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ABSTRACT 53 

Uncovering the spatial and molecular landscape of precancerous lesions is essential for 54 

developing meaningful cancer prevention and early detection strategies. High-Grade Serous 55 

Carcinoma (HGSC), the most lethal gynecologic malignancy, often originates from Serous Tubal 56 

Intraepithelial Carcinomas (STICs) in the fallopian tubes, yet their minute size and our historical 57 

reliance on standard 2D histology contribute to their underreporting. Here, we present a spatially 58 

resolved, multi-omics framework that integrates whole-organ 3D imaging at cellular resolution 59 

with targeted proteomic, metabolomic, and transcriptomic profiling to detect and characterize 60 

microscopic tubal lesions. Using this platform, we identified a total of 99 STICs and their presumed 61 

precursors that harbor TP53 mutations in morphologically unremarkable tubal epithelium in all 62 

five specimens obtained from cancer-free organ donors with average-risk of developing ovarian 63 

cancer. Although these lesions comprised only 0.2% of the epithelial compartment, they displayed 64 

geographic diversity, immune exclusion, metabolic rewiring, and DNA copy number changes 65 

among lesions and normal fallopian tube epithelium discovered alterations in STIC-associated 66 

genes and the pathways they control. In sum, this platform provides a comprehensive 3D atlas of 67 

early neoplastic transformation, yielding mechanistic insights into tumor initiation and informing 68 

clinical screening strategies for detecting cancer precursors in whole organs at cellular resolution.   69 
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INTRODUCTION 70 

Ovarian cancer is the most lethal gynecological malignancy, with high grade serous carcinoma 71 

(HGSC) accounting for the majority of the cases1–6. Accumulating evidence supports the fallopian 72 

tube, and serous tubal intraepithelial carcinoma (STIC), as the primary precursor of ovarian 73 

cancer7–16. This multi-organ progression from the fallopian tube to the ovary is unique among 74 

cancers, and its discovery has spurred research into the progression of STICs to invasive 75 

HGSC17–23. Yet, our current knowledge of ovarian cancer precursors largely stems from studies 76 

involving clinical specimens from individuals with ovarian cancer, gynecologic abnormalities, or 77 

from high-risk individuals possessing genetic risk factors24–27. Consequently, our knowledge of 78 

ovarian cancer precursors in wholly non-diseased specimens is limited28–31. 79 

 STIC is diagnosed incidentally under microscope following the pathological criteria 80 

previously reported32,33. STIC lesions consist of atypical and multi-layered epithelial cells, with 81 

detectable mitotic figures and higher proliferative activity as compared to background epithelium. 82 

Alongside STIC, another related lesion emerges as a “p53 signature,” which is defined as a minute 83 

stretch of morphologically unremarkable epithelium but harboring TP53 mutations. The biological 84 

and clinical significance of p53 signatures is unclear and whether they represent the precursor 85 

lesions of STIC awaits further molecular studies. STICs are more commonly identified following 86 

the Sectioning and Extensively Examining the Fimbriated End, or SEE-FIM, protocol that has 87 

been adopted as a more thorough way in sampling fallopian tubes in clinical practice34–36. 88 

However, the diagnosis of STICs is solely based on 2D examination of tissue sections, and 89 

consequently, as little as 1% of tubal tissues is microscopically examined by a pathologist as the 90 

bulk remains in archived tissue blocks37–40. As a result, the actual prevalence of STICs remains 91 

unknown and previous studies reported a wide range of STIC incidence, ranging from 11-61% in 92 

HGSC patients41, 0-11.5% in asymptomatic BRCA1/2 germline mutation carriers5,37,42,43, and <1% 93 

in individuals without ovarian cancer or genetic risk factors44–47.  A significantly higher incidence 94 

was noted when the tissue blocks were flipped over and additional sections examined43, 95 

supporting the idea that current sampling lacks the sensitivity to exhaustively detect STIC lesions. 96 

Therefore, automated and exhaustive three-dimensional assessments are essential to resolve 97 

the spatial distribution and prevalence of rare and microscopic lesions, and to analyze their unique 98 

properties as the earliest stage of ovarian tumorigenesis48–56. 99 

To address this gap, we developed a novel framework to comprehensively screen entire 100 

organ donor fallopian tubes for ovarian cancer precursors. Organ donation for scientific research 101 

is a precious resource that provides essential access to tissues unaffected by cancers and other 102 
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abnormalities generally present in clinical specimens. Donor tissues have emerged as crucial for 103 

characterization of precancer frequency and molecular characteristics in organs including 104 

pancreas and colon57,58. Importantly, because detection of STICs requires consideration of H&E, 105 

p53, and Ki67, existing 3D pathology workflows that rely solely on H&E are insufficient to reliably 106 

identify these lesions. To overcome this, we developed a pipeline to combine H&E-based cellular 107 

morphology with signal intensity from co-registered p53 and Ki67-stained IHC images to 108 

automatically highlight hundreds of potential precancerous lesions in a format easily reviewed by 109 

expert pathologists and amenable to further integration of multi-omics at regions of interest. This 110 

integration allowed an exhaustive and precise 3D mapping of microscopic p53 signatures, 111 

proliferative dormant and active STICs in whole human fallopian tubes at cellular resolution. 112 

While previous works have suggested these lesions are rare in low-risk populations44–46, 113 

using our automated and whole organ-scale workflow we find multiple p53 signatures, proliferative 114 

dormant or active STICs in all donor samples analyzed. Digital simulation of the SEE-FIM protocol 115 

in these donor organs explains their apparent elusiveness, revealing that the standard SEE-FIM 116 

protocol would detect less than half of the precursor lesions found here. To reduce the false-117 

negative rate below 25%, 150-250 equally spaced sections would be required. This is dramatically 118 

higher than the 10-20 sections typically analyzed in SEE-FIM and explains the historic lack of 119 

evidence of STIC lesions in non-diseased fallopian samples. 120 

Next, we further extended our workflow to integrate spatial proteomics, spatial 121 

transcriptomics, and spatial metabolomics to perform deeper molecular profiling specifically in 122 

regions within whole donor fallopian tubes that contained precancerous lesions. Using a 25-plex 123 

CODEX panel, we found that isolated STICs do not possess a unique immune microenvironment, 124 

unlike STICs found in the clinic, suggesting that immune evasion may not be an early hallmark in 125 

STIC progression. Using stimulated Raman scattering hyperspectral imaging (SRS-HSI) based 126 

spatial metabolomics approach59, we identified oxidative stress and increased rigidity that 127 

promotes malignant transformation. We also found increased nicotinamide adenine dinucleotide 128 

to oxidized flavin adenine dinucleotide (NADH/FAD) ratio in lesion cells compared to surrounding 129 

normal epithelial cells, suggesting the lesion epithelia subjects to oxidative stresses and rewires 130 

its metabolism towards glycolysis. Finally, integration of Visium spatial transcriptomics revealed 131 

significant and spatially confined upregulation of genes essential to cell proliferation, mitotic 132 

progression, and chromatin remodeling within the proliferative active STIC epithelium. Lastly, 133 

copy number alteration inference in proliferative active STIC showed chromosomal imbalances60.  134 
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In sum, through integration of high-resolution 3D imaging with molecular profiling, this 135 

study reveals the first detailed map of ovarian precancerous lesions in grossly unremarkable 136 

fallopian tubes and provides a framework for advancing the understanding of the earliest stages 137 

of ovarian cancer development.  138 
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RESULTS 139 

Construction of cohorts of 3D-microanatomically labelled human fallopian tubes for 140 

assessment of ovarian cancer precursors  141 

To assess the presence of ovarian cancer precancerous lesions, including p53 signatures and 142 

STICs, in gynecologically healthy women, we developed a pipeline to collect intact donor fallopian 143 

tube samples. Samples were procured through the network for pancreatic organ donors (nPOD) 144 

from individuals with no documented gynecological disease and no genetic risk factors for ovarian 145 

cancer (Fig. 1A). Organs were accepted if donors suffered no abdominal trauma and if warm 146 

ischemic time (WIT) was <16 h. 147 

Fallopian tubes were processed into formalin fixed, paraffin embedded (FFPE) blocks and 148 

exhaustively serially sectioned at a thickness of 4 microns. One in every two sections was stained 149 

with H&E, one in every eight sections was IHC stained using p53, and one in every eight sections 150 

was IHC using Ki67 (Fig. 1B). Stained slides were imaged at 20x resolution (0.5 micron/pixel) 151 

using a Hamamatsu S210 scanner, stored as NDPI files, and post-processed into tiff image files. 152 

The mean number of sections cut for each human fallopian tube was 981, median 999, maximum 153 

1373, and minimum 601. The average dimensions of the convoluted fallopian tubes in the FFPE 154 

blocks were 2.43 cm x 2.26 cm x 0.5 cm, median 2.34 cm x 2.10 cm x 0.5 cm. The average total 155 

volume per fallopian tube was 0.68 cm3, median 0.75 cm3. For context, the median volume of 156 

fallopian tube sampled by a single of whole slide is 0.00075 cm3 (=0.75cm3/999). The mean and 157 

median number of cells per fallopian tube was 438.3 million and 509 million, respectively. To 158 

preserve DNA, RNA, and proteins, unstained sections were mounted on plus slides and stored 159 

with desiccant packets at -20°C.  160 

We trained three deep learning models to semantically segment the fallopian tube 161 

microanatomy. The first model segmented eight structures from the H&E-stained images: tubal 162 

epithelium, mesothelium, blood vessels, stroma, fat, nerve, rete ovarii, and background. The 163 

second model sub-classified the fallopian tubal epithelium into secretory and ciliated epithelial 164 

cells. The third model masked locations of positive p53 and Ki67 signals on the IHC images. 165 

Alignment of the H&E and IHC segmented images into a volume via nonlinear image 166 

registration55,61 enabled automatic identification of secretory epithelial cells featuring p53+/Ki67+ 167 

and p53+/Ki67- signal. p53 staining positivity was defined herein as the staining pattern consistent 168 

with a TP53 missense mutation using the criteria previously reported62. Ki67 positivity was defined 169 

as the Ki67 labeling index was significantly higher than that of the adjacent or background 170 

epithelium. At these regions, we exported stacks of high-resolution registered 2D images, allowing 171 
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human validation of detected lesions. A total of 1,285 deep learning-highlighted p53+/Ki67+ and 172 

p53+/Ki67- epithelium locations, with a mean of 257 and a median of 211 per fallopian tube, were 173 

automatically detected by our algorithm and then manually validated by pathologist experts. 174 

Highlighted locations were categorized as proliferative active STICs, proliferative dormant STICs, 175 

p53 signatures, or non-lesions (Fig. 1C).  176 

 Following detection of epithelial lesions, intervening unstained slides were used for deeper 177 

profiling. To understand the immune microenvironment of the proliferative active STIC, we applied 178 

a CODEX panel of 25 antibodies for WSI proteomics analysis (Fig. 1E). To understand the 179 

metabolic changes, we used spatial single-cell metabolomics (Fig. 1E). Lastly, to study gene 180 

expression variations and infer copy number alterations, we applied 10x Genomics Visium 181 

Cytassist (Fig. 1F). 182 

 183 

3D characterization of the microanatomy of the human fallopian tube and STIC lesions 184 

To comprehensively study the microanatomy of the fallopian tube in organ donor samples, we 185 

analyzed the results of the registered, segmented H&E images (Fig. 2A). High-grade serous 186 

tumors primarily originate from secretory epithelial cells in the human fallopian tube63, highlighting 187 

the importance of understanding the composition and spatial arrangement of secretory epithelial 188 

cells in pre- and post-menopausal non-diseased fallopian tubes. Here, we analyzed 175.1 million 189 

pre-menopausal epithelial cells and 112.3 million post-menopausal epithelial cells. We produced 190 

z-projection heatmaps and 3D reconstructions, conveying the marked convolutions of the 191 

fallopian tube epithelial and the intermixing of secretory and ciliated epithelial cells (Fig. 2B and 192 

2C). We found on average higher composition of secretory epithelial cells in post-menopausal 193 

(76% secretory, 24% ciliated) women compared to pre-menopausal women (58% secretory, 42% 194 

ciliated (Fig 2D).  195 

Our 3D maps of whole fallopian tubes allowed us to computationally generate “virtual” 196 

sections of selected orientation (e.g. orthogonal to the main axis of the fallopian tube). To generate 197 

virtual sections along the length of the fallopian tube, we skeletonized each specimen by 198 

calculating the center path along the convoluted tubal lumen. At each cross section along the 199 

tube, we calculated the distance to the ovary (defined at the tip of the fimbriated end), and 200 

categorized this distance as proximal, medial, or distal. We visualized (Fig 2C, bottom) and 201 

quantified (Fig 2E, right) the distribution of secretory cells to show that the drop in ciliated cell 202 

content from pre- to post-menopausal primarily affects the locations on the fallopian tube medial 203 

and distal to the ovary, with similar composition of ciliated cells proximal to the ovary across age 204 
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groups (Fig. 2E, right). We further quantified the secretory and ciliated cell composition as a 205 

function of distance along the center path, for precise sampling by generating thousands of 206 

orthogonal virtual cross sections along the epithelium (up to 10,255 virtual sections per sample). 207 

For each cross section, we quantified the overall frequency of secretory and ciliated epithelial 208 

cells from the distal isthmus to the proximal fimbriated end.  209 

 As the majority of STICs originate from secretory epithelial cells64, understanding their 210 

spatial distribution and age-associated changes is critical for understanding early ovarian 211 

tumorigenesis. Using our workflow to quantify the normal epithelial composition 3D, the data 212 

revealed that, in post-menopausal tubes, the proportion of secretory cells increases sharply 213 

toward the fimbriated end. In contrast, pre-menopausal tubes demonstrate a distal decrease in 214 

secretory cell percentage with a concomitant increase in total epithelial cell number due to 215 

expansion of ciliated cells. These data indicate that menopausal status substantially remodels the 216 

cellular composition of the distal tube towards a more secretory epithelial cell landscape, 217 

potentially influencing the local risk for neoplastic precursor lesions. 218 
 219 
3D mapping of lesions in the non-diseased human fallopian tube epithelium 220 

To implement a strategy for detailed 3D mapping of epithelial lesions in average-risk, nondiseased 221 

human fallopian tubes, samples were alternately stained with H&E, p53 IHC and Ki67 IHC (Fig. 222 

3A). Implementation of segmentation of the H&E and IHC images allowed automated detection 223 

of p53 signatures, proliferative dormant STICs, and active STICs following standard clinical 224 

definitions (Fig. 3B). 3D volumetric renderings of these lesions convey their microscopic size and 225 

wide range  of 3D morphology (Fig. 3C).  226 

 We identified and 3D mapped 99 STICs, including 13 proliferatively active STICs, 86 227 

proliferative dormant STICs, and 11 p53 signatures across 5 nondiseased whole human fallopian 228 

tubes from 5 distinct donors (Fig. 3D). According to menopausal status, we observed an average 229 

of zero STICs, 8.5 proliferative dormant STICs, 3 p53 signatures in pre-menopausal samples 230 

(Table S1, S2, S3, and S4). Our data revealed that ovarian precancerous lesions were present in 231 

80% of the examined fallopian tubes (Tabel S2, S6).  In post-menopausal samples, we observed 232 

an average of 4.33 STICs, 23 proliferative dormant STICs, 1.67 p53 signatures. Notably, one 233 

post-menopausal sample contained an unusual high number of lesions: 5 STICs, 37 proliferative 234 

dormant STICs, and 4 p53 signatures. The most common lesion we identified proliferative 235 

dormant STIC, and the most common location found to contain proliferative dormant STICs was 236 

the ampulla (55 lesions), compared to the fimbriated end (22 lesions) and isthmus (9 lesions). 237 

The most common location to contain proliferative active STICs was the fimbriated end (9 lesions) 238 
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followed by the ampulla (4 lesions) and no active STICs were found in the Isthmus. We found p53 239 

signatures in both the fimbriated end (5 lesions) and the ampulla (6 lesions). 240 

The occurrence of STIC, proliferative dormant STIC, and p53 signature lesions was higher 241 

in post-menopausal donors compared to pre-menopausal donors. STICs were detected in 67% 242 

of post-menopausal donors but were absent in pre-menopausal cases. proliferative dormant 243 

STICs were detected in 100% of post-menopausal donors and in 50% of pre-menopausal donors 244 

(Table S5). The p53 signature was present in 67% of post-menopausal and 50% of pre-245 

menopausal donors. When combining all donors, the overall prevalence was 40% for STIC, 80% 246 

for proliferative dormant STIC, and 60% for p53 signature.  247 

 248 

Growth model of epithelial lesions in average-risk intact human fallopian tube samples 249 

Our previous work in mathematical modelling of precancerous lesions of the human pancreas 250 

(PanINs) suggested that a simple growth law allowing each anatomically separate lesion to grow 251 

at a constant rate is insufficient to explain the very large lesions found in our cohort65. Explaining 252 

the size distribution required additional actions such as lesion splitting and lesion merging, which 253 

was confirmed by genomic data and suggested that some large PanINs are composed of multiple 254 

clones that collided within the pancreatic ductal system66. In contrast, simple growth laws explain 255 

the lesion distribution in healthy fallopian tubes, for which a maximized p-value using of 256 

Kolmogorov-Smirnov test resulted in a Vmax of 0.0605 mm3 and an exponent of α=1.63 (p = 0.57, 257 

Fig. 3F, right panel). This result suggests, unlike PanINs, a lack of polyclonality in the microscopic 258 

lesions found in this cohort of organ donor fallopian tube samples (Fig. 3F, middle panel). 259 

 260 

Development of virtual SEE-FIM for statistical determination of fallopian tube sampling 261 

guidelines  262 

We asked why previous SEE-FIM-based assessments have not detected this high occurrence of 263 

lesions. To quantify the impact of subsampling when detecting ovarian cancer precursors, we 264 

virtually implemented a virtual SEE-FIM protocol. We generated longitudinal sections at the 265 

fimbriated end and transverse sections along the remainder of the ampulla and isthmus, as done 266 

in the clinic. To show the ability of SEE-FIM to identify lesions, including proliferative active STICs,  267 

dormant STICS, and p53 signatures were highlighted in red, orange and yellow, respectively (Fig. 268 

3G, and Fig. S2D). 269 

 First, we simulated current SEE-FIM guidelines via collection of 20 equally spaced virtual 270 

sections, representing approximately 0.25% volume of the entire organ. Within the extracted 271 
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sections, SEE-FIM was able to identify 10.8% of all lesions, 14.6% of STICs, 10.1% of proliferative 272 

dormant STICs, and 11.9% of p53 signatures. These results reveal that conventional SEE-FIM 273 

protocol may significantly underestimate the true incidence of precursor lesions in human fallopian 274 

tubes. We determined that approximately 2.3%, or 186 tissue sections, of the whole fallopian tube 275 

would need to be assessed to accurately identify all lesions with <25% error (Fig. 3H, left panel, 276 

Fig. S2E, top left panel). Splitting by lesion type, we determined that to accurately identify STICs, 277 

proliferative dormant STICs, and p53 signatures with 25% error, 1.8% (149 sections), 2.4% (190 278 

sections), and 2.2% (174 sections) of the fallopian tube would need to be assessed, respectively 279 

(Fig. 3H, Fig. S2E).  280 

 281 

Spatial protein marker profiling of STIC in non-diseased human fallopian tubes 282 

To study the microenvironment surrounding the proliferative active STIC identified in 3D, we 283 

applied a panel of 25 protein markers using CODEX multiplexed imaging. We applied nucleus 284 

and cell body segmentation to identify 972,276 cells across the whole slide image (Fig.4A-B)67. 285 

We performed unsupervised clustering to obtain 30 distinct clusters, which we annotated and 286 

combined the clusters into 19 relevant cell phenotypes using previously established methods (Fig. 287 

4C)68–70. These cellular phenotypes included STIC, epithelial cells, immune cell phenotypes (T 288 

cells, B cells, macrophages, neutrophils, dendritic cells), stromal cells (fibroblasts, smooth muscle 289 

cells), and tumor associated macrophages (TAMs), shown spatially in Fig. 4D. The protein 290 

expression matrix (Fig. 4E) and protein markers interactions71 (Fig. 4F) illustrate that epithelial 291 

and proliferating epithelial cells interact with EpCAM, Pan-CK, and Ki67. We labelled activated 292 

and memory T cells by CD3, CD4, CD8, and CD45RO, with additional links to IFNG and CD44. 293 

We identified B cells via CD20, and dendritic or APC populations by HLA-DR, CD11c, and CD141. 294 

Macrophages (TAMs) and monocytes associate with CD68 and IDO1, neutrophils with MPO, and 295 

endothelial cells with CD31. Mesenchymal and myofibroblast identities are confirmed by Vimentin 296 

and SMA. These specific interactions validate the correct phenotypic annotation in the dataset. 297 

Partition-based Graph Abstraction (PAGA) of single-cell proteomics in Fig. 4G72 showed 298 

interactions between the distinct cell phenotypes. STIC cells were closely associated with 299 

proliferating epithelial cells, supporting a trajectory consistent with malignant epithelial 300 

progression, while showing no direct connectivity to any other cell populations. Analysis of the 301 

PAGA connectivity map further identified interconnected immune cell populations comprising 302 

tumor-associated macrophages (TAMs), regulatory dendritic cells (DCs), activated T cells, and 303 

CD8+ memory cytotoxic T cells, suggesting potential immune coordination mechanisms.  304 
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PAGA analysis identified an immune network connecting TAMs, regulatory DCs, and 305 

activated T cells to CD8+ memory cytotoxic T cells. Additionally, CD8+ T cell connection to 306 

epithelial cells further bridging to STIC populations. This CD8+ T cell population's dual 307 

connectivity to both immunosuppressive cells and epithelial cells may indicate potential 308 

compromised immune surveillance73–75. While these topological relationships require functional 309 

validation, their organization suggests structurally relevant cellular interactions potentially 310 

governing STIC maintenance76. This immunological landscape closely mirrors established 311 

observations in ovarian cancer literature, where TAM enrichment and regulatory immune cell 312 

infiltration consistently correlate with tumor progression and poor clinical outcomes77–80.  313 

To further validate the results obtained from the PAGA graphs, spatially resolved protein 314 

profiling was implemented to assess immunosuppressive expression within these interacting cell 315 

populations. Thus, to spatially assess the STIC microenvironment, STIC mask was generated 316 

and consequently dilated in 10-micron increments up to 500 microns from the STIC boundaries 317 

(Fig. S3B). For each distance interval computed, cellular composition was estimated and 318 

visualized (Fig. 4H). To quantify the differences in cellular composition relative to proximity to 319 

STIC location, comparison between regions close to the STIC (less than 100 microns) and regions 320 

distant to the STIC (between 100 and 500 microns) was performed. Proximity to the STIC showed 321 

modest enrichment in macrophages or monocytes, B cells, antigen-presenting cells (APCs), 322 

suppressed dendritic cells, and CD8 memory T cells (Fig. 4I). 323 

Spatial CODEX analysis identified an immunoregulatory microenvironment surrounding 324 

STIC lesions, with an increase of macrophages, regulatory dendritic cells, and CD8 memory T 325 

populations in proximal regions (Fig 4I). This validated the PAGA analysis, which showed direct 326 

connectivity between these immune populations and epithelial cell states. The spatial organization 327 

of these macrophage and CD8 T-cell populations aligns with the immune modulation observed in 328 

early high grade serous ovarian cancer77. These findings define the STIC microenvironment as a 329 

site of coordinated immune epithelial interactions that may facilitate early lesion persistence. Our 330 

results were consistent with those previously published81. 331 

 332 

Spatial metabolomics profiling of STIC in non-diseased human fallopian tubes 333 

Existing single cell and spatial transcriptomics data analysis has shown association of fallopian 334 

tube epithelium to genes and pathways associated with metabolic regulations in various contexts 335 
82–84. With this in mind, we carefully evaluated unsaturated lipid level and redox ratio of 336 

preneoplastic epithelial lesions by multimodal two-photon stimulated Raman scattering imaging 337 
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(SRS) (Figures 1A-C, S1A and S2A-C). We found that the unsaturated lipid level was reduced 338 

while the redox ratio indicated by NADH/FAD was increased in the lesion cells compared to the 339 

healthy surrounding cells (Figure 1C), suggesting the lesion epithelia subjects to ROS stress and 340 

metabolic remodeling towards glycolysis 85. Worth noting that the scattered distribution of NADH 341 

and FAD signals in lesions (Figure 1C in cyan and magenta) may indicate the fragmented 342 

mitochondria with compromised metabolic function.  We further applied hyperspectral SRS 343 

imaging and lipid subtype detection59 to perform an in situ lipidomic analysis and identified that 344 

lesions represented a distinct lipid profile manifesting in upregulated ceramide/PE and PC/PE 345 

ratio (Figures 1D-F and S1B), aligning with a study showing the disturbed homeostasis of 346 

ceramides and phospholipids in abnormal epithelial context 86.  347 

Interestingly, Raman spectra showed distinct changes of lipid profile in different types of 348 

lesions (Figures S2D-F), suggesting the lipid metabolism is highly sensitive to the lesions and 349 

different lipid profile may represent the trajectory of lesion development. Altogether, our results 350 

provide new insights into the molecular mechanisms underlying the lesions of fallopian tube 351 

epithelium. 352 

 353 

Spatial transcriptomic profiling of STIC in nondiseased human fallopian tubes 354 

Using the CODA IHC-based deep learning method, we profiled STIC with spatial transcriptomics 355 

(Fig. 6A). STIC location was processed using Visium Cytassist for whole transcriptome profiling. 356 

Curation of the spatial spots identified STIC epithelial spots in red and non-STIC epithelial spots 357 

in green (Fig. 6B). 358 

Differential gene expressions of the proliferative active STIC against normal adjacent 359 

epithelium were obtained and shown in volcano plot (Fig. 6C). The upregulated genes in STIC, 360 

including KIF1A, TUBB2B, DLGAP5, BUB1, KIF2C, CDCA8, CDC20, CCNF, CCNB1, and PBK, 361 

suggest dysregulated cell cycle progression, mitotic spindle function, and chromosomal instability, 362 

which are seen in high-grade serous ovarian cancer87–97.  Immune-related genes like ULBP3 and 363 

BTNL2 may contribute to immune evasion, while JUN and NOX4 could promote survival and 364 

oxidative stress responses98–101. The presence of HNF4A, TFAP2A, and ADAM12 further 365 

supports a link to ovarian carcinogenesis through transcriptional deregulation, cellular 366 

differentiation, and extracellular matrix remodeling102–104. These findings reinforce STIC’s role as 367 

a precursor to high-grade serous carcinoma, with key drivers of malignancy already active105. 368 

Comparative analysis revealed significant upregulation of genes such as GPX2 (implicated in 369 
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oxidative stress response) and HIST1H1D (a chromatin regulator) in STICs (Fig. 6D), mirroring 370 

patterns observed in advanced ovarian tumors106,107. 371 

Pathway analysis using the Hallmarks gene sets108, and the suppressed and activated 372 

pathways were computed (Fig. 6E-F). Hallmark pathway analysis revealed enrichment of several 373 

cancer-associated pathways in STICs, including spermatogenesis, G2M checkpoint, KRAS 374 

signaling, E2F targets, oxidative phosphorylation, and TNFα signaling via NFκB109–116. These 375 

activated pathways are consistent with clinical observations of early oncogenic signaling in STIC 376 

lesions that precede invasive high-grade serous carcinoma development117. Gene set enrichment 377 

analysis profiles confirmed significant enrichment of proliferation-associated pathways and G2M 378 

checkpoint genes (Fig. 6G), showing dysregulated cell cycle characteristics of both STICs and 379 

invasive ovarian cancers. 380 

To investigate chromosomal instability in proliferative active STIC, copy number analysis 381 

(CNA) was inferred from the spatial transcriptomics data (Fig. 6H-I, Fig. S6F), which revealed 382 

gains in chr6p22, chr6p21, chr1p32, and chr16p13, and losses in chr17p13, chr9q33, chr9q34, 383 

chr22q11, chr22q12, and chr22q13. These results align with clinical genomic studies showing 384 

that copy number alterations and genomic instability are early events in STIC lesions15,109,118,119. 385 

Chromosomal 6 gains and chromosomal 22 depletions were spatially located on the STIC (Fig. 386 

6K). Notably, gains in chr6p, which harbors immune-related genes, have been linked to immune 387 

evasion and tumor progression in ovarian cancer, while losses in chr17p13, encompassing TP53 388 

and are associated with impaired DNA damage response and genomic instability119. These 389 

alterations may collectively contribute to early malignant transformation and aggressive 390 

phenotypes in STIC lesions.  391 

To further explore chromosomal alterations, we also applied inferCNV (Fig. S6F) and 392 

identified chromosomal gains in chromosomes 1, 6, 8, 16, and 19. Chromosomal losses were 393 

detected in chromosomes 4, 9, 13, 15, 17, 18, and 22.  Comparison to a large cohort study of 47 394 

patients with proliferative active STICs109, which showed chromosomal gains in chromosomes 1, 395 

2, 3, 6, 7, 8, 10, 12, 16, 19, and 20; and chromosomal depletions in chromosomes 4, 5, 6, 7, 8, 9, 396 

11, 13, 15, 16, 17, and 22. Similarly, genes altered in these regions include TP53 (chr17p13), 397 

MYC (chr8q24.21), CCNE1 (chr19q12), CDKN2A/CDKN2B (chr9p21), BRCA1 (chr17q21), and 398 

NF2/TIMP3 (chr22q12-13).These chromosomal targets highlight pathways associated with cell 399 

cycle regulation, DNA repair, and immune modulation. Conversely, the large patient cohort study 400 

also reported unique gains in chr2, chr3, chr7, chr10, chr12, and chr20, and unique losses in chr5, 401 

chr7, chr8, and chr11, not observed in our nondiseased, average-risk donor cohort analysis. 402 
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These regions encompass genes such as PIK3CA/MECOM (chr3q26), ETV6/FOXM1 (chr12p13), 403 

and APC (chr5q22), which are involved in PI3K signaling, transcriptional regulation, and tumor 404 

suppressor pathways.   405 
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DISCUSSION 406 

Here, we present a workflow for quantitative whole organ screening of precancerous lesions 407 

combining image registration of multi-plex pathology slides with deep learning-based automated 408 

detection of suspicious regions. This workflow enabled us to analyze ~10,000 whole slide images 409 

to identify 99 STICs and 11 p53 signatures across 5 donor samples, as confirmed by a 410 

gynecologic pathologist using standard review criteria, demonstrating the importance of 411 

quantitative 3D imaging to improve the throughput of pathology review. To the best of our 412 

knowledge, the current study shows the first 3D mapping of a whole human fallopian tube at single 413 

cell resolution, capable of comprehensively identifying the precancerous lesions and integrate 414 

spatial multi-omic profiling at specific regions of interest.  415 

Spatial proteomics uncovered an immune-excluded microenvironment surrounding STIC 416 

lesions, with reorganization of stromal and myeloid populations. This immunosuppressive niche 417 

mirrors patterns observed in invasive HGSC, supporting the concept that immune remodeling 418 

begins during early transformation. Cell–cell interaction analysis revealed that tumor-associated 419 

macrophages and regulatory dendritic cells closely interact with proliferative epithelial 420 

compartments, potentially facilitating immune tolerance. A recent report also demonstrates 421 

immune cold microenvironment associated with the majority of non-BRCA1/2 STICs, further 422 

confirming this observation109. 423 

Spatial metabolomics revealed higher levels of ceramides in the lesions. Increased 424 

ceramide levels have been associated with apoptotic cell death in both homeostatic systems as 425 

well as pathological settings as a result of cellular insults including oxidative stress, 426 

chemotherapeutic agents, ischemia and radiation120. Together with the morphology and redox 427 

ratio changes in mitochondria we found, it is possible that ceramide act on mitochondrial pathways 428 

to shape the cellular metabolic activity in lesion cells. Actually, ceramide is able to induce 429 

apoptosis by recruitment of death receptors to lipid rafts and assembly of channels in the outer 430 

membrane of the mitochondria promoting the release of cytochrome120. However, further studies 431 

are warranted to determine the direct or indirect effects exerted by elevated ceramides in 432 

regulating cell metabolism and apoptosis in lesions.  433 

Spatial transcriptomics profiling of the proliferative active STIC revealed alterations 434 

observed in STICs, and our results on those 5 specimens were also observed in a larger STIC 435 

cohort109. In particular, differential gene expression highlighted dysregulated cell cycle, 436 

chromosomal instability, oxidative stress, and immune evasion. Pathway analysis showed 437 

enrichment of cancer-associated pathways such as G2M checkpoint and KRAS signaling. Copy 438 
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number alteration analysis of the nondiseased average-risk proliferative active STIC and 439 

subsequent comparison to large clinical patient cohort identified overlapping chromosomal 440 

alterations with clinical STICs109, including chromosomal gains in chromosomes 1, 6, 8, 16, and 441 

19, and losses in chromosomes 4, 9, 13, 15, 17, and 22, which are linked to TP53, MYC, CCNE1, 442 

CDKN2A/CDKN2B, BRCA1, and NF2/TIMP3. These chromosomal targets highlight pathways 443 

associated with cell cycle regulation, DNA repair, and immune modulation. Chromosomal 444 

alteration differences from both cohorts included unique gains in clinical STICs (chromosomes 2, 445 

3, 7, 10, 12, and 20) and losses (chromosomes 5, 7, 8, and 11), which encompass genes such 446 

as PIK3CA, FOXM1 and APC, which are involved in PI3K signaling, transcriptional regulation, 447 

and tumor suppressor pathways. Nondiseased low-risk STIC displayed a less extensive genomic 448 

profile, suggesting distinct molecular landscapes that may reflect differences in progression 449 

stages. 450 

Limitations of this study include the modest sample size, which limits precise estimation 451 

of lesion prevalence in the general population. This constraint stems largely from the rarity of 452 

donor fallopian tube specimens available for analysis, as the samples were obtained from an 453 

organ donor network from women at low risk of ovarian cancer. Nonetheless,  detection of lesions 454 

across all samples highlights the potential for the technical platform reported here to improve 455 

current diagnostic protocols, which may substantially underreport the burden of early neoplasia 456 

in the fallopian tube. With modifications to the grossing protocol, this approach could be applied 457 

to remnant surgical specimens following clinical assessment of 2D sections necessary for patient 458 

diagnosis. 459 

This study establishes a scalable framework for 3D mapping of precancerous lesions in 460 

whole human fallopian tubes, allowing the concurrent profiling of the lesions using spatial 461 

proteomics, metabolomic and transcriptomic technologies. These 3D maps can be used to 462 

perform pseudo-time modelling of precancerous lesions and for development of biomaterials that 463 

molecularly, functionally, and architecturally resemble human fallopian tubes and their 464 

precancerous lesions53,121. Future work should expand cohort size, integrate longitudinal samples, 465 

and explore how this new knowledge can be translated into clinically meaningful data for future 466 

development of effective tools for early diagnosis and strategy for ovarian cancer prevention.  467 
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FIGURES AND CAPTIONS 468 

 469 

Fig. 1. A novel workflow for whole-organ screening of organ donor fallopian tubes for detection and 470 

molecular characterization of rare and microscopic lesions. (a) Fallopian tubes were obtained from 471 

low-risk, non-diseased donors via the nPOD network. (b) Specimens were surgically resected, histologically 472 

sectioned, stained with H&E and digitized at high resolution. A subset of the sections was stained with p53 473 

and proliferation marker Ki67 using IHC. (c) H&E- and IHC-stained sections were reconstructed into digital 474 

3D volumes using nonlinear registration. A semantic segmentation algorithm was trained to label tissue 475 

components in the H&E images, and starDist was used to segment nuclear boundaries. A supervised 476 

algorithm was used to locate 3D regions containing HGSC precursors 3D. (d-f) Pathologist-validated 477 

lesions were further molecularly profiled using (d) spatial transcriptomics, (e) stimulated Raman scattering 478 

hyperspectral imaging (SRS-HSI) based spatial metabolomics, and (f) spatial proteomics. 479 

480 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2025. ; https://doi.org/10.1101/2025.09.21.677628doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.21.677628
http://creativecommons.org/licenses/by-nd/4.0/


 481 

Fig. 2. 3D analysis of tissue and cellular components of the human fallopian tube. (a) The CODA 482 

semantic segmentation platform was used to label microanatomical components of the human fallopian 483 

tubes from H&E-stained images, including secretory epithelium, ciliated epithelium, mesothelium, blood 484 

vessels, stroma, fat, and nerve. (b) 2D heatmaps obtained form best projections of the whole stacks of 485 

labeled images showing the differences in the human fallopian tube’s epithelium, whereby post-486 

menopausal samples showed less ciliated epithelium than pre-menopausal samples. (c) Major tissue 487 
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components of the fallopian tube reconstructed using the 3D CODA mapping platform, which revealed high 488 

vascularization of human fallopian tubes (top panels). 3D rendering of epithelial subtypes confirmed the 489 

presence of higher secretory epithelial populations in post-menopausal samples when compared to pre-490 

menopausal samples (bottom panel). (d) Bulk tissue composition plots of ciliated and secretory epithelium 491 

in post- and pre-menopausal human fallopian tubes (top panel), and plotted compared to proximal, medial, 492 

and distal locations to ovaries (bottom panel). (e) Center path of each human fallopian tube was computed 493 

to measure variance in epithelium across each specimen. (f) Cross sectional analysis of the fallopian tubes 494 

revealed an increase in secretory epithelial cells along the entirety of the post-menopausal fallopian tubes, 495 

when compared to pre-menopausal cohort.  496 

 497 
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 498 

Fig. S1. 3D-CODA single cell resolution framework to map epithelial cell subtypes. (a) Representation 499 

of H&E-stained human fallopian tube whole-slide image (left panel). CODA segmented tissues, such as 500 

epithelium, mesothelium, blood vessels, fat, nerves (middle panel, top). CODA subtyped the epithelium into 501 

secretory epithelium and ciliated epithelium (middle panel, bottom). Combination of the two segmentation 502 

models allowed for detailed tissue mapping of whole fallopian tube H&E-stained images (right panel).(b) 503 

Testing of the segmentation models was performed on independent images from the training dataset. 504 

Tissue model showed overall accuracy of 95.2% (top panel) and epithelial subtyping model showed an 505 

overall accuracy of 93.2% (bottom panel).(c) Nuclear segmentation model was applied to all H&E-stained 506 

images of each human fallopian tube to obtain cellular resolved data. (d) Bulk cell density was measured 507 
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for each tissue type of each human fallopian tube. Ciliated and secretory cell density was lower for ID 1 and 508 

2, which contained the most lesions. (e) Cross sectional analysis of the fallopian tubes revealed increased 509 

in secretory epithelial cells along the entirety of the post-menopausal fallopian tubes, when compared to 510 

pre-menopausal cohort.  511 
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 512 

Fig. 3. 3D mapping of ovarian cancer precursors reveals high lesion burden with spatially patterned, 513 

scale-free growth. (a) Integrated pipeline combining Immunohistochemistry staining (Ki67 and p53) and 514 

3D computational reconstruction to map lesions across entire fallopian tubes (n=5). (b) Z-projection 515 
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demonstrating detection of proliferative Ki67+ and p53+ aberrant foci. (c) Pathologist-expert validated 516 

lesions were labelled as proliferative active STIC, proliferative dormant STICs, and p53-signatures, and 3D 517 

rendered. (d) Volumetric rendering of a proliferative active STIC within fimbriae architecture (scale: mm). 518 

(e) Spatial distribution of lesions, showing high lesion burden and sparse distribution of lesions in the human 519 

fallopian tubes. (f) Complementary cumulative distribution functions (CCDFs) of lesion size follow a power-520 

law trend across all tube regions. (g) Example of 3D virtual SEE-FIM computed for a post-menopausal 521 

sample containing 5,893 virtual sections. (h) 3D virtual SEE-FIM procedure was computed for incrementally 522 

increasing number of virtual sections. Percentage of detected combined lesions, proliferative active STICs, 523 

proliferative dormant STICs, and p53 signatures was calculated for each equally distant virtual section 524 

count. The number of sections used in standard SEE-FIM procedures is indicated by the black or orange 525 

vertical lines. 526 

527 
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  528 

Fig. S2. 3D spatial and bulk mapping of ovarian cancer precursors. (a) CODA segmentation model to 529 

annotate IHC positive signal in whole slide images was tested on an independent testing dataset and 530 

achieved an overall accuracy of 98.7%. (b) Semi-automated method of lesion detection in whole human 531 
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fallopian tubes showed 13 STICs, 64 proliferative dormant STICs, and five p53 signatures across 3 samples 532 

of the post-menopausal cohort. On the 2 samples of the pre-menopausal cohort, we identified zero STICs, 533 

17 proliferative dormant STICs, and six p53 signatures. (c) STICs, proliferative dormant STICs, and p53 534 

signatures were separated according to their spatial locations in the fallopian tube. STICs were found only 535 

in Post-menopausal samples, with 9 STICs in the Fimbriated end and four STICs in the Ampulla. The 536 

majority of proliferative dormant STICs were found in the Ampulla in both pre- and post-menopausal 537 

samples, with 16 and 39 proliferative dormant STICS, respectively. The p53 signatures were identified 538 

mostly in the Ampulla and Fimbriated end. (d) Example of 3D virtual SEE-FIM computed for a post-539 

menopausal sample containing 10,255 virtual sections. (e) 3D virtual SEE-FIM procedure was computed 540 

for incrementally increasing number of virtual sections. Percentage of detected combined lesions, STICs, 541 

proliferative dormant STICs, and p53 signatures was calculated for each equally distant virtual section 542 

count. The number of sections used in standard SEE-FIM procedures is indicated by the black or orange 543 

vertical lines. (f) Example of p53 signature, proliferative dormant and active STICs found amongst the 544 

cohort. 545 
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 546 

Fig. 4. Proliferative active STIC lesion creates an immunosuppressive niche through altered cellular 547 

crosstalk and spatial reorganization of the tumor microenvironment. (a) Multiplexed CODEX imaging 548 
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reveals protein expression patterns across 25 markers in proliferative active STIC. (b) Single-cell resolution 549 

mapping of fallopian tube epithelium (972,276 nuclei). (c) UMAP clustering identifies distinct cellular 550 

phenotypes, with proliferative (Ki67+) epithelial-immune clusters enriched in STIC. (d) Cell-type-specific 551 

protein signatures highlight metabolic and immune checkpoint dysregulation in STIC and adjacent stroma. 552 

(e) PAGA network analysis uncovers rewired interactions between stromal fibroblasts and 553 

immunosuppressive myeloid populations in STIC. (f) Spatial profiling demonstrates immune exclusion, with 554 

cytotoxic T cells displaced and suppressive dendritic cells recruited near STIC. (g) Quantification of 555 

immune-stromal shifts across increasing distances from STIC core. (h-i) Comparative cellular landscapes 556 

reveal modest immune localization near the STIC.  557 
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 558 

Fig. S3. Topological and spatial proteomic mapping of proliferative active STIC microenvironment. 559 

(a) PAGA unpruned network analysis shows cellular interactions, highlighting immunosuppressive 560 

populations near proliferative active STIC. (b) Active STIC region was masked and subsequently dilated to 561 

generate 10 micron distances. At each distance, the cellular composition was assessed. Black lines in the 562 

figure indicate incremental 100 micron distance from the STIC in red. 563 
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 564 

Fig. 5. Multimodal SRS imaging reveals the metabolic remodeling in lesions. (a) P53 staining shows 565 

the lesion regions. (b) SRS protein channel overlayed with second homogenization (SHG) signal for 566 

collagen to show the architecture of the same lesion region of interest (ROI) in (A). Scale bar: 200 µm. (c) 567 
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Multimodal SRS imaging shows the comparation of multiple metabolites between control and lesion ROI. 568 

Scale bar: 20 µm. (d) Hyperspectral SRS imaging and unsupervised clustering showing the distribution of 569 

metabolites across the whole ROI shown in (A) and (B). (e) Hyperspectral SRS imaging and unsupervised 570 

clustering shows the difference of metabolic profiles between control and lesion ROI. Red arrows points to 571 

the typic Raman lipid peaks at 2850 cm-1 and 2880 cm-1. (f) The ratio images of ceramide/PE and PC/PE 572 

highlight the lipid subtype modulation between control and lesion ROI.  573 
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 574 

Fig. S4. STIC lipid subtype characterization. (a) Multimodal SRS imaging displays the protein, lipid, 575 

unsaturated/saturated lipid, NADH, FAD and radiometric images of unsaturated/saturated lipids, 576 

NADH/FAD of the ROI shown in (Figure 1A). Scale bar: 200 µm. (b) SRS hyperspectra based lipid subtype 577 

detection showing the difference in lipid subtype levels between control and lesion ROI.   578 
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 579 

Fig. S5. Spatial metabolomic profiling on additional targeted ovarian cancer lesions. (a-c) Multimodal 580 

and hyperspectral SRS imaging displays the metabolic states changes in multiple lesion tissues. Scale bar: 581 

200 µm. (d-e) SRS hyperspectra from different lesion tissues underscore the consistent lipid metabolic 582 

remodeling. Red arrows points to the typic Raman lipid peaks at 2850 cm-1 and 2880 cm-1. 583 

584 
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585 
Fig. 6. Spatial transcriptomic profiling reveals molecular alterations in STIC lesions. (a) Selection of 586 

STIC regions for spatial transcriptomics profiling, validated by p53 and Ki67 IHC. (b) Identification of STIC 587 

and non-STIC epithelial regions within the Visium spatial transcriptomics platform. (c) Heatmap of 588 

differentially expressed genes in STIC lesions, highlighting key upregulated and downregulated targets 589 
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(adjusted p-value < 0.05). (d) Oncogene expression patterns (e.g., GPAT2, HIST1H1D) specific to STIC 590 

regions. (e-f) Dot plots of enriched gene signatures in STIC, including KRAS signaling, oxidative 591 

phosphorylation, and epithelial-mesenchymal transition. (g) Chromosomal ploidy analysis showing copy 592 

number variations in STIC, with focal changes on chromosomes 6 and 22.  593 
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594 
Fig. S6. Spatial expression of ovarian cancer related genes, and pathway analysis. (a)  TMNT1 and 595 

CDC20 gene expression patterns specific to STIC regions. (b) Sets of classical and basal gene expression 596 
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did not show any STIC specific expression. (c) Dot plots showing significantly enriched terms from Gene 597 

Ontology Biological Process. (d) Dot plots showing significantly enriched terms from Gene Ontology 598 

Cellular Components. (e) Dot plots showing significantly enriched terms from Hallmark gene set. Dot size 599 

represents gene count, color intensity indicates adjusted p-value, and x-axis shows normalized enrichment 600 

score (NES). Terms are ordered by statistical significance. (f) Inferred CNA using inferCNV for two Visium 601 

sections of the same proliferative active STIC. Chromosomal gains are shown in red, and chromosomal 602 

depletions are shown in blue, with respect to reference adjacent healthy epithelial cells (top rows).  603 
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SUPPLEMENTAL TABLES 604 

 605 

   Medial dimensions   

  
Number 

of sections 
Width 
(mm) 

Length 
(mm) 

Depth 
(mm) 

Total volume 
(cm3) 

Number of 
Cells (Million) 

Post-
menopausal 

 Donor 1 601 23.4 17.6 3.0 0.31 178.3 
Donor 2 627 32.8 24.4 3.1 0.78 425.9 
Donor 3 999 28.3 20.8 5.0 0.86 552.5 

Pre-
Menopausal 

Donor 1 1305 21.5 19.4 6.5 0.75 509.0 
Donor 2 1373 15.5 32.1 6.9 0.70 525.8 

 606 
Table S1. Table containing the number of Whole Slide Images, dimensions, and total volume of 607 
the whole human fallopian tube cohorts. 608 
 609 
 610 

 611 

 612 

 613 

 614 

 615 
 616 
Table S2. Table containing the number of STICs found on the whole human fallopian tube 617 
cohorts. 618 
 619 
 620 

 621 

 622 

 623 

 624 

 625 
Table S3. Table containing the number of STICs found on the whole human fallopian tube 626 
cohorts. 627 
  628 

  Precancerous lesions 
(Proliferative active and dormant STICs) 

  total mean median min max 

Pre-menopausal 
Donor 1 0 

8.5 8.5 0 17 
Donor 2 17 

Post-menopausal 
Donor 3 35 

27.33 35 5 42 Donor 4 42 
Donor 5 5 

  Proliferative active STIC 
  total mean median min max 

Pre-menopausal 
Donor 1 0 

0 0 0 0 
Donor 2 0 

Post-menopausal 
Donor 3 8 

4.33 5 0 8 Donor 4 5 
Donor 5 0 
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  Proliferative dormant STIC 
  total mean median min max 

Pre-menopausal 
Donor 1 0 

8.5 8.5 0 17 
Donor 2 17 

Post-menopausal 
Donor 3 27 

23.00 27 5 37 Donor 4 37 
Donor 5 5 

Table S4. Table containing the number of proliferative dormant STICs found on the whole human 629 

fallopian tube cohorts. 630 

 631 

  p53 signatures 
  total mean median min max 

Pre-menopausal 
Donor 1 1 

3 3 1 5 
Donor 2 5 

Post-menopausal 
Donor 3 1 

1.67 1 0 4 Donor 4 4 
Donor 5 0 

Table S5. Table containing the number of p53 signatures found on the whole human fallopian 632 
tube cohorts. 633 
 634 

Group # Patients 
Proliferative 
active STIC 
Prevalence 

Proliferative 
dormant STIC 

Prevalence 
p53 Signature Prevalence 

Pre-menopausal 2 0% (0/2) 50% (1/2) 50% (1/2) 
Post-menopausal 3 66.67% (2/3) 100% (3/3) 66.67% (2/3) 

Combined 5 40% (2/5) 80% (4/5) 60% (3/5) 
Table S6. Table containing statistical prevalence of ovarian cancer precursor lesions in whole 635 
human fallopian tube cohorts.  636 
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METHODS 637 

Tissue acquisition and processing of entire human fallopian tubes 638 

After resection of non-diseased human fallopian tubes from a donor network (nPOD). Specimens 639 

were processed into FFPE tissue blocks. Then, exhaustively serial sectioned at 4 microns and 640 

H&E stained (one every two sections). Unstained slides were stored in -20°C, under optimal 641 

humidity and vacuum conditions.  642 

H&E-stained slides were scanned at 20x resolution (~0.5 micron/pixel) using a Hamamatsu 643 

Nanozoomer S210. NDPI files were converted to tiff images (1 micron/pixel) and aligned into a 644 

3D volume. StarDist method was employed to perform nuclear segmentation of all H&E-stained 645 

whole slide in entire fallopian tube samples.  646 

 647 

CODA microanatomical labelling of WSI of human fallopian tubes 648 

To label the microanatomical components of the human fallopian tube, we developed two CODA 649 

semantic segmentation models55,122. One model labelled the surrounding epithelium 650 

microenvironment, including blood vessels, nerves, vasculature, mesothelium, rete ovarii in all 651 

WSI (Fig. S1, middle top panel). The second model was designed to automatically annotate the 652 

secretory and ciliated epithelial cells (Fig. S1, middle bottom panel). Models were combined to 653 

fully segmented all whole slide images in the human fallopian tubes (Fig. S1, right panel). 654 

InterpolAI was used to generate missing images to restore microanatomical connectivity123. 655 

 656 

Alignment of 2D WSI into 3D maps of entire human fallopian tubes 657 

Combination of global rigid and local elastic image registrations allowed reconstruction of 658 

microanatomical structures of human fallopian tubes into 3D volume55,61. Alignment was applied 659 

to images subtyping the epithelium and to images labelling the fallopian tube microenvironment.  660 

 661 

Nuclear segmentation in H&E-stained images 662 

To extract all 2.19 billion nuclear segmentations from 2,452 H&E-stained images, we used an 663 

adapted version of the StarDist pipeline for 3D histological slides (Fig. S1C)124,125. StarDist 40x 664 

resolution H&E segmentation pretrained model was finetuned to 20x resolution NDPI file format 665 

images67. To finetune the model, we annotated 25 H&E stained tiles with 256x256 dimensions for 666 

training. Training was optimized finetuning hyperparameters such as learning rate, training 667 

epochs, data augmentation. To maximize the heterogeneity of the testing tiles, we se4lected tiles 668 

from regions of the human fallopian tubes and across different specimens. 669 
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 670 

Registration of 2D nuclear segmentation into 3D cellular volume 671 

Similarly to the semantic segmentation step, segmented cell nuclei was registered into a 3D 672 

aligned volume, using CODA point cloud base registration method, which allowed the same 673 

alignment of the cell nuclei centroids accordingly with the tissue labelling registration124. Each cell 674 

on the 3D volume contained a unique cell ID, which allowed to link each cell to its respective 675 

morphological features.  676 

 677 

Measurement of bulk cellular and volumetric quantifications 678 

With the generated 3D tissue and cellular volumes, bulk quantifications can be extracted. To 679 

obtain volumetric data from each respective label, all voxels of each respective tissue component 680 

are summed and, subsequently, adjusted according to its respective voxel size. Bulk cellular 681 

information of each microanatomical label can be extracted in silico by combination of 3D tissue 682 

labelled volume with its respective label locations in the 3D cellular volume. 683 

 684 

3D cellular and volumetric variability within human fallopian tube epithelium 685 

To quantify the variability in cellular and volumetric content within each human fallopian tube, a 686 

virtual path was generated along the epithelium. Along this virtual epithelium path, cross sections 687 

perpendicular to this path were generated to simulate travelling across the human fallopian tube 688 

epithelium. Cellular and volumetric measurements were obtained for each cross section, resulting 689 

in tens of thousands of virtual cross sections along each fallopian tube. 690 

 691 

Detection of p53 signatures, proliferative dormant and active STICs in human fallopian 692 

tubes 693 

To 3D map precursors to ovarian cancer in whole human fallopian tubes, we developed a 694 

framework that integrates H&E and IHC (p53 and Ki67) staining methods in 3D. First, we 695 

developed a deep learning method to identify positive signal locations in p53 and Ki67 IHC stained 696 

images (stained one in every 8 sections of the entire stack of images). Then we aligned the IHC 697 

images to the aligned H&E-stained image stack. Combination of IHC stained slides and H&E-698 

stained slides to highlight regions with potential precursors of ovarian cancer. Generation of the 699 

lesions image stacks containing IHC and H&E images to manually check hundreds of potential 700 

lesion locations across different specimens. Manual validation of each bounding box with 701 
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pathologists and trained experts allowed the compiling of confirmed ovarian cancer precursors. 702 

Validated lesions were then used for further multi-omics profiling. 703 

 704 

Volume distribution of ovarian cancer precursors across different samples 705 

For each individual validated lesion, their volume was computed (Fig. 3F, left panel). Power law 706 

was used to predict lesion growth for proliferative active and  dormant STICs, and p53 signatures 707 

combined (Fig. 3F, middle panel)65. Using the Kolmogorov-Smirnov test, maximization of the p-708 

value was applied to fit the measured lesion volumes126. 709 

 710 

3D virtual SEE-FIM procedure for detection of epithelial lesions in low-risk nondiseased 711 

human fallopian tube samples 712 

To virtually simulate the SEE-FIM procedure in our samples, we generated a virtual path across 713 

the human fallopian tube’s epithelium. In the fimbriated ends of the fallopian tube, longitudinal 714 

sections were generated, and on the remaining of the fallopian tube transverse cross sections 715 

were computed. For each fallopian tube sample, equally distanced slides were generated ranging 716 

from 1 up to 11,000 sections along the epithelium’s center path (Fig. 3G, and Fig. S2D). 717 

Simulations of the distinct virtual section ranges were computed for each fallopian tube (Fig. S2E) 718 

and, for each combination of sections simulated, the number of lesions was assessed. The same 719 

was computed to the respective percentage of the fallopian tube sectioned (Fig. 3H). 720 

 721 

Spatial proteomics on region of interest to map STIC immune landscape 722 

To deeply profile the proteomic landscape involved in STIC progression, we applied CODEX 723 

spatial proteomics using 25 marker antibody panel targeting epithelial, immune, and stromal 724 

populations (Fig. 4A). WSI cyclic immunofluorescence was conducted to ensure spatial 725 

comparison of STIC to non-lesional epithelia. DAPI nuclear channel was segmented and 726 

subsequent dilation of the nuclear area ensured cells were isolated and boundaries of each were 727 

accurately delimited (Fig. 4B)67. For each segmented cell, protein expression intensities were 728 

quantified. Marker intensities were normalized to minimize the effects of inter-cell variability. 729 

UMAP was applied to visualize multidimensional protein expression profiles and identify distinct 730 

cellular clusters (Fig. 4C)68–71,127–133. Clusters were annotated based on canonical marker 731 

expressions to distinguish epithelial, stromal, and immune cell populations (Fig. 4D-F).  732 

Spatial mapping was then performed to measure the distribution of cell types across the STIC 733 

and adjacent epithelial regions (Fig. 4G-I). To investigate the cell-to-cell interaction between the 734 
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cell phenotypes, we applied a PAGA (Partition-based Graph Abstraction)72. Using PAGA, we 735 

inferred proximity and connectivity between cell phenotypes (Fig. 4G, S3A).  736 

To compute the variance in cellular composition relative to STIC proximity, we performed a spatial 737 

dilation of the STIC mask and measured the cellular composition at different distances (Fig. S3B). 738 

Cell type composition was calculated every 10 µm distances and extended up to 500 µm from 739 

STIC region (Fig. 4H). Quantification of the differential cellular enrichment was quantified by 740 

comparing regions within 100 µm to this STIC to regions distancing 400 and 500 µm from the 741 

STIC (Fig. 4I). 742 

 743 

Two-photon stimulated Raman scattering to map metabolomic signature in STIC 744 

Pathologist-validated lesions within 3D spatial maps of fallopian tubes were selected for spatial 745 

metabolomics analysis of the ovarian cancer precursors (Fig. 5A). High-resolution multimodal 746 

two-photon stimulated Raman scattering (SRS) imaging was used to quantify metabolic 747 

signatures across lesions59. Multimodal SRS imaging targeting lesions and control normal 748 

adjacent epithelial regions of interest (ROIs) allowed to capture spatial distributions of proteins, 749 

saturated and unsaturated lipids, total lipids, NADH, and FAD (Fig. 5B-C). Intensity-normalized 750 

images were concatenated into feature vectors and analyzed by principal-component analysis 751 

followed by k-means clustering (Fig. 5D-E)134. 752 

 753 

Spatial transcriptomic profiling of low-risk non-diseased STIC  754 

3D mapped regions containing STIC were selected and used to guide placement of the Visium 755 

CytAssist capture area (6.5 x 6.5 mm2). Tissue sections were processed using the 10x Genomics 756 

Visium CytAssist FFPE protocol. After deparaffinization and epitope retrieval, hybridization with 757 

the Human Transcriptome Probe Set v2.0. Probe release was conducted via CytAssist, followed 758 

by library preparation and sequencing (~250 million reads/sample) on an Illumina NovaSeq 759 

6000121,135. 760 

Differential gene expression analysis between STIC and normal regions was performed 761 

using Seurat v5 136. Genes with adjusted p-value <0.05 and log2 fold change >0.25 were 762 

considered significant (Fig. 6C, S6A-B). Significantly altered genes were subjected to Gene 763 

Ontology (GO) analysis (Fig. 6E) and Hallmark pathway enrichment using GSEA (Fig. 6F–G, 764 

S6C-E)137–139. Enrichment scores were visualized using dot plots and ranked enrichment plots. 765 

Copy number alterations were inferred from transcriptomic data using inferCNA and inferCNF, 766 

comparing STIC spots to adjacent normal epithelial reference regions60,140. Alterations were 767 
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visualized as heatmaps and chromosome-specific dot plots (Fig. 6H–I). Spatial distribution of 768 

chromosomal alterations was mapped across tissue sections (Fig. 6J–K, Fig. S6F). 769 

 770 

Statistical considerations 771 

All significance tests were performed using the Wilcoxon rank sum test. To compare metrics within 772 

and between cohorts, median, mean, standard deviation, and interquartile range were 773 

determined. Relative error was defined as [measured value – expected value] / expected value. 774 

No other statistical calculations were performed in this work.775 
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