally performed registration nine times: 

three times repeated allowing 2 minutes for fiducial pair placement, three times repeated 

allowing one minute for fiducial pair placement, and three times repeated allowing thirty seconds 

for fiducial pair placement. We applied the automated nonlinear registration to compare the 

results of affine and nonlinear registration. Following image registration, we applied the 

registration transforms to the twenty pairs of validation coordinates to compare accuracy. We 

plotted the root-mean-squared-error (RMSE) of the validation coordinates in bar graphs.  
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Comparison to existing registration workflows 

We compared the performance of PIVOT to two existing methods, CODA automated registration, 

and ImageJ fiducial-point registration to these datasets by comparing root-mean-squared-error 

(RMSE) and runtime. For each image pair from the three datasets we meticulously generated 20 

pairs of high-accuracy fiducial points per fixed and moving image to serve as validation of method 

performances. We applied PIVOT semi-automated registration, CODA automated registration, 

and ImageJ fiducial-point registration to all images in the datasets, and calculated root-mean-

squared-error (RMSE) and runtime. These data were plotted in a bar plot for comparison.   

Application of ImageJ fiducial-point registration was performed using the following steps. 

Reference and moving image pairs were loaded into ImageJ. For each pair, three corresponding 

landmarks were manually placed using the multi-point tool. An affine transformation matrix was 

then computed using the Landmark Correspondences plugin with the following parameters: 

alpha = 1.00, mesh resolution = 32, and transformation class set to affine. The output affine 

matrix was exported and loaded into Python. Images were transformed with OpenCV's 

warpAffine function. Target points were transformed using numpy. RMSE values were computed 

for the transformed landmarks to quantify alignment accuracy for each image pair. 
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