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Abstract 

Advancements in computational approaches have enabled robust utilization of histological 

tissue data. A crucial step in the development of computational tools for the objective and 

quantitative analysis of tissue sections has been color deconvolution. Color deconvolution 

functions by separating the absorption of colors corresponding to stained molecular or tissue 

compartments. The most widely used color deconvolution method in digital pathology, linear 

color deconvolution as described in Ruifrok 2001 et al., decomposes color images according 

to the absorbance values for individual stains. However, linear color deconvolution assumes 

that stains are linearly decomposable, and it relies heavily upon identifying optimal color 

vectors of stains, which is often challenging. Furthermore, linear deconvolution methods 

cannot deconvolve the image with more than three stains, further limiting their broader 

applicability. To combat the limitations of previous methods, we developed an intuitive and 

robust color deconvolution method that effectively and accurately separates more than three 

stain signals, does not rely on predetermined color vectors, and doesn’t rely on identifying 

optimal stain vectors. The proposed method, NLTD 2.0, presents a robust and efficient 

solution to tackle color variations in histopathology images, enhancing the reliability and 

precision of computational pathology. Additionally, incorporating the method as an ImageJ 

plugin amplifies accessibility and usability, enabling researchers and pathologists to leverage 

its capabilities without specialized programming skills. The intuitive interface streamlines 

the application, fostering broader acceptance within the computational pathology 

community. 
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Introduction 

Advances in imaging instrumentation and data management have laid the groundwork for 

computational approaches to analyze digitized images of tissue sections, providing objective, 

quantitative measurements at the tissue, cellular, subcellular, and molecular levels1. Computational 

pathology offers a cost-effective platform to enhance the throughput, accuracy, and reliability of 

tissue sample diagnoses2. Additionally, the quantitative nature of computational pathology allows 

for seamless integration with other clinical workflows to enrich pathologists’ understanding of 

disease, inform treatment strategies, and further stratify patient prognosis. Integrating information 

from computational pathology with a patient’s clinical data has been shown to produce better 

prognostic models for many diseases, including prostate cancer3–5, lung cancer6, breast cancer 7–11, 

glioblastoma12,13, basal cell carcinoma14,15, and ovarian cancer16.  

Various studies have established a strong association between tissue and cellular 

morphology and disease progression as well as survival outcomes7.Given the variability in tissue 

image coloration across batches and institutions, color deconvolution and normalization are critical 

steps in developing robust prognostic models from histopathological images using modern 

machine learning and deep learning techniques. For instance, recent research has shown that 

irregular nuclear morphology in colorectal cancer histology correlates with reduced patient 

survival7, and color normalization enabled Zheng et al. to train a convolutional neural network 

(CNN) that accurately predicts glioblastoma transcriptional subtypes from histology17. 

One of the central challenges in computational pathology is the variability in the color 

appearance of tissue section images across different research laboratories and medical facilities. 

These variations arise due to differences in tissue fixation, staining protocols, and imaging 

instrumentation18. Previous studies have indicated that even technician variance, and consequently 

technique differences, can lead to significant differences in stain appearance19. Moreover, 

modifications to conventional hematoxylin and eosin (H&E) staining techniques to reduce material 

use and processing time20 or to enhance contrast and detail in the digital image21 have introduced 

further variability in stain appearance. While these adaptations help pathologists visually, they 

hamper algorithms that must isolate individual stains (e.g., hematoxylin-labeled nuclei) for 

downstream analysis. 

Several computational approaches, including color deconvolution22, histogram 

equalization14, and the use of the CMYK space23, have been developed to normalize stain 

appearance and facilitate tissue type separation19,24. Among these, color deconvolution is the most 

widely used method to extract nuclear and cellular images in both (H&E) and 

immunohistochemically (3,3' Diaminobenzidine, DAB) stained images8,11,22,25. However, a 

significant drawback of color deconvolution is its reliance on prior knowledge of each dye’s color 

spectrum to accurately visualize tissue components26. Furthermore, color deconvolution assumes 
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linearity of the color mixing process, which fails to account for non-linear interactions between 

stains or scanner-specific optical effects27. 

Due to differences in color appearance between images, using the same stain vector across 

multiple different images can introduce variance in the deconvoluted image for each dye. Although 

there are automated methods to determine the optimal stain vector for individual images28,29, this 

additional processing step significantly increases the computational overhead for large image 

datasets. Furthermore, color deconvolution can separate no more than three colors in a single 

image, limiting its utility in multiplex immunohistochemistry (mIHC) workflows, where 

simultaneous detection of four or more biomarkers is increasingly common30.  

In this work, we present an advanced version of our non-linear tissue-component 

discrimination method, NLTD 2.0, which significantly enhances the process of registering the 

color space of histopathology images. NLTD 2.0 extracts color components using a 2D histogram-

based approach with tunable parameters to optimize deconvolution outcomes. We demonstrate the 

method’s robustness across diverse staining protocols and demonstrate its ability to extract more 

than three color channels, addressing key limitations of linear color deconvolution (LCD).  

 

Methods 

Images sources 

H&E images used in the study were downloaded from Alsubaie et. al. 31, Wienert et. al. 32, and 

Mahbod A et. al. 33; Immunohistochemically (DAB) stained for LINE-1 ORF1p on ovarian tissue 

was from 34,  PTEN DISH assay of prostate cancer tissue was from 35, and IHC images are from 
36; Masson’s Trichrome stained mouse liver tissue was from 37 and from mouse tumor tissues 

generated in-house and stained using standard Trichrome staining protocol that involves 

deparaffinization, washing, and immersion in trichrome stain solutions to denote cell nuclei, 

cytoplasm, and collagen fibers.; and pap smear images were downloaded from38 . The multiplex 

IHC image in this manuscript were provided by Network for Pancreatic Organ Donors with Diabetes 

(nPOD) online pathology site.  

Color Deconvolution with NTLD2 

In an 8-bit RGB tissue image, the color of each pixel is expressed as a combination of three 

intensities, red, green, and blue, each ranging from 0 to 255, i.e., 

𝐼RGB =  [
𝑅
𝐺
𝐵

] ,   𝑅, 𝐺, 𝐵 ∈ [0,255]      (1) 
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The Optical density (OD) for each pixel was computed using  

𝑂𝐷𝑅𝐺𝐵 = − log10 (
𝐼𝑅𝐺𝐵 + 1

255
) = [

𝑂𝐷𝑅

𝑂𝐷𝐺

𝑂𝐷𝐵

]      (2) 

Spherical coordinates representation of optical density was then calculated, to obtain theta (θ), phi 

(ϕ), and radius (𝜌), where 

𝜌 = √𝑂𝐷𝑅
2 + 𝑂𝐷𝐺

2 + 𝑂𝐷𝐵
2      (3)‘ 

θ = arctan 2 (𝑂𝐷𝐺 , 𝑂𝐷𝑅)      (4)     

ϕ = arccos (
𝑂𝐷𝐵

𝜌
)      (5) 

Each pixel in the image was converted from RGB to OD, and then to spherical coordinates 

(𝜌, θ, ϕ) to achieve better separation between stains in the color spectrum. Theta (θ ), phi (ϕ ), and 

rho (𝜌)  coordinates roughly represent hue, saturation, and absorbance. The theta-phi (θ − ϕ) joint 

occurrence map (TPOM) of image 𝐼  with 𝑁  pixels for each pixel 𝑖 ∈ {1, 2, … , 𝑁} is then 

calculated to represent the 2D color spectrum of the image, i.e.  

 

H(𝑘, 𝑙) = log10 (∑ δ(θ𝑖 ∈ 𝐵𝑘
(θ)

)

𝑁

𝑖=1

⋅ δ (ϕ𝑖 ∈ 𝐵𝑙
(ϕ)

))       (6) 

The TPOM has 256 equally spaced bins in both the theta 𝐵𝑘
(θ)

, and phi  𝐵𝑙
(ϕ)

. It should be noted 

that a logarithm scale is applied to the TPOM to improve visual representation of smaller stain 

populations. In this context, an “occurrence” is simply the number of pixels whose θ and ϕ values 

fall simultaneously into the 𝑘𝑡ℎ θ bin and the 𝑙𝑡ℎ ϕ bin. The summation in (6) therefore counts 

how many pixels share that specific color pair, building up a two-dimensional histogram of joint 

occurrences. Each delta function, 𝛿(𝜃𝑖 ∈ 𝐵𝑘
(𝜃)

)  and 𝛿 (𝜙𝑖 ∈ 𝐵𝑙
(𝜙)

) return 1 when the stated 

condition is true and 0 when it is false, thereby “switching on” the contribution of pixel i only 

when it lies in the specified bin. Multiplying the two delta functions ensures that a pixel is counted 

in the sum only when both conditions are satisfied. 

The segmentation is initialized by enclosing the region corresponding to the highest 

intensity for each stain in a ROI. Then, the decay parameter (σ) and background cutoff distance 

are selected to account for the regions of stain mixing and background. All pixel weights are 

between 0 and 1. Moreover, any bin inside of the ROI is given a weight of 1, while any bins 

located at a distance greater than the background cutoff value from the ROI are assigned a 
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weight of 0. Any bins between the boundary of the ROI and at a distance less than background 

cutoff value from the ROI is assigned a weight w. This weight w is calculated as a function of 

distance d from the ROI boundary and decay parameter σ, defined as follows: 

𝑤 =  𝑒
−𝑑
𝜎2       (7) 

A grayscale image of the same dimensions as the tissue image is then generated, where each pixel 

is assigned a value based on the designated weight w corresponding to the (θ, ϕ) value at the same 

location in the original tissue image. These weights are then multiplied by the 𝜌 value at each 

corresponding coordinate in the original tissue image. At this point we have a grayscale mask 

showing the intensity of the stain we deconvoluted in every pixel in the image. Next, we want to 

convert this back to an RGB 3D image showcasing the deconvoluted stain. To this end, the 

resulting deconvoluted 𝜌 channel produced in the previous step is stacked with the original θ and 

ϕ channels to create a 3D image. This 3D image is then converted back to cartesian coordinates, 

creating an OD representation of the deconvoluted image. Finally, the OD image is converted back 

to the RGB-space, yielding the deconvoluted RGB image for the current stain.  

Immunohistochemistry (IHC) Quantification 

A tissue microarray (TMA) of ovarian-cancer tissue stained with an antibody for LINE-134 ORF1 

was analyzed with a streamlined optical-density (OD) based approach to benchmark automated 

IHC scoring. To compare automated scores with the pathologist’s ordinal grades (0 = negative, 3 

= strong), each core’s calculated intensity value was plotted against its grade, and the Pearson 

correlation coefficient was calculated. The resulting correlation (reported as  𝑃 ) provided a 

quantitative measure of concordance, with higher 𝑃 values indicating stronger agreement between 

the simple-OD based metric and manual immunohistochemistry scoring. Each core was color-

deconvoluted by NLTD 2.0 to yield a single image containing only the antigen chromogen. For 

the analysis described here, we used the deconvoluted 𝜌 channel described above rather than the 

typical cartesian RGB output. Moreover, for consistency the same theta-phi joint histogram ROI 

and decay value were used to deconvolute all images across all intensity scores. Pre-processing 

then focused on isolating true chromogen-positive tissue while excluding blank glass and noise: 

pixels values with 𝜌 > 𝜏(𝜏 = 0.01)  were provisionally accepted, after which connected-

component filtering removed objects smaller than three pixels.  The remaining set of pixels S in 

the binary mask therefore comprises contiguous regions of isolated antigen staining.  Finally, an 

intensity score was calculated as the mean of the intensity values of all the pixels in 𝑆. Only 

chromogen-bearing tissue contributed to 𝑆. Additionally, unstained areas and scanner artifacts 

were excluded by the threshold-plus-morphology pipeline, yielding a single continuous value 

proportional to average antigen load for each TMA core.  

Statistics 
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Pearson’s product-moment correlation coefficient ( 𝑃 ) was calculated to quantify the linear 

relationship between the automated optical-density intensity scores and the pathologist’s ordinal 

grades.  

Software 

All image processing was performed using ImageJ Fiji39. All plots were generated using MATLAB 

2024a (MathWorks).  

 

Code availability  

The source code is publicly available on GitHub at: https://github.com/DeepBioVision/NLTD-

2.0_PlugIn 

Results  

Non-linear Tissue-component Discrimination 2.0 (NLTD 2.0) Method Overview 

The NLTD 2.0 method highlights the use of the theta-phi joint occurrence map (TPOM) to separate 

the chromogen staining of the histology images. The RGB color space can be represented by 

spherical coordinates (theta, phi, and rho)40. In the spherical color space, all normalized color 

components are represented only in 2-dimensional variables theta and phi. Since the TPOM only 

considers the normalized color vectors, chromogens with distinct color patterns (such as 

Hematoxylin vs Eosin) reside at distinct locations on the TPOM map, enabling effective separation 

(Fig. 1 a-b). In this way, the complexity of considering color three dimensionally is circumvented. 

Compared to the original NLTD41 that used the red and blue intensity of pixels to separate the 

distinct chromogen staining, the TPOM axes provide more orthogonal color information for 

chromogen staining separation (Fig. 1 c-d and Supplementary Fig. 1). The overall NLTD 2.0 

method consists of three main steps, detailed in (Fig. 1e), including 1) calculating the TPOM map 

from the input image; 2) selecting the ROIs representing different chromogens in the TPOM maps; 

3) creating the color transform function (CTF) based on the ROIs to extract individual chromogen 

staining from original images (see more details in Methods). The deconvoluted tissue component 

images can be used for further tissue analysis and processing. Additionally, we demonstrate the 

TPOM map can effectively separate the stains well from H&E images with a variety of color 

appearances (Fig. 3) 

  

NLTD 2.0 For Robust Customizable Color Deconvolution  
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Identifying the ROIs corresponding to different staining on the TPOM is key to NLTD 2.0. In most 

H&Es (Hematoxylin and Eosin images), the stained colors are readily distinguishable in the TPOM 

(Fig. 1e). However, in certain cases, the stain locations on the TPOM might be more overlapping 

and less straightforward to determine. In this case, examining the TPOM at a specific rho range 

can aid the selection of stain ROIs since the visible difference between stains is associated more 

with rho when it is less associated with theta and phi (Fig. 2a and Supplementary Fig. 2). As a 

note, absorbance is a proxy for rho that is easier to understand. In the example image, we show 

different tissue components are also visually distinguishable from the absorbance (rho) image (Fig. 

2a). Histogram analysis of the absorbance of the H&E image used shows three distinct absorbance 

subpopulations that were found corresponding to eosin, hematoxylin, and blood, which ranked 

from low absorbance to medium to high absorbance, respectively (Fig. 2b). Therefore, examining 

the TPOM at various ranges of absorbance can further improve the identification and the ROI 

corresponding to individual staining/color components. 

NLTD 2.0 generates deconvoluted images based on the color transform function (CTF). 

The CTF deconvolves images by determining which parts of the color spectrum belong to each 

selected component based on the ROI, decay value, and background cutoff distance. Colors outside 

the selected ROI have a variable weighting determined by the decay value and background cutoff 

distance (more details in the Methods section). 

The CTF is customizable for achieving optimal deconvolution outcomes. A smaller ROI 

typically associates a smaller proportion of the color spectrum with the stain at the risk of missing 

parts of the color spectrum at the boundary of the current stain. Conversely, a larger typical ROI 

associates a larger proportion of the color spectrum with the stain at the risk of including parts of 

the color spectrum belonging to other stains as well (Fig. 2c). Moreover, a bigger decay value 

results in softer transitions between the parts of the color spectrum included in the stain and 

excluded from the stain. In contrast, a smaller decay value results in sharper transitions between 

the parts of the color spectrum included in the stain and excluded from the stain (Fig. 2c). 

Adjusting background cutoff distance can minimize the interference from colors belonging to other 

stains and reduce background noise by selecting distance from the boundary of the ROI at which 

the color spectrum becomes fully excluded from the stain (Fig. 2d). Hence, the deconvolution 

performance can be effectively adjusted and optimized in the NLTD 2.0. In comparison, linear 

color convolution offers no further adjustability after the color vectors are determined, contributing 

to suboptimal results (Supplementary Fig. 3). 

Robustness of NLTD 2.0 in H&E Image Deconvolution 

We further demonstrate robust performance of NLTD 2.0 by deconvoluting hematoxylin (i.e. 

nuclei color component) from a set of H&E images with largely varying color appearance.  The 

TPOM readily distinguishes the distinct color appearance in each H&E image, which is shown by 

the nuclei color component of each image appearing in a distinct location on the TPOM (Fig. 3). 
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We examined the TPOM corresponding to the Hematoxylin by restricting the range of absorption 

in the TPOM to help facilitate robust identification and selection of Hematoxylin stain TPOM 

(Fig. 3). Notedly, despite the large color differences between the images, similar absorbance 

ranges were needed to isolate each Hematoxylin signal. In general, we found that a lower threshold 

of 2 and upper threshold of 3.75 isolated the Hematoxylin signal well (Fig 3). Additionally, we 

found that in general a decay of 10 and background cutoff distance of 30 led to optimal 

deconvolution results (Fig 3). We next compared the performance of the deconvolution with the 

linear color deconvolution (LCD). Utilizing the preset color vectors14  in LCD results in poorly 

deconvolved images compared to NLTD 2.0 (Supplementary Fig. 3). Even when the color 

vectors for LCD were optimized, the results remained suboptimal in comparison to NLTD 2.0 (Fig 

3). Using LCD with optimized color vectors, the boundaries of nuclei (Hematoxylin) are not as 

clearly resolved and include substantial signals from non-nuclei stain colors (such as stromal 

tissue). Overall, these results demonstrate NLTD 2.0’s robust and effective process in 

deconvolving H&E tissue images, regardless of color differences. 

NLTD 2.0 for quantitative IHC analysis 

We next demonstrate that NLTD 2.0 produces quantitative, pathologist-concordant IHC readouts 

(Fig. 5). We applied NLTD 2.0 to an ovarian cancer tissue microarray (TMA) cohort that had been 

immunolabeled for L1ORF1p, a cytoplasmic protein linked to cancer42 to deconvolved the DAB 

(3,3'-Diaminobenzidine) stains. The DAB-stained level in each tissue core was scored by a trained 

pathologist on a discrete scale of 0 to 3, where 0 indicates no detectable protein expression and 3 

represents high expression. The same parameters in NLTD 2.0 were used for deconvolved DAB-

stained images in all tissue cores. The stained level of each tissue core was then scored based on 

the average absorbance in the deconvolved DAB images in the pixels with colors corresponding 

to the selected color ROI in TPOM. The DAB scores by NLTD 2.0 are highly associated with the 

pathologist’s assessment with a Spearman correlation (ρ) of 0.87 (Fig. 5a) which is better than 

previously reported (ρ = 0.81) 41 and better than LCD (ρ = 0.67) (Fig. 5b). Representative IHC 

images across grades 0–3 illustrate the expected progression in chromogen signal (Fig. 5c). 

Together, these data show that NLTD 2.0 provides a robust, nonparametric, and quantitative DAB 

metric that aligns closely with expert assessment while exceeding LCD performance for IHC 

scoring. 

Implementing NLTD 2.0 in images beyond dual color staining 

Current color deconvolution methods, primarily based on linear color deconvolution, have inherent 

limitations that restrict their application to images containing at most three color components, 

including the background40. In contrast, NLTD 2.0 overcomes this limitation by allowing the 

selection of any number of color components.  

To illustrate this capability, we applied NLTD 2.0 to pancreatic tissue sections stained 

using multiplex immunohistochemistry (mIHC) with four distinct markers (Fig. 4a). We showed 
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that the TPOM distinctly displayed four separate clusters corresponding to each marker, enabling 

clear identification, and selecting stained ROIs corresponding to each staining component for 

deconvolution. Compared to linear color deconvolution (Supplementary Fig. 3), which failed to 

adequately separate overlapping stains and resulted in substantial cross-stain contamination, 

NLTD 2.0 provided significantly cleaner, clearer, and more precise stain separation. 

Additionally, we demonstrated NLTD 2.0's robust performance by successfully 

deconvolving four color components from Masson's Trichrome-stained tissue sections, clearly 

separating collagen fibers, muscle tissue, erythrocytes, and cytoplasmic components43 (Fig. 4b). 

Furthermore, we applied NLTD 2.0 to Pap smear images, effectively distinguishing cellular 

structures, nuclei, cytoplasm, and background staining (Fig. 4c).  These results underscore the 

ability of NLTD 2.0 to manage stains across diverse histological preparations reliably. 

Discussion 

In this work, we established NLTD 2.0 as a robust method for stain separation in histopathology. 

We demonstrated that NLTD 2.0 effectively produces consistent, quantitative representations of 

tissue components across images with significant staining variability. By making the workflow 

accessible via an ImageJ plugin, we promote broad adoption of the method in the computational 

pathology community. 

Various advanced approaches have also been explored to address stain variability, 

including machine learning algorithms (e.g., deep learning–based stain normalization)44, non-

negative matrix factorization (NMF) techniques28, and singular value decomposition (SVD) based 

techniques. However, these methods can be computationally intensive (NMF), require extensive 

training data (deep learning), or are restricted to extracting at most three stain vectors (NMF and 

SVD), limiting their broad adoption in routine workflows. By comparison, linear color 

deconvolution (LCD) has historically played a crucial role in enabling quantitative and objective 

tissue assessment due to its simplicity and effectiveness40. However, LCD methods are hindered 

by stain heterogeneity, a fixed number of color components, and limited adaptability. The method 

introduced in this study, NLTD 2.0, addresses these limitations by providing a highly flexible and 

efficient approach to color deconvolution. 

Unlike many conventional color deconvolution methods, NLTD 2.0 operates without prior 

color assumptions, enabling it to consistently process a wide range of images regardless of stain 

variability or the number of color components (Fig. 4). This adaptability makes it particularly 

useful for analyzing heterogeneous datasets and publicly available histopathology images, 

reducing the need for strict in-house image preparation. Additionally, NLTD 2.0 leverages a two-

dimensional color space, significantly lowering computational costs while maintaining high 

accuracy. Its four intuitive parameters allow for user-defined adjustments, ensuring reproducibility 

and customization across different applications (Fig. 3). 
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NLTD 2.0 effectively manages multiplex immunohistochemistry, Masson’s Trichrome, 

and Pap smear preparations, highlighting its broad applicability. Its implementation as an ImageJ 

plugin ensures ease of use and widespread accessibility, even for researchers without specialized 

computational skills. Computational pathology is rapidly transforming diagnostic and prognostic 

capabilities, providing insights beyond those available through traditional histological examination 

alone. NLTD 2.0 offers an accessible and robust deconvolution platform that can be used by 

researchers without specialized expertise in computational analysis or pathology. We have 

implemented the NLTD 2.0 method as a plug-in on the open-source and widely used ImageJ 

platform to ensure broad accessibility and to facilitate large-scale histopathological image analysis. 

Despite these advantages, the current dependence on manual region selection introduces 

some variability. Future developments should focus on integrating NLTD 2.0 with automated, 

objective segmentation methods to further reduce user bias. Additional validation across diverse 

clinical datasets is also essential to refine its robustness for clinical application. While NLTD 2.0 

overcomes many limitations of traditional color deconvolution methods, future work should 

explore its integration with machine learning–based image segmentation and classification 

techniques. Additionally, further validation on high-throughput clinical image data will be critical 

to refining its robustness in real-world applications. By enabling improved tissue analysis with 

minimal computational overhead and no requirement for prior stain information, NLTD 2.0 has 

the potential to advance diagnostic and prognostic capabilities in pathology, contributing to better 

patient outcomes. 
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Figure Captions 

Figure 1. Concept and workflow of NLTD 2.0. a. H&E example. Left: raw hematoxylin-and-

eosin tile with nuclei (yellow box) and cytoplasm (green box). Second panel: full θ–ϕ color 

spectrum; boxed regions locate the two stains. Third panel: θ–ϕ joint-occurrence histogram shows 

two compact clusters (Spearman ρ = 0.44). Fourth panel: traditional red-blue histogram yields a 

streaked distribution (ρ = 0.76), indicating stronger channel correlation and poorer separability. b. 

IHC example. An immuno-DAB section (brown chromogen) with counter-stained nuclei is 

mapped into θ–ϕ space, again revealing distinct clusters for each stain. c-d. Quantitative cluster 

separability. For 15 heterogeneous H&E images (c) and 10 IHC images (d), the θ–ϕ histogram 

consistently exhibits lower intra-cluster grayscale correlation than the red-blue histogram (mean ± 

SD shown), confirming improved orthogonality of the spherical representation. e. NLTD 2.0 

pipeline. Starting from an input bright-field image (left column), NLTD 2.0 builds a θ–ϕ joint 

histogram, the user (or algorithm) selects stain-specific regions, and a decay-weighted transform 

function is generated. Applying this function produces deconvoluted tissue-component images 

(right column), e.g., nuclei vs. cytoplasm for H&E, or DAB vs. hematoxylin for IHC. 

 

Figure 2. Tunable parameters of NLTD 2.0 enable precise stain isolation. a. Absorbance 

accentuates chromogen differences. Left: an H&E tile containing cytoplasm (eosin), nuclei 

(hematoxylin), and erythrocytes. Right: the same tile rendered as optical-density (ρ) heat-map; 

higher absorbance (warm colors) highlights densely stained nuclei and blood. b. One-dimensional 

ρ histogram separates three stain populations. The histogram reveals three absorbance clusters 

(dashed boxes): Cluster 1 = eosin-rich cytoplasm, Cluster 2 = hematoxylin nuclei, Cluster 3 = 

blood. TPOM sub-panels (right) show how restricting ρ to each cluster localizes the corresponding 

stain in θ–ϕ space and in the image. c.  Joint effect of ROI size and decay parameter on 

deconvolution quality. Nine combinations are displayed (ROI diameter decreases left→right; 

decay increases bottom→top). Each cell shows: left, θ–ϕ histogram with the selected ROI (green); 

right, resulting nuclei channel with an inset line-profile through the same nucleus (blue box). Large 

ROIs or high decay include more mixed pixels, softening boundaries; small ROIs or low decay 

sharpen separation but risk losing faint nuclei signal. d. Background-cutoff distance governs 

suppression of non-target stains. With a fixed decay, raising the cutoff (bottom→top) 

progressively excludes distant colors, reducing eosin bleed-through in the final nuclei image (right 

of each pair). Inserts show corresponding intensity profiles. 

 

Figure 3. NLTD 2.0 reliably isolates hematoxylin in heterogeneous H&E samples. a. Five 

representative H&E tiles with markedly different stain hues (top row) were processed 

through  NLTD 2.0 and linear color deconvolution (LCD). b. θ–ϕ joint-histogram for each tile, 
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with the nuclei region of interest (ROI) highlighted. Text in each panel lists absorbance 

lower/higher thresholds, decay factor, and background cut-off used for that sample. c. Nuclei 

channels produced by NLTD 2.0 using the corresponding ROI and parameters above. Note the 

crisp nuclear boundaries and minimal cytoplasmic bleed-through across all color variations. d. 

Nuclei channels obtained with optimized linear color deconvolution. LCD leaves residual eosin 

signal and blurs nuclear details, especially in tiles with atypical staining. Collectively, the panel 

demonstrates that NLTD 2.0 maintains consistent, high-quality hematoxylin extraction despite 

inter-slide stain heterogeneity, outperforming conventional LCD. 

 

Figure 4. NLTD 2.0 separates four or more chromogens across diverse bright-field 

preparations. a. Four-plex chromogenic IHC. Left: raw multiplex  IHC tile. Middle: θ–ϕ 

histogram with four stain-specific ROIs (yellow, numbered 1-4). Bottom: NLTD 2.0 outputs for 

each chromogen, showing clean separation of all four labels. b. Masson’s Trichrome. Left: original 

section. Right: TPOM with four ROIs. Bottom: NLTD 2.0 outputs reveal collagen (1), cytoplasm 

(2), nuclei (3), and erythrocytes (4) as distinct channels. c. Conventional Pap smear. Left: Pap 

cytology image. Middle: histogram with three ROIs capturing nuclei (1), cytoplasm (2), and 

background debris (3). Bottom: NLTD 2.0 outputs for each component, illustrating accurate 

extraction even in loosely adherent cellular smears.  

 

Figure 5. NLTD 2.0 provides quantitative, pathologist-concordant DAB scoring. a-b. Scatter 

plot shows the mean DAB optical-density (y-axis: NLTD 2.0 output (a), Linear Color 

Deconvolution (b)) versus ordinal pathologist grades (x-axis, 0–3) for an ovarian-cancer tissue-

microarray cohort (n = 40 cores). Each dot represents one core; grey line, least-squares fit. The 

automated intensity metric correlates strongly with manual assessment (Spearman ρ = 0.87 for 

NLTD 2.0 and 0.67 for Linear Color Deconvolution, annotated in red). c. Representative 

deconvoluted cores for grades 0, 1, 2, 3 illustrate the progressive increase in chromogen signal. 
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Figure 1. Concept and workflow of NLTD 2.0. 

c H&E

d IHC

b
IHC Tissue 

Image
Histogram Color 

Spectrum

Theta-Phi Joint 
Histogram

H&E Tissue 
Image

Histogram Color 
Spectruma

Red-Blue Joint 
Histogram

ρ:  0.76ρ:  0.44

Tissue Image
Color Joint 
Histogram

Manual 
Segmentation

Transform 
function

OutputNon-Linear Tissue Decomposition 2.0 (NLTD 2.0)Input

Tissue Component Images

Nuclei Cyto.

DAB NucleiIHC

e

N

E

H&E

C
or

re
la

tio
n

C
or

re
la

tio
n

a. H&E example. Left: raw hematoxylin-and-eosin tile with nuclei (yellow box) and cytoplasm (green box). Second panel: full 

θ–ϕ color spectrum; boxed regions locate the two stains. Third panel: θ–ϕ joint-occurrence histogram shows two compact 

clusters (Spearman ρ = 0.44). Fourth panel: traditional red-blue histogram yields a streaked distribution (ρ = 0.76), indicating 

stronger channel correlation and poorer separability. b. IHC example. An immuno-DAB section (brown chromogen) with 

counter-stained nuclei is mapped into θ–ϕ space, again revealing distinct clusters for each stain. c-d. Quantitative cluster 

separability. For 15 heterogeneous H&E images (c) and 10 IHC images (d), the θ–ϕ histogram consistently exhibits lower 

intra-cluster grayscale correlation than the red-blue histogram (mean ± SD shown), confirming improved orthogonality of the 

spherical representation. e. NLTD 2.0 pipeline. Starting from an input bright-field image (left column), NLTD 2.0 builds a θ–ϕ 

joint histogram, the user (or algorithm) selects stain-specific regions, and a decay-weighted transform function is generated. 

Applying this function produces deconvoluted tissue-component images (right column), e.g., nuclei vs. cytoplasm for H&E, or 

DAB vs. hematoxylin for IHC.
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Figure 2. Tunable parameters of NLTD 2.0 enable precise stain isolation.

a. Absorbance accentuates chromogen differences. Left: an H&E tile containing cytoplasm (eosin), nuclei (hematoxylin), and 

erythrocytes. Right: the same tile rendered as optical-density (ρ) heat-map; higher absorbance (warm colors) highlights densely 

stained nuclei and blood. b. One-dimensional ρ histogram separates three stain populations. The histogram reveals three 

absorbance clusters (dashed boxes): Cluster 1 = eosin-rich cytoplasm, Cluster 2 = hematoxylin nuclei, Cluster 3 = blood. TPOM 

sub-panels (right) show how restricting ρ to each cluster localizes the corresponding stain in θ–ϕ space and in the image. c.  

Joint effect of ROI size and decay parameter on deconvolution quality. Nine combinations are displayed (ROI diameter 

decreases left→right; decay increases bottom→top). Each cell shows: left, θ–ϕ histogram with the selected ROI (green); right, 

resulting nuclei channel with an inset line-profile through the same nucleus (blue box). Large ROIs or high decay include more 

mixed pixels, softening boundaries; small ROIs or low decay sharpen separation but risk losing faint nuclei signal. d. 

Background-cutoff distance governs suppression of non-target stains. With a fixed decay, raising the cutoff (bottom→top) 

progressively excludes distant colors, reducing eosin bleed-through in the final nuclei image (right of each pair). Inserts show 

corresponding intensity profiles.
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Figure 3. NLTD 2.0 reliably isolates hematoxylin in heterogeneous H&E samples.

a. Five representative H&E tiles with markedly different stain hues (top row) were processed through NLTD 2.0 and 

linear color deconvolution (LCD). b. θ–ϕ joint-histogram for each tile, with the nuclei region of interest (ROI) 

highlighted. Text in each panel lists absorbance lower/higher thresholds, decay factor, and background cut -off used for 

that sample. c. Nuclei channels produced by NLTD 2.0 using the corresponding ROI and parameters above. Note the 

crisp nuclear boundaries and minimal cytoplasmic bleed-through across all color variations. d. Nuclei channels obtained 

with optimized linear color deconvolution. LCD leaves residual eosin signal and blurs nuclear details, especially in tiles 

with atypical staining. Collectively, the panel demonstrates that NLTD 2.0 maintains consistent, high-quality 

hematoxylin extraction despite inter-slide stain heterogeneity, outperforming conventional LCD.
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mIHC

Figure 4. NLTD 2.0 separates four or more chromogens across diverse bright-field preparations.
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a. Four-plex chromogenic IHC. Left: raw multiplex IHC tile. Middle: θ–ϕ histogram with four stain-specific ROIs (yellow, 

numbered 1-4). Bottom: NLTD 2.0 outputs for each chromogen, showing clean separation of all four labels. b. Masson’s 

Trichrome. Left: original section. Right: TPOM with four ROIs. Bottom: NLTD 2.0 outputs reveal collagen (1), cytoplasm (2), 

nuclei (3), and erythrocytes (4) as distinct channels. c. Conventional Pap smear. Left: Pap cytology image. Middle: histogram 

with three ROIs capturing nuclei (1), cytoplasm (2), and background debris (3). Bottom: NLTD 2.0 outputs for each 

component, illustrating accurate extraction even in loosely adherent cellular smears. 
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Figure 5. NLTD 2.0 provides quantitative, pathologist-concordant DAB scoring.

a-b. Scatter plot shows the mean DAB optical-density (y-axis: NLTD 2.0 output (a), Linear Color Deconvolution (b)) versus 

ordinal pathologist grades (x-axis, 0–3) for an ovarian-cancer tissue-microarray cohort (n = 40 cores). Each dot represents one 

core; grey line, least-squares fit. The automated intensity metric correlates strongly with manual assessment (Spearman ρ = 

0.87 for NLTD 2.0 and 0.67 for Linear Color Deconvolution, annotated in red). c. Representative deconvoluted cores for 

grades 0, 1, 2, 3 illustrate the progressive increase in chromogen signal.
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