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ABSTRACT

Uncovering the spatial and molecular landscape of precancerous lesions is essential for
developing meaningful cancer prevention and early detection strategies. High-Grade Serous
Carcinoma (HGSC), the most lethal gynecologic malignancy, often originates from Serous Tubal
Intraepithelial Carcinomas (STICs) in the fallopian tubes, yet their minute size and our historical
reliance on standard 2D histology contribute to their underreporting. Here, we present a spatially
resolved, multi-omics framework that integrates whole-organ 3D imaging at cellular resolution
with targeted proteomic, metabolomic, and transcriptomic profiling to detect and characterize
microscopic tubal lesions. Using this platform, we identified a total of 99 STICs and their presumed
precursors that harbor TP53 mutations in morphologically unremarkable tubal epithelium in all
five specimens obtained from cancer-free organ donors with average-risk of developing ovarian
cancer. Although these lesions comprised only 0.2% of the epithelial compartment, they displayed
geographic diversity, immune exclusion, metabolic rewiring, and DNA copy number changes
among lesions and normal fallopian tube epithelium discovered alterations in STIC-associated
genes and the pathways they control. In sum, this platform provides a comprehensive 3D atlas of
early neoplastic transformation, yielding mechanistic insights into tumor initiation and informing

clinical screening strategies for detecting cancer precursors in whole organs at cellular resolution.
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70 INTRODUCTION
71  Ovarian cancer is the most lethal gynecological malignancy, with high grade serous carcinoma
72 (HGSC) accounting for the majority of the cases'®. Accumulating evidence supports the fallopian
73  tube, and serous tubal intraepithelial carcinoma (STIC), as the primary precursor of ovarian
74  cancer’~'®, This multi-organ progression from the fallopian tube to the ovary is unique among
75 cancers, and its discovery has spurred research into the progression of STICs to invasive
76  HGSC'"-2. Yet, our current knowledge of ovarian cancer precursors largely stems from studies
77  involving clinical specimens from individuals with ovarian cancer, gynecologic abnormalities, or
78  from high-risk individuals possessing genetic risk factors?*-?’. Consequently, our knowledge of
79  ovarian cancer precursors in wholly non-diseased specimens is limited?®-3".
80 STIC is diagnosed incidentally under microscope following the pathological criteria
81  previously reported®33, STIC lesions consist of atypical and multi-layered epithelial cells, with
82  detectable mitotic figures and higher proliferative activity as compared to background epithelium.
83  Alongside STIC, another related lesion emerges as a “p53 signature,” which is defined as a minute
84  stretch of morphologically unremarkable epithelium but harboring TP53 mutations. The biological
85 and clinical significance of p53 signatures is unclear and whether they represent the precursor
86 lesions of STIC awaits further molecular studies. STICs are more commonly identified following
87 the Sectioning and Extensively Examining the Fimbriated End, or SEE-FIM, protocol that has
88 been adopted as a more thorough way in sampling fallopian tubes in clinical practice®°.
89 However, the diagnosis of STICs is solely based on 2D examination of tissue sections, and
90 consequently, as little as 1% of tubal tissues is microscopically examined by a pathologist as the
91  bulk remains in archived tissue blocks® . As a result, the actual prevalence of STICs remains
92  unknown and previous studies reported a wide range of STIC incidence, ranging from 11-61% in
93  HGSC patients*', 0-11.5% in asymptomatic BRCA1/2 germline mutation carriers®>3"4243 and <1%
94 in individuals without ovarian cancer or genetic risk factors**#’. A significantly higher incidence
95 was noted when the tissue blocks were flipped over and additional sections examined*?,
96 supporting the idea that current sampling lacks the sensitivity to exhaustively detect STIC lesions.
97  Therefore, automated and exhaustive three-dimensional assessments are essential to resolve
98 the spatial distribution and prevalence of rare and microscopic lesions, and to analyze their unique
99  properties as the earliest stage of ovarian tumorigenesis*¢-6.

100 To address this gap, we developed a novel framework to comprehensively screen entire

101  organ donor fallopian tubes for ovarian cancer precursors. Organ donation for scientific research

102 is a precious resource that provides essential access to tissues unaffected by cancers and other
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103  abnormalities generally present in clinical specimens. Donor tissues have emerged as crucial for
104 characterization of precancer frequency and molecular characteristics in organs including
105  pancreas and colon® %8, Importantly, because detection of STICs requires consideration of H&E,
106  p53, and Ki67, existing 3D pathology workflows that rely solely on H&E are insufficient to reliably
107 identify these lesions. To overcome this, we developed a pipeline to combine H&E-based cellular
108 morphology with signal intensity from co-registered p53 and Ki67-stained IHC images to
109 automatically highlight hundreds of potential precancerous lesions in a format easily reviewed by
110  expert pathologists and amenable to further integration of multi-omics at regions of interest. This
111  integration allowed an exhaustive and precise 3D mapping of microscopic p53 signatures,
112  proliferative dormant and active STICs in whole human fallopian tubes at cellular resolution.

113 While previous works have suggested these lesions are rare in low-risk populations*-,
114  using our automated and whole organ-scale workflow we find multiple p53 signatures, proliferative
115  dormant or active STICs in all donor samples analyzed. Digital simulation of the SEE-FIM protocol
116  in these donor organs explains their apparent elusiveness, revealing that the standard SEE-FIM
117  protocol would detect less than half of the precursor lesions found here. To reduce the false-
118  negative rate below 25%, 150-250 equally spaced sections would be required. This is dramatically
119  higher than the 10-20 sections typically analyzed in SEE-FIM and explains the historic lack of
120  evidence of STIC lesions in non-diseased fallopian samples.

121 Next, we further extended our workflow to integrate spatial proteomics, spatial
122  transcriptomics, and spatial metabolomics to perform deeper molecular profiling specifically in
123 regions within whole donor fallopian tubes that contained precancerous lesions. Using a 25-plex
124  CODEX panel, we found that isolated STICs do not possess a unique immune microenvironment,
125 unlike STICs found in the clinic, suggesting that immune evasion may not be an early hallmark in
126  STIC progression. Using stimulated Raman scattering hyperspectral imaging (SRS-HSI) based
127  spatial metabolomics approach®®, we identified oxidative stress and increased rigidity that
128  promotes malignant transformation. We also found increased nicotinamide adenine dinucleotide
129  to oxidized flavin adenine dinucleotide (NADH/FAD) ratio in lesion cells compared to surrounding
130 normal epithelial cells, suggesting the lesion epithelia subjects to oxidative stresses and rewires
131  its metabolism towards glycolysis. Finally, integration of Visium spatial transcriptomics revealed
132 significant and spatially confined upregulation of genes essential to cell proliferation, mitotic
133  progression, and chromatin remodeling within the proliferative active STIC epithelium. Lastly,

134  copy number alteration inference in proliferative active STIC showed chromosomal imbalances®.


https://doi.org/10.1101/2025.09.21.677628
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.09.21.677628; this version posted September 21, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

135 In sum, through integration of high-resolution 3D imaging with molecular profiling, this
136  study reveals the first detailed map of ovarian precancerous lesions in grossly unremarkable
137  fallopian tubes and provides a framework for advancing the understanding of the earliest stages

138  of ovarian cancer development.
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139 RESULTS

140 Construction of cohorts of 3D-microanatomically labelled human fallopian tubes for
141  assessment of ovarian cancer precursors

142  To assess the presence of ovarian cancer precancerous lesions, including p53 signatures and
143  STICs, in gynecologically healthy women, we developed a pipeline to collect intact donor fallopian
144  tube samples. Samples were procured through the network for pancreatic organ donors (nPOD)
145  from individuals with no documented gynecological disease and no genetic risk factors for ovarian
146  cancer (Fig. 1A). Organs were accepted if donors suffered no abdominal trauma and if warm
147  ischemic time (WIT) was <16 h.

148 Fallopian tubes were processed into formalin fixed, paraffin embedded (FFPE) blocks and
149  exhaustively serially sectioned at a thickness of 4 microns. One in every two sections was stained
150  with H&E, one in every eight sections was IHC stained using p53, and one in every eight sections
151  was IHC using Ki67 (Fig. 1B). Stained slides were imaged at 20x resolution (0.5 micron/pixel)
152 using a Hamamatsu S210 scanner, stored as NDPI files, and post-processed into tiff image files.
153  The mean number of sections cut for each human fallopian tube was 981, median 999, maximum
154 1373, and minimum 601. The average dimensions of the convoluted fallopian tubes in the FFPE
155 blocks were 2.43 cm x 2.26 cm x 0.5 cm, median 2.34 cm x 2.10 cm x 0.5 cm. The average total
156  volume per fallopian tube was 0.68 cm?® median 0.75 cm?3. For context, the median volume of
157  fallopian tube sampled by a single of whole slide is 0.00075 cm?® (=0.75cm?®/999). The mean and
158 median number of cells per fallopian tube was 438.3 million and 509 million, respectively. To
159 preserve DNA, RNA, and proteins, unstained sections were mounted on plus slides and stored
160  with desiccant packets at -20°C.

161 We trained three deep learning models to semantically segment the fallopian tube
162  microanatomy. The first model segmented eight structures from the H&E-stained images: tubal
163 epithelium, mesothelium, blood vessels, stroma, fat, nerve, rete ovarii, and background. The
164  second model sub-classified the fallopian tubal epithelium into secretory and ciliated epithelial
165 cells. The third model masked locations of positive p53 and Ki67 signals on the IHC images.
166  Alignment of the H&E and IHC segmented images into a volume via nonlinear image
167  registration®*®" enabled automatic identification of secretory epithelial cells featuring p53+/Ki67+
168  and p53+/Ki67- signal. p53 staining positivity was defined herein as the staining pattern consistent
169  with a TP53 missense mutation using the criteria previously reported®?. Ki67 positivity was defined
170 as the Ki67 labeling index was significantly higher than that of the adjacent or background

171  epithelium. At these regions, we exported stacks of high-resolution registered 2D images, allowing


https://doi.org/10.1101/2025.09.21.677628
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.09.21.677628; this version posted September 21, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

172 human validation of detected lesions. A total of 1,285 deep learning-highlighted p53+/Ki67+ and
173  p53+/Ki67- epithelium locations, with a mean of 257 and a median of 211 per fallopian tube, were
174  automatically detected by our algorithm and then manually validated by pathologist experts.
175  Highlighted locations were categorized as proliferative active STICs, proliferative dormant STICs,
176  p53 signatures, or non-lesions (Fig. 1C).

177 Following detection of epithelial lesions, intervening unstained slides were used for deeper
178  profiling. To understand the immune microenvironment of the proliferative active STIC, we applied
179 a CODEX panel of 25 antibodies for WSI proteomics analysis (Fig. 1E). To understand the
180 metabolic changes, we used spatial single-cell metabolomics (Fig. 1E). Lastly, to study gene
181  expression variations and infer copy number alterations, we applied 10x Genomics Visium
182  Cytassist (Fig. 1F).

183

184 3D characterization of the microanatomy of the human fallopian tube and STIC lesions
185 To comprehensively study the microanatomy of the fallopian tube in organ donor samples, we
186  analyzed the results of the registered, segmented H&E images (Fig. 2A). High-grade serous
187  tumors primarily originate from secretory epithelial cells in the human fallopian tube®, highlighting
188  the importance of understanding the composition and spatial arrangement of secretory epithelial
189  cells in pre- and post-menopausal non-diseased fallopian tubes. Here, we analyzed 175.1 million
190 pre-menopausal epithelial cells and 112.3 million post-menopausal epithelial cells. We produced
191  z-projection heatmaps and 3D reconstructions, conveying the marked convolutions of the
192  fallopian tube epithelial and the intermixing of secretory and ciliated epithelial cells (Fig. 2B and
193 2C). We found on average higher composition of secretory epithelial cells in post-menopausal
194  (76% secretory, 24% ciliated) women compared to pre-menopausal women (58% secretory, 42%
195 ciliated (Fig 2D).

196 Our 3D maps of whole fallopian tubes allowed us to computationally generate “virtual”
197  sections of selected orientation (e.g. orthogonal to the main axis of the fallopian tube). To generate
198 virtual sections along the length of the fallopian tube, we skeletonized each specimen by
199 calculating the center path along the convoluted tubal lumen. At each cross section along the
200 tube, we calculated the distance to the ovary (defined at the tip of the fimbriated end), and
201  categorized this distance as proximal, medial, or distal. We visualized (Fig 2C, bottom) and
202  quantified (Fig 2E, right) the distribution of secretory cells to show that the drop in ciliated cell
203  content from pre- to post-menopausal primarily affects the locations on the fallopian tube medial

204  and distal to the ovary, with similar composition of ciliated cells proximal to the ovary across age
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205 groups (Fig. 2E, right). We further quantified the secretory and ciliated cell composition as a
206  function of distance along the center path, for precise sampling by generating thousands of
207  orthogonal virtual cross sections along the epithelium (up to 10,255 virtual sections per sample).
208  For each cross section, we quantified the overall frequency of secretory and ciliated epithelial
209  cells from the distal isthmus to the proximal fimbriated end.

210 As the majority of STICs originate from secretory epithelial cells®, understanding their
211  spatial distribution and age-associated changes is critical for understanding early ovarian
212 tumorigenesis. Using our workflow to quantify the normal epithelial composition 3D, the data
213 revealed that, in post-menopausal tubes, the proportion of secretory cells increases sharply
214  toward the fimbriated end. In contrast, pre-menopausal tubes demonstrate a distal decrease in
215  secretory cell percentage with a concomitant increase in total epithelial cell number due to
216  expansion of ciliated cells. These data indicate that menopausal status substantially remodels the
217  cellular composition of the distal tube towards a more secretory epithelial cell landscape,

218  potentially influencing the local risk for neoplastic precursor lesions.
219

220 3D mapping of lesions in the non-diseased human fallopian tube epithelium

221  Toimplement a strategy for detailed 3D mapping of epithelial lesions in average-risk, nondiseased
222 human fallopian tubes, samples were alternately stained with H&E, p53 IHC and Ki67 IHC (Fig.
223 3A). Implementation of segmentation of the H&E and IHC images allowed automated detection
224  of p53 signatures, proliferative dormant STICs, and active STICs following standard clinical
225  definitions (Fig. 3B). 3D volumetric renderings of these lesions convey their microscopic size and
226  wide range of 3D morphology (Fig. 3C).

227 We identified and 3D mapped 99 STICs, including 13 proliferatively active STICs, 86
228  proliferative dormant STICs, and 11 p53 signatures across 5 nondiseased whole human fallopian
229  tubes from 5 distinct donors (Fig. 3D). According to menopausal status, we observed an average
230 of zero STICs, 8.5 proliferative dormant STICs, 3 p53 signatures in pre-menopausal samples
231 (Table $1, S2, S3, and S4). Our data revealed that ovarian precancerous lesions were present in
232 80% of the examined fallopian tubes (Tabel S2, S6). In post-menopausal samples, we observed
233  an average of 4.33 STICs, 23 proliferative dormant STICs, 1.67 p53 signatures. Notably, one
234  post-menopausal sample contained an unusual high number of lesions: 5 STICs, 37 proliferative
235 dormant STICs, and 4 p53 signatures. The most common lesion we identified proliferative
236  dormant STIC, and the most common location found to contain proliferative dormant STICs was
237  the ampulla (55 lesions), compared to the fimbriated end (22 lesions) and isthmus (9 lesions).

238  The most common location to contain proliferative active STICs was the fimbriated end (9 lesions)
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239  followed by the ampulla (4 lesions) and no active STICs were found in the Isthmus. We found p53
240  signatures in both the fimbriated end (5 lesions) and the ampulla (6 lesions).

241 The occurrence of STIC, proliferative dormant STIC, and p53 signature lesions was higher
242  in post-menopausal donors compared to pre-menopausal donors. STICs were detected in 67%
243  of post-menopausal donors but were absent in pre-menopausal cases. proliferative dormant
244 STICs were detected in 100% of post-menopausal donors and in 50% of pre-menopausal donors
245  (Table S5). The p53 signature was present in 67% of post-menopausal and 50% of pre-
246 menopausal donors. When combining all donors, the overall prevalence was 40% for STIC, 80%
247  for proliferative dormant STIC, and 60% for p53 signature.

248

249  Growth model of epithelial lesions in average-risk intact human fallopian tube samples
250  Our previous work in mathematical modelling of precancerous lesions of the human pancreas
251  (PanINs) suggested that a simple growth law allowing each anatomically separate lesion to grow
252  at a constant rate is insufficient to explain the very large lesions found in our cohort®. Explaining
253  the size distribution required additional actions such as lesion splitting and lesion merging, which
254  was confirmed by genomic data and suggested that some large PanINs are composed of multiple
255  clones that collided within the pancreatic ductal system®®. In contrast, simple growth laws explain
256  the lesion distribution in healthy fallopian tubes, for which a maximized p-value using of
257  Kolmogorov-Smirnov test resulted in a Vmax of 0.0605 mm?3 and an exponent of a=1.63 (p = 0.57,
258  Fig. 3F, right panel). This result suggests, unlike PanINs, a lack of polyclonality in the microscopic
259 lesions found in this cohort of organ donor fallopian tube samples (Fig. 3F, middle panel).

260

261  Development of virtual SEE-FIM for statistical determination of fallopian tube sampling
262 guidelines

263  We asked why previous SEE-FIM-based assessments have not detected this high occurrence of
264  lesions. To quantify the impact of subsampling when detecting ovarian cancer precursors, we
265  virtually implemented a virtual SEE-FIM protocol. We generated longitudinal sections at the
266  fimbriated end and transverse sections along the remainder of the ampulla and isthmus, as done
267 inthe clinic. To show the ability of SEE-FIM to identify lesions, including proliferative active STICs,
268 dormant STICS, and p53 signatures were highlighted in red, orange and yellow, respectively (Fig.
269 3G, and Fig. S2D).

270 First, we simulated current SEE-FIM guidelines via collection of 20 equally spaced virtual

271  sections, representing approximately 0.25% volume of the entire organ. Within the extracted
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272 sections, SEE-FIM was able to identify 10.8% of all lesions, 14.6% of STICs, 10.1% of proliferative
273 dormant STICs, and 11.9% of p53 signatures. These results reveal that conventional SEE-FIM
274  protocol may significantly underestimate the true incidence of precursor lesions in human fallopian
275  tubes. We determined that approximately 2.3%, or 186 tissue sections, of the whole fallopian tube
276 would need to be assessed to accurately identify all lesions with <25% error (Fig. 3H, left panel,
277  Fig. S2E, top left panel). Splitting by lesion type, we determined that to accurately identify STICs,
278  proliferative dormant STICs, and p53 signatures with 25% error, 1.8% (149 sections), 2.4% (190
279  sections), and 2.2% (174 sections) of the fallopian tube would need to be assessed, respectively
280  (Fig. 3H, Fig. S2E).

281

282  Spatial protein marker profiling of STIC in non-diseased human fallopian tubes

283  To study the microenvironment surrounding the proliferative active STIC identified in 3D, we
284  applied a panel of 25 protein markers using CODEX multiplexed imaging. We applied nucleus
285  and cell body segmentation to identify 972,276 cells across the whole slide image (Fig.4A-B)®".
286  We performed unsupervised clustering to obtain 30 distinct clusters, which we annotated and
287  combined the clusters into 19 relevant cell phenotypes using previously established methods (Fig.
288  4C)%7° These cellular phenotypes included STIC, epithelial cells, immune cell phenotypes (T
289 cells, B cells, macrophages, neutrophils, dendritic cells), stromal cells (fibroblasts, smooth muscle
290  cells), and tumor associated macrophages (TAMs), shown spatially in Fig. 4D. The protein
291  expression matrix (Fig. 4E) and protein markers interactions’ (Fig. 4F) illustrate that epithelial
292  and proliferating epithelial cells interact with EpCAM, Pan-CK, and Ki67. We labelled activated
293  and memory T cells by CD3, CD4, CD8, and CD45R0, with additional links to IFNG and CD44.
294  We identified B cells via CD20, and dendritic or APC populations by HLA-DR, CD11¢c, and CD141.
295  Macrophages (TAMs) and monocytes associate with CD68 and IDO1, neutrophils with MPO, and
296  endothelial cells with CD31. Mesenchymal and myofibroblast identities are confirmed by Vimentin
297  and SMA. These specific interactions validate the correct phenotypic annotation in the dataset.
298 Partition-based Graph Abstraction (PAGA) of single-cell proteomics in Fig. 4G’ showed
299 interactions between the distinct cell phenotypes. STIC cells were closely associated with
300 proliferating epithelial cells, supporting a trajectory consistent with malignant epithelial
301 progression, while showing no direct connectivity to any other cell populations. Analysis of the
302 PAGA connectivity map further identified interconnected immune cell populations comprising
303 tumor-associated macrophages (TAMs), regulatory dendritic cells (DCs), activated T cells, and

304 CD8+ memory cytotoxic T cells, suggesting potential immune coordination mechanisms.
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305 PAGA analysis identified an immune network connecting TAMs, regulatory DCs, and
306 activated T cells to CD8+ memory cytotoxic T cells. Additionally, CD8+ T cell connection to
307 epithelial cells further bridging to STIC populations. This CD8+ T cell population's dual
308 connectivity to both immunosuppressive cells and epithelial cells may indicate potential
309 compromised immune surveillance” 5. While these topological relationships require functional
310 validation, their organization suggests structurally relevant cellular interactions potentially
311 governing STIC maintenance’. This immunological landscape closely mirrors established
312  observations in ovarian cancer literature, where TAM enrichment and regulatory immune cell
313 infiltration consistently correlate with tumor progression and poor clinical outcomes’’~°.

314 To further validate the results obtained from the PAGA graphs, spatially resolved protein
315  profiling was implemented to assess immunosuppressive expression within these interacting cell
316  populations. Thus, to spatially assess the STIC microenvironment, STIC mask was generated
317 and consequently dilated in 10-micron increments up to 500 microns from the STIC boundaries
318 (Fig. S3B). For each distance interval computed, cellular composition was estimated and
319 visualized (Fig. 4H). To quantify the differences in cellular composition relative to proximity to
320 STIC location, comparison between regions close to the STIC (less than 100 microns) and regions
321  distantto the STIC (between 100 and 500 microns) was performed. Proximity to the STIC showed
322  modest enrichment in macrophages or monocytes, B cells, antigen-presenting cells (APCs),
323  suppressed dendritic cells, and CD8 memory T cells (Fig. 4l).

324 Spatial CODEX analysis identified an immunoregulatory microenvironment surrounding
325  STIC lesions, with an increase of macrophages, regulatory dendritic cells, and CD8 memory T
326  populations in proximal regions (Fig 4l). This validated the PAGA analysis, which showed direct
327  connectivity between these immune populations and epithelial cell states. The spatial organization
328 of these macrophage and CD8 T-cell populations aligns with the immune modulation observed in
329 early high grade serous ovarian cancer’’. These findings define the STIC microenvironment as a
330 site of coordinated immune epithelial interactions that may facilitate early lesion persistence. Our
331  results were consistent with those previously published®'.

332

333  Spatial metabolomics profiling of STIC in non-diseased human fallopian tubes

334  Existing single cell and spatial transcriptomics data analysis has shown association of fallopian
335  tube epithelium to genes and pathways associated with metabolic regulations in various contexts
336 8284 With this in mind, we carefully evaluated unsaturated lipid level and redox ratio of

337 preneoplastic epithelial lesions by multimodal two-photon stimulated Raman scattering imaging
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338 (SRS) (Figures 1A-C, S1A and S2A-C). We found that the unsaturated lipid level was reduced
339  while the redox ratio indicated by NADH/FAD was increased in the lesion cells compared to the
340 healthy surrounding cells (Figure 1C), suggesting the lesion epithelia subjects to ROS stress and
341  metabolic remodeling towards glycolysis 8. Worth noting that the scattered distribution of NADH
342 and FAD signals in lesions (Figure 1C in cyan and magenta) may indicate the fragmented
343  mitochondria with compromised metabolic function. We further applied hyperspectral SRS
344  imaging and lipid subtype detection®® to perform an in situ lipidomic analysis and identified that
345 lesions represented a distinct lipid profile manifesting in upregulated ceramide/PE and PC/PE
346  ratio (Figures 1D-F and S1B), aligning with a study showing the disturbed homeostasis of
347  ceramides and phospholipids in abnormal epithelial context .

348 Interestingly, Raman spectra showed distinct changes of lipid profile in different types of
349 lesions (Figures S2D-F), suggesting the lipid metabolism is highly sensitive to the lesions and
350 different lipid profile may represent the trajectory of lesion development. Altogether, our results
351  provide new insights into the molecular mechanisms underlying the lesions of fallopian tube
352  epithelium.

353

354  Spatial transcriptomic profiling of STIC in nondiseased human fallopian tubes

355  Using the CODA IHC-based deep learning method, we profiled STIC with spatial transcriptomics
356  (Fig. 6A). STIC location was processed using Visium Cytassist for whole transcriptome profiling.
357  Curation of the spatial spots identified STIC epithelial spots in red and non-STIC epithelial spots
358 in green (Fig. 6B).

359 Differential gene expressions of the proliferative active STIC against normal adjacent
360 epithelium were obtained and shown in volcano plot (Fig. 6C). The upregulated genes in STIC,
361 including KIF1A, TUBB2B, DLGAP5, BUB1, KIF2C, CDCA8, CDC20, CCNF, CCNB1, and PBK,
362  suggest dysregulated cell cycle progression, mitotic spindle function, and chromosomal instability,
363  which are seen in high-grade serous ovarian cancer®”-*’. Immune-related genes like ULBP3 and
364 BTNLZ2 may contribute to immune evasion, while JUN and NOX4 could promote survival and
365 oxidative stress responses®-'9'. The presence of HNF4A, TFAP2A, and ADAM12 further
366 supports a link to ovarian carcinogenesis through transcriptional deregulation, cellular
367 differentiation, and extracellular matrix remodeling'%?-'%4, These findings reinforce STIC's role as
368 a precursor to high-grade serous carcinoma, with key drivers of malignancy already active'®.

369 Comparative analysis revealed significant upregulation of genes such as GPX2 (implicated in
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370  oxidative stress response) and HIST1H1D (a chromatin regulator) in STICs (Fig. 6D), mirroring
371  patterns observed in advanced ovarian tumors'%6.107,

372 Pathway analysis using the Hallmarks gene sets'®, and the suppressed and activated
373  pathways were computed (Fig. 6E-F). Hallmark pathway analysis revealed enrichment of several
374  cancer-associated pathways in STICs, including spermatogenesis, G2M checkpoint, KRAS
375 signaling, E2F targets, oxidative phosphorylation, and TNFa signaling via NFkB'%-'®. These
376  activated pathways are consistent with clinical observations of early oncogenic signaling in STIC
377  lesions that precede invasive high-grade serous carcinoma development''’. Gene set enrichment
378 analysis profiles confirmed significant enrichment of proliferation-associated pathways and G2M
379  checkpoint genes (Fig. 6G), showing dysregulated cell cycle characteristics of both STICs and
380 invasive ovarian cancers.

381 To investigate chromosomal instability in proliferative active STIC, copy number analysis
382 (CNA) was inferred from the spatial transcriptomics data (Fig. 6H-1, Fig. S6F), which revealed
383  gains in chr6p22, chrép21, chr1p32, and chr16p13, and losses in chr17p13, chr9q33, chr9q34,
384  chr22q11, chr22q12, and chr22q13. These results align with clinical genomic studies showing
385 that copy number alterations and genomic instability are early events in STIC lesions 109118119,
386 Chromosomal 6 gains and chromosomal 22 depletions were spatially located on the STIC (Fig.
387  6K). Notably, gains in chr6p, which harbors immune-related genes, have been linked to immune
388 evasion and tumor progression in ovarian cancer, while losses in chr17p13, encompassing TP53
389 and are associated with impaired DNA damage response and genomic instability’'®. These
390 alterations may collectively contribute to early malignant transformation and aggressive
391  phenotypes in STIC lesions.

392 To further explore chromosomal alterations, we also applied inferCNV (Fig. S6F) and
393 identified chromosomal gains in chromosomes 1, 6, 8, 16, and 19. Chromosomal losses were
394  detected in chromosomes 4, 9, 13, 15, 17, 18, and 22. Comparison to a large cohort study of 47
395 patients with proliferative active STICs'%, which showed chromosomal gains in chromosomes 1,
396 2,3,6,7,8,10, 12, 16, 19, and 20; and chromosomal depletions in chromosomes 4, 5, 6, 7, 8, 9,
397 11, 13, 15, 16, 17, and 22. Similarly, genes altered in these regions include TP53 (chr17p13),
398 MYC (chr8q24.21), CCNE1 (chr19q12), CDKN2A/CDKN2B (chr9p21), BRCA1 (chr17g21), and
399  NF2/TIMP3 (chr22g12-13).These chromosomal targets highlight pathways associated with cell
400 cycle regulation, DNA repair, and immune modulation. Conversely, the large patient cohort study
401  also reported unique gains in chr2, chr3, chr7, chr10, chr12, and chr20, and unique losses in chr5,

402  chr7, chr8, and chr11, not observed in our nondiseased, average-risk donor cohort analysis.
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403  These regions encompass genes such as PIK3CA/MECOM (chr3qg26), ETV6/FOXM1 (chr12p13),
404 and APC (chr5g22), which are involved in PI3K signaling, transcriptional regulation, and tumor

405  suppressor pathways.
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406  DISCUSSION

407 Here, we present a workflow for quantitative whole organ screening of precancerous lesions
408 combining image registration of multi-plex pathology slides with deep learning-based automated
409  detection of suspicious regions. This workflow enabled us to analyze ~10,000 whole slide images
410 to identify 99 STICs and 11 p53 signatures across 5 donor samples, as confirmed by a
411  gynecologic pathologist using standard review criteria, demonstrating the importance of
412  quantitative 3D imaging to improve the throughput of pathology review. To the best of our
413  knowledge, the current study shows the first 3D mapping of a whole human fallopian tube at single
414  cell resolution, capable of comprehensively identifying the precancerous lesions and integrate
415  spatial multi-omic profiling at specific regions of interest.

416 Spatial proteomics uncovered an immune-excluded microenvironment surrounding STIC
417  lesions, with reorganization of stromal and myeloid populations. This immunosuppressive niche
418  mirrors patterns observed in invasive HGSC, supporting the concept that immune remodeling
419  begins during early transformation. Cell—cell interaction analysis revealed that tumor-associated
420 macrophages and regulatory dendritic cells closely interact with proliferative epithelial
421  compartments, potentially facilitating immune tolerance. A recent report also demonstrates
422 immune cold microenvironment associated with the majority of non-BRCA1/2 STICs, further
423  confirming this observation'.

424 Spatial metabolomics revealed higher levels of ceramides in the lesions. Increased
425  ceramide levels have been associated with apoptotic cell death in both homeostatic systems as
426  well as pathological settings as a result of cellular insults including oxidative stress,
427  chemotherapeutic agents, ischemia and radiation'®. Together with the morphology and redox
428 ratio changes in mitochondria we found, it is possible that ceramide act on mitochondrial pathways
429 to shape the cellular metabolic activity in lesion cells. Actually, ceramide is able to induce
430 apoptosis by recruitment of death receptors to lipid rafts and assembly of channels in the outer
431  membrane of the mitochondria promoting the release of cytochrome'?. However, further studies
432 are warranted to determine the direct or indirect effects exerted by elevated ceramides in
433  regulating cell metabolism and apoptosis in lesions.

434 Spatial transcriptomics profiling of the proliferative active STIC revealed alterations
435  observed in STICs, and our results on those 5 specimens were also observed in a larger STIC
436  cohort'®. In particular, differential gene expression highlighted dysregulated cell cycle,
437 chromosomal instability, oxidative stress, and immune evasion. Pathway analysis showed

438  enrichment of cancer-associated pathways such as G2M checkpoint and KRAS signaling. Copy
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439 number alteration analysis of the nondiseased average-risk proliferative active STIC and
440  subsequent comparison to large clinical patient cohort identified overlapping chromosomal
441  alterations with clinical STICs'®, including chromosomal gains in chromosomes 1, 6, 8, 16, and
442 19, and losses in chromosomes 4, 9, 13, 15, 17, and 22, which are linked to TP53, MYC, CCNEA1,
443  CDKN2A/CDKN2B, BRCA1, and NF2/TIMP3. These chromosomal targets highlight pathways
444  associated with cell cycle regulation, DNA repair, and immune modulation. Chromosomal
445  alteration differences from both cohorts included unique gains in clinical STICs (chromosomes 2,
446  3,7,10, 12, and 20) and losses (chromosomes 5, 7, 8, and 11), which encompass genes such
447  as PIK3CA, FOXM1 and APC, which are involved in PI3K signaling, transcriptional regulation,
448  and tumor suppressor pathways. Nondiseased low-risk STIC displayed a less extensive genomic
449  profile, suggesting distinct molecular landscapes that may reflect differences in progression
450  stages.

451 Limitations of this study include the modest sample size, which limits precise estimation
452  of lesion prevalence in the general population. This constraint stems largely from the rarity of
453  donor fallopian tube specimens available for analysis, as the samples were obtained from an
454  organ donor network from women at low risk of ovarian cancer. Nonetheless, detection of lesions
455  across all samples highlights the potential for the technical platform reported here to improve
456  current diagnostic protocols, which may substantially underreport the burden of early neoplasia
457 in the fallopian tube. With modifications to the grossing protocol, this approach could be applied
458  to remnant surgical specimens following clinical assessment of 2D sections necessary for patient
459  diagnosis.

460 This study establishes a scalable framework for 3D mapping of precancerous lesions in
461  whole human fallopian tubes, allowing the concurrent profiling of the lesions using spatial
462  proteomics, metabolomic and transcriptomic technologies. These 3D maps can be used to
463  perform pseudo-time modelling of precancerous lesions and for development of biomaterials that
464  molecularly, functionally, and architecturally resemble human fallopian tubes and their
465  precancerous lesions®*'?!. Future work should expand cohort size, integrate longitudinal samples,
466  and explore how this new knowledge can be translated into clinically meaningful data for future

467  development of effective tools for early diagnosis and strategy for ovarian cancer prevention.
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468 FIGURES AND CAPTIONS

A Non diseased low-risk cohort B Staining schematic C 3D mapping of ovarian cancer percursors

Spatial proteomics

Human fallopian tube }

~1200 serial sections
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469

470  Fig. 1. A novel workflow for whole-organ screening of organ donor fallopian tubes for detection and
471 molecular characterization of rare and microscopic lesions. (a) Fallopian tubes were obtained from
472 low-risk, non-diseased donors via the nPOD network. (b) Specimens were surgically resected, histologically
473  sectioned, stained with H&E and digitized at high resolution. A subset of the sections was stained with p53
474  and proliferation marker Ki67 using IHC. (¢) H&E- and IHC-stained sections were reconstructed into digital
475 3D volumes using nonlinear registration. A semantic segmentation algorithm was trained to label tissue
476 components in the H&E images, and starDist was used to segment nuclear boundaries. A supervised
477  algorithm was used to locate 3D regions containing HGSC precursors 3D. (d-f) Pathologist-validated
478 lesions were further molecularly profiled using (d) spatial transcriptomics, (e) stimulated Raman scattering

479 hyperspectral imaging (SRS-HSI) based spatial metabolomics, and (f) spatial proteomics.

480
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A Microanatomical labelling of entire human fallopia tubes B  Spatial distribution of epithelium in whole human fallopian tubes
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482 Fig. 2. 3D analysis of tissue and cellular components of the human fallopian tube. (a) The CODA
483 semantic segmentation platform was used to label microanatomical components of the human fallopian
484 tubes from H&E-stained images, including secretory epithelium, ciliated epithelium, mesothelium, blood
485 vessels, stroma, fat, and nerve. (b) 2D heatmaps obtained form best projections of the whole stacks of
486 labeled images showing the differences in the human fallopian tube’s epithelium, whereby post-

487 menopausal samples showed less ciliated epithelium than pre-menopausal samples. (¢) Major tissue
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488 components of the fallopian tube reconstructed using the 3D CODA mapping platform, which revealed high
489 vascularization of human fallopian tubes (top panels). 3D rendering of epithelial subtypes confirmed the
490 presence of higher secretory epithelial populations in post-menopausal samples when compared to pre-
491 menopausal samples (bottom panel). (d) Bulk tissue composition plots of ciliated and secretory epithelium
492 in post- and pre-menopausal human fallopian tubes (top panel), and plotted compared to proximal, medial,
493 and distal locations to ovaries (bottom panel). (e) Center path of each human fallopian tube was computed
494  to measure variance in epithelium across each specimen. (f) Cross sectional analysis of the fallopian tubes
495 revealed an increase in secretory epithelial cells along the entirety of the post-menopausal fallopian tubes,

496 when compared to pre-menopausal cohort.

497
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499 Fig. S1. 3D-CODA single cell resolution framework to map epithelial cell subtypes. (a) Representation
500 of H&E-stained human fallopian tube whole-slide image (left panel). CODA segmented tissues, such as
501 epithelium, mesothelium, blood vessels, fat, nerves (middle panel, top). CODA subtyped the epithelium into
502 secretory epithelium and ciliated epithelium (middle panel, bottom). Combination of the two segmentation
503 models allowed for detailed tissue mapping of whole fallopian tube H&E-stained images (right panel).(b)
504 Testing of the segmentation models was performed on independent images from the training dataset.
505 Tissue model showed overall accuracy of 95.2% (top panel) and epithelial subtyping model showed an
506  overall accuracy of 93.2% (bottom panel).(c) Nuclear segmentation model was applied to all H&E-stained

507 images of each human fallopian tube to obtain cellular resolved data. (d) Bulk cell density was measured
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508 for each tissue type of each human fallopian tube. Ciliated and secretory cell density was lower for ID 1 and
509 2, which contained the most lesions. (e) Cross sectional analysis of the fallopian tubes revealed increased
510 in secretory epithelial cells along the entirety of the post-menopausal fallopian tubes, when compared to

511 pre-menopausal cohort.
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Fig. 3. 3D mapping of ovarian cancer precursors reveals high lesion burden with spatially patterned,

scale-free growth. (a) Integrated pipeline combining Immunohistochemistry staining (Ki67 and p53) and

3D computational reconstruction to map lesions across entire fallopian tubes (n=5). (b) Z-projection
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516  demonstrating detection of proliferative Ki67+ and p53+ aberrant foci. (¢) Pathologist-expert validated
517 lesions were labelled as proliferative active STIC, proliferative dormant STICs, and p53-signatures, and 3D
518 rendered. (d) Volumetric rendering of a proliferative active STIC within fimbriae architecture (scale: mm).
519 (e) Spatial distribution of lesions, showing high lesion burden and sparse distribution of lesions in the human
520 fallopian tubes. (f) Complementary cumulative distribution functions (CCDFs) of lesion size follow a power-
521 law trend across all tube regions. (g) Example of 3D virtual SEE-FIM computed for a post-menopausal
522 sample containing 5,893 virtual sections. (h) 3D virtual SEE-FIM procedure was computed for incrementally
523 increasing number of virtual sections. Percentage of detected combined lesions, proliferative active STICs,
524 proliferative dormant STICs, and p53 signatures was calculated for each equally distant virtual section
525 count. The number of sections used in standard SEE-FIM procedures is indicated by the black or orange

526 vertical lines.

527
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529 Fig. S2. 3D spatial and bulk mapping of ovarian cancer precursors. (a) CODA segmentation model to
530 annotate IHC positive signal in whole slide images was tested on an independent testing dataset and

531 achieved an overall accuracy of 98.7%. (b) Semi-automated method of lesion detection in whole human
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532  fallopian tubes showed 13 STICs, 64 proliferative dormant STICs, and five p53 signatures across 3 samples
533 of the post-menopausal cohort. On the 2 samples of the pre-menopausal cohort, we identified zero STICs,
534 17 proliferative dormant STICs, and six p53 signatures. (¢) STICs, proliferative dormant STICs, and p53
535 signatures were separated according to their spatial locations in the fallopian tube. STICs were found only
536 in Post-menopausal samples, with 9 STICs in the Fimbriated end and four STICs in the Ampulla. The
537 majority of proliferative dormant STICs were found in the Ampulla in both pre- and post-menopausal
538 samples, with 16 and 39 proliferative dormant STICS, respectively. The p53 signatures were identified
539 mostly in the Ampulla and Fimbriated end. (d) Example of 3D virtual SEE-FIM computed for a post-
540 menopausal sample containing 10,255 virtual sections. (e) 3D virtual SEE-FIM procedure was computed
541  for incrementally increasing number of virtual sections. Percentage of detected combined lesions, STICs,
542 proliferative dormant STICs, and p53 signatures was calculated for each equally distant virtual section
543 count. The number of sections used in standard SEE-FIM procedures is indicated by the black or orange
544  vertical lines. (f) Example of p53 signature, proliferative dormant and active STICs found amongst the
545 cohort.
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547 Fig. 4. Proliferative active STIC lesion creates an immunosuppressive niche through altered cellular

548 crosstalk and spatial reorganization of the tumor microenvironment. (a) Multiplexed CODEX imaging
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549 reveals protein expression patterns across 25 markers in proliferative active STIC. (b) Single-cell resolution
550 mapping of fallopian tube epithelium (972,276 nuclei). (¢) UMAP clustering identifies distinct cellular
551 phenotypes, with proliferative (Ki67+) epithelial-immune clusters enriched in STIC. (d) Cell-type-specific
552 protein signatures highlight metabolic and immune checkpoint dysregulation in STIC and adjacent stroma.
553 (e) PAGA network analysis uncovers rewired interactions between stromal fibroblasts and
554 immunosuppressive myeloid populations in STIC. (f) Spatial profiling demonstrates immune exclusion, with
555 cytotoxic T cells displaced and suppressive dendritic cells recruited near STIC. (g) Quantification of
556 immune-stromal shifts across increasing distances from STIC core. (h-i) Comparative cellular landscapes

557 reveal modest immune localization near the STIC.
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558

559 Fig. S3. Topological and spatial proteomic mapping of proliferative active STIC microenvironment.
560 (a) PAGA unpruned network analysis shows cellular interactions, highlighting immunosuppressive
561 populations near proliferative active STIC. (b) Active STIC region was masked and subsequently dilated to
562 generate 10 micron distances. At each distance, the cellular composition was assessed. Black lines in the

563 figure indicate incremental 100 micron distance from the STIC in red.
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A STIC location marked with p53 IHC stain B Multimodal SRS imaging on STIC D K-means clustering of SRS spectra on STIC location
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565 Fig. 5. Multimodal SRS imaging reveals the metabolic remodeling in lesions. (a) P53 staining shows
566 the lesion regions. (b) SRS protein channel overlayed with second homogenization (SHG) signal for

567 collagen to show the architecture of the same lesion region of interest (ROI) in (A). Scale bar: 200 pym. (c)
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568 Multimodal SRS imaging shows the comparation of multiple metabolites between control and lesion ROI.
569 Scale bar: 20 um. (d) Hyperspectral SRS imaging and unsupervised clustering showing the distribution of
570 metabolites across the whole ROI shown in (A) and (B). (e) Hyperspectral SRS imaging and unsupervised
571 clustering shows the difference of metabolic profiles between control and lesion ROI. Red arrows points to
572  the typic Raman lipid peaks at 2850 cm™' and 2880 cm™'. (f) The ratio images of ceramide/PE and PC/PE
573 highlight the lipid subtype modulation between control and lesion ROI.
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Fig. S4. STIC lipid subtype characterization. (a) Multimodal SRS imaging displays the protein, lipid,
unsaturated/saturated lipid, NADH, FAD and radiometric images of unsaturated/saturated lipids,
NADH/FAD of the ROI shown in (Figure 1A). Scale bar: 200 um. (b) SRS hyperspectra based lipid subtype

detection showing the difference in lipid subtype levels between control and lesion ROI.
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580 Fig. S5. Spatial metabolomic profiling on additional targeted ovarian cancer lesions. (a-c) Multimodal
581 and hyperspectral SRS imaging displays the metabolic states changes in multiple lesion tissues. Scale bar:
582 200 um. (d-e) SRS hyperspectra from different lesion tissues underscore the consistent lipid metabolic

583 remodeling. Red arrows points to the typic Raman lipid peaks at 2850 cm-1 and 2880 cm-1.

584
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585 —
586 Fig. 6. Spatial transcriptomic profiling reveals molecular alterations in STIC lesions. (a) Selection of

587 STIC regions for spatial transcriptomics profiling, validated by p53 and Ki67 IHC. (b) Identification of STIC
588 and non-STIC epithelial regions within the Visium spatial transcriptomics platform. (¢) Heatmap of

589 differentially expressed genes in STIC lesions, highlighting key upregulated and downregulated targets
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590 (adjusted p-value < 0.05). (d) Oncogene expression patterns (e.g., GPAT2, HIST1H1D) specific to STIC
591 regions. (e-f) Dot plots of enriched gene signatures in STIC, including KRAS signaling, oxidative
592 phosphorylation, and epithelial-mesenchymal transition. (g) Chromosomal ploidy analysis showing copy

593 number variations in STIC, with focal changes on chromosomes 6 and 22.
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Fig. S6. Spatial expression of ovarian cancer related genes, and pathway analysis. (a) TMNT1 and

CDC20 gene expression patterns specific to STIC regions. (b) Sets of classical and basal gene expression
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597 did not show any STIC specific expression. (¢) Dot plots showing significantly enriched terms from Gene
598 Ontology Biological Process. (d) Dot plots showing significantly enriched terms from Gene Ontology
599 Cellular Components. (e) Dot plots showing significantly enriched terms from Hallmark gene set. Dot size
600 represents gene count, color intensity indicates adjusted p-value, and x-axis shows normalized enrichment
601  score (NES). Terms are ordered by statistical significance. (f) Inferred CNA using inferCNV for two Visium
602 sections of the same proliferative active STIC. Chromosomal gains are shown in red, and chromosomal

603 depletions are shown in blue, with respect to reference adjacent healthy epithelial cells (top rows).
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604 SUPPLEMENTAL TABLES

605
Medial dimensions
Number | Width | Length | Depth | Total volume Number of
of sections | (mm) | (mm) | (mm) (cm3) Cells (Million)

Donor 1 601 234 17.6 3.0 0.31 178.3

me::;:usal Donor 2 627 328 | 244 | 31 0.78 425.9

Donor 3 999 28.3 20.8 5.0 0.86 552.5

Pre- Donor 1 1305 21.5 194 6.5 0.75 509.0

Menopausal [ Donor 2 1373 15.5 32.1 6.9 0.70 525.8
606

607 Table S1. Table containing the number of Whole Slide Images, dimensions, and total volume of
608 the whole human fallopian tube cohorts.

609
610 Precancerous lesions
611 (Proliferative active and dormant STICs)
total | mean | median | min max
612 Donor 1 0
Pre-menopausal 8.5 8.5 0 17
Donor 2 17
613
Donor 3 35
614 Post-menopausal | Donor4 | 42 | 27.33 35 5 42
615 Donor5 5
616

617 Table S2. Table containing the number of STICs found on the whole human fallopian tube
618  cohorts.

619

620 Proliferative active STIC

621 total | mean | median | min | max
Donor1 0

622 Pre-menopausal Donor 2 0 0 0 0 0

623 Donor 3 8

624 Post-menopausal | Donor4 5 4.33 5 0 8
Donor 5 0

625

626 Table S3. Table containing the number of STICs found on the whole human fallopian tube
627  cohorts.
628
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Proliferative dormant STIC

total | mean | median | min | max
Donor 1 0

Pre-menopausal 8.5 8.5 0 17
Donor 2 17
Donor 3 27

Post-menopausal | Donor4 | 37 | 23.00 27 5 37
Donor5 5

Table S4. Table containing the number of proliferative dormant STICs found on the whole human

fallopian tube cohorts.

p53 signatures

total | mean | median | min | max
Donor 1 1

Pre-menopausal 3 3 1 5
Donor2 5
Donor 3 1

Post-menopausal | Donor4 4 1.67 1 0 4
Donor5 0

Table S5. Table containing the number of p53 signatures found on the whole human fallopian

tube cohorts.

Proliferative Proliferative
Group # Patients active STIC dormant STIC p53 Signature Prevalence
Prevalence Prevalence
Pre-menopausal 2 0% (0/2) 50% (1/2) 50% (1/2)
Post-menopausal 3 66.67% (2/3) 100% (3/3) 66.67% (2/3)
Combined 5 40% (2/5) 80% (4/5) 60% (3/5)

Table S6. Table containing statistical prevalence

human fallopian tube cohorts.

of ovarian cancer precursor lesions in whole
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637 METHODS

638 Tissue acquisition and processing of entire human fallopian tubes

639  After resection of non-diseased human fallopian tubes from a donor network (nPOD). Specimens
640 were processed into FFPE tissue blocks. Then, exhaustively serial sectioned at 4 microns and
641 H&E stained (one every two sections). Unstained slides were stored in -20°C, under optimal
642  humidity and vacuum conditions.

643 H&E-stained slides were scanned at 20x resolution (~0.5 micron/pixel) using a Hamamatsu
644  Nanozoomer S210. NDPI files were converted to tiff images (1 micron/pixel) and aligned into a
645 3D volume. StarDist method was employed to perform nuclear segmentation of all H&E-stained
646  whole slide in entire fallopian tube samples.

647

648 CODA microanatomical labelling of WSI of human fallopian tubes

649  To label the microanatomical components of the human fallopian tube, we developed two CODA
650 semantic segmentation models®®'?2. One model labelled the surrounding epithelium
651  microenvironment, including blood vessels, nerves, vasculature, mesothelium, rete ovarii in all
652  WSI (Fig. S1, middle top panel). The second model was designed to automatically annotate the
653  secretory and ciliated epithelial cells (Fig. S1, middle bottom panel). Models were combined to
654  fully segmented all whole slide images in the human fallopian tubes (Fig. S1, right panel).
655 InterpolAl was used to generate missing images to restore microanatomical connectivity'?.

656

657  Alignment of 2D WSI into 3D maps of entire human fallopian tubes

658 Combination of global rigid and local elastic image registrations allowed reconstruction of
659  microanatomical structures of human fallopian tubes into 3D volume®58'. Alignment was applied
660  to images subtyping the epithelium and to images labelling the fallopian tube microenvironment.
661

662  Nuclear segmentation in H&E-stained images

663  To extract all 2.19 billion nuclear segmentations from 2,452 H&E-stained images, we used an
664 adapted version of the StarDist pipeline for 3D histological slides (Fig. S1C)'?4125, StarDist 40x
665  resolution H&E segmentation pretrained model was finetuned to 20x resolution NDPI file format
666  images®’. To finetune the model, we annotated 25 H&E stained tiles with 256x256 dimensions for
667  training. Training was optimized finetuning hyperparameters such as learning rate, training
668  epochs, data augmentation. To maximize the heterogeneity of the testing tiles, we se4lected tiles

669  from regions of the human fallopian tubes and across different specimens.
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670

671  Registration of 2D nuclear segmentation into 3D cellular volume

672  Similarly to the semantic segmentation step, segmented cell nuclei was registered into a 3D
673  aligned volume, using CODA point cloud base registration method, which allowed the same
674  alignment of the cell nuclei centroids accordingly with the tissue labelling registration'?*. Each cell
675 on the 3D volume contained a unique cell ID, which allowed to link each cell to its respective
676  morphological features.

677

678  Measurement of bulk cellular and volumetric quantifications

679  With the generated 3D tissue and cellular volumes, bulk quantifications can be extracted. To
680  obtain volumetric data from each respective label, all voxels of each respective tissue component
681 are summed and, subsequently, adjusted according to its respective voxel size. Bulk cellular
682  information of each microanatomical label can be extracted in silico by combination of 3D tissue
683 labelled volume with its respective label locations in the 3D cellular volume.

684

685 3D cellular and volumetric variability within human fallopian tube epithelium

686  To quantify the variability in cellular and volumetric content within each human fallopian tube, a
687  virtual path was generated along the epithelium. Along this virtual epithelium path, cross sections
688  perpendicular to this path were generated to simulate travelling across the human fallopian tube
689  epithelium. Cellular and volumetric measurements were obtained for each cross section, resulting
690 in tens of thousands of virtual cross sections along each fallopian tube.

691

692  Detection of p53 signatures, proliferative dormant and active STICs in human fallopian
693  tubes

694 To 3D map precursors to ovarian cancer in whole human fallopian tubes, we developed a
695 framework that integrates H&E and IHC (p53 and Ki67) staining methods in 3D. First, we
696 developed a deep learning method to identify positive signal locations in p53 and Ki67 IHC stained
697 images (stained one in every 8 sections of the entire stack of images). Then we aligned the IHC
698 images to the aligned H&E-stained image stack. Combination of IHC stained slides and H&E-
699  stained slides to highlight regions with potential precursors of ovarian cancer. Generation of the
700 lesions image stacks containing IHC and H&E images to manually check hundreds of potential

701  lesion locations across different specimens. Manual validation of each bounding box with
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702  pathologists and trained experts allowed the compiling of confirmed ovarian cancer precursors.
703  Validated lesions were then used for further multi-omics profiling.

704

705  Volume distribution of ovarian cancer precursors across different samples

706  For each individual validated lesion, their volume was computed (Fig. 3F, left panel). Power law
707  was used to predict lesion growth for proliferative active and dormant STICs, and p53 signatures
708  combined (Fig. 3F, middle panel)®®. Using the Kolmogorov-Smirnov test, maximization of the p-
709  value was applied to fit the measured lesion volumes'?.

710

711 3D virtual SEE-FIM procedure for detection of epithelial lesions in low-risk hondiseased
712 human fallopian tube samples

713 To virtually simulate the SEE-FIM procedure in our samples, we generated a virtual path across
714  the human fallopian tube’s epithelium. In the fimbriated ends of the fallopian tube, longitudinal
715  sections were generated, and on the remaining of the fallopian tube transverse cross sections
716  were computed. For each fallopian tube sample, equally distanced slides were generated ranging
717  from 1 up to 11,000 sections along the epithelium’s center path (Fig. 3G, and Fig. S2D).
718  Simulations of the distinct virtual section ranges were computed for each fallopian tube (Fig. S2E)
719 and, for each combination of sections simulated, the number of lesions was assessed. The same
720 was computed to the respective percentage of the fallopian tube sectioned (Fig. 3H).

721

722  Spatial proteomics on region of interest to map STIC immune landscape

723  To deeply profile the proteomic landscape involved in STIC progression, we applied CODEX
724  spatial proteomics using 25 marker antibody panel targeting epithelial, immune, and stromal
725  populations (Fig. 4A). WSI cyclic immunofluorescence was conducted to ensure spatial
726 comparison of STIC to non-lesional epithelia. DAPI nuclear channel was segmented and
727  subsequent dilation of the nuclear area ensured cells were isolated and boundaries of each were
728  accurately delimited (Fig. 4B)®”. For each segmented cell, protein expression intensities were
729  quantified. Marker intensities were normalized to minimize the effects of inter-cell variability.
730 UMAP was applied to visualize multidimensional protein expression profiles and identify distinct
731  cellular clusters (Fig. 4C)8&71127-133  Clusters were annotated based on canonical marker
732 expressions to distinguish epithelial, stromal, and immune cell populations (Fig. 4D-F).

733  Spatial mapping was then performed to measure the distribution of cell types across the STIC

734  and adjacent epithelial regions (Fig. 4G-l). To investigate the cell-to-cell interaction between the


https://doi.org/10.1101/2025.09.21.677628
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.09.21.677628; this version posted September 21, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

735  cell phenotypes, we applied a PAGA (Partition-based Graph Abstraction)’. Using PAGA, we
736  inferred proximity and connectivity between cell phenotypes (Fig. 4G, S3A).

737  To compute the variance in cellular composition relative to STIC proximity, we performed a spatial
738  dilation of the STIC mask and measured the cellular composition at different distances (Fig. S3B).
739  Cell type composition was calculated every 10 um distances and extended up to 500 um from
740  STIC region (Fig. 4H). Quantification of the differential cellular enrichment was quantified by
741  comparing regions within 100 um to this STIC to regions distancing 400 and 500 ym from the
742 STIC (Fig. 4l).

743

744  Two-photon stimulated Raman scattering to map metabolomic signature in STIC

745  Pathologist-validated lesions within 3D spatial maps of fallopian tubes were selected for spatial
746  metabolomics analysis of the ovarian cancer precursors (Fig. 5A). High-resolution multimodal
747  two-photon stimulated Raman scattering (SRS) imaging was used to quantify metabolic
748  signatures across lesions®®. Multimodal SRS imaging targeting lesions and control normal
749  adjacent epithelial regions of interest (ROIs) allowed to capture spatial distributions of proteins,
750  saturated and unsaturated lipids, total lipids, NADH, and FAD (Fig. 5B-C). Intensity-normalized
751 images were concatenated into feature vectors and analyzed by principal-component analysis
752  followed by k-means clustering (Fig. 5D-E)'**.

753

754  Spatial transcriptomic profiling of low-risk non-diseased STIC

755 3D mapped regions containing STIC were selected and used to guide placement of the Visium
756  CytAssist capture area (6.5 x 6.5 mm?). Tissue sections were processed using the 10x Genomics
757  Visium CytAssist FFPE protocol. After deparaffinization and epitope retrieval, hybridization with
758  the Human Transcriptome Probe Set v2.0. Probe release was conducted via CytAssist, followed
759 by library preparation and sequencing (~250 million reads/sample) on an lllumina NovaSeq
760  6000'21135,

761 Differential gene expression analysis between STIC and normal regions was performed
762 using Seurat v5 %, Genes with adjusted p-value <0.05 and log; fold change >0.25 were
763  considered significant (Fig. 6C, S6A-B). Significantly altered genes were subjected to Gene
764  Ontology (GO) analysis (Fig. 6E) and Hallmark pathway enrichment using GSEA (Fig. 6F-G,
765  S6C-E)'¥-'3. Enrichment scores were visualized using dot plots and ranked enrichment plots.
766  Copy number alterations were inferred from transcriptomic data using inferCNA and inferCNF,

767  comparing STIC spots to adjacent normal epithelial reference regions® 0. Alterations were
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768  visualized as heatmaps and chromosome-specific dot plots (Fig. 6H-I). Spatial distribution of
769  chromosomal alterations was mapped across tissue sections (Fig. 6J-K, Fig. S6F).

770

771  Statistical considerations

772 All significance tests were performed using the Wilcoxon rank sum test. To compare metrics within
773 and between cohorts, median, mean, standard deviation, and interquartile range were
774  determined. Relative error was defined as [measured value — expected value] / expected value.

775  No other statistical calculations were performed in this work.
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