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Biological systems are complex networks involving tens of thou-

sands of interacting molecular components, and measurable biolog-

ical functions are emerging properties of these complex networks.

Many quantitative studies in biology attempt to connect biological

function with molecular components and genes, in the process de-

veloping mechanistic understanding. However, it is challenging to

quantify the contribution of all components to the biological func-

tion simultaneously, especially at the single cell level. Instead, in

typical experiments, only a subset of the variables (or facet) is mea-

sured. This makes it difficult to obtain a complete and unbiased
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understanding of the network and how different components of the

network cooperatively contribute to the biological function. In this

paper, we explore a machine learning approach to combine different

facets of data and obtain a complete picture of the biological sys-

tem based on conditional distributions from faceted data subsets.

Both a polynomial regression approach and a neural network ap-

proach are developed and examined with two set of concrete exam-

ples: A mechanical spring network system deforming under external

forces and a small (8-dimensions) biological network including the

cellular senescence marker P53. In the later example, single cell

data is collected to validate the machine learning approach. We

find that the full system is successfully reconstructed from faceted

data in both examples. We further discuss the additive property

of the model, where the model predictive accuracy increases with

increasing number of simultaneously measured variables (dimension

of subsets). Our model provides a systematic and novel approach

to integrate different pieces of experimental information to recon-

struct complex high dimensional systems, arriving at an unbiased

and wholistic model of biological function.

Introduction

As told through centuries, the ”Blind Men and the Elephant” is a fable of blind individu-

als attempting to comprehend the appearance and nature of an elephant by independent

exploration (Fig. 1 (a)). Each individual has limited information and understanding,

acquired through independent experience. However, by sharing, comparing, and synthe-
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sizing their experiences, the group can gain a more comprehensive understanding of the

elephant as a whole. Similarly, biological systems are complex networks with thousands

of interacting molecular components [1, 2, 3]. Biological function and disfunction are

often emergent properties of these complex networks. It can be challenging to quantify

the contributions of all variables to the biological function simultaneously, making it dif-

ficult to obtain a full understanding of the system. More often, a subset of variables are

measured and quantified, obtaining a projection (or facet) of the relationship between

the biological output and the underlying variable. Therefore, just as in the ”Blind men

and the elephant” example, it is desirable to reconstruct the full relationship between the

biological output and all the underlying variables from many sets of faceted data.

With advancements in machine learning (ML) and artificial intelligence (AI), there

are now many methods that can predict outcomes from complex high dimensional data

[4, 5, 6, 7]. However, in a typical biological experiment, the full space of underlying

variables are almost never measured. Here we present a machine learning-based method to

reconstruct the complete biological network from faceted data sets. The method allows for

incremental improvement of the learned network, and is a systematic method of obtaining

the global predictive model from multiple independent measurements and observations.

When new hidden variables are discovered, new measurements can be added to the existing

model to improve the model and predictions.

The basic biological unit is a single cell. Each cell is characterized by its proteome,

genetic material, and other components such as lipids, small molecules, ions, and so on.

Therefore, the underlying variable that describes the single cell, x = (x1, x2, x3, . . . ), is

a high dimensional vector, where xi is the quantity of the i-th component. The minimal

number variables that define x is the proteome composition, or the number of expressed

proteins in the cell, since given the same genetic sequence, the proteome composition
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should determine the number of small molecule, lipid, ionic contents of the cell, as well

as post-translationally modified forms of proteins. However, proteome composition itself

probably does not fully specify biological function, since environmental chemical [8, 9],

mechanical [10, 11], and electrical variables [12] also contribute. Therefore, x minimally

will contain the expression levels of all genes and environmental variables.

If x is defined as the expression levels of genes, then the distribution of x, ρ(x), is

often referred to a ’gene network’ [13, 14]. In the context of gene regulatory networks,

the discussions in our paper also applies (See Example 2: P53 network).

At the simplest level, a particular biological function/observable, F , is a function of

the underlying variable: F (x). For example, F could be the cell size, the cell cycle length,

the growth rate, or the cell migrations speed, which should be measured at the single

cell level. This is because much of recent work has demonstrated that there is additional

complexity and phenotypic variation, even for isogenic cells [15, 16]. The reasons for this

is complex, and could encompass epigenetic mechanisms and cellular memory [17, 18].

Therefore, F (x) is a complex mapping from biological variables to biological function. It

should be noted that recent advancements in AI and machine learning in fact has solved

the high dimensional regression problem. If the data for F (x) is available, then AI can

now use neural networks or other types of methods that maps biological variables to

biological function. The problem, therefore, is not the lack of methods to find F (x). The

problem is the lack of multi-dimensional methods that obtain data for all relevant x, and

measure F simultaneously at the single cell level.

Thus, the function F (x) is difficult to learn in an unbiased way, and there are no

systematic efforts to map F for major biological problems of interest. In most experiments,

such as flow cytometry or Western blot experiments, only a few of the xi out of thousands

are quantified in a meaningful way. Moreover, it is typical that each researcher measures a
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different subset of xi’s, and therefore is study a particular ’facet’ of the problem, precisely

the problem identified in the ”blind men” story. The global picture is generally missing.

There have been extensive studies in the ML field on system reconstruction from partial

data sets based on eigenvectors of the system [19, 20]. However, it is desirable to have

a method that can combine data from all individual facets, and progressively arrive at a

global picture.

There are now increasing number of experimental methods to quantify cell components

(e.g., RNAseq [21, 22], protein secretome [23] and morphological data [24, 25]) at the

single cell level. For example, single cell RNAseq quantifies RNA at the genome-wide

level. However, mRNA levels do not easily translate to proteomic composition [26, 27,

28], and no biological observable, F , is typically measured at the single cell level during

sequencing. On the other hand, methods such as flow cytometry, Western blots, and

immunohistochemistry allow one to examine a handful of proteins at a quantitative level,

but it is generally difficult to examine biological function or observables at the single

cell level. There are now highly accurate methods to measure cell size, cell contractility,

and cell cycle at the single cell level. It remains to be seen if single cell methods can be

combined with single cell measurements to produce truly predictive models of biological

function.

In this paper, we first describe the general idea of faceted learning based on mul-

tiple data subsets of the same problem. We then illustrate the method using machine

learning models based on polynomial regression and neural networks, respectively. Two

concrete examples are discussed: A mechanical spring network system and a small bio-

logical network including the cellular senescence marker P53. Full system is successfully

reconstructed from faceted data for both problems. Interestingly, we find that the mech-

anism regulating P53 level is the same for cells in different growth conditions. The only
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difference is the underlying proteome distribution of network components. Our method

separates the regulatory network that govern p53 level and the intrinsic distribution of

the input variables. The polynomial regression model also allows us to explore mecha-

nistic aspects of the network, whether components of the network act synergistically or

antagonistically. We also discuss the additive property of faceted approach, where the

model accuracy increases with increasing number of simultaneously measured variables

(dimension of subsets). Our approach provides a novel method utilizing conditional distri-

bution to integrate different pieces of information to reconstruct complex high dimensional

biological systems.

Reconstructing the systems model from facets of prob-

ability distributions: Statement of the problem

We consider a system described by the function y = F (x;θ), where θ is a set of model

parameters. For simplicity, we assume that y is an one-dimensional output and x is a d-

dimensional input vector (e.g., for the system of a cell, cell volume is a function of protein

content and kinase activity.) (Fig. 1 (b)). In experiments, we assume only p (p < d)

variables of x and biological output y can be measured simultaneously. In general p > 1,

which provides information about the correlation among different input variables (x). It

is also possible to perform multiple measurements to obtain different subsets of variables

(x, y). Note that data-driven methods of manifold learning using principal component

analysis (PCA) for learning models of (x, y) has been investigated extensively [29, 30].

Here we take these available methods as given.

Experimental measurements will generate probability distributions of (x, y). In the

biological context, each instance of (x, y) arise from a single cell, and many cells are
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Figure 1: (a) Blind men and the elephant problem. Each observer measures a facet of
the problem, and therefore receives a biased view. Combining data from all observers will
generate a full model. (b) A biological function is a mapping from cell components to an
observable, or output. (c) Biological network model reconstruction from mapping of data
distribution functions. The original data is the joint probability distributions of partial
input and output. We dissect the joint distributions into several consecutive conditional
distributions and directly fit the conditional distribution to obtain model parameters. (d)
Data structure in the faceted learning procedure. l faceted data sets are collected, each
containing only partial dimensions of the input x and output y. Each data set contains
M data points, with N = M × l total data points.

typically measured in a single experiment. Therefore, the mean biological output is

〈F 〉 =

∫
dxF (x)ρ(x) (1)

We assume that it is possible to eventually measure the d × d covariance matrix of x

and the mean value of the input variable x, denoted by Σ and µ, respectively. We

denote all the d input variables as a universal set U = {x1, x2, ..., xd}. Assume that each

measurement includes p input variables, and we denote the simultaneously measured

variables as Si, which is a subset of U . There are in total ns =
(
d
p

)
different subsets

(i < ns) and i is the index of measurements. In principle, we can perform measurements
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over all possible subsets. However, for simplicity, in the following discussion, we partition

U into l = d/p subsets and only use these l subsets for system reconstruction. The subsets

are denoted by Si (i ≤ l) and satisfy: ∪li=1Si = U, Si ∩ Sj = ∅. For each subset Si, let

S ′i = U\Si be the complement. Assume we have l sets of experimental data covering the

whole set as described above and each data set is composed of M data points: (xi,α, yi,α)

(i ≤ l, α ≤M). Here xi is a vector containing all variables in subset Si, and the subscript

α is the index of the data point. yi,α is the output variable corresponding to xi,α. Similarly,

we define xi′ as a vector containing all variables in the complementary set S ′i. These

data sets are l-facets of the full system (Fig. 1(d)). We desire to approximate the

full model of the system by y = F̃ (x) from these l sets of partial data and the measured

statistical information of input variables.

We wish to reconstruct the full system model from the conditional probability distri-

butions of output variables with fixed input variables. For each data set (xi, yi), we have

the conditional distribution

fi(y|xi) =

∫
Π(x, y)dxi′∫
ρ(x)dxi′

. (2)

Here fi is the conditional probability of variable y given fixed xi, Π is the joint probability

distribution of x, y of the full system and ρ is the joint probability distribution of only x.

Π(x, y) contains information for both the distribution of underlying variables (x) and the

dependence of y on x. In principle, once the joint distribution of x, y is obtained, we know

the mapping between x and y. However, Π is never explicitly measured in experiments.

Only the facets, or ρi(xi) =
∫
ρ(x)dxi′ and fi are measured in experiments. By minimiz-

ing the difference between the predicted conditional distribution (f̂i) and true distribution

obtained from experimental data (fi), we can obtain the best model parameters θ (Fig.
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1 (c)):

θ = arg min
θ

(
l∑

i=1

∫
[fi(y|xi)− f̂i(y|xi;θ)]2dxi

)
(3)

where fi is the measured conditional distribution for the i-th partial (facet) data and f̂i

is the predicted distribution from our model. This represents the most unbiased model

regression that includes all facets of the problem. One may also weigh the facets by their

statistical confidence, or data quality, which is easily done in Eq. (3). In the following

discussion, variables with hats imply predicted value based on assumed models.

Performing regression for the complete probability distribution function is sometimes

not practical because the conditional distribution fi(y|xi) is generally not analytic. We

also would like to use deep learning and neural networks to parameterize the model.

One possibility is to use the mean and the variance to approximate the distribution

and minimize the differences in these two quantities with respect to model parameters,

θ. This procedure is exact for systems with normally distributed data. The conditional

expectation and variance are defined as: Li =
∫
yfi(y|xi)dy and Vi =

∫
(y−Li)2fi(y|xi)dy.

In practice, since we can not obtain analytical expression of the conditional distribution

fi(y|xi), we compute the predicted expectation and variance in terms of x based on the

assumed model for output y (ŷ = F̂ (x;θ)) and conditional distribution of Xi′ when Xi is

fixed (ρi(xi′|xi)). Specifically, for each data set (xi, yi), we integrate the output function

F (x) over all the unknown variables xi′ with conditional probability distribution to get

the conditional expectation and denote it by L̂i(xi). Moreover, we calculate the variance

over all the unknown variables (xi′) while the known variables (xi) are fixed and denote it

by V̂i(xi). The prediction accuracy can be improved by including higher order moments.
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The conditional expectation and variance are related to faceted data as:

L̂i(xi;θ) =

∫
F̂ (x;θ)ρi(xi′|xi)dxi′ (4)

V̂i(xi;θ) =

∫
[F̂ (x;θ)− Li(xi)]2ρi(xi′|xi)dxi′ (5)

From the experimental data, we divide the independent variables xi in each set of data

into ni consecutive bins and for each bin [xi,k,xi,k + dx](k ≤ ni), we calculate the mean

value Li(xi,k) and variance Vi(xi,k). The loss function is defined in the square error form

as:

U =
l∑

i=1

M∑
α=1

[(Li(xi,α)− L̂i(xi,α))2 + (Vi(xi,α)− V̂i(xi,α))2]. (6)

The framework outlined above requires knowledge about the distribution of input

variables x. For many biological examples, the data is concentrated around the mean value

and are close to the normal distribution. In our analysis, we first standardize the input and

output data by: x̃ = Σ−1/2 ·(x−µ), where µ is the mean value of the sample and Σ is the

covariance matrix. After standardization, the mean value becomes zero and covariance

matrix becomes the identity matrix. Therefore, the correlation between variables in ρ(x)

is removed in the transformed variables. For simplicity, in the following analysis, we

assume that the variables are already standardized and follow the normal distribution

x ∼ N(0, 1) and drop the tilde label if not specified. The underlying distribution is then

ρ̂(x) =
1√

(2π)d
e−

1
2
x̃T I−1x̃ (7)

where I is identity matrix after the standardization.

The Gaussian assumption for ρ(x) is convenient for analytic manipulation, but in

general the assumption is not valid. A more general approach is to use a Gaussian

mixture model [31, 32], where we assume the probability distribution of x is the sum of
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several Gaussians:

ρ̂(x) =
∑
N

aN√
(2π)d|Σ|

e−
1
2
(x−µN )T Σ−1

N (x−µN ) (8)

where (aN ,µN ,ΣN) are the weights and parameters of the N -th Gaussian. The Gaussian

parameters can be optimized with respect to the measured faceted distributions. Specif-

ically, for each measured facet xi, there is a marginal distribution ρ(xi). We use several

Gaussian functions to fit ρ(xi) with parameters (aNi
,µNi

,ΣNi
):

ρ̂i(xi) =
∑
Ni

aNi√
(2π)p|Σ|

e−
1
2
(x−µNi

)T Σ−1
Ni

(x−µNi
) (9)

Since correlation information is removed in the normalized data, we can roughly assume

that each measuring set is independent of others. We can then approximate the joint

distribution of x as the product of the fitted marginal distributions of each faceted data

set: ρ̂(x) = Πl
i=1ρ̂i(xi).

Analytical case: Polynomial Models Based on Partial

Data

For illustration purposes, we examine a polynomial model based on normally distributed

data. The results are analytic, and therefore easily obtained. Also, due to concentrated

property of many different kinds of data, we can sometimes approximate the output

function using Taylor expansion up to the second order as:

F̂ (x) = F0 +
d∑

α=1

F ′αxα +
1

2

d∑
α=1

d∑
β=1

F ′′αβxαxβ (10)

From the Gaussian assumption, it is possible to compute the conditional mean value and

variance explicitly. For each set of data, the conditional distribution of unknown variables

when fixing the known variables also obeys normal distribution: ρ(xi′|xi) = N(µ̄(i), Σ̄(i)),
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where µ̄ and Σ̄ are defined as follows: We first rearrange the d-dimensional column vector

x as: x = (xTi′ ,x
T
i )T and accordingly, Σ is arranged as follows (µ is a null-vector):

Σ =

(
Σi′i′ Σi′i

Σii′ Σii

)
(11)

Then µ̄(i) and Σ̄(i) can be expressed as:

µ̄(i) = Σi′i ·Σii
−1 · xi (12)

Σ̄(i) = Σi′i′ −Σi′i ·Σ−1ii ·Σii′ (13)

Based on the conditional distribution, the mean output value when fixing xi is calcu-

lated as:

L̂i(xi) =

∫
F̂ (x)fi(xi′|xi)dxi′ (14)

=

∫
(F0 +

d∑
α=1

F ′αxα +
1

2

d∑
α=1

d∑
β=1

F ′′αβxαxβ)f̂i(xi′|xi)dxi′ (15)

= F0 +
d∑

α=1

F ′αM
(i)
α +

1

2

d∑
α=1

d∑
β=1

F ′′αβ(C
(i)
αβ +M (i)

α M
(i)
β ) (16)

where the matrices C(i) and M (i) are as follows:

C(i) =

Σ̄
(i)
11 0 Σ̄

(i)
12

0 0 0

Σ̄
(i)
21 0 Σ̄

(i)
22

 ,M (k) =

µ̄(i)
1

xi
µ̄

(i)
2

 , (17)

The positions of Σ̄
(i)
11 , Σ̄

(i)
12 , Σ̄

(i)
21 , Σ̄

(i)
22 , µ̄

(i)
1 , µ̄

(i)
2 are determined by the indices of xi′ in the

full vector x. Similarly, the positions (columns and rows) of the inserted zeros in C(i) and

xi in M (i) correspond to the measured variable indices (xi). Furthermore, the variance

of the predicted output value when fixing xi. We first calculate the first four moments of
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the variable xi′ :

E(xα) = M (i)
α (18)

E(xαxβ) = C
(i)
αβ +M (i)

α M
(i)
β (19)

E(xαxβxγ) = M (i)
α C

(i)
βγ +M

(i)
β C(i)

αγ +M (i)
γ C

(i)
αβ +M (i)

α M
(i)
β M (i)

γ (20)

E(xαxβxγxν) = C
(i)
αβC

(i)
γν + C(i)

αγC
(i)
βν + C(i)

ανC
(i)
βγ

+M (i)
α M

(i)
β C(i)

γν +M (i)
α M (i)

γ C
(i)
βν +M (i)

α M (i)
ν C

(i)
βγ

+M
(i)
β M (i)

γ C(i)
αν +M

(i)
β M (i)

ν C(i)
αγ +M (i)

γ M (i)
ν C

(i)
αβ +M (i)

α M
(i)
β M (i)

γ M (i)
ν (21)

For convenience, the moments are denoted as: Eα, Eαβ, Eαβγ and Eαβγν . With these

identities, the variance is:

V̂i(xi) = F 2
0 + 2F0[

d∑
α=1

(F ′αEα +
1

2

d∑
β=1

F ′′αβEαβ)]

+
d∑

α=1

d∑
β=1

[F ′αF
′
βEαβ +

1

2

d∑
γ=1

(F ′βF
′′
αγ + F ′αF

′′
βγ)Eαβγ

+
1

4

d∑
γ=1

d∑
ν=1

F ′′αγF
′′
βνEαβγν ]− L̂i(xi)2 (22)

Substituting Eqs. 16 and 22 into the loss function 6 and minimizing via simulated an-

nealing method, we can obtain the optimal model parameters, which reconstructs the full

system from partial experimental data.

Note that the polynomial model up to second order in the underlying variables repre-

sents a model with pair-wise interaction of biological components. The components can

either enhance or suppress each others contribution to the biological function. This par-

ticular case can be considered as a representation of typical signaling network diagrams,

although the interactions of the components are generally nonlinear. Pair-wise nonlinear

interactions are generally not covered by the polynomial expansion.
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Deep Learning Neural Network Models Based on Par-

tial Data

Although the polynomial regression method can perform well around the mean, it is not

suitable for complex models, especially in regions far from the mean. Neural networks

and deep learning model have been proven effective for capturing general complex models.

The basic idea is the same as polynomial regression except that the output function F̂ (x)

is approximated by an iterated function which depends on the structure of the neural

network. In each layer, the node values are linearly mapped to the next layer and processed

by activation function (Here we use ReLu as the activation function). (Fig. 2 (a)) We

use the same loss function as Eq. 6. However, we cannot obtain analytic expressions for

the conditional mean value and variance in the neural network model. Therefore, we use

Monte Carlo sampling to compute these two quantities.

Our neural network has nH layers and in the kth layer, there are nk nodes. For each

hidden layer, the node values zk are provided by the node values in the previous layer by:

zk = g[Wkzk−1 + bk], (23)

where g(x) is the activation function (ReLu function), taking the form: g(u) = max(0, u).

The output layer node values are given by: zk = Wkzk−1+bk. Therefore, the final output

value will be several iterations of this linear transform and the model parameters are the

coefficients Wk and bk (k ≤ nH + 1). To obtain the conditional mean and variance value

based on the neural network model, corresponding to each measuring set, we sample nsp

data from the fitted conditional distribution ρi(xi′|xi) when xi is fixed. A nice property of

the Gaussian model (Gaussian mixture model) is that the conditional probability density

function is also Gaussian (Gaussian mixture model). For each x, we can obtain the

predicted value of y according to the neural network. From the samples, we can get the
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conditional mean and variance values of y when xi is fixed. Since the loss function (Eq.

6) cannot be expressed explicitly, gradient-based methods are not applicable. Therefore,

we still use simulated annealing method to minimize the loss function with respect to

model parameters Wk and bk.

As in the ”blind men and elephant problem”, each experiment generates partial knowl-

edge of the problem. However, after combining the information fragments together, a more

complete picture of the system is obtained. Similarly, With more and more facets col-

lected, we are closer to the ground truth of the model. We also expect a difference in

prediction when each measuring set has different number of variables or variable combina-

tions (e.g., each measuring set contains only 2 or 3 variables) (Fig 2 (b)). When increasing

the number of variables in facet, the prediction should become more accurate. The limit

of this process is when all variables are measured and fitted simultaneously, which should

give the most accurate prediction.

(b)(a) 

෤𝑦 = 𝑓(𝑥1)

෤𝑦 = 𝑓(𝑥1; 𝑥2)

෤𝑦 = 𝑓(𝑥1; 𝑥2; … , 𝑥𝑑)

simultaneously measured 

variable number

෤𝑦 = 𝑓([𝑥1, 𝑥2]; [𝑥3, 𝑥4]… , [𝑥𝑑])

Full prediction

? ? ?−> 𝑦

Additive 
learning

𝑥1

𝑥2

𝑥𝑑

Input
layer

Hidden
layer

Output
layer

෤𝑦

…

Figure 2: (a) Structure of the deep learning neural network model. (b) Illustration of
the additive process in faceted learning. There are two dimensions in the ”additive”
notion: First, increase of known input variable number; second, increase of simultaneously
measured variable number in one measurement. Both ways increase prediction accuracy.
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Example 1: Spring network

As an example of a complex multi-dimensional system, we examine a networked system

of springs, which can be thought of as a phenomenological example of a highly connected

biological network. We implement our machine learning method on a two dimensional

8-node spring system. Therefore, system appears simple but because interactions between

nodes are nonlinear, the response can be complex. Based on partial data measurements,

we can reconstruct the complete force-deformation response function of this network.

Fig. 3 (a) shows the configuration of the spring network with forces exerted on all

nodes. Nodes are connected by linear springs, whose stiffnesses are denoted by a 8 × 8

symmetric matrix K where Kuv is the stiffness of the spring between nodes u and v. The

rest lengths are denoted by matrix l where luv =
√
|xu − xv|2 is the length between nodes

u and v. Nodes 1 and 5 are fixed to prevent overall translation and rotation. The spring

system is subjected to random force P and has corresponding displacement matrix δX.

Both P and δX are 8×2 matrices, where the uth row denotes the horizontal and vertical

component of node u. Due to the constraints at nodes 1 and 5, the first and fifth rows

of δX are fixed to be 0. We assume P is normally distributed: Puv ∼ N(0, 0.02) and we

want to predict the displacement matrix δX = h(P ) as a function of forces P . In our

calculation, the vertical displacement of node 2 (δX22) is the output. The input vector is

the twelve components of the forces exerted on the six free nodes, which is arranged as:

x = (P21, P31, P41, P61, P71, P81, P22, P32, P42, P62, P72, P82).

To implement the algorithm described above, we first generate training data with only

partial information. We generate N1 8×2 force matrices as the input of the training data

and N2 force matrices as testing data, in which every force component obeys a normal

distribution: N(0, 0.02). For each of the force matrix, we calculate the 8× 2 deformation
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Displacement 𝜹𝑿Force 𝑷

𝜹𝑿 = 𝐹(𝑷)

(a)

(b)

(c)

(d)

1

2 3 4

5

678

Figure 3: (a) Configuration of the 8-node spring network system. Random forces are
exerted on each node, generating displacements. The applied forces follow the normal
distribution P ∼ N(0, 0.02). Node 1 and 5 are fixed to prevent translation and rigid body
rotation. The model input are forces on different nodes (P ) and the model output is
the vertical displacement of node 2 (δX22). (b) Joint probability distribution of vertical
(P22) and horizontal force (P21) components at node 2. (c) Deformed configuration of
the 8-node spring network system and the displacement of each node. (d) Probability
distribution of the vertical displacement of node 2.

matrix δX by minimizing the total potential energy. The minimization is achieved by

the gradient descent method and the initial displacements are randomly chosen, which

is evenly distributed between (-0.05,0.05). The N1 training data are evenly partitioned

into 12 subgroups, which is equal to the dimension of the forces. For each subgroup

i, we use one of the force components (Pi) together with the vertical displacement of

node 2 (δX22). We apply both the polynomial regression and neural network methods

on these 12 data sets (Fig. 4). In the neural network implementation, the network

has 2 hidden layers and each layer has 20 nodes. The activation function is the ReLu
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function as described above. In both polynomial regression and neural network algorithms,

the loss function is minimized by simulated annealing [33], where at each minimization

step, all the parameters are perturbed randomly within the range of 0.05. The initial

temperature T0 is set to be 105 and at each step, the temperature is reduced to 95%. The

minimization process is stopped when the maximum step (imax = 50000) is reached. When

approximating the conditional expectation and variance of output variable by Monte Carlo

method, the sample size is set to be: nsample = 60000.

Fig. 4 shows the predicted results of both polynomial regression (a-d) and neural

network(e-h). Fig. 4(a and e) show the predicted and true δX22 when changing horizontal

and vertical forces (P21 and P22) applied on node 2 while other force components are zeros.

For both polynomial regression and neural network approaches, the predicted surface fits

well with the true surface. Fig. 4(b),(c),(f) and (g) show the predicted and true values

of mean and variance of δX22 calculated in each bin of P22 (including both training and

testing data). These are direct quantities that are minimized in the loss function. True

and predicted displacements are evaluated for test data sets and plotted in Fig 4 (d)

and (h). The scatter points are well aligned around diagonal, which implies accurate

prediction.

Example 2: P53 network

In this section, we implement our algorithm on a small biological network involving ex-

pression of the senescence marker P53. The data is obtained using single cell proteomic

method of [34]. We choose 8 molecules as inputs and the output is single cell expression

level of P53 (Fig. 5(a)). The goal is to construct a predictive model of P53 expression as

a function of 8 other single cell properties while only utilizing faceted information. Note

that we measure the proteome level of 8 molecules for each single cell, therefore we have
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Figure 4: Polynomial and neural network model results for the spring network system. (a)
Joint probability distribution of node 2 vertical displacement (δX22) and node 2 vertical
force component (P22). (b) Projection result of mean vertical displacement dependent on
vertical force on node 2. (c) variance of vertical displacement dependent on vertical force
on node 2. (d) Comparison between true and predicted values of the testing data set.
(e)-(h) Corresponding prediction results by neural network.

the full 8-dimensional data.

The data are obtained for cells in four conditions: control, quiescent, cells treated

with 50µM Bleomycin and 250 nM Doxorubicin. The raw distributions of all variables

are shown in Fig. 5(a). We standardized the data in each condition by the mean value

and covariance matrix in the corresponding condition. We then remove outliers via GESD

method [35]. The processed proteome expression data is bimodal, because cells are either

in G1 or G2 phase of the cell cycle. For better accuracy, we use the Gaussian mixture

model which consists of the sum of two Gaussian distributions, representing cells in G1

and G2, to fit the marginal distribution of each input variable. The joint distribution is

approximated by the product of the 8 Gaussian mixture models (Fig. 5 (b)-(c)):

f̂(x1, x2, ..., x8) =
8∏
i=1

(
2∑
j=1

πijN(µij, σij)) (24)

Similar to the spring system example, we first divide the data in each condition as
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p53

Dapi

F-actin

P21

P16 LaminB1

G1

SG2

M

Cell-cycle arrest
Senescence

DNA repair

exp. data

GMM fitting

Standardized
BrdU

(a) (b)

(c)
HMGB1

B-actin

Raw

Figure 5: (a) The examined proteome of the P53 network. The input data are expres-
sions of the 8 molecules measured in the single cell experiment and the output is the
P53 expression. The probability distribution of all variables are show in 4 different cell
conditions: 1. control; 2. quiescent; 3. treated with 50 µM Bleomycin; 4. treated with
200nM doxorubicin. Cells in different conditions show different proteome distributions
because they have different cell cycle distributions. (b) Joint probability distribution of
Dapi and LaminB1 for senescent cells treated with 50 µM Bleomycin. (c) Joint proba-
bility distribution of Dapi and LaminB1 for standardized data of senescent cells treated
with 50 µM Bleomycin. The contour lines are from the Gaussian mixture model used to
describe the probability distribution.

training (80%) and testing sets (20%). The training data are evenly partitioned into

eight subgroups. In the ith subgroup, only xi and P53 intensity are used. In the neural

network implementation, the network has 2 hidden layers and each layer has 20 nodes.

The activation function is the ReLu function. In both polynomial regression and neural

network algorithms, the loss function is minimized by simulated annealing methods, where

at each minimization step, all the parameters are perturbed randomly within the range

of ±0.05. The initial temperature T0 is set to be 105 and at each step, the temperature is

20

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 23, 2024. ; https://doi.org/10.1101/2024.08.22.609223doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.22.609223
http://creativecommons.org/licenses/by-nc/4.0/


reduced to 95%. The minimization process is stopped when the maximum step (imax =

50000) is reached. When approximating the conditional expectation and variance of

output variable by monte carlo method, the sample size is set to be: nsample = 60000.

Fig. 6 shows the predicted results for both polynomial regression (a-d) and neural

network (e-h) for cells in the control condition. Fig. 6 (a)(e) show predicted P53 when

Dapi and LaminB1 content change while other are fixed to zero. All data are standardized

as described in previous section. Plots of mean and variance values vs. LaminB1 are shown

in (Fig. 6 (b)(c)(f)(g)). True and predicted P53 content evaluated at both the testing

data sets are plotted in Fig 6(d)(h). The scatter points are well aligned around y = x.
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Figure 6: Polynomial and neural network model results of P53 network. (a) Surface
plot of P53 content dependent on Dapi and LaminB1 content. (b) Projection result of
mean value of P53 content dependent on LaminB1 content. (c) variance of P53 content
dependent on LaminB1 content. (d) Comparison between true and predicted values on
the testing set. (e)-(h) Corresponding prediction results by neural network.

It is also of great interest to examine our model predictions for different cell culture

conditions. Quiescent and senescent cells generally have different cell cycle distributions,

leading to different G1/G2 cell proportions (Fig. 5(a)). However, the mapping between

the standardized input variables and P53 are the same across different cell conditions
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(Fig. 7). Here we examine the model trained by data in control condition, and utilize

the trained model to predict P53 content in quiescent condition (Fig. 7(b)) and senescent

conditions (Fig. 7(c)&(d)). We also show the results of full neural network trained by data

in the same condition. Note, in our method, the standardization procedure removes the

correlation among the independent variables and the function F we learn only describes

the mapping between the processed uncorrelated data, and doesn’t include mutual infor-

mation among the independent variables. In reality, the true function (mapping Ftrue)

should combine both the intrinsic function of uncorrelated data (F ) and the correlation

information (Σ).

Our model also provides information on which variables contribute most to P53 content

and can also illustrate the synergistic and antagonistic effects of several molecules on

P53. This can be analyzed via the polynomial model. The linear coefficients F ′i mean

the effect of single molecule on P53 while the quadratic coefficients F ′′ij represent the

synergistic/antagonistic effects. For cells in the control condition, for example, LaminB1

and HMGB1 contribute most to P53 content and we can see clearly synergistic effects

of HMGB1 and B-actin on P53, and antagonistic effects of HMGB1 and F-actin (Fig.

8) on P53. We can also apply the method on other variables, which finally leads to the

complete network structure reconstruction with both first order (correlation) and higher

order information (synergistic/antagonistic effects).

Additive property of the faceted learning

As mentioned before, the faceted learning has an additive process, during which the

prediction accuracy is increased with increasing number of simultaneously used variable

in one set of measurement.

To examine this, we increase the number of variables in each measuring set (e.g., from
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(a) (b)

(c) (d)

Trained by condition 1, faceted data

Trained by condition 1, full data

Trained by condition 1, faceted data

Trained by condition 2, full data

Trained by condition 1, faceted data

Trained by condition 3, full data

Trained by condition 1, faceted data

Trained by condition 4, full data

Figure 7: Testing of the model trained by data in control condition on other cell conditions.
(a) Test on control condition (condition 1). (b) Test on quiescent cell data (condition 2).
(c) Test on data from cells treated with 50 µM Bleomycin (condition 3). (d) Test on data
from cells treated with 200 nM Doxorubycin (condition 4). In all the results, the model
trained by data in control condition provides satisfactory accuracy compared to the full
neural network and this means that the intrinsic mapping between standardized input
and standardized P53 content remains invariant across different cell conditions. The only
difference among different conditions is the probability distribution.

measuring one force component to measuring two force components simultaneously), the

prediction becomes more accurate (Fig. 9). The limit of this additive process is measuring

all the variables simultaneously, which is the typical regression problem.
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Figure 8: Linear and quadratic coefficients of the polynomial regression model of the P53
data. (a) Linear coefficients. LaminB1 and HMGB1 contribute most to P53 content.
(b) Quadratic coefficients. There is obvious synergistic effects of HMGB1 and P16 and
antagonistic effects of HMGB1 and F-actin on P53.

Discussion and Conclusion

In this work, we develop a method that reconstructs the complete picture of a system

from partial data sets. Each data set only contains part of the input variables and the

output variable. This is the essence of the Blind men and elephant problem, where

each person only know partial information about the elephant. However, exchanging

information among each other helps better understand the system. In general, we abstract

the system information from the conditional distribution of the output variable when

partial input variables are fixed. By assuming some models for the system equation, we

fit the true distribution with model parameters. Both polynomial regression and neural

network methods are applied and compared. For normally distributed input variable,

we can well approximate the output distribution by only mean value and variance value.

By minimizing the loss function that contains the mean squared errors of both mean

and variance of output values, we can obtain the predictive model that reconstructs the
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Figure 9: Additive property: Increase of simultaneously measured variable number im-
proves the prediction accuracy. (a)&(c) P53 network data. (b)&(d) Spring network data.

complete system.

It is possible to use the toolbox developed in ML to optimize data regression. It is

also possible to minimize a different set of objective functions for the ML training process.

These improvements can be made depending on the specifics of the problems at hand.

Other methods from network reconstruction also can be applied. One possible problem

is the uniqueness of the model from faceted data. We have not explored this angle in this

paper, but it is likely that multiple networks can produce the same set of data, as others
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have noted [36, 37].

We implement our method on both a mechanical system (spring network) and a small

biological network (P53 network). Both polynomial and neural network methods are ex-

amined. 2D and 1D projection results are compared between true data and prediction.

Finally, we examine the additive property of the learning process. By increasing the num-

ber of known variables and number of simultaneously measured variables, the prediction

accuracy is gradually increased.

Our proposed method can be applied to high dimensional data, including single cell

proteomics data. The resulting model function y = F (x) represents the genome-wide

unbiased model of a particular biological function. As long as measurements can be made

for the output y and underlying variable xi, the model can be systematically improved.

Since real biological functions are complex emergent properties of a highly connected net-

work, our method represents a systematic and unbiased way of reconstructing the network.

Moreover, our approach also allows us to examine cells which are rare in the population

of cells, and look for how these cells generate biological function. Since cell heterogeneity

and entropy is increased in diseased context such as cancer [38], our approach can reveal

how the network is perturbed in these diseased context. With increasing quality of single

cell data sets, the predictions will be more accurate and useful. What is clear presently,

however, is that there is a lack of single-cell high dimensional data or concerted efforts

to obtain faceted data that connect biological function with the underlying proteome. If

these data sets are available, then our procedure proposed here, combined with machine

learning and AI methods, can be implemented in a straightforward manner, and truly

predictive models can be obtained. New technological innovations for single cell measure-

ments and systematic data gathering efforts are needed to achieve this next level era of

quantitative biology.
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