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Abstract  

Cellular senescence is implicated as a driver of ovarian aging, but senescent cells in 

the human postmenopausal ovary remain poorly defined. Using spatially resolved 

p16INK4a protein expression, a canonical senescence marker, we identified and 

mapped senescent cells in postmenopausal ovaries. We integrated p16 

immunohistochemistry, multiplexed immunofluorescence, spatial transcriptomics, 

and AI-guided digital pathology to map senescent microenvironments. p16-positive 

cells formed discrete stromal, vascular, and cyst-associated clusters that increased 

with age and were enriched for macrophages and myofibroblast-like cells. Whole-

transcriptome profiling of 92 spatial regions uncovered a 32-gene p16-associated 

signature, BuckSenOvary, that distinguished p16-positive regions across cortex and 

medulla. BuckSenOvary is characterized by suppression of cell-cycle regulators and 

activation of inflammatory and extracellular-matrix remodelling genes. AI-based 

collagen matrix analysis confirmed that p16-positive regions exhibit more 

architecturally complex collagen, demonstrating that focal senescent 

microenvironments are fibro-inflammatory. These findings position senescent ovarian 

niches as therapeutic targets to preserve ovarian function. 

Keywords: Senescence, ovarian aging; menopause; fibrosis; spatial 

transcriptomics. 
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Main 

While women globally live ~5 years longer than men, they experience a ~2.4-year 

greater gap between lifespan and healthspan than men, spending a greater 

proportion of late life in poorer health1,2. The factors that contribute to this disparity 

are complex, but the impact of menopause on women’s health and aging is 

substantial. Menopause, defined as the permanent cessation of menstruation for at 

least 12 consecutive months, typically occurs around age 50 and reflects the 

cessation of ovarian function3. Beyond loss of fertility, menopause is associated with 

an abrupt decline in ovarian hormones, which increases systemic health risks, 

including cardiovascular disease, osteoporosis, and cognitive decline4,5. In fact, 

women who undergo natural menopause later generally live longer and have 

reduced risks of cardiovascular disease and all-cause mortality6-8. Due to medical 

and health advances, women may spend more than one-third of their lives in a post-

menopausal state and experience the negative health sequelae. Thus, 

understanding the drivers of ovarian aging and how the post-menopausal ovary, long 

assumed to be inert, may contribute to systemic aging and disease is an emerging 

priority. 

The human ovary is among the first organs to undergo functional decline with age, 

reflected not only by depletion and reduced quality of the oocyte pool but also by 

pronounced remodeling of the surrounding stromal microenvironment9,10. The aging 

ovarian microenvironment is characterized by increased fibrosis, changes in 

extracellular matrix composition, decreased vascularity, immune cell infiltration, and 

increased tissue stiffness11-14. Emerging technologies are revealing the 

transcriptomic landscape of the aging ovary15-21. However, the molecular and tissue-

level drivers of postmenopausal ovarian fibro-inflammaging remain poorly defined.  

Among the cellular mechanisms and hallmarks of aging22, cellular senescence is a 

key driver of age-related tissue dysfunction, promoting chronic inflammation and 

fibrosis through the senescence-associated secretory phenotype (SASP)23-30. Such 

secretomes foster tissue degradation, fibrotic remodeling, and immune evasion23,31-

33. Senescent cell accumulation is linked to aging in multiple organs, including skin34, 

lung35, liver36, and kidney37, suggesting it may play similar roles in the aging ovary. 

While ovarian transcriptomic studies indicate age-associated senescence, and 

markers such as p16INK4a (CDKN2A) and p21CIP1 (CDKN1A) increase with age, the 
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spatial positioning and histological features of these cells in the postmenopausal 

human ovary remain unclear16-18,20,21,38,39. The heterogeneity of senescent cells 

across tissues, combined with the ovary’s diverse cellular composition and 

compartments, makes spatial and phenotypic resolution critical for gaining functional 

insight. 

Here, we aimed to identify an ovarian senescence signature associated with aging 

and to characterize the niche of senescent-like cells and their effects within ovarian 

tissue. To this end, we developed a targeted spatial-molecular approach to identify 

and map senescent cells in native postmenopausal human ovaries using p16INK4a 

(p16) (Fig. 1a).  We chose p16 as our primary marker because it is the most widely 

recognized canonical senescence-associated marker in both experimental models 

and human tissues40-42. p16, encoded by CDKN2A, is a cyclin-dependent kinase 

inhibitor that blocks CDK4/6 to enforce retinoblastoma (RB)-mediated G1 cell-cycle 

arrest43-45. Its expression increases in aging tissues, and sustained p16 indicates 

cells that have undergone replicative or stress-induced damage and have entered a 

stable growth arrest41,46-48. Distinct from cancerous ovarian tissue, where p16 

expression exhibits intense block positivity staining, in this study, the analysis of 45 

human post-menopausal healthy ovaries revealed sporadic, discrete clusters of p16-

positive cells throughout the stroma. The p16-positive signal occupied roughly 0.03-

2.8% of tissue sections with a tendency towards increased expression with age.   

We integrated p16 immunohistochemistry with multiplexed immunofluorescence 

antibody histology, transcriptomic Digital Spatial Profiling (GeoMx), and AI-guided 

digital pathology to characterize the p16-positive microenvironment and develop a 

molecular signature for ovarian p16-positive senescent cells. Whole-transcriptome 

profiling of 92 spatial regions uncovered a 32-gene p16-associated signature, 

BuckSenOvary, that distinguished p16-positive regions across cortex and medulla. 

High-resolution artificial intelligence (AI)-guided analysis of Picrosirius Red-stained 

tissues revealed increased fibrosis and a shift toward more assembled collagen 

fibers in p16-positive regions, indicating altered collagen architecture. These regions 

also showed enrichment for macrophages and myofibroblast-like cells, consistent 

with an inflammatory-fibrotic feedback loop driving ovarian aging. Together, this 

study provides the first spatial and molecular characterization of p16-positive 

senescence-associated fibrosis in the aging native postmenopausal ovary. We 
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identified candidate biomarkers and pathways implicated in ovarian aging, and this 

study highlights potential molecular targets for senolytic therapies aimed at 

prolonging or restoring ovarian function. Such strategies may help narrow the 

healthspan-lifespan gap and preserve systemic health in women. 

 

Results 

Histological and microenvironment profiling of p16-positive cells in 

postmenopausal human ovaries 

Gynecologic pathologists have long used p16INK4a (p16) protein expression as a 

surrogate marker in cancer classification and diagnostics for female reproductive 

tissues, particularly in human papillomavirus (HPV)-driven neoplasia49-51. In this 

context, p16 diagnostic relies on block-positive staining, defined as strong, intense, 

and continuous nuclear and cytoplasmic staining in basal and parabasal cell layers 

(Extended Data Fig. 1b). In contrast, patchy weak staining is typically considered 

background and is non-diagnostic (Fig. 1b and Extended Data Fig. 1a). Interestingly, 

while this background staining is generally ignored by gynecologic pathologists, it is 

likely biologically meaningful from an aging and longevity perspective, potentially 

reflecting tissue stress or cellular senescence, which could act as an anti-cancer 

failsafe. Indeed, in the aging field, p16 is considered a canonical senescence-

associated marker widely used to identify senescent cells41,52,53. We set out to 

characterize these p16-positive cells and their surrounding microenvironment in non-

pathological postmenopausal ovarian tissue, where we hypothesized they would be 

enriched and potentially drive features of ovarian aging. 

We first examined the localization and abundance of p16 in ovarian tissue from 45 

participants aged 50–84 years. Immunohistochemistry (IHC) revealed that p16 

expression within a single ovarian piece of tissue was non-uniform, with sporadic, 

but distinct clusters of p16-positive cells (Fig. 1b and Extended Data Fig. 2a). These 

clusters persisted across serial sections (>12 sections, up to 60 μm depth), 

indicating that they spanned the tissue in three dimensions (Extended Data Fig. 2b). 

Analysis of a 3-5 mm ovarian cross-section subdivided into eight pieces from a 

single participant showed that p16 expression was heterogeneous across the ovary, 

with marked variation in both staining pattern and overall abundance (Fig. 1c and 
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Extended Data Fig. 3a). For example, tissue piece 4 contained 0.79% p16-positive 

area, whereas tissue piece 8 contained 7.83%. p16 protein expression was observed 

either as isolated positive cells or as multicellular clusters, predominantly within 

stromal regions but also in vessels and inclusion cysts (Fig. 1d). IHC staining was 

digitally labelled using binary thresholding, with p16- positive regions assigned 

yellow and negative regions blue, enabling quantification of the percentage of p16-

positive area across tissue sections from all 45 human participants (Extended Data 

Fig. 3b). When plotted against age, p16 expression trended towards a positive 

correlation (Fig. 1e), while no correlation was observed with BMI (Fig. 1f), suggesting 

that age contributed more strongly to increased p16 levels.  

To define the microenvironment of p16-positive clusters, we first performed IHC for 

p21 (CDKN1A; Cyclin-Dependent Kinase Inhibitor 1 A), CD68 (Cluster of 

Differentiation 68), and α-SMA (alpha-smooth muscle actin) for an initial assessment 

of expression (Extended Data Fig. 4a). Interestingly, p16-positive cells did not co-

stain with p21, another canonical senescence-associated marker, consistent with 

emerging studies31,48. However, p16-positive regions were enriched for CD68, a 

macrophage marker, and α-SMA, a marker of myofibroblasts, which are often 

associated with fibrosis. These observations suggested that p16-positive regions are 

infiltrated by macrophages and myofibroblasts, which together may elicit alterations 

in extracellular matrix (ECM) composition and tissue stiffness (Extended Data Fig. 

4a).  

To characterize these regions more comprehensively, we used iCLAP-mxIF, a 

multiplex immunofluorescence method optimized for detecting low-abundance 

proteins (Fig. 2a). This approach enables simultaneous detection of multiple protein 

markers within a single tissue section. Although ovarian tissue exhibits moderate 

autofluorescence, particularly from collagen networks and age-related pigments such 

as lipofuscin, which has historically favored chromogenic IHC and its limitation to one 

or two markers per section, optimization of iCLAP-mxIF enabled reliable multiplexed 

staining in the same section. This provided a comprehensive, spatially resolved 

definition of the p16-positive microenvironment that is not achievable with 

conventional IHC. 

The p16 IF staining using an antibody from Roche Diagnostics (Ab 2) was compared 

and validated against p16 IHC using an antibody from Enzo (Ab 1). Across all four 
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participants, IF consistently recapitulated the same p16-positive regions observed in 

the IHC sections (Fig. 2b and Extended Data Fig. 4b). This strong concordance 

between two independent antibodies, detection modalities, and laboratories supports 

the robustness and specificity of the ovarian p16 signal. After validating p16 staining, 

we applied the iCLAP-mxIF method (Fig. 2a). We used six senescence-associated 

markers: p16, α-SMA, HMGB1 (High Mobility Group Box 1, 53BP1 (p53-binding 

protein 1), Lamin B1, and CD68. Regions of p16-negative and p16-positive 

expression were annotated across tissue sections, and single-cell segmentation was 

performed to generate marker intensity profiles (Fig. 2a). While segmentation can 

introduce occasional bleed-through between neighbouring cells, marker intensity 

profiles were obtained from 83,187 cells in p16-negative regions and 53,865 cells in 

p16-positive regions. 

We next applied minimal clustering to the single-cell marker profiles, which resolved 

eight populations based on expression of the six senescence-associated markers 

(Fig. 2c, 2g, and Supplemental Table 2). In the heatmaps, each row represents a 

cluster, and each column a marker, with color indicating relative staining intensity. In 

p16-negative regions, most cells belonged to clusters 1-4, with cluster 1 alone 

comprising 76% of cells, and clusters 2-4 each contributing 5-9% (Fig. 2c-e). The 

p16-negative regions were relatively homogeneous in composition, as reflected in 

the cell density UMAP (Fig. 2f). Clusters 1-3 exhibited uniformly low expression of all 

six markers, whereas Cluster 4 displayed low levels of p16 and α-SMA but relatively 

high expression of HMGB1, 53BP1, Lamin B1, and CD68 (Fig. 2c). This pattern may 

represent activated or stressed macrophages, or cells with features of DNA damage 

and stress consistent with a pre-senescent state in proximity to infiltrating 

macrophages. 

In p16-positive regions, the same eight clusters were present, but their relative 

abundance shifted markedly (Fig. 2g-i). Clusters 5-8 (p16-high populations) 

collectively accounted for 49% of all cells, with Cluster 6 being the most abundant 

(25% of cells), whereas p16-low clusters 1-4 together represented 51% and were still 

dominated by cluster 1 (37%) (Fig. 2g-i). Unlike the relative homogeneity of p16-

negative regions, p16-positive regions displayed marked cellular heterogeneity, as 

shown by the cell density UMAP (Fig. 2j). Cluster 5 expressed all six markers and 

accounted for 7% of cells, but showed minimal CD68 colocalization, suggesting 
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segmentation bleed-through from neighbouring macrophages (Fig. 2k and Extended 

Data Fig. 4c). Importantly, this analysis confirmed that p16-positive cells in ovarian 

tissue are not exclusively macrophages but include a substantial population of CD68 

negative stromal cells. Cluster 6, the most abundant p16-positive cluster, co-

expressed p16, 53BP1, and CD68, suggesting a senescent-like macrophage subset 

or a non-macrophage pre-senescent/stromal population (Fig. 2g-h and Extended 

Data Fig. 4c). Cluster 8, positive for p16, α-SMA, and 53BP1, showed a 

myofibroblast-like senescent phenotype (Fig. 2l), a population of particular interest, 

as it may drive the fibrotic remodelling in the aging ovary. Further studies will be 

required to delineate these candidate senescent populations more precisely. To 

move beyond protein-level marker profiling and define the broader molecular 

programs operating in these p16-positive niches, we next applied spatial 

transcriptomics. 

Spatial transcriptomic characterization and signature derivation of p16-

positive senescent cells 

To define the molecular signature of p16-positive compared to p16-negative regions, 

we profiled these areas using spatial transcriptomics. An ovarian tissue piece from 

an 80-year-old participant was serially sectioned at a thickness of 5�µm each, with 

alternating sections designated for either p16 IHC or GeoMx Digital Spatial Profiling 

(DSP) (Fig. 3a). p16 IHC-stained slides were annotated for p16-positive clusters and 

used to define p16-positive and p16-negative regions of interest (ROIs) on adjacent 

DSP sections (Fig. 3a-b and Extended Data Fig. 5b). This approach was feasible 

because p16-positive clusters spanned three dimensions within the ovarian tissue 

(Extended Data Fig. 2b, 5a). Following acquisition and sequencing of GeoMx slides, 

transcriptomic analysis was performed across three independent tissue sections, 

enabling the identification of differentially expressed genes and the derivation of p16-

associated transcriptomic signatures (Fig. 3c and Extended Data Fig. 6). 

We performed three comparisons: i) all p16-positive versus all p16-negative regions 

of interest (ROIs) within the ovary, and subsequently investigating the functionally 

distinct ovarian tissue compartments, cortex and medulla, comparing ii) cortex p16-

positive versus cortex p16-negative ROIs, and iii) medulla p16-positive versus 

medulla p16-negative ROIs. Across all ROIs, 29 genes were downregulated, and 69 

were upregulated (adjusted P�<0.05, log2 fold change >0.5) (Fig. 3c and 
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Supplementary Table 3). The top 15 downregulated genes included IGFBP3, CCN5, 

CFH, SPINT2, and TGFBR3, regulators of growth-factor, complement, and TGF-β 

signaling that have been implicated in restraining excessive proliferation and 

inflammation (Fig. 3d). The top 15 upregulated genes comprised canonical SASP 

factors (SERPINE1, CFD, C3, and CCN1) as well as extracellular matrix (ECM)-

remodeling genes (TGM2, LAMB1, FBLN1, and PCOLCE) (Fig. 3d and Extended 

Data Fig. 7a-b). 

In ovarian cortical ROIs, 36 genes were downregulated, and 130 were upregulated, 

with the top 15 down- and up-regulated genes largely overlapping with the whole-

tissue comparison (Fig. 3e, 3g, and Supplementary Table 4). This suggested that the 

ovarian cortex carried the core senescence/fibrosis signature (Fig. 3i). By contrast, 

ovarian medullary ROIs showed a far broader transcriptional response, with 290 

downregulated and 442 upregulated genes (Fig. 3f and Supplementary Table 5). The 

top 15 down- and up-regulated genes in the medulla did not overlap with those from 

the whole tissue or cortex analyses and instead reflected pro-inflammatory, immune 

surveillance, and DNA damage-response pathways (Fig. 3h). 

Pathway enrichment analysis revealed broad activation of hallmark senescence 

programs in p16-positive ROIs, including TNFα signaling via NF-κB, interferon α/γ 

response, IL6-JAK-STAT3, and IL2-STAT5 signaling, as well as p53-mediated growth 

arrest, along with suppression of proliferative Myc targets (Fig. 3i). These findings 

indicate activation of SASP-like inflammatory signaling and immune crosstalk within 

p16-positive regions. Simultaneously, we observed enrichment of epithelial-

mesenchymal transition (EMT), coagulation, angiogenesis, and hypoxia pathways, 

suggesting that senescent cells in the aging ovary promote fibrotic remodeling and 

vascular adaptation, features that are consistent with a pro-fibrotic senescence 

phenotype (Fig. 3i). The cortical p16-positive regions largely recapitulated these 

senescence-associated pathways, showing strong activation of NF-κB, interferon, 

and EMT programs (Fig. 3i). In contrast, medullary p16-positive regions showed 

selective enrichment of glycolysis and hypoxia pathways, with suppression of Myc 

target and UV response programs, suggesting a metabolically repressed, stress-

adapted senescence state (Fig. 3i). These compartment-specific signatures suggest 

that ovarian senescence has distinct transcriptional states shaped by local 
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microenvironmental cues, ranging from inflammatory-fibrotic in the cortex to hypoxia-

adaptive in the medulla. 

After examining overall transcriptomic differences between p16-negative and p16-

positive regions, we next sought to derive gene signatures that could robustly define 

p16-positive regions and potentially enable their use for unsupervised mapping. 

Because each analytical approach captures distinct aspects of the p16-associated 

transcriptomic landscape and can yield partially non-overlapping gene sets, we 

applied multiple complementary methods to derive convergent signatures that 

robustly define p16-positive regions across cortical and medullary compartments. We 

first identified significantly differentially expressed genes (DEGs; P�<0.05) between 

p16-positive and p16-negative regions across all ROIs, cortical ROIs, and medullary 

ROIs, considering both upregulated and downregulated DEGs. The overlap among 

these three comparisons was then assessed to identify shared signatures 

independent of ovarian region (Fig. 4a, c). This analysis yielded 90 shared 

downregulated DEGs, which we designated Signature 1 (Fig. 4a-b and Extended 

Data Fig. 8a). These genes reflected broad suppression of cell-cycle drivers 

(CCNB1IP1, CCN5, TGFBR3), metabolic regulators (SLC7A2, RBP1, PDK4) (Fig. 

4b), and, most prominently, ribosomal and translational factors (RPL/RPS family 

members, EIF4B) (Extended Data Fig. 8a). Pathway enrichment confirmed marked 

depletion of translation, ribosome biogenesis, and rRNA processing, consistent with 

the established biology of senescent cells, which downregulate proliferation and 

protein synthesis while maintaining SASP activity (Extended Data Fig. 8b)54-56. 

We next identified 32 upregulated DEGs shared across all, cortical, and medullary 

comparisons, which we designated Signature 2 (Fig. 4c). These genes reflected 

activation of inflammatory and fibrotic pathways, including complement factors (CFD, 

C3), extracellular matrix components (CCN1, PCOLCE, COL1A1/2), and regulators 

of SASP (TGFB1, TXNIP) (Fig. 4d). Pathway enrichment analysis demonstrated 

positive regulation of ERK/MAPK signaling, vascular growth factor production, 

extracellular matrix organization, and monocyte differentiation, alongside 

suppression of apoptosis. Collectively, these data indicated that p16-positive regions 

adopted a pro-inflammatory, pro-fibrotic, and survival-oriented state consistent with 

senescence-associated secretory activity and tissue remodeling (Extended Data Fig. 

8c). 
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As a second approach, we applied principal component analysis (PCA) to reduce 

transcriptomic complexity and identify the largest sources of variation underlying 

p16-associated profiles. PCA distinguished p16-positive from p16-negative regions 

along PC1, which accounted for 16.3% of the variance and captured the senescence 

transcriptional profile, designated Signature 3 (Fig. 4e). PC1 loadings were enriched 

for SASP and ECM regulators (SERPINE1, TIMP3, CCN1, LAMB1, FBLN1, TGM2, 

IGF2, CFD) and immune mediators (CD44, HLA-B, SRGN). Pathway analysis 

confirmed downregulation of cell-cycle progression and upregulation of extracellular 

matrix organization, integrin-mediated adhesion, oxidative stress response, and 

ERK/MAPK signaling (Fig. 4f, h). In contrast, PC2 (8.5% variance) regionally 

separated cortical from medullary ROIs and was driven by smooth muscle and 

stress-response genes (MYH11, ACTA2, TAGLN, HMOX1), highlighting regional 

heterogeneity in senescent signatures (Fig. 4e, g). A supervised partial least 

squares-discriminant analysis (PLS-DA) also confirmed clear separation of p16-

positive from p16-negative regions, driven by ECM regulators, immune mediators, 

and stress-response genes (TIMP3, CCN1, LAMB1, C3, TXNIP) (Fig. 4i and 

Extended Data Fig. 8d, e). Pathway enrichment showed downregulation of 

proliferative programs (Myc, KRAS, UV response) and upregulation of inflammatory, 

apoptotic, and EMT pathways, consistent with a senescence-associated remodeling 

signature (Extended Data Fig. 8f-g). 

For the third approach to define a p16 signature, we found that when performing a 

partial least squares discriminant analysis (PLS-DA), a supervised approach using 

both p16 status and ovarian region, it demonstrated that p16 status and ovarian 

region could be clearly separated by transcriptomic profiles (Fig. 4j). To derive a 

regionally informed p16 signature, we applied Seurat to identify marker genes 

distinguishing p16-positive regions across cortex and medulla (Fig. 4k). Signature 4 

was defined by upregulated genes including ECM regulators (SERPINE1, LAMB1), 

immune mediators (C3, CD74), and stress-response factors (ACTA2) (Fig. 4k). 

Pathway enrichment confirmed activation of extracellular matrix organization, integrin 

signaling, immune effector processes, and apoptotic regulation, consistent with a 

senescence-associated remodeling program (Fig. 4l). 

Evaluation of transcriptomic signatures to identify and map p16-positive 

regions  
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We identified p16-associated gene signatures (Signatures 1-4; each comprising 30-

90 genes) condensed from ~3000 differentially expressed genes (Supplementary 

Table 6). We then evaluated the accuracy with which each signature distinguished 

p16-positive from p16-negative regions by applying them in an unsupervised manner 

to 92 ROIs from three ovarian sections. For each signature, we calculated a UCell 

enrichment score, referred to as the “p16 mapping score”, and overlaid these scores 

onto tissue sections to visually assess mapping performance. Signature 1, based on 

shared downregulated DEGs (Fig. 4a-b and Extended Data Fig. 8a), significantly 

distinguished p16-positive from p16-negative regions (p=1.4x10-9) (Fig. 5a-b and 

Extended Data Fig. 9a). Signature 2, derived from shared upregulated DEGs (Fig. 

4c-d), also significantly identified p16-positive regions (p=1.1x10-9) (Fig. 5d-e and 

Extended Data Fig. 9a). Similarly, Signature 3, generated from PCA analysis (Fig. 

4e-f), and Signature 4, generated from Seurat marker analysis (Fig. 4j-k), both 

significantly identified p16-positive regions (p=1.5x10-5 and p=4x10-8) (Fig. 5g-h, j-k, 

and Extended Data Fig. 9a). 

When stratified by ovarian region, differences in signature performance emerged. 

Signature 3 was able to significantly identify p16-positive regions in the cortex 

(p=6.6x10-6) but failed to do so in the medulla (p=0.37) (Fig. 5i). By contrast, 

Signatures 1, 2, and 4 significantly identified p16-positive regions in both cortex and 

medulla (Fig. 5c, f, i). Signature 2 showed the most significant performance in 

distinguishing p16 status amongst all ROIs (p=1.1x10-9), ROIs in cortical regions 

(p=1.3x10-6), and ROIs in medullary regions (p=8.6x10-7) (Fig. 5d, e, f). This 

leverages Signature 2 as the strongest transcriptomic signature that defines a p16-

positive region regardless of ovarian regional location. 

We next evaluated external senescence gene sets against our ovarian signatures. 

The curated “SenMayo” gene set57 (Supplementary Table 6), which has been widely 

used to detect senescent cells, significantly distinguished p16-positive from p16-

negative regions (Extended Data Fig. 9a-b) and performed consistently across 

ovarian regions (Extended Data Fig. 9c). However, its performance was weaker to 

our internally derived Signature 2 (Fig. 5f). We also tested a proteomic SASP 

signature that we had previously generated by inducing senescence in ovarian tissue 

with doxorubicin58 (Supplementary Table 6). This ovary-specific SASP signature 

significantly identified p16-positive regions (Extended Data Fig. 9d) but showed 
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weaker overall performance and failed to discern p16 status when stratified by 

ovarian region (Extended Data Fig. 9e), consistent with it being a secreted proteomic 

signature. Together, these analyses support the conclusion that p16-positive regions 

represent bona fide senescent regions within the aging ovary. 

Having established signatures capable of distinguishing p16-positive regions, we 

next evaluated their ability to map these regions in native ovarian tissue. Tissue 

sections from the ovarian tissue of two participants, aged 67 (participant 1) and 71 

(participant 2) years old, were analyzed. Each section was gridded into 

400�×�400�μm boxes and profiled using GeoMx DSP. Signatures 2 and 4 were 

then applied to assess whether they could identify p16-positive regions, with 

validation performed by cross-referencing to p16 IHC staining on adjacent sections. 

In participant 1, hotspots defined by Signatures 2 and 4 (Extended Data Fig. 10a) 

overlapped with p16-positive clusters 1 and 2 detected by IHC (Extended Data Fig. 

10b). Similarly, in participant 2, hotspots detected by Signatures 2 and 4 (Extended 

Data Fig. 10c) coincided with p16-positive clusters 1-3 identified by IHC (Extended 

Data Fig. 10d). These findings provided proof-of-principle that our transcriptomic 

signatures can spatially map p16-positive regions in an unsupervised manner. 

However, the resolution of GeoMx DSP limited precise cellular mapping, and future 

evaluation of these signatures will require single-cell spatial technologies such as 

CosMx. Given that these p16-associated signatures and pathway analyses 

consistently highlighted extracellular matrix remodelling and fibrosis, we next sought 

orthogonal histological evidence for fibrotic changes in p16-positive regions. 

AI-driven pathology reveals fibrosis enrichment in p16-positive ovarian 

regions 

Spatial transcriptomic analyses revealed enrichment of extracellular matrix (ECM) 

remodeling and fibrosis-associated pathways in p16-positive regions (Fig. 3, 4, and 

Extended Data Fig. 7). To directly assess transcriptional matrisome changes, we 

examined gene expression using the curated “Matrisome Project” database59. 

Several collagens, ECM glycoproteins, proteoglycans, regulators, and secreted 

factors were enriched in p16-positive ROIs (Fig. 6a), suggesting that p16-positive 

cells may shape the ECM microenvironment to promote fibrotic remodelling. 

Furthermore, we noticed that p16-positive regions coincided with sclerotic areas 

when evaluating histological sections (Fig. 6b). To validate this at the tissue level, we 
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performed picrosirius red staining in ovarian sections from ten participants, followed 

by high-resolution slide scanning and AI-based image analysis (FibroNest) (Fig. 6c). 

This approach quantified over 300 quantitative fibrosis traits (qFTs), which were 

aggregated into 32 phenotypic traits across matched p16-negative and p16-positive 

ROIs, encompassing bulk collagen deposition, fiber morphology, and architectural 

complexity (Fig. 6d-e and Supplementary Table 7). 

Heatmap visualization revealed that p16-negative ROIs generally scored lower 

(green, less fibrosis), whereas p16-positive ROIs scored higher (red, more fibrosis) 

(Fig. 6e and Supplementary Table 7)). Composite trait scoring demonstrated 

significant increases in fine collagen (p=0.0035), assembled collagen (p=0.0059), 

and fibrosis architecture (p<0.0001), yielding a higher overall phenotypic fibrosis 

score in p16-positive regions (p=0.0020) (Fig. 6g-k). Bulk collagen content, however, 

did not differ significantly (p=0.21) (Fig. 6f), consistent with our independent whole 

tissue (irrespective of p16 status) picrosirius red quantification (Extended Data Fig. 

11). These findings indicated that p16-positive regions are fibrotically remodelled not 

by an increase in total collagen, which is already elevated in postmenopausal 

ovaries, but by alterations in ECM organization, such as fiber architecture, cross-

linking, and stromal stiffness, features more sensitively captured by AI-based fibrosis 

scoring than by bulk collagen quantification. 

The p16 senotype BuckSenOvary reflects senescence, inflammation, and 

fibrosis in the aging ovary 

Taken together, our multiplex protein, spatial transcriptomic, and AI-based pathology 

analyses indicate that p16-positive regions in the postmenopausal human ovary 

constitute a senescent stromal niche characterized by inflammation and fibrosis. 

While p16 is widely recognized as a canonical marker of cellular senescence, our 

analyses show that p16-positive regions in the human ovary are enriched for 

senescence-associated pathways (Fig. 3i), and that the curated SenMayo 

senescence gene set57 robustly identifies these regions (Extended Data Fig. 9a,b). In 

parallel, we recently developed a postmenopausal human ovarian explant culture 

model in which low-dose doxorubicin induces cellular senescence while preserving 

tissue viability, and multi-omics profiling (snRNA-seq and proteomics) defined an 

ovary-specific senescence signature (“ovarian senotype”) comprising 26 overlapping 

transcriptomic and proteomic targets, several of which were validated in native aged 
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ovarian tissue31. To determine whether p16-positive regions reflect similar 

transcriptionally senescent cell states, we compared their transcriptomes with those 

of doxorubicin-treated postmenopausal ovarian explants from our previous study31. 

We observed strong concordance across both cortical and medullary compartments, 

with many senescence-associated genes changing in the same direction in the two 

datasets (Fig. 7a). Key overlapping transcripts included CCN1, SAT1, CD44, NID1, 

IGFBP7, and PCOLCE, all upregulated in p16-positive regions and in doxorubicin-

treated explants (Fig. 7a). These genes regulate fibroblast activation, stress 

adaptation, and secretory function, features consistent with the senescence-

associated secretory phenotype (SASP) and matrix remodeling. In contrast, 

structural and metabolic genes such as VIM and NRK were decreased in both 

models, indicating a shift toward a secretory-fibrotic stromal state. Interestingly, 

seven genes, representing 22 % of the “p16 Signature 2” (BuckSenOvary), 

overlapped with the doxorubicin-induced senescence signature (Fig. 7a). Together, 

these findings link experimentally induced and endogenous senescence programs, 

supporting that p16-expressing cells in the aging ovary are transcriptionally 

senescent stromal populations. 

Among all the transcriptomic p16 signatures evaluated, Signature 2 most 

significantly distinguished p16-positive regions across all ROIs (p=1.1x10-9), and 

regionally within both the cortex (p=1.3x10-6), and the medulla (p=8.6x10-7) (Fig. 5d-

f). This consistency across compartments establishes Signature 2 as a defining 

molecular fingerprint of p16-positive senescence in the human ovary, which we have 

termed “BuckSenOvary” (Fig. 7b). The BuckSenOvary senotype comprises four 

interconnected biological modules that together define the transcriptional landscape 

of p16-positive ovarian regions (Fig. 7b). The first is a senescence and cell-cycle 

regulatory module (MYC, CCND2, TXNIP, RASD1, PKIG, EGR3, and ATXN1) that 

reflects altered proliferative signaling, oxidative stress responses, and Ras-cAMP 

pathways characteristic of p16-mediated growth arrest, and pointing to reinforced 

stress surveillance through TXNIP-dependent p53 activation and emerging links 

between ATXN1 and DNA damage–associated stress granules. The inflammatory 

and immune response module, enriched for SASP-associated mediators (C3, CFD, 

HLA-B, HLA-DRB1, CD74, CD44, SRGN, COTL1), captures complement activation, 

antigen presentation, and macrophage-stromal signaling that connect senescence to 
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chronic inflammation and tissue remodeling. The fibrosis and extracellular matrix 

remodeling module contains matrisome components (COL1A1, COL4A1, PCOLCE, 

SPARC, CCN1, CCN2, NID1, TAGLN, PDLIM7, CSRP1, TGFB1) that promote 

collagen deposition, cytoskeletal remodeling, and matrix organization, features 

typical of fibroblast-like senescent cells. Finally, the secretory and metabolic 

adaptation module (IGFBP7, SAT1, CD9, PABIR1, and KIAA1614) reflects oxidative 

stress adaptation, early-response transcriptional control, and vesicle-mediated 

communication. Among these, IGFBP7 stands out as a key secretory factor, 

consistent with its role in fibroblast senescence and the SASP. Together, these 

modules define BuckSenOvary as a coordinated stress-response program that 

integrates cell-cycle arrest, inflammation, and fibrotic remodeling, engaging in a 

senescence-inflammatory-fibrotic loop in the aging ovary (Fig. 7b). 

Discussion 

Cellular senescence, a hallmark of aging across multiple tissues, has remained 

poorly defined in the human ovary. This gap stems from the challenges of identifying 

senescent cells in vivo, the lack of senescence biomarkers, and the scarcity of 

healthy, non-pathological ovarian tissue. We previously optimized a postmenopausal 

ovarian explant culture model, inducing senescence with low-dose doxorubicin, 

enabling a multiomic definition of an ovarian senotype31. Building on this, we 

conducted integrative analyses using the canonical senescence-associated marker 

p16INK4a in native postmenopausal ovarian tissue. Together, these analyses revealed 

discrete senescent niches: p16-positive clusters were rare, spatially heterogeneous, 

and enriched within stromal, vascular, and cystic regions, often in proximity to 

macrophages. Multiplex protein imaging further resolved these niches into distinct 

senescent-like macrophage and myofibroblast populations alongside stressed, p16-

low stromal cells, highlighting cellular heterogeneity within the p16-positive 

microenvironment. Spatial transcriptomic profiling showed that p16-positive regions 

were characterised by suppression of cell-cycle and translational machinery, 

alongside activation of inflammatory, immune, and extracellular matrix (ECM) 

remodelling programs. Among four tested transcriptomic signatures, our novel ovary-

specific BuckSenOvary signature (Signature 2, 32-gene ovary-derived) most 

significantly distinguished p16-positive from p16-negative regions compared with the 

125-gene bone-derived SenMayo senescence gene set, highlighting the need for 
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elucidating organ-specific senescence signatures (senotypes).Notably, these 

signatures could also map p16-positive regions in an unsupervised manner in 

independent tissues. AI-driven pathology further demonstrated that p16-positive 

regions were not marked by increased bulk collagen, but rather by qualitative 

changes in ECM architecture and organisation. Collectively, these findings position 

p16-positive microenvironments as fibro-inflammatory, potentially contributing to 

ovarian ageing and downstream systemic health. 

p16INK4a has become the most widely used marker for identifying senescent cells in 

both research and clinical settings41,60. Its advantages include its established link to 

cell-cycle arrest through CDK4/6 inhibition44,61-63, its increased expression with age 

across various tissues39,47,64, and its reliability in histological assays where other 

senescence markers are less consistent65. In the ovary, mouse studies have shown 

that p16 expression increases with age, especially in stromal regions, which matches 

our observations in human tissue39,66. Transgenic reporter models such as p16Ink4a-

luciferase and p16Ink4a-GFP further confirm that p16-positive cells accumulate with 

age and reproductive aging.  These cells contribute to follicular decline and stromal 

fibrosis66-70. However, systematic studies in humans are limited due to the scarce 

availability of healthy ovarian tissue. Transcriptomic analyses generally have not 

detected age-related increases in p16 expression in the human ovary, though 

elevated p21 transcript levels have been reported16,71. This indicates a discordance 

between the p16 transcript and protein expression. In line with this, our data set 

showed no significant difference in p16 transcript levels between p16-positive and 

p16-negative regions. Yet, we observed clear differences at the p16 protein level. 

Importantly, p16 is not a universal marker of senescence. Its abundance can vary 

across cell types, may be absent in p21 or p53-driven senescence, and can also be 

induced in non-senescent situations such as tissue stress or neoplasia43,72,73. For 

these reasons, our study does not assume that p16 captures all senescent ovarian 

cells. Instead, our study identifies a biologically relevant subset of senescent-like 

populations that increase with age and exhibit an altered ovarian microenvironment. 

By integrating p16 immunohistochemistry with multiplexed imaging, spatial 

transcriptomics, and four independent p16-associated gene signatures, we provide a 

multidimensional framework to identify and map senescent niches in the human 

ovary.  
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A key finding from our research is the identification of a strong 32-gene ovarian 

senotype expression program enriched in p16-positive regions, referred to as 

BuckSenOvary (Signature 2) (Fig. 4d and 7). This senotype includes traditional 

senescence-associated secretory phenotype (SASP) factors along with extracellular 

matrix (ECM) modulators. Notably, p16-positive ovarian tissue regions displayed 

high levels of SERPINE1 (PAI-1), TIMP3, CCN1 (Cyr61), and complement 

components (CFD, C3), as well as PCOLCE, among others23,59. Many of these are 

well-known mediators of senescence or fibrosis in aging: SERPINE1 and TIMP3 are 

SASP factors that promote matrix buildup by blocking proteases. CCN1 is a 

matricellular protein that influences fibrotic remodeling and can trigger fibroblast 

senescence as a negative feedback mechanism during wound repair. Complement 

proteins like CFD and C3 are increasingly seen as SASP components that 

exacerbate inflammation in aging tissues23,57. On the other hand, our downregulated 

Signature 1 (Fig. 4b and Extended Data Fig. 8a) showed a clear loss of cell-cycle 

drivers (CCNB1, CCN5, TGFBR3), ribosomal proteins (RPL/RPS family members, 

EIF4B), and metabolic regulators (SLC7A2, RBP1, PDK4) in p16-positive regions. 

This finding aligns with the cell-cycle halt and reduced protein synthesis typical of 

senescent cells54-56. Overall, this transcriptional profile combines growth arrest with 

secretory activation, highlighting key traits of fibroblastic senescence and, for the first 

time, showcasing them in situ within ovarian tissue. By examining these networks in 

detail, our data builds on earlier transcriptomic studies of ovarian aging and identifies 

the specific regions where senescent cells play a role in tissue remodeling. 

Moreover, the superior performance of BuckSenOvary compared with bone-derived 

signatures such as SenMayo underscores the importance of organ-specific 

senotypes for capturing tissue-resident senescence programs. 

It is well established in mammalian models, and increasingly supported in humans, 

that ovarian fibrosis and tissue stiffening increase with age. This rise is driven by 

changes in the ECM and matrisome11,66,74-76. Our findings offer a clear explanation 

for these long-standing observations. We identified distinct p16-positive senescent 

areas that serve as focal microenvironments. These areas remodel their surrounding 

matrix and likely promote fibro-inflammation by secreting a pro-fibrotic senescence-

associated secretory phenotype (SASP). The p16-positive regions showed 

significant fibrotic remodeling. This was not due to more collagen, as 
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postmenopausal ovaries already have high collagen levels. Instead, it resulted from 

qualitative changes in collagen fiber structure and organization, aligning with stromal 

stiffening. These architectural changes were sensitively captured by AI-based fibrosis 

scoring (FibroNest) and were consistent with matrisome enrichment patterns 

observed in our spatial transcriptomic analyses. We noted an increase in key 

fibrosis-related genes, including the profibrotic growth factor TGFB1. This factor is a 

key regulator of collagen organization in various tissues. Along with TGFB1, we 

observed elevated levels of SASP-related and ECM-modifying factors such as 

SERPINE1 (PAI-1), PCOLCE, and TIMP3. Additionally, the presence of CD68-

positive macrophages in p16-positive regions indicates an inflammatory-fibrotic loop 

that promotes ongoing remodeling. Together, these results show how an increase in 

fibrosis drivers within senescent niches may contribute to age-related stromal 

stiffening in the human ovary. 

Our data also raise broader questions about the identity and roles of these 

senescent cells in ovarian aging and disease. The p16-positive niches in 

postmenopausal ovaries are largely made up of stromal, vascular, macrophage-like, 

and myofibroblast-like populations, but their origins remain unclear and likely reflect 

cumulative ovulatory injury, ischemia-reperfusion, inflammation, and hormonal 

transitions. In other tissues, senescent cells can be acutely protective, limiting 

proliferation, promoting wound repair, or acting as a barrier to malignant 

transformation, and have been proposed to act as an anti-cancer failsafe, yet 

become harmful when they persist and continue to signal through chronic SASP77-80. 

A similar duality may apply in the ovary, particularly where extra-ovarian epithelia are 

acquired, such as endometriotic implants, cortical inclusion cysts lined by fallopian 

tube-like epithelium, or other metaplastic foci81-84. Senescence at these interfaces 

could act as a brake on aberrant proliferation or metaplasia, or conversely, create a 

chronic SASP-rich niche that could foster fibro-inflammation and influence early 

neoplastic evolution. Given that epithelial ovarian cancers are most commonly 

diagnosed after menopause85-87, it will be important to determine whether 

BuckSenOvary-like signatures are present at, or adjacent to, early precursor lesions 

and how they intersect with known fallopian tube-derived pathways of high-grade 

serous carcinoma. 
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Several considerations and future directions arise from this work. First, our analysis 

was performed on a relatively small number of postmenopausal ovaries and is cross-

sectional, which limits inference about the temporal dynamics of senescence, 

fibrosis, and ovarian function; longitudinal or peri-menopausal sampling will be 

important to define how these niches emerge. Second, GeoMx DSP provides ROI-

level rather than single-cell resolution, and future studies using higher-resolution 

spatial platforms (such as CosMx or MERFISH), combined with multiplex imaging, 

will be needed to resolve the specific p16-positive cell types and their interactions 

that shape the senescent niche. Third, p16-based detection does not capture all 

senescent cells and may include stressed but non-senescent populations, 

underscoring the need to integrate additional senescence markers, functional 

assays, and interventional approaches that modulate senotype genes or selectively 

deplete p16-positive cells to test their causal roles. Finally, given the known 

discordance between mRNA and protein, global proteomics and mass-spectrometry 

imaging analyses of the aging ovary will be vital. These analyses will map ECM and 

matrisome remodeling in greater detail and translate this spatial atlas of senescent 

niches into actionable targets for restoring tissue homeostasis. 

In summary, cellular senescence is a defining feature of the aging human ovary.  

Rare, spatially discrete p16-positive microenvironments co-localize with 

macrophages and display a conserved SASP/ECM senotype, marked by 

suppression of cell-cycle/translation and qualitative collagen reorganization without 

increased bulk. Spatial transcriptomics and AI-guided pathology identify these fibro-

inflammatory hotspots with high fidelity (notably via BuckSenOvary (Signature 2)), 

and transcriptomic signatures derived from these analyses can map p16-positive 

regions in an unsupervised manner across independent samples. Convergence 

between native p16-positive niches and our doxorubicin-induced ovarian 

senescence model further supports the robustness of this ovary-specific senotype. 

Together, these findings link senescence to ovarian stiffening and remodeling and 

suggest that targeting senescent stromal niches may represent a strategy to 

preserve postmenopausal ovarian health and narrow the gap between female 

healthspan and lifespan. 
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Methods and Materials 

Human ovarian tissue acquisition and processing��  

De-identified human ovarian tissue was obtained from the Northwestern University 

Reproductive Tissue Library (NU-RTL) under an IRB-approved protocol 

(STU00215770). Ovaries were obtained from females aged 50 to 84 years (mean 64 

± 8 years) undergoing total hysterectomy or salpingo-oophorectomy for various 

gynecologic conditions (Supplementary Table 1). Individuals with endometriosis, 

ovarian neoplasia, BRCA mutations, or a history of breast cancer, radiotherapy, or 

chemotherapy were excluded. Post-operative pathology classified tissues as benign, 

pre-malignant, or malignant; however, all samples included in this study were 

confirmed free of ovarian pre-malignancy or malignancy (Supplementary Table 1). 

Upon collection, the tissue was divided into coronal sections (3-5 mm thick) such that 

each section contained an outer cortex and inner medulla (Fig. 1a1). In the absence 

of significant gross pathology as assessed by a certified gynecologic pathologist, 

varying sizes of the ovarian cross-sections were designated for research and 

transported to the laboratory on ice in ORIGIO® HandlingTM IVF medium (Cooper 

Surgical Inc., Trumbull, CT, USA).����  

Ovarian tissue was processed in ORIGIO® HandlingTM IVF medium at room 

temperature. The 3-5mm sections were divided into smaller tissue pieces containing 

both the cortex and medulla (Fig. 1a1 and 1a2). For certain participants with 

complete ovarian sections (Fig. 1a1), the sections were divided equally into 8 tissue 

pieces (n=4, Participant # 1, 2, 3, and 24) while a variable number of tissue pieces 

were generated for other participants, depending on the availability of tissue 

(Supplementary Table 1).��  

Tissue fixation, histochemical staining, and imaging��  

The ovarian tissue pieces were fixed in Modified Davidson’s Fixative (mDF) (Electron 

Microscopy Sciences, Hatfield, PA, USA), at room temperature for 2 hours and then 

overnight at 4°C. After overnight fixation, the tissue pieces were washed in and 

transferred to 70% ethanol and stored at 4°C until further processing. The tissue 

pieces were then dehydrated in an automated tissue processor (Leica Biosystems, 

Buffalo Grove, IL, USA), embedded in paraffin, and sectioned (5 µm thickness) with 

a microtome (Leica Biosystems, Buffalo Grove, IL, USA) (Fig. 1a2).��  
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For each tissue piece from all participants, 10 slides were generated, with two 5 µm 

sections per slide. The 9th and 10th slides from all tissue pieces were stained for 

hematoxylin & eosin (H&E). All tissue pieces from the participants with 8 tissue 

pieces (n=4; Participant# 1, 2, 3, and 24), and one tissue piece with the best 

histology for the remaining participants (n=41), the 8th slide was stained for the 

p16INK4A antibody by Immunohistochemistry (IHC) (total n=45 participants), and the 

7th slide was stained with Picrosirius Red (PSR) for collagen (Supplementary Table 

1).�  

H&E staining was performed using a Leica Autostainer XL (Leica Biosystems, 

Buffalo Grove, IL, USA). Tissue sections were then cleared with Xylene (Mercedes 

Scientific, Lakewood Ranch, FL, USA) in three 5-minute incubations and mounted 

with Cytoseal XYL (Epredia™ Thermo Fisher Scientific, Waltham, MA, USA).� IHC 

was performed with the p16INK4A antibody (1:300 dilution and 2.67µg/mL 

concentration) (Cat# ENZ-ABS377-0100, Enzo Life Sciences,�Farmingdale, NY, 

USA)�(n=45 participants) using an automated IHC stainer (Leica Biosystems, 

Buffalo Grove, IL, USA) in collaboration with the Pathology Core Facility at 

Northwestern University. Antibody optimization was performed on native 

postmenopausal ovarian tissue containing both ovarian cortex and medulla, along 

with a positive (Cervical Cancer tissue) (Extended Data Fig. 1a) and negative 

(Extended Data Fig. 1b) control.  

For preliminary histological characterization of p16INK4A neighborhoods, manual IHC 

was performed on sequential 5µm sections (n=2 participants; (Supplementary Table 

1)) using the following antibodies: p16INK4A (same as above), p21CIP1/WAF1 (1:100 

dilution and 2.29µg/mL concentration) (Cat# M720229-02, Dako, Santa Clara, CA, 

USA), alpha-smooth muscle actin (a-SMA; 1:1000 dilution and 0.007µg/ml 

concentration) (Cat# PA0943, Leica Biosystems, Deer Park, IL, USA), and CD68 

(1:100 dilution and 0.04mg/ml concentration) (Cat# M087601-2, Agilent, Santa Clara, 

CA, USA) according to our laboratory’s previously established protocol using heat-

induced epitope retrieval and antibody detection with a 3’,3’-diaminobenzidine (DAB) 

Peroxidase Substrate kit (Vector Laboratories, Burlingame, CA)13. The slides were 

then counterstained with hematoxylin (Mercedes Scientific, Lakewood Ranch, FL, 

USA), cleared with CitriSolv (Decon Labs, King of Prussia, PA, USA), and mounted 

with Cytoseal XYL.��  
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For PSR staining, tissue sections were deparaffinized with Xylene for two 5-minute 

incubations, rehydrated with 100% ethanol for three 1-minute incubations, and 

washed in distilled water. Slides were incubated in Bouin’s fixative (StatLab, 

McKinney, TX, USA) for 1 hour, Picrosirius Red stain (StatLab, McKinney, TX, USA) 

for 2 minutes, and 0.5% Glacial Acetic Acid (Fisher Scientific, Pittsburgh, PA, USA) 

for two 5-second incubations with continuous agitation. The sections were then 

dehydrated with 100% ethanol for three 10-second incubations, cleared with Xylene 

for three 1-minute incubations, and mounted with Cytoseal XYL.��  

To image entire ovarian tissue sections stained with H&E, IHC, and PSR, scans 

comprised of a series of individual images were taken across the tissue and 

automatically stitched using a 20X objective on the EVOS FL Auto Cell Imaging 

System (ThermoFisher Scientific, Waltham, MA, USA). For tissue sections stained 

with p16INK4A, the sections were visualized from one end to the other on the 

RebelScope Imaging System (Discover ECHO Inc., San Diego, CA, USA) using a 

20X objective with 200% optical zoom to map all p16INK4A staining (clusters, isolated 

punctate staining, staining around vessels or special structures (Fig. 1d). Images of 

p16INK4A staining throughout a tissue section, as well as on sequential tissue 

sections, were taken and mapped using either a 20X or 40X objective with 200% 

optical zoom (Extended Data Fig. 2a and 2b).� �For PSR quantification, participants 

with the best visible distinction between cortex and medulla were selected (n=28), 

and 1-4 ROIs each for cortex and medulla were taken using the 20X objective 

(Extended Data Fig.11), such that they covered the entire tissue piece. The ROI 

images were then converted into an RGB format using Fiji (ImageJ2 version 

2.14.0/1.54f, Madison, WI, USA), and the second channel, i.e., green channel, was 

selected. Based on the thresholds for the two youngest and the two participants, a 

threshold of 125 was applied across all images to select for collagen staining (in 

red). The percent positive staining was calculated by determining the area of the 

positive stain relative to the whole ROI, and the values were averaged to obtain 

individual percentage positive values for cortex (cortex-only ROIs), medulla 

(medulla-only ROIs), and the whole tissue section (all ROIs). 

For digital image labelling, ovarian tissue pieces stained with p16INK4A were scanned 

in brightfield with a 20X Plan Apo objective using the NanoZoomer Digital Pathology 

whole slide scanning system (HT-9600) (Hamamatsu City, Japan) at the University 
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of Washington Histology and Imaging Core and in collaboration with Visiopharm® 

(Broomfield, CO, USA). The Digital Image Analysis (DIA) platform Visiopharm 

Integrator System (VIS; Ver. 2023.01.1.13563) (Visiopharm, Hørsholm, Denmark) 

was used to analyze the IHC. Positive staining was detected by binary thresholding 

and was assigned a yellow color, while negative staining was assigned a blue color. 

The percent positive staining was calculated by determining the area of the positive 

stain label relative to the whole tissue section area.�� For participants with 8 tissue 

pieces (n=4), an average of the p16INK4A positive area from all 8 tissue pieces was 

calculated to represent the p16INK4A positive area for that participant.  

Tissue processing�for immunofluorescence multiplexing 

Johns Hopkins University received eight slides for each donor (n=4). Based on p16 

IHC staining performed at Northwestern University, 13 slides exhibiting substantial 

p16 expression were selected for multiplexed immunofluorescence analysis. Tissue 

pieces 1, 2, and 4 from donor 1360, tissue pieces 4, 5, and 7 from donor 1368, 

tissue pieces 4, 5, 6, and 7 from donor 1369, tissue pieces 3, 5, and 8 from donor 

2369 were selected based on the p16 IHC staining.� Four-micron paraffin sections 

were baked at 42 °C for 3 hours and dried overnight at room temperature with a 

desiccator, dewaxed using xylene, rehydrated with a series of alcohols, and 

concluded with several times of dipping in water. The tissue slides were transferred 

to a heat-resistant plastic bowl filled with antigen retrieval solution (Vector 

Laboratories, H-3300-250) and subjected to 20 minutes of heating in a food steamer 

(Bella).��  

Immunofluorescence staining�for immunofluorescence multiplexing 

p16 (Roche diagnostics, 705-4793), CD68 (Roche diagnostics, 790-2931), and a-

SMA (Invitrogen, 14-9760-82) were detected with sequential TSA-based 

immunofluorescence in the first imaging round. Counterstaining was performed with 

0.6 mM Hoechst 33342 in Blocker™ casein solution for 15 minutes. The stained 

tissue sections were then imaged using an inverted fluorescence microscope (see 

detailed in the Fluorescence Microscopy section). One drop of TBS-T was added to 

the tissue region to avoid evaporation while imaging.�After imaging, fluorophore 

inactivation steps were performed to reduce the fluorescence signal to the 

background level. Tissue sections were placed in a transparent box, which was then 
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filled with the bleaching solution containing 2 M H₂O₂ and 3 mM EDTA in PBS at pH 

12.5. The transparent box, holding the tissue slides and bleaching solution, is 

positioned between two 5000 lux light pads (HSK, 615517997868) for one hour to 

facilitate fluorophore inactivation.�In the second imaging round, 53BP1 (Bethyl 

laboratory, A700-011) was detected with TSA-based immunofluorescence, followed 

by staining of HMGB1(Abcam, 195010) and Lamin B1 (Abcam, 194108) with directly 

conjugated antibodies. Counterstaining was performed with 0.6 mM Hoechst 33342 

in Blocker™ casein solution for 15 minutes. The stained tissue sections were then 

imaged using an inverted fluorescence microscope (see detailed in the Fluorescence 

Microscopy section). One drop of TBS-T was added to the tissue region to avoid 

evaporation while imaging.��  

Fluorescence microscopy�for immunofluorescence multiplexing 

Fluorescently labelled tissue sections were imaged with a Hamamatsu Flash 4.0 

CMOS camera mounted on an inverted research microscope (Ti-E, Nikon). The 

microscope is equipped with a motorized stage and motorized excitation and 

emission filters controlled by NIS-Elements (Nikon). Lumencor SpectraX 6 

(Lumencor) was used as the light source. For each sample, a custom grid setup was 

determined to acquire images covering the entire tissue area using an S Fluor 10x 

microscope objective with an NA of 0.5 (MRF00100, Nikon). For image stitching, the 

grid step size is set to contain a 10% overlap between adjacent images. The Perfect 

Focus System (Nikon) was used to maintain a consistent imaging focal plane across 

the tissue area. Under this microscopic setup, the pixel size of the acquired images 

was 0.65 mm. The images acquired in each grid were stitched using a previously 

described method88,89.�  

Tissue image registration for�immunofluorescence multiplexing 

This method relies on nuclear images, using the DAPI channel or its equivalent as a 

reference. The registration process consists of two main steps: global rigid 

registration followed by local grid-based deformable registration90. Global rigid 

registration was performed on down-sampled images to enhance computational 

efficiency, while the local deformable registration was applied to full-resolution 

images to achieve high spatial accuracy. The deformable registration used a grid 

step size of 500 pixels. The resulting aligned whole-slide images were exported in 
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OME-TIFF format using the libvips library91 and qualitatively assessed in 

QuPath92.�  

Cell profiling and analysis of immunolabeled images�  

Nuclei segmentation was performed on the DAPI-stained channel using the pre-

trained StarDist model93. Cell boundaries were defined by expanding each 

segmented nucleus outward by 4.5�µm (equivalent to 7 pixels). In cases where 

expanded boundaries overlapped between adjacent nuclei, the boundary was 

adjusted to the midpoint between them. Image processing and quantification of 

cellular morphological features were conducted using a custom MATLAB 

program89,94. Morphological features, including cell and nuclear area, aspect ratio, 

circularity, and equivalent radius, were quantified based on established 

methods88,89,94. Nuclear intensity features, such as mean and total fluorescence 

intensity, were measured across all aligned channels following background 

subtraction. Background images were generated for each channel using a 2D 

median filter with a 7�×�7-pixel window applied to images down-sampled by a 

factor of 10, and then rescaled to the original resolution.�  

Sample preparation for Digital Spatial Profiling (DSP) 

Sample preparation followed the NanoString GeoMx DSP slide-preparation user 

guide (MAN-10150-05, November 2023 updated version) and Merritt et al. 2020. 

Formalin-fixed paraffin-embedded (FFPE) tissue sections (5 μm) were mounted on 

Superfrost Plus slides (Thermo Fisher Scientific) and baked at 60 °C for 2 h. Slides 

were deparaffinised (3 × 5 min in xylene) and rehydrated through graded ethanol (2 

× 5 min in 100 % EtOH, 1 × 5 min in 95 % EtOH), followed by a rinse in phosphate-

buffered saline (PBS). Antigen retrieval was carried out in 10 mM Tris/1 mM EDTA, 

pH 9.0, in a laboratory steamer at 100 °C for 15 min. Sections were permeabilised 

with proteinase K (0.1 mg ml⁻¹, 15 min, 37 °C) and washed in PBS. Slides were 

hybridised overnight at 37 °C with 250 µl GeoMx probe mix (25 µl Human Whole-

Transcriptome Atlas probes, 12.5 µl custom-probe pool, 200 µl Buffer R, 12.5 µl 

nuclease-free water; NanoString Technologies) under HybriSlip™ coverslips (Grace 

Bio-Labs). Coverslips were removed by immersion in 2 × SSC containing 0.1 % (v/v) 

Tween-20, followed by two stringent washes (25 min each, 50 % formamide in 2 × 

SSC, 37 °C) and a final rinse in 2 × SSC (5 min). Sections were blocked for 1 h at 
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room temperature (RT) in Buffer R supplemented with 7 % (v/v) donkey serum, 

stained with fluorescently conjugated antibodies for 60 min at RT in the dark, and 

washed in 2 × SSC for 5 min. Nuclei were counterstained with Syto 83 (Thermo 

Fisher Scientific; 10 min, RT), slides were rinsed in PBS, and then loaded onto the 

GeoMx Digital Spatial Profiler (NanoString Technologies) for region-of-interest (ROI) 

selection and oligonucleotide collection. The study utilized three key antibodies for 

immunostaining: an anti-CD31 antibody (clone JC/70A) from ABCAM (catalog 

AB215912) conjugated to Alexa Fluor 694 and used at a 1:100 dilution; an anti-

Transgelin antibody (clone SM22-alpha) from Novus (catalog NBP3-121157) 

conjugated to Alexa Fluor 594 at 1:100 dilution; and Syto-83 nucleic acid stain from 

Invitrogen (catalog S11364) conjugated to Cy3, applied at a 1:10,000 dilution. The 

CD31 antibody is mouse-derived, and the Transgelin antibody is sheep-derived95. 

GeoMx DSP data acquisition 

Digital Spatial Profiling was performed on an automated GeoMx-NGS platform 

(NanoString Technologies, MAN-10152, November 2023 revision). FFPE slides 

prepared as above were scanned under three morphology channels, Cy3, Texas 

Red, and Cy5, to visualise segmentation markers. ROIs were drawn in GeoMx DSP 

software v2.0, and photocleaved oligonucleotide tags from each ROI were aspirated 

into individual wells of a 96-well PCR plate. 

Library preparation and sequencing 

Oligonucleotide eluates were dried and resuspended in 10 µl nuclease-free (DEPC-

treated) water; 4 µl of each eluate served as template for PCR library construction 

with the GeoMx SeqCode primer mix (NanoString Technologies, MAN-10153-01). 

The amplification step simultaneously appended Illumina P5/P7 adapter sequences 

and dual-indexed sample barcodes. PCR products were pooled in equal volumes 

and subjected to two rounds of purification with AMPure XP beads (Beckman 

Coulter; 1.2 × bead-to-DNA ratio each round) before elution in 20 µl 10 mM Tris–HCl, 

pH 8.5. Pooled libraries were sequenced on an Illumina NextSeq 550 (NextSeq 

500/550 Mid-Output v2.5 kit) in paired-end mode (27 bp × 27 bp) following the 

manufacturer’s instructions. 

Data preprocessing and quality control 
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FASTQ files from 92 regions were processed with GeoMxNGSPipeline (v2.0.21) to 

generate DCC files. LabWorksheet files and OME-TIFF images were exported from 

GeoMx DSP. Downstream analyses were performed in R. Data import and quality 

control used GeoMxWorkflows (v1.8.0). ROIs were excluded if they failed any of the 

following criteria: >50% of genes not expressed; total reads ≥1,000; minimum 

negative count ≥1; area ≥1,000; percent trimmed-and-stitched reads ≥80%; aligned 

reads ≥75%; or percent saturation ≥50%. Features (genes/segments) with low signal 

were further removed based on the negative-probe distribution and gene detection 

rate. Counts were then normalized using TMM, and batch effects were corrected with 

standR (v1.6.0). 

Differential Expression (DE) Analysis of Spatial Transcriptomics 

Ninety-two regions of interest (ROIs) were grouped by p16 expression status (p16-

positive or p16-negative), ovarian region (cortex or medulla), and tissue structure 

type (stroma, vessels, ovarian surface epithelium (OSE), cyst). Gene expression 

data were quantile-normalized and log2-transformed counts per million (CPM). 

Differential expression analyses were performed in edgeR, with ROIs partitioned into 

two groups for each comparison. For each gene, fold change (FC), t-score, raw P 

value, and Benjamini–Hochberg false discovery rate (FDR) were calculated. 

Comparisons were first conducted between all p16-positive and p16-negative ROIs, 

followed by stratified analyses within each ovarian region and each tissue structure 

type. Genes were deemed significantly differentially expressed if P�<�0.05 and 

log2FC >�0.5. 

Pathway enrichment analysis  

Pathway enrichment analyses were performed using the clusterProfiler package. 

Differentially expressed genes were mapped to Gene Ontology (GO), Kyoto 

Encyclopedia of Genes and Genomes (KEGG), and Hallmark gene sets obtained 

from MSigDB. For each gene set, normalized enrichment score (NES), P value, and 

Benjamini-Hochberg false discovery rate (FDR) were calculated.  

p16 signature marker identification 

Marker genes were identified using the FindAllMarkers() function in Seurat, which 

compares each identity group against all others. Analyses were performed for all 

p16-positive and p16-negative ROIs, and further stratified by p16 status within the 
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ovarian region (cortex or medulla) and tissue structure type (stroma, vessels, ovarian 

surface epithelium, cyst). 

Evaluation of p16-associated transcriptomic signatures for spatial mapping  

The ability of each p16-associated gene signature to discriminate p16-positive 

regions was assessed using the UCell package for signature scoring. Statistical 

significance of score differences between p16-positive and p16-negative ROIs 

across ovarian regions (cortex and medulla) was evaluated using a t-test 

(P�<�0.05). Signature scores were spatially mapped onto tissue images using 

SpatialOmicsOverlay. For each signature, performance was quantified by (a) its 

accuracy in distinguishing p16 status and (b) its discriminatory power when stratified 

by ovarian region. A publicly available senescence-associated signature (SenMayo) 

was used as a comparator to evaluate the relative performance of the p16-

associated signatures in classifying p16-positive versus p16-negative regions. 

Fibronest analysis and quantification  

For n=10 ovarian tissue pieces (from different participants) with the strongest 

p16INK4A signal and best clusters (Participant# 1, 2, 6, 7, 8, 9, 10, 11, 12, and 

13).� To analyze the collagen in the annotated p16-positive and negative regions on 

the PSR scans, we used the FibroNest quantitative digital pathology platform. This 

platform used AI-based pathology to assess 12 characteristics related to collagen 

quantity and structure, 13 morphometric traits related to collagen fibers, and seven 

attributes related to fibrosis architecture. Each trait representation was captured 

using a histogram depicting its statistical distribution across all annotated p16-

positive and -negative regions for all tissue sections and was refined into ~ 300 

quantitative fibrosis traits (qFTs), accounting for parameters such as mean, variance, 

skewness, and kurtosis, etc. From this pool of ~300 qFTs, the FibroNest platform 

generated automated, robust, and continuous scores for fibrosis phenotypic 

signatures. Similar to the Ph-CFS, the composite scores for each category of 

collagen content, fiber morphology, and fibrosis architecture, referred to as the 

collagen composite score (CCS), morphology composite score (MCS), and 

architecture composite score (ACS), respectively, were assessed.� 

 

Data Availability 
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All data needed to evaluate the conclusions in the paper are present in the paper 

and/or the Supporting Information. The spatial transcriptomic data have been 

uploaded to the SenNet Consortium database. 
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Figure Legends 

 

Figure 1. Histological characterization of p16 expression in postmenopausal 

human ovarian tissue. a, Overview of the tissue processing and analysis pipeline. 

a1, Whole postmenopausal ovaries were sliced into 3-5�mm-thick sections. a2, 

Each slice was subdivided into eight pieces containing both cortical and medullary 

regions. A single tissue piece was formalin-fixed, paraffin-embedded, and sectioned 

at 5�µm for downstream histological analysis. a3, Workflow summary for 

immunohistochemical staining and image-based quantification of p16INK4A (p16). 

Blue boxes indicate analytical methodologies; orange boxes indicate corresponding 

quantitative or visual readouts. b, Representative ovarian tissue piece from one 

participant showing tissue morphology (H&E) and p16 immunostaining with 

hematoxylin counterstain. Clusters of p16-positive cells are observed sporadically 

within the tissue. Scale bars: whole section, 500�µm; magnified clusters (1-4), 

60�µm. c, Heterogeneous distribution of p16 staining in an ovarian section from an 

80-year-old participant, subdivided into eight pieces; four pieces (2, 4, 6, and 8) are 

shown. The top row shows H&E, the middle row shows p16 immunohistochemistry 

(IHC), and the bottom row shows p16 IHC following digital image labelling. Binary 

thresholding was applied to identify p16-positive regions (yellow) and p16-negative 

regions (blue). The percentage of p16-positive area is indicated in the top left of each 

panel. Scale bar, 500�µm. d, Representative p16-IHC images showing clustered or 

punctate staining and localization to specific structures. Scale bars: cluster and 

isolated, 60�µm; vessel, 50�µm; cyst, 30�µm. e-f, Scatter plots showing the 

relationship between participant characteristics and tissue-level p16 positivity (n=45). 

e, Percentage of p16-positive staining versus participant age. f, Percentage of p16-

positive staining versus body mass index (BMI) for the same cohort. Simple linear 

regression lines are shown. 

 

Figure 2. Characterization of p16-positive cells and their niche. a, Workflow for 

multiplex immunofluorescence staining of ovarian tissue. In the first round, p16, 

CD68, and α-SMA were stained using TSA-based IF. After counterstaining and 

imaging, slides were bleached and blocked. In the second round, 53BP1 was stained 

using TSA, followed by direct immunofluorescence detection of Lamin B1 and 
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HMGB1. Images from both rounds were stitched and aligned. Regions were 

annotated as p16-negative (p16-) or p16-positive (p16+) based on IHC data from 

Northwestern University. Single-cell segmentation and intensity measurements 

enabled downstream quantitative analysis. b, Validation of p16 immunostaining on 

human ovary tissue using two distinct antibodies on serial sections. p16 

immunohistochemistry (IHC) staining was performed at Northwestern University with 

a p16 antibody from Enzo Life Sciences Inc. (bii), and immunofluorescence (IF) was 

performed at Johns Hopkins University with a p16 antibody from Roche Diagnostics 

on an adjacent slide (biii). The adjacent H&E image is shown (bi). Representative 

higher magnification images of H&E and p16 staining are shown below the images of 

entire sections. c, g, Heatmaps of K-means clustering results based on senescence 

marker intensity profiles from 53865 cells from p16+ regions and 83187 cells from 

p16- regions. d, h, Bar graphs showing the proportion of each cell cluster in p16- (d) 

and p16+ (h) regions. e, I, UMAPs visualizing the eight cell clusters spatially in p16- 

(e) and p16+ (i) regions. f, j, UMAPs showing cell density for each cluster in p16- (f) 

and p16+ (j) regions. k, Example of multiplex IF images from p16- (top row) and 

p16+ (bottom row) cortical regions. The example highlights cluster 5, 

p16+/CD68+/Lamin B1+, cluster 6, p16+/53BP1+/CD68+, and cluster 8, 

p16+/53P1+. Merged channels demonstrate the extent of colocalization between 

markers. White boxes indicate areas shown at higher magnification in the 

corresponding panels. l, Example of multiplex IF images from p16- (top row) and 

p16+ (bottom row) cortical regions. The example highlights p16+/a-SMA+/HMGB1+ 

cluster 7. White boxes indicate regions shown at higher magnification. 

 

Figure 3. Spatial transcriptomic profiling of p16-positive and p16-negative 

regions in postmenopausal ovary. a, Overview of the spatial transcriptomic study 

design. Serial 5�mm paraffin sections from a single ovarian tissue piece of an 80-

year-old participant were allocated for GeoMx Digital Spatial Profiling (DSP), p16 

immunohistochemistry (IHC), or left unstained for future analysis. p16 IHC-stained 

sections were used to annotate adjacent sections for DSP, enabling selection of p16-

positive (p16+) and p16-negative (p16-) regions of interest (ROIs). Sections 1, 3, and 

7 were processed for transcriptomic analysis. b, Example of ROI identification and 

transfer. Section 2, stained for p16 by IHC, was used to annotate p16+ and p16- 

ROIs across the ovarian tissue section, including cortical, medullary, vascular, and 
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cystic regions. These annotations were transferred to the adjacent GeoMx DSP 

section (section 1) for targeted transcriptomic profiling. c, Differential gene 

expression analysis of all p16+ versus p16- ROIs across sections 1, 3, and 7 (n = 

92). Volcano plot shows significantly up- and downregulated genes (adjusted P < 

0.05; log2 fold change >�0.5). d, Dot plot showing the top 15 most upregulated and 

downregulated transcripts in p16+ versus p16- ROIs across all regions. e, Sub-

analysis of cortical ROIs (n=71). Volcano plot shows differentially expressed genes 

between p16+ and p16- cortex-only regions (adjusted P < 0.05; log2 fold change > 

0.5). f, Sub-analysis of medullary ROIs (n=21). Volcano plot shows differentially 

expressed genes between p16+ and p16- medulla-only regions (adjusted P < 0.05; 

log2 fold change > 0.5). g, Dot plot showing the top 15 most upregulated and 

downregulated transcripts in cortex p16+ versus p16- ROIs. h, Dot plot showing the 

top 15 most upregulated and downregulated transcripts in medulla p16+ versus p16- 

ROIs. i, Pathway enrichment analysis comparing p16+ versus p16- ROIs across all 

tissue (All), cortex only, and medulla only groups. Normalized enrichment scores 

(NES) are shown for selected gene sets. 

 

Figure 4. Derivation of p16-associated transcriptomic signatures to map 

senescent cells. Multiple analytical approaches were applied to identify robust p16-

associated gene signatures for subsequent evaluation of p16-senescence-

associated specificity and precision. a, Venn diagram showing overlap of 

downregulated differentially expressed genes (DEGs; P <�0.05) between p16-

positive (p16+) and p16-negative (p16-) regions of interest (ROIs) across three 

comparisons: all ROIs combined (All), cortex-only ROIs, and medulla-only ROIs. b, 

Heatmap of 32 shared downregulated DEGs common to all three comparisons, 

defined as Signature 1. c, Venn diagram showing overlap of upregulated DEGs (P < 

0.05) across the same three comparisons. d, Heatmap of 32 shared upregulated 

DEGs common to all three comparisons, defined as Signature 2. e, Principal 

component analysis (PCA) of all ROIs, colored by p16 status (blue, p16-; red, p16+) 

and annotated by anatomical region (cortex or medulla). f, Dot plot of top-loading 

genes from principal component 1 (PC1), which separates ROIs by p16 status, 

defining Signature 3. g, Dot plot of top-loading genes from principal component 2 

(PC2), which separates ROIs by anatomical region. h, Pathway enrichment analysis 

of genes contributing to PC1, highlighting biological processes associated with p16 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 8, 2025. ; https://doi.org/10.64898/2025.12.03.692228doi: bioRxiv preprint 

https://doi.org/10.64898/2025.12.03.692228


status. i, Partial least squares discriminant analysis (PLS-DA) of ROIs based on p16 

status alone (p16+ vs p16-). j, PLS-DA incorporating both p16 status and anatomical 

region (cortex vs medulla). k, Dot plot of average gene expression for marker genes 

distinguishing p16 status and region, identified using the Seurat FindAllMarkers() 

function. Upregulated markers defining p16+ status constitute Signature 4. l, 

Pathway enrichment analysis of upregulated marker genes from Signature 4. 

Signatures 1-4 are later validated in Fig. 5. 

 

Figure 5. Evaluation of p16-associated transcriptomic signatures for spatial 

mapping of p16-positive regions. The four p16-associated gene signatures 

(Signatures 1-4), derived from 92 regions of interest (ROIs) across three ovarian 

sections, were assessed for their ability to distinguish p16-positive (p16+) from p16-

negative (p16-) regions and to spatially map senescent cells. a, d, g, j, Violin plots 

showing UCell-derived enrichment scores (“p16 mapping scores”) for each signature 

in ROIs annotated as p16- (blue) or p16+ (red). b, e, h, k, Unsupervised spatial 

mapping of each signature to ovarian sections 3 and 7 using the 

SpatialOmicsOverlay package. Enrichment scores are overlaid onto tissue 

architecture; far-left panels indicate reference p16 status annotation for each ROI 

(p16-, blue; p16+, red). c, f, i, l, Violin plots showing UCell enrichment scores for 

each signature stratified by anatomical region (cortex vs medulla) and p16 status. 

This analysis tests whether signatures discriminate p16+ regions independently of 

tissue region. Violin plots were analyzed using two-sided t-tests; P < 0.05 was 

considered significant. 

 

Figure 6. AI-driven digital pathology confirms fibrotic enrichment in p16-

positive ovarian regions. Fibrosis-associated features were quantified in 

participant-matched p16-positive (p16+) and p16-negative (p16-) tissue regions from 

ten participants to assess the impact of p16 expression within the ovarian stromal 

niche, integrating transcriptomic matrisome signatures with high-resolution collagen 

imaging. a, Heatmap of matrisome and matrisome-associated genes significantly 

enriched in p16+ regions of interest (ROIs) relative to p16- ROIs, represented as log2 

fold change. b, Images of Hematoxylin and eosin (H&E), p16-IHC and eosin, and 

picosirius red staining that highlight co-localization of histological sclerosis with p16-

positive regions. c, Workflow summarizing the AI-based fibrotic analysis pipeline 
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using the FibroNest platform (PharmaNest) applied to p16-annotated sections. d, 

Representative picosirius red–stained ovarian sections from ten participants, 

annotated for p16 status and analyzed for quantitative collagen traits including bulk, 

morphometry, and architecture. e, Heatmap of fibrosis severity for matched p16+ and 

p16- ROIs across participants. Severity is color-coded from green (fine collagen, 

minimal fibrosis) to red (dense, complex collagen, maximal fibrosis). Over 300 

quantitative fibrosis traits (qFTs) were measured and aggregated into three 

composite categories: collagen bulk (12 traits), morphometry (13 traits), and 

architecture (7 traits). f–k, Quantification of normalized composite fibrosis scores 

derived from e. Scores range from 0 to 10, with higher values indicating greater 

fibrosis. Data distribution was assessed using the Shapiro–Wilk normality test: 

panels f, h, and j passed and were analyzed using paired t-tests; panels g, i, and k 

were analyzed using Wilcoxon matched-pairs signed rank tests. P�< 0.05 was 

considered significant. 

 

Figure 7. p16 senotype BuckSenOvary reflects senescence, inflammation, and 

fibrosis in the aging ovary. Transcriptomic comparison of doxorubicin-induced 

senescence in human ovarian explants and p16-positive regions in native human 

ovary reveals overlapping gene expression profiles across cortical and medullary 

compartments, including the p16-associated signature, BuckSenOvary. Heatmaps 

show log2 fold changes of overlapping genes (P < 0.05, log2 fold change > 0.5) 

identified in both datasets. The BuckSenOvary senotype comprises four coordinated 

biological modules: senescence and cell-cycle arrest (MYC, CCND2, TXNIP, 

RASD1, PKIG, ATXN1, EGR3), inflammation and immune modulation (C3, CFD, 

HLA-B, HLA-DRB1, CD74, CD44, SRGN, COTL1), fibrosis and extracellular 

matrix remodeling (COL1A1, COL4A1, PCOLCE, SPARC, CCN1, CCN2, NID1, 

TAGLN, PDLIM7, CSRP1, TGFB1), and secretory/paracrine and metabolic 

reprogramming (IGFBP7, SAT1, CD9, PABIR1, KIAA1614). The schematic depicts 

the transition from histologically homogeneous p16-negative regions to 

heterogeneous p16-positive zones enriched for senescent stromal cells, 

macrophage infiltration, and complex fibrotic architecture. Together, these findings 

define a self-reinforcing senescence-inflammation-fibrosis feedback loop 

represented by the p16-linked senotype BuckSenOvary, which underlies age-

associated ovarian remodeling. 
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Extended Data Figure 1: Optimization of immunohistochemistry staining for 

p16 antibody. Representative images showing optimization of 

immunohistochemistry staining for p16 antibody (Enzo ABS377-0100) with the 

corresponding p16 quantification using digital labeling (expressed as a percentage). 

a, In postmenopausal human ovarian tissue (80 years old) b, In positive control 

(Cervical cancer tissue) c, Negative control for IHC staining (no primary antibody; 80 

years old). Scale bars: Whole sections (a) 1000 mm, (b) and (c) 200 mm; Magnified 

images (1-4) for (a), (b), and (c) 60 mm. 

 

Extended Data Figure 2: Mapping p16-positive clusters in human ovarian 

tissue sections. Representative images from a 69-year-old participant showing 

mapping of p16 staining across. a, the tissue section that shows p16 positivity in 

distinct clusters spread throughout the tissue piece. Each cluster is systematically 

imaged at high magnification (20X). The corresponding H&E image of the section is 

shown for reference. b, sequential sections of the tissue piece showing extension of 

the p16 clusters through the depth of the tissue. Each tissue section is 5 µm in 

thickness. Representative images of clusters 3 and 4 from (a) are shown up to 60 

mm away from the first section. Scale bars: Whole sections 500 mm; magnified 

images 60 mm 

 

Extended Data Figure 3: Heterogeneity of p16 expression in the 

postmenopausal human ovary. a, Heterogeneous distribution of p16 staining in an 

ovarian section from an 80-year-old participant, subdivided into eight pieces. The top 

row shows H&E, the middle row shows p16 immunohistochemistry (IHC), and the 

bottom row shows p16 IHC after digital image labelling. Binary thresholding was 

applied to identify p16-positive regions (yellow) and p16-negative regions (blue). The 

percentage of p16-positive area is indicated in the top left of each panel. Scale bar, 

500�mm. b, Representative p16 IHC and digital image labelling in ovarian tissue 

pieces from two participants aged 54 and 74 years. The percent positive area is 

shown in the top-left corner of each panel. Scale bars: whole section, 500�mm; 

magnified regions, 80�mm. 
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Extended Data Figure 4: Characterization of p16-positive cells and their niche. 

a, Preliminary immunohistochemical characterization of p16-positive regions in a 57- 

and 73-year-old postmenopausal ovary. b, Validation of p16 immunohistochemistry 

(IHC) staining performed at Northwestern University (top row) using a different 

antibody with immunofluorescence (IF) on adjacent slides at Johns Hopkins 

University (bottom row). Multiplex images highlight p16 expression (green) and 

nuclei (blue). c, Examples of multiplex IF images from p16- (top row) and p16+ 

(bottom row) cortical regions from two different participants. White boxes indicate 

regions shown at higher magnification. 

 

Extended Data Figure 5: Mapping p16-positive clusters for the DSP participant. 

a, Representative images showing the persistence of a p16 positive cluster (outlined 

in black) across serial sections of the tissue piece from the participant selected for 

Digital Spatial Profiling using GeoMx (80-years-old). The tissue piece was sliced into 

18 serial sections (each 5µm in thickness), and sections 2, 5, 8, 11, 14, and 17 were 

stained for p16. Other sections were either allocated for GeoMx DSP or left 

unstained for future analysis. b, Annotation of all p16-positive clusters across the 

tissue section selected for DSP with GeoMx (80-years-old). Annotations on this 

section were then transferred to the adjacent GeoMx DSP section to annotate p16+ 

and p16- ROIs for targeted transcriptomic profiling. Scale bars: Whole sections 200 

mm; magnified images 60 mm 

 

Extended Data Figure 6: Spatial transcriptomic data analysis pipeline. 1) Raw 

data is preprocessed using GeoMx NGS Pipeline software to generate DCC files and 

generate the counts matrix, followed by the quality control steps at the ROI and gene 

level. 2) The filtered data proceeds to background (negative probe) and TMM 

normalization and batch correction. 3) Differentially expressed genes (DEGs) are 

identified and used to identify perturbed pathways. 4) Gene expression is mapped 

back onto the images. 

 

Extended Data Figure 7: p16 positive cellular component and molecular 

function analysis. a, Cellular component analysis of p16+ versus p16- DEGs from 

all ROIs. b, Molecular function analysis of p16+ versus p16- DEGs from all ROIs. 
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Extended Data Figure 8. Derivation of p16-associated transcriptomic 

signatures to map senescent cells. a, Heatmap of shared downregulated 

differentially expressed genes (DEGs) across all p16+ regions of interest (ROIs), 

including cortex and medulla. b, Pathway enrichment analysis of shared 

downregulated DEGs, signature 1. c, Pathway enrichment analysis of shared 

upregulated DEGs, signature 2. d, Partial least squares discriminant analysis (PLS-

DA) of ROIs based on p16 status alone (p16+ vs p16-). e, Dot plot of genes 

contributing to clustering of p16+ and p16- regions in the PLS-DA. f, Pathway 

enrichment of downregulated DEGs in p16+ regions from PLS-DA plot. g, Pathway 

enrichment of upregulated DEGs in p16+ regions from PLS-DA plot 

 

Extended Data Figure 9. Evaluation of senescence-associated signatures for 

spatial mapping of p16-positive regions. a, Unsupervised spatial mapping of each 

signature to ovarian section 1 using the SpatialOmicsOverlay package. Enrichment 

scores are overlaid onto tissue architecture; far-left panels indicate reference p16 

status annotation for each ROI (p16-, blue; p16+, red). b, d, Violin plots showing 

UCell-derived enrichment scores (“p16 mapping scores”) for each signature in ROIs 

annotated as p16- (blue) or p16+ (red). c, e, Violin plots showing UCell enrichment 

scores for each signature stratified by anatomical region (cortex vs medulla) and p16 

status. This analysis tests whether signatures discriminate p16+ regions 

independently of tissue region. Violin plots were analyzed using a two-tailed t-test; 

P<�0.05 was considered significant. 

 

Extended Data Figure 10. Validating the precision of different p16 signatures to 

map p16+ve regions in native tissue. p16 signatures developed in Fig. 4 and 

evaluated in Fig. 5 were independently used to map in an unsupervised manner onto 

tissue from two different participants, a 67-year-old participant (a) and a 71-year-old 

participant (b). a, c, Unsupervised spatial mapping of signatures 2 and 4 to ovarian 

sections onto tissue sections from two different participants using the 

SpatialOmicsOverlay package. Enrichment scores are overlaid onto tissue 

architecture. b, d, representative H&E and p16-IHC of each participant used to 

cross-reference p16 ‘hot-spots’ in the GeoMx images (a, c). Zoomed-in p16-IHC 

images highlight p16 clusters that are potentially highlighted in the GeoMx images. 
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Extended Data Figure 11. Quantification of collagen deposition in 

postmenopausal ovaries using picrosirius red (PSR) staining. Tissue pieces 

from postmenopausal ovaries (50-84 years old; n=28) were stained with Picrosirius 

Red (PSR) stain for collagen, and the staining was quantified to calculate the 

percentage of area positive for collagen staining. a, Images of the whole tissue piece 

stained with PSR. b, c, Representative images of (b) cortex ROIs and (c) medulla 

ROIs from the corresponding tissue piece in (a). The right panels in (b) and (c) show 

the same ROI image after a threshold of 125 was applied to highlight collagen (seen 

in red vs gray areas depicting absence of collagen). The collagen content was then 

quantified as a percentage of area positive for collagen (red staining). d, 

Quantification of collagen deposition across age in postmenopausal ovaries. Scale 

bars: Whole scans: 500 mm; Magnified images: 100 mm 
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Figure 2: Characterization of p16 positive cells and their tissue niche
b) Validation of p16 staining with different antibodiesa) Multiplex immunofluorescence staining workflow 
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Figure 3: Spatial transcriptomic profiling of p16 positive and p16 negative regions
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Figure 4: Derivation of p16-associated transcriptomic signatures to map senescent cells(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
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Figure 5: Evaluation of p16-associated transcriptomic signatures for spatial mapping of p16 positive regions
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Figure 6: AI-driven digital pathology confirms fibrotic enrichment in p16-positive ovarian regions.

b) p16-positive areas coincide with histological sclerosis

a) Matrisome and matrisome-associated genes enriched in p16-positive ROIs

f) Collagen bulk g) Morphometry (ALL) h) Morphometry (Fine) i) Morphometry (Assembled) j) Architecture k) Phenotypic Score

c) Workflow of AI-based fibrosis analysis of p16+ and p16- regions

d) AI-based image analysis of p16 ROIs e) Heatmap of participant-matched quantifiable fibrosis traits
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Figure 7. p16 senotype BuckSenOvary reflects senescence, inflammation, and fibrosis in the aging ovary(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 8, 2025. ; https://doi.org/10.64898/2025.12.03.692228doi: bioRxiv preprint 

https://doi.org/10.64898/2025.12.03.692228

