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Methods to analyze cell migration data: 
fundamentals and practical guidelines
 

Pei-Hsun Wu    1,2,7  , Jude M. Phillip    1,2,3,4,5,7  , Wenxuan Du    1,2, 
Andre Forjaz    1,2, Praful R. Nair1,2 & Denis Wirtz    1,2,5,6 

Cell migration assays provide invaluable insights into fundamental 
biological processes. In a companion Review, we describe commercial and 
custom in vitro and in vivo assays to measure cell migration and provide 
guidelines on how to select the most appropriate assay for a given biological 
question. Here, we describe the fundamental principles of how to compute—
from the raw data generated by these assays—quantitative cell migration 
parameters that help determine the biophysical nature of the cell migration, 
such as cell speed, mean-squared displacement, diffusivity, persistence, 
speed and anisotropy, and how to quantify cell heterogeneity, with practical 
guidance. We also describe new imaging and computational technologies, 
including AI-based methods, which have helped establish fast, robust 
and accurate tracking of cells and quantification of cell migration. Taken 
together, these Reviews offer practical guidance for cell migration assays 
from conception to analysis.

Migration is a fundamental cellular process that regulates a wide 
variety of biological processes, including immune surveillance and 
responses1,2, embryonic development3–5 and wound healing6–9. The 
onset and dysregulation of cell migration can lead to adverse outcomes 
and diseases, such as metastatic spread of cancer cells to distant organs 
and pro-inflammatory dysfunctions10–15. Studying the biophysical prin-
ciples and molecular pathways that drive cell migration in healthy and 
diseased contexts has helped uncover potential therapeutic targets16–18. 
In recent decades, numerous cell migration assays have emerged to 
investigate the principles and regulators of cell movements in diverse 
biological scenarios. In a companion paper19, we describe in depth com-
mercial and custom in vitro and in vivo assays to measure cell migration. 
In that paper, we provide guidelines on how to select the most appro-
priate assay for a given biological question, based on rigorous criteria 
of biological mimicking, cost, ease of implementation, productive 
capacity, necessity of live-cell microscopy, amenability to post-assay 
downstream molecular analysis, ability to quantify cell heterogeneity 
and number of cells needed to run each assay.

Here, we describe the fundamental principles and practical 
guidelines of how to compute—from the raw data generated by these 
assays—cell migration parameters, such as cell speed, mean-squared 
displacement (MSD), diffusivity, persistence, speed, anisotropy, and 
so on, and how to quantify cell heterogeneity. These parameters help 
determine the biophysical nature of the cell migration under study and 
potential molecular mechanisms of regulation. Thanks to the recent 
introduction of new imaging and computational technologies, various 
analytical and computational methods, including AI-based methods, 
have been established for fast, robust and accurate tracking of cells and 
quantification of cell migration, which we review below.

Direct-versus-indirect cell migration 
measurements
Cell migration measurements fall into two main categories: direct and 
indirect (Fig. 1). Direct-migration measurements involve tracking the 
real-time movements of individual cells via video-based microscopy, 
providing the time-dependent coordinates (x(t), y(t), z(t)) that describe 
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(2D) wound-healing assay—the advent of new imaging technologies 
has prompted researchers to create live-cell versions of these assays 
to acquire richer time-resolved datasets34,35 (Fig. 1).

In the following sections, we describe how direct and indirect 
measurements of cell migration are analyzed, outline analytical con-
siderations specific to each assay, and review recent developments in 
the analysis of large cell migration datasets.

Analysis of direct cell migration measurements
For direct cell migration measurements, the movements of cells are 
typically recorded in the form of a video via time-lapsed light micros-
copy. Direct-migration measurements have been (or could) be imple-
mented in the following assays described in the companion Review19: 
The wound-healing assay, the 2D/three-dimensional (3D) cell migration 
assay, the spheroid/organoid invasion assay, the confined migration 
assay and migration on 2D micropatterns. Direct-migration analysis 
consists of two main components: (1) the detection and tracking of the 
time-dependent locations of cells from the acquired time-lapsed videos 
and (2) the analysis of the resulting cell trajectories using analytical or 
stochastic models of cell migration.

Methods for cell tracking
Time-resolved trajectories of migrating cells are typically obtained 
from analysis of video-based cell imaging such as brightfield or fluores-
cence microscopy36,37. Extracting cell trajectories from videos remains 
a nontrivial task. Manual tracking is the most common approach to 
track cell locations in videos36,38: The user identifies a cell in the first 
frame of the video and registers its time-dependent locations in a series 
of sequential image frames. The user can keep track of the identity of 
cells in sequential frames and recognize live from dead cells by playing 
the video back and forth. But tracking cells manually could be sub-
ject to user bias and inconsistency. Hence, users should set predeter-
mined rules to select the cells to be tracked to avoid or reduce bias. For 
instance, the user should set the minimum size of the objects to track 
(to avoid tracking cell debris), avoid tracking cells that undergo division 
during the video (unless this is the focus of the study; see also above) 

the trajectories of each tracked cell. Measurements and analysis of 
cell trajectories acknowledge the heterogeneity of cells, even clonal 
cells, and offer a wealth of information that reflects underlying com-
plex biological programs and can help reveal sometimes subtle, but 
important differences between biological conditions that modulate 
migration phenotypes not well described by averages20–24. In addition 
to conventional migration parameters such as average speed, which can 
be directly computed from trajectories, statistical profiling of the cell 
trajectories and various mathematical models such as the persistence 
random walk21,25–27 can be used to gain deeper mechanistic insights into 
cell migration (Fig. 2 and Supplementary Table 1).

In contrast to direct measurements, indirect migration meas-
urements refer to assessments that do not involve direct tracking 
of individual cells (Fig. 1). Indirect migration measurements gauge 
properties that correlate with and produce proxies of cell migration. 
Indirect measurements result from end-point experiments, that is, they 
analyze a snapshot of cells obtained at the end of a time-dependent 
migratory process (see companion Review19). For instance, in the Tran-
swell migration assay, the extent of cell migration through a porous 
membrane is indirectly estimated by counting the number of cells that 
traversed the membrane after a defined time period28,29. Such end-point 
measurements do not provide mechanistic insight on how the cells 
physically migrate through the membrane. However, since live-cell 
microscopy is not required, end-point measurements tend to be more 
readily accessible to laboratories without specialized equipment, such 
as time-lapsed fluorescence and intravital two-photon microscopes.

Indirect migration measurements tend to be more scalable than 
direct measurements. This scalability allows users to conduct migra-
tion assessments of a large number of samples and conditions for appli-
cations such as high-throughput CRISPR-based screens and testing 
of potential migration inhibitors that may regulate cell migration30,31. 
Importantly for indirect end-point measurements, cell migration 
assessments can be influenced by cell proliferation32. Measuring and 
comparing motility under conditions with notably different prolif-
eration rates should be approached with caution. Pharmacological 
inhibition or serum starvation can help control cell growth; however, 
these treatments can also have profound and complex effects on cell 
migration itself, which should be carefully considered when analyzing 
cell migration data33. Although many assays have been traditionally 
performed as indirect measurements—such as the two-dimensional 
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Fig. 1 | Direct-versus-indirect measurements of cell migration. Direct 
measurements entail the tracking of individual cells during their migration, 
from which migration parameters such as speed and MSD for individual cells 
can be computed. Indirect measurements entail an end-point measurement as a 
proxy of cell migration (see text and companion Review19). Direct measurements 
include the 2D and 3D cell migration assays and the microslide chemotaxis 
assay. Indirect measurements include the Transwell assay, as well as the standard 
wound-healing assay, spheroid and confined migration assays. The wound 
healing, spheroid and confined migration assays can be transformed into direct 
measurements if tracking of individual cells in these systems is feasible.
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Fig. 2 | Characterization of cell trajectories and associated metrics.  
a, Examples of common modes of trajectories of migratory cells. A random walk 
represents a path where the direction of motion is chosen randomly at each step. 
The PRW introduces directional persistence, leading to smoother trajectories. 
A biased random walk includes a directional bias that influences the trajectory. 
The APRW combines both directional persistence and anisotropy, resulting in 
highly directed and elongated paths. b, Schematic representation of trajectory 
parameters and displacement metrics.
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and cells that leave and reenter the field of view (to avoid issues of cell 
identification) and ensure the cells to be tracked are alive.

Manual tracking tends to be robust and applicable to videos 
derived from various imaging modalities, such as brightfield micros-
copy and phase-contrast or differential interference contrast micros-
copy for unlabeled cells and fluorescence microscopy for fluorescently 
labeled cells. Cells that are difficult to track, such as cells in noisy or 
poorly illuminated images, could still be tracked by adapting and 
modulating the intensity ranges or using features beyond strict image 
contrast parameters39,40.

As migrating cells may cross paths with one another in consec-
utive frames, the frame rate in the video should be high enough to 
avoid confusion in the identification of tracked cells. The choice of 
an adequate frame rate depends on the extent of cell movements and 
the density of the cells in culture. In general, the distance traveled by 
cells between frames should be substantially lower than the average 
distance between neighboring cells. Tracking fast-moving cells such as 
monocytes and T cells requires a relatively high frame rate compared to 
tacking slower-moving cells, such as cancer cells and fibroblast cells21 
(see table of typical cell speeds in the companion Review19). Cell divi-
sion may also occur during the tracking period, and dividing cells could 
exhibit different motility behavior compared to cells in interphase38. 
Hence, dividing cells should typically be excluded from the analysis, 
which can reduce the number of trackable cells. However, tools such as 
TrackMate41 and CellTrackVis42 have been developed for tracking cells 
with consideration of lineages and can be used to study cell migration 
associated with cell division or lineage.

Several free open-source and commercial software tools have been 
developed to assist in manual cell tracking, such as the manual object 
tracking module in MetaMorph22,24 or the click-based tracking module 
of ImageJ/Fiji43,44 (Table 1). Using such software, a trained researcher may 
take a few hours to track 100 cells in 100 consecutive frames. Therefore, 
the time required to probe, say, 20 different conditions (for example, 20 
different gene perturbations or drugs) and track 100 cells per condition 
in biological triplicates, could take weeks. The limited throughput of 
manual tracking tools makes them tedious and unfeasible for analyzing 
large numbers of samples and cells. Additionally, user bias can influ-
ence the results. For instance, users may be biased toward tracking 
cells that move a lot across subsequent image frames or may tend to 
predominantly track cells that do not move much in efforts to maximize 
the number of tracked cells. Yet sampling a sufficiently high number of 
cells of varying migratory behaviors is critical to accurately define the 
distribution of cell migration phenotypes for a given fixed condition45.

Semiautomated or automated cell tracking methods that utilize 
image processing or deep-learning-based algorithms have been devel-
oped to offer unbiased accurate tracking, resulting in much higher 
throughput than manual tracking. In fully automated cell tracking, cell 
trajectories can be extracted with little to no user input. In contrast, 
semiautomated cell tracking requires user-provided inputs, such as 
specified cell locations, for the program to process and track the cells. 
The general algorithms implemented for cell tracking are categorized 
into tracking by detection, model evolution and filtering46. The appli-
cability of different methods for cell tracking is closely associated 
with the type of microscopy used (Table 1). One of the most common 
approaches to automatically track cell locations in sequential images 
is through cell segmentation, for which the cell locations are computed 
based on the geometric center of the segmented cells or their nuclei. 
Segmentation of fluorescently labeled cells offers high accuracy and 
is computationally less challenging compared to tracking label-free 
cells from brightfield images47,48. Software such as CellProfiler48 can 
perform cell detection in fluorescence settings utilizing image pro-
cessing pipelines (Table 1). Label-free cell tracking offers the benefit 
of a more streamlined sample preparation and minimal disturbance to 
cell physiology, since in many cases the addition of fluorophores can 
substantially influence cell behavior49–51.

For brightfield images, accurately detecting the location of cells 
using traditional image processing approaches is generally more chal-
lenging than for fluorescence images, particularly under crowded 
conditions. The development of deep-learning convolutional neural 
networks offers solutions, which are revolutionizing the field of cell 
detection. Convolutional neural network frameworks are highly effec-
tive in performing segmentation tasks in various types of cell micros-
copy images, including grayscale images obtained with fluorescence 
or brightfield microscopy52–54. In particular, tools such as CellPose52 and 
Meta’s Track-Anything55 can segment cells directly from brightfield and 
fluorescence images. Segmentation-based cell detection and tracking 
are particularly relevant for in vivo cell migration studies. Identifying 
single cells in vivo is often more challenging due to the densely packed 
environment of each cell, for which cell segmentation becomes essen-
tial to detect individual cells. Volumetric imaging is frequently used 
to account for structural variations in tissue structure56–58. Tools such 
as CellPose, IMARIS and 3DeeCellTracker have been developed for 
performing 3D cell segmentation and detection.52,56. The coordinates 
of cells tracked can further be compiled into time series or trajectories 
using packages, such as CellTracksColab, CelltrackR, TrackMateR, 
CellPhe, Traject3D and Cellplato (Table 1)59–64.

The trajectories of cells can be obtained using other types of algo-
rithms. For example, correlation-based algorithms have been used to 
identify displacements of selected cells in subsequent frames24,55. This 
type of analysis requires the selection of cell objects in the first image 
of a video to initiate tracking of the selected objects in the subsequent 
frames. A recent study shows that this type of method is highly accurate 
when tracking large objects55. Free and commercial software that pro-
vide cell tracking tools are provided in Table 1. In-depth reviews of cell 
tracking algorithms and methods can be found in refs. 37,46,55,65,66.

Once cell tracking is performed, quality control needs to be 
applied. For instance, the shift in the observation plane relative to 
the sample space may occur during experiments, leading to appar-
ent convective movements of the tracked cells. Lack of appropriate 
correction for this apparent convection can lead to misinterpreta-
tion of the motility results. The shift can be removed through image 
registration before tracking or measuring the relative movement to a 
stagnant object (fiduciary marker) in the field of view67. Additionally, 
positioning accuracy relative to actual cell movement is a key factor to 
consider, as positioning errors can directly influence measured speed25. 
Large positioning errors lead to artificially high-speed measurements, 
particularly in (quasi)-immobile cells. Generally, positioning errors 
behave as white noise and do not depend on frame rate68. How their 
contribution to speed measurements can be assessed through the 
MSD profile over time is described in refs. 25,67–69.

Analysis of cell trajectories
The time-dependent coordinates of individual cells obtained via man-
ual or automatic tracking of cells in videos constitute the inputs of 
analytical tools and pipelines that generate quantitative metrics of cell 
migration (Fig. 2 and Supplementary Table 1). Motility parameters are 
typically derived from ensemble-averaged measurements across track-
ing time and across all tracked cells for each experimental condition. 
A rolling window strategy has also been used to analyze motility data, 
and this type of analysis is particularly important for characterizing 
non-equilibrium states, where cell motility transitions over time70–72.

Cell speed is the most straightforward and commonly used 
migration parameter that can be extracted directly from cell trajecto-
ries. However, eukaryotic cell migration is a complex and stochastic 
process73–75. Cells exhibit highly diverse patterns and modes of migra-
tion that tend to be different for different cell types and is context 
dependent based on microenvironmental cues (Fig. 2a). For example, 
cancer cells on a 2D matrix-coated substrate versus embedded inside a 
3D matrix, such as collagen-I or Matrigel, exhibit fundamentally distinct 
modes of migration21,25. In addition, confluent cells in a monolayer 
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exhibit collective migration behavior, which is also fundamentally 
different from the migration of cells far from one another76–78. There-
fore, additional cell migration parameters have been derived from 
trajectories to capture the complex behavior of cells beyond cell speed, 
including the persistence time, the average turning angle and the total 
displacement of a cell. We summarize the common cell migration 
features that can be computed from cell trajectories in Fig. 2b and 
Supplementary Table 1. Due to the inherent stochastic nature of cell 
migration, several of these features, including instantaneous speed 
and angular displacement, depend on the imaging interval time that 
determines the time lag τ. Therefore, examining migration features 

at multiple time-lag reference points (typically shorter and longer 
than the persistence times of cells per condition) can provide a more 
comprehensive view of cell migration as opposed to a single time lag.

To derive a more comprehensive analysis of cell migration profiles, 
various statistical features of cell trajectories can be computed. These 
statistical features include the MSD, the autocorrelation function of cell 
velocities, the probability density function of cell displacements, the 
probability density function of angular displacements and the velocity 
polarization profile, to name a few21 (see definitions in Supplementary 
Table 1). These statistical metrics provide a quantitative outlook of the 
strategy used by cells to migrate in a particular milieu. Particularly, 

Table 1 | Commercial and open-source software to track and analyze cell migration

Tool Availability (source) Applicable image type 
(imaging modalities)

Tracking algorithm Platform

Commercial

MetaMorph Molecular Devices Fluorescent, brightfield 2D/3D Correlation-based template 
matching

Stand-alone

Imaris for Tracking Oxford Instruments Fluorescent, brightfield 2D/3D Imaris 3D tracking algorithms Stand-alone

Volocity Quorum Technologies Fluorescent 3D Stand-alone

Arivis Pro (Vision4D) ZEISS Fluorescent, brightfield 2D/3D AI-based segmentation Stand-alone

Livecyte Phasefocus Fluorescent, brightfield 2D Label-free segmentation Stand-alone

BioTek Gen5 Agilent Fluorescent, brightfield 2D Segmentation Stand-alone

Open source

CellTrack139 http://db.cse.ohio-state.edu/CellTrack/ Fluorescent, brightfield 2D Segmentation Cross-platform

CellTracker140 https://github.com/WangLabTHU/
CellTracker/

Fluorescent, brightfield 2D Segmentation Cross-platform

CellProfiler48,141,142 https://github.com/
carpenterlab/2018_mcquin_PLOSBio/

Fluorescent, brightfield 2D/3D Segmentation Stand-alone

CellPose52,143 https://www.github.com/ 
mouseland/cellpose/

Brightfield 2D/3D Deep-learning-based 
segmentation

Cross-platform

MtrackJ66 https://imagescience.org/meijering/
software/mtrackj/

Fluorescent, brightfield 2D/3D Segmentation (manual) ImageJ/Fiji

TrackMate38,41 https://github.com/trackmate-sc/TrackMate/ Fluorescent, brightfield 2D/3D Segmentation (built-in or external) ImageJ/Fiji

CellTrackVis42 https://github.com/scbeom/celltrackvis/ Brightfield 2D Modeling via labeled random 
finite sets

Stand-alone

LIM Tracker144 https://github.com/LIMT34/LIM-Tracker/ Fluorescent, brightfield 2D Deep-learning-based recognition ImageJ/Fiji

DeLTA145 https://gitlab.com/delta-microscopy/delta/ Fluorescent, brightfield 2D U-Net deep-learning segmentation Cross-platform

HFM-Tracker146 https://pubs.rsc.org/en/content/
articlelanding/2024/an/d4an00199k/

Brightfield 2D CA-based detection ACM-based 
tracking

Cross-platform

AVeMap147 https://www.nature.com/articles/
nmeth.2209#MOESM310/

Brightfield (wound healing) 2D Correlation-based detection MATLAB

TGMM148 https://www.janelia.org/lab/keller-lab/ Light-sheet 2D/3D Gaussian Mixture Model Cross-platform

iTrack4U149 https://journals.plos.org/plosone/
article?id=10.1371/journal.pone.0081266#s3/

Fluorescent, brightfield 2D Tracking input from other tools Cross-platform

CelltrackR63 https://github.com/ingewortel/celltrackR/ Fluorescent two- photon 
imaging 2D/3D

Tracking input from other tools R

CellMissy150 https://code.google.com/p/cellmissy/ Brightfield (wound healing) 2D Tracking input from other tools Cross-platform

3DeeCellTracker56 https://github.com/WenChentao/ 
3DeeCellTracker/

Light-sheet 3D two-photon 3D 
spinning-disk confocal 3D

Deep-learning segmentation Python (ImageJ for 
image alignment)

CellTracksColab64 https://github.com/CellMigrationLab/
CellTracksColab/

Fluorescent, brightfield 2D Tracking input from other tools Cloud-based 
Google Colab or 
local-based Jupyter

Cellplato60 https://github.com/Michael-shannon/
cellPLATO/

Fluorescent spinning-disk 
confocal 3D

Cellpose 2.0 -segmentation  
Btrack - tracking

Python

CellPhe59 https://zenodo.org/records/7620171#.
ZAJZMuzP0o8/

Fluorescent, phase 2D Phasefocus and 
TrackMate-Cellpose

R

Traject3D61 https://github.com/davebryantlab/Traject3d/ Label-free live-imaging 
(Incucyte) 2D/3D

Tracking input from CellProfiler KNIME with R and 
Python integrations
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the MSD profile as a function of the time lag τ is essential to provide 
crucial information of cell migration processes, such as magnitude 
and mode of migration. The MSD of a cell migration is computed as 
shown in equation (1):

MSD(τ) = ⟨(x(t + τ) − x(t))2 + (y(t + τ) − y(t))2⟩ (1)

Here, τ is the time lag, that is, the duration between images under 
consideration. x(t) and y(t) are the coordinates of the center of the cell, 
and x(t + τ) and y(t + τ) are the coordinates of the same cell at the time 
t + τ, that is, a time lag τ later. If a video of migrating cells is collected for 
an hour at a frame rate of 20 frames per hour, then τ will vary between 
0 min and 60 min at intervals of 3 min (60 min/20). The MSD profile is 
the time ensemble-averaged squared displacement of a cell at different 
time lags τ. The brackets 〈…〉 signify the time-averaging operation. The 
MSD is directly related to cell speed v via v(τ) = MSD(τ)1/2/τ.

How rapidly the MSD increases as a function of τ reflects how the 
cell migrates during the experiment, that is, whether the cell undergoes 
a random walk or a biased random walk, for instance (Fig. 3). A powerful 
way to quickly assess possible basic mechanisms of migration of a cell 
is to plot the MSD(τ) as a function of τ using a log–log plot and compute 
the exponent α by fitting the data to the following power law (Fig. 3) as 
shown in equation (2):

MSD (τ) ∼ τa (2)

For cell trajectories moving in a purely random work fashion, 
the MSD increases linearly with time lag and the exponent α = 1. For 
cells undergoing biased migration, such as when cells are exposed to 
a chemotactic gradient, the exponent α > 1. When the exponent α = 2, 
the cell moves at a constant velocity v, where the MSD is expressed as 
v2τ2. When the exponent α < 1, cells exhibit confined/stalled motion. 
Thus, examining the statistical profiles of cells, such as MSD, can reveal 
valuable fundamental insights into their mode of migration (Fig. 3).

The migratory behavior of mammalian cells often exhibits more 
complex MSD profiles than those described by a universal time-lag 
scaling exponent3,4,21,25,73,79. The MSD exponent for cell migration can 
vary with time lag, influenced by factors such as noise from cell posi-
tioning errors, the inherently complex and stochastic nature of cell 
migration, constraints of the microenvironment (for example, cell–
cell interactions and physical obstacles) or a combination of these 
factors25,68,69. Consequently, theoretical models have been developed 
to interpret these complex migration behaviors, as reviewed in the 
following sections.

Analyzing trajectory data using models of cell migration
Cell migration data can be interpreted through model-based 
analysis21,73. This approach aims to elucidate the complex and sto-
chastic nature of cell trajectories using a small set of biologically or 
physically meaningful parameters derived from models of migration. 
In experiments that lack a symmetry-breaking gradient such as a che-
moattractant source, both bacterial and eukaryotic cell motility are 
explained in terms of random-walk statistics. In particular, the per-
sistent random walk (PRW) model is a stochastic model that has been 
extensively utilized to characterize eukaryotic cell migration on flat 
2D substrates25–27,80. The PRW model describes the trajectory of cells 
as a succession of uncorrelated movements of duration larger than 
the persistence time P. The PRW model of cell migration is derived 
from the stochastic differential equation that describes the motion 
of a self-propelled cell as shown in equation (3):

dv
dt

= − 1
P
v + S

√P
w̃ (3)

where t is time, v is the cell velocity, P is the persistence time, S is the 
speed and w̃ is the vector of a so-called Weiner process27. The corre-
sponding MSD of a cell undergoing a persistent random walk can be 
derived analytically (Fig. 2 and Supplementary Table 1) as shown in 
equation (4):

MSD(τ) = nS2P2 (e−
τ

P + τ
P
− 1) (4)

Here, n = 1 for one-dimensional cell migration along linear tracks, n = 2 
for 2D cell migration on a flat plane and n = 3 for 3D cell migration. The 
MSD can be used to extract persistence time P and speed S from the PRW 
model by fitting the experimental MSD derived from cell trajectories. 
2D cell migration can often be effectively described with just these two 
parameters25,26,80,81. Importantly, while the observed MSD data can show 
a good fit to equation (4), this alone does not confirm that the migra-
tion under study follows a PRW model. For the PRW model to be valid, 
additional criteria must be satisfied, including a Gaussian distribution 
of velocities and a single-exponential decay of the velocity autocorrela-
tion function, an isotropic velocity field and a uniform distribution of 
angles between cell movements at extended time scales25 (Fig. 2 and 
Supplementary Table 1).

Recent studies have shown that cell migration often exhibits 
far more complex patterns than those described by the PRW model. 
Migration data from various cell types in 2D frequently reveal trends 
that deviate significantly from Gaussian distributions. For instance, 
non-Gaussian velocity distributions are commonly observed across 
different cell types and are associated with the microenvironment. 
To address these discrepancies, new models have been proposed to 
characterize cell migration25,79,82–87. For example, the migration of T cells 
in vivo is better characterized by Lévy flight statistics86,87, exhibit-
ing super-diffusive behavior across a wide range of time lags (that is, 
MSD(τ) ~ τα where 1 < α < 2) and consisting of sequences of numerous 
short steps interspersed with occasional longer ‘flights’87,88. Recent 
studies suggest that the non-Gaussian velocity distribution can be 
explained under the PRW model for 2D migration25.
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Fig. 3 | MSD for trajectory characterization. a, Log–log representation 
of the MSD as a function of time lag τ, showing different scaling behaviors. 
The characteristics of cell movement can be determined through exploring 
power-law relationship between MSD and time lag τ (that is, MSD ∼ τα). The α 
can be computed from the slope of MSD profile at the logarithmic scale (that is, 
α = dlog(MSD)/dlog(τ)). For α = 2, the trajectory corresponds to constant-speed 
motion. When 1 < α < 2, cell movements correspond to a biased random walk.  
A slope of α = 1 corresponds to a standard random walk; α < 1 suggests confined or 
restricted cell migration. b, Examples of migration models that exhibit complex, 
nonuniform MSD scaling profiles, including biased random walk, (anisotropic) 
persistent random walk and random migration of cells confined within a space of 
size. The MSD for a biased random walk exhibits α of 1 at a short time lag and α of 
2 at a longer time lag. In PRW or APRW migration, migration is persistent at short 
time lag with α > 1 and approximate free diffusion (α = 1) at long time lags. If cell 
migration occurs within a confined space, α approaches 0 at long timescales, and 
the MSD value will correspond to the size of the confined space.
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When cells are embedded in a 3D matrix (for example, cancer 
cells migrating in a collagen-I matrix), their migration displays a high 
degree of anisotropy that is not described by the PRW model. As a 
result, a new model, the anisotropic random walk (APRW) model, 
was introduced, offering a more suitable characterization of 3D cell 
migration25. The APRW model is similar to the PRW model; however, 
cell migration is assumed to display different persistence and diffusiv-
ity along two orthogonal axes, the primary and secondary migration 
axes, in the observation plane (Fig. 2 and Supplementary Table 1). The 
primary and non-primary axes of cell migration are identified through 
principal component analysis (PCA) or singular vector decomposi-
tion on the cell velocity21,25. The MSD profiles calculated from the cell 
movement along the primary and non-primary axes can then be used 
to determine the persistence time and speed along both axes through 
equations (5) and (6):

MSDp(τ) = S2pP
2
p (e

− τ

Pp + τ
Pp

− 1) (5)

and

MSDs(τ) = S2npP
2
np (e

− τ

Pnp + τ
Pnp

− 1) (6)

The APRW model characterizes cell migration via the diffusivity, 
persistence time along the primary and secondary axes (Dp, Dnp, Pp, Pnp), 
as well as the total diffusivity Dtot and anisotropy index ϕ, computed as 
the ratio between the diffusivity of a cell in primary migration direc-
tion to non-primary directions (Fig. 2 and Supplementary Table 1). 
When there is no anisotropy in the system, ϕ = 1, and the APRW model 
converges to the PRW model (Fig. 2 and Supplementary Table 1). The 
APRW model has been used to characterize the migration of various 
types of cells embedded in 3D collagen matrices, including monocytes, 
T cells and cancer cells, as well as cells embedded in composite 3D 
matrix systems21,89–91.

Quantification of cell heterogeneity
Cells exhibit heterogeneous movement patterns in response to 
microenvironmental signals in the contexts of health and disease92. 
The traditional way to describe cell migration patterns for a tested 
condition is to track and analyze the movement of single cells and 
then report results as averages across all cells. From these pooled cell 
trajectories, one can compute migration parameters such as aver-
age speed, average persistence time and average total displacement. 

This approach of reporting cell migration data has led to important 
biological insights. However, recent advances in single-cell analyses 
are introducing new ways to measure and interpret cell migration pat-
terns at single-cell resolution45,60,72,93. Instead of quantifying and report-
ing only bulk migration parameters, users can use single-cell analysis 
approaches that are similar to those used for single-cell sequencing. 
In these approaches, datasets are curated and harmonized—aligned 
across datasets to correct for imaging parameters, such as, spatial and 
temporal resolution, cell types, total imaging/analysis duration, and 
then migration parameters are computed per single cell45. Then using 
clustering analyses, including k-means, and unsupervised hierarchical 
clustering, and dimensional reduction techniques, including linear or 
nonlinear PCA, t-SNE94 and UMAP95, groups of cells with similar migra-
tion patterns are identified.

Using single-cell analysis to quantify cell migration presents 
advantages, including: (1) the ability to determine cell-to-cell varia-
tions (for instance, cellular heterogeneity can be determined based 
on Shannon entropy) across populations of cells and conditions; (2) 
visualization schemes that boost biological and statistical interpret-
ability through high-dimensional clustering; (3) allowance for batch 
corrections and direct comparisons across multiple experiments and 
conditions within a high-dimensional data space; and (4) the ability 
to subcategorize cells across conditions, providing the ability to track 
emergent patterns that describe conserved or fractionally shifted cell 
populations45.

Analysis of cell migration data obtained by 
common assays
Below we review and summarize the analytical tools and methods for 
both direct and indirect migration measurements that can be deployed 
for each assay described in the companion Review19. This overview 
focuses on the essential aspects of the analysis of the raw data gener-
ated by each assay described in our companion Review19. Software 
tools that can assist with the analysis of these indirect migration assays 
are summarized in Table 2. The 2D/3D migration assay and the μ-slide 
chemotaxis assay primarily measure cell migration directly. Hence, 
the analysis of the associated data will not be further reviewed in the 
following sections.

The wound-healing assay (scratch assay)
In the wound-healing assay, how rapidly cells move to fill the ‘wounded’ 
space is assessed to evaluate cell migration behavior and performance 
(Fig. 4). In this assay, the cells undergo transient (biased) migration 
patterns, and measuring the reduction of cell-free area or speed of 

Table 2 | Summary of computational tools for indirect measurements of cell migration across different assays

Assay type Software Source Platform

Wound healing CellProfiler48,142 https://cellprofiler.org/examples/ Python

Wound healing Tscratch151 https://github.com/cselab/TScratch/ MATLAB

Wound healing pyScratch152 https://github.com/ElsevierSoftwareX/PyScratch/ Python

Wound healing MRI Wound Healing Tool https://github.com/MontpellierRessourcesImagerie/
imagej_macros_and_scripts/wiki/Wound-Healing-Tool/

ImageJ/Fiji

Wound healing AIM153 https://www.mcbeng.it/en/category/software.html/ MATLAB

Transwell migration CELLCOUNTER154 https://bitbucket.org/linora/cellcounter/downloads/ C++

Transwell migration I-abACUS155 https://www.marilisacortesi.com/ MATLAB

Transwell migration Cell Counter https://imagej.net/plugins/cell-counter ImageJ/Fiji

Spheroid SpheroidSizer156 https://doi.org/10.3791/51639 MATLAB

Spheroid AnaSP157 http://sourceforge.net/p/anasp/ MATLAB

Spheroid SpheroScan158 https://github.com/FunctionalUrology/SpheroScan/ Python

Spheroid OrgaExtractor159 https://github.com/tpark16/orgaextractor/ Python

Spheroid OrganoID160 https://github.com/jono-m/OrganoID/ Python
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boundary of leading edge (wound edge) closure over time is the most 
commonly used method to characterize wound-healing assays96–99. 
Images of cell gap area are normally acquired at different time points 
using light microscopy, typically at a minimum of two time points—the 
beginning and at a user-defined end point—to compute the fraction of 
cell-free area Af  relative to the initial size of the cell-free area A0. In the 
case where live-cell microscopy equipment is available, including 
on-stage incubators and microscope stage control, real-time imaging 
can be performed to compute the wound closure as a function of mul-
tiple time points. From these movies, the cell-free area A(t) can be 
measured using either manual annotations or automated quantifica-
tion. Armed with the measurement of the cell-free area A(t), key char-
acteristics of migration, such as the average cell migration rate vmigration 
and halftime to closure t1/2, can be computed through curve fitting of 
equations (7) and (8)99:

A(t) = A0 − 2 × l × vmigration × t (7)

t1/2 = A0/4 × l × vmigration (8)

Here, l  is the length of the cell-free gap in the image (Fig. 4). Automated 
approaches using image processing approaches have also been devel-
oped and implemented to assist with the analysis98–101. The impedance- 
based system has also been developed to speedily (indirectly) measure 
the changes in gap areas that bypass imaging34. In addition to the bulk 
measurement of wound closure, tracking migration of individual cells 
in wound-healing assays has been used to assess the motility behavior 
of individual cells in the moving cell sheet96,102,103. In this case,  
the analysis can follow the direct-migration analysis described in  
the previous sections. The collective migration behavior in the 
wound-healing assay can also be characterized using particle image 
velocimetry35,104.

The Transwell assay (Boyden chamber assay)
In the Transwell migration assay, cell migration is typically assessed 
by counting the number of cells, Nmigrated, that traverse the membrane 
during a specified incubation period T (Fig. 4). A higher number of 
cells crossing the membrane indicates greater migration. To count 
the cells that have migrated across the membrane, various methods 
are used. Cells can be counted on the underside of the membrane, at 
the bottom of the wells or in the medium suspension at the bottom, 
depending on the cell types. Measurement of migrated cells that fall 
to the bottom chamber is typically used for suspension cells, while 
measurement on the underside of the membrane is used for adherent 
cells. According to assay time and cells’ migratory potential under 
various conditions, measurement of adherent cells on the bottom 
chamber surface should also be included for accurate measurements 
of cell migration. Various methods can be used to count migrated cells 
including a hemocytometer, image-based counting or biochemical 
assays based on ATP hydrolysis or DNA content measurements105–107. 
For image-based counting, brightfield microscopy can be used to count 
non-labeled cells. Staining techniques such as ultraviolet dyes and 
DAPI, among others, can enhance the contrast of the cell membrane 
and assist in cell counting106,107. Cells can be counted from the acquired 
images using software such as ImageJ106,108. We note that when counting 
cells on the bottom side of the membrane, it is necessary to remove 
cells from the upper side (seeding side) of the membrane through 
physical swabbing. This step is important due to the close proximity of 
cells in the upper and lower compartments and the limitations of axial 
resolution in typical microscope setups to resolve them. The motility 
index, MITranswell, in the Transwell migration assay is usually calculated 
as the percentage of cells that migrate across the membrane, Nmigrated, t = T  
after period of time T relative to the initial seeding cell count at 
time 0, Nseed, t = 0, that is, MITranswell = Ncross, t = T/Nseed, t = 0. To minimize the 

confounding effect of cell proliferation, a limited incubation time T 
is used. Cell counting has traditionally been the primary method of 
quantification. Impedance-based methods have also been developed 
for the Transwell migration assay. This method detects changes in 
impedance across the membrane as cells move through the pores, 
allowing for continuous monitoring of migrated cells over time109.

The spheroid/organoid invasion assay
In the spheroid/organoid invasion assay, cell migration is typically 
assessed indirectly by measuring how far cells spread from the sphe-
roid’s initial boundary (Fig. 4). Highly motile cells migrate farther, which 
is quantified by evaluating the spreading area or the number of cells that 
have moved beyond the initial spheroid boundary110–113. Additionally, 
the shape of the spreading, such as the number of protrusive fronts, 
can be used as a characteristic of cell dissemination114,115. To analyze 
these features, the morphology of spheroids/organoids is assessed 
using imaging-based approaches such as brightfield microscopy or 
fluorescence microscopy if the cells are fluorescently labeled. While 
spheroids are inherently three-dimensional structures, cross-sectional 
2D images are more typically captured and analyzed. This preference 
is likely due to the reduced technical challenges associated with volu-
metric imaging and analysis. Both end-point assays at specific time 
intervals and dynamic analyses have been used to evaluate cell migra-
tion in these assays. Various image processing methods and tools have 
been developed to segment spheroid contours in images, facilitating 
the analysis of spheroid/organoid results for both brightfield and fluo-
rescence images110,116–119.

In addition to indirect analysis, direct analysis by tracking indi-
vidual cell trajectories can also be used to study migration in sphe-
roid/organoid assays. For such cases, the analysis can refer to the 
direct-migration analysis sections outlined in this Review. It is impor-
tant to note that in the spheroid setting, cell migration is often reported 
in relation to the cells’ positions relative to the center of the spheroid 
core120,121. Careful sampling of cells for analysis is essential to avoid sam-
pling bias based on their locations within the spheroid. Furthermore, 
previous studies have shown that cells in spheroids can follow biased 
migration patterns as a result of radical stress that aligns peripheral 
matrix fibers121. Therefore, parameters reflecting biased migration 
features—such as persistence, MSD exponent and speed—provide a 
more comprehensive characterization of spheroid migration.

The chemotaxis and confined migration assays
Cells typically navigate through complex microenvironments in vivo 
and must often respond to various physical and chemical perturbations, 
such as confinement, obstacles and chemical gradients. To study cell 
migration under diverse microenvironmental cues in a controllable 
manner, various configurations of microfluidic devices and micropat-
terning methods have been developed122–129.

The analysis for this type of assay depends on the device design, 
for instance, whether cells have to navigate through a series of con-
fined channels or move between pillars of varying spacing. Real-time 
imaging is implemented to determine the trajectories of individual 
cells within microfluidic or micropatterned devices124–127. In such a 
case, the direct-migration analysis described above is used to process 
images and analyze cell migration data. The selection of cell migration 
features should consider whether the cells undergo biased or random 
migration, based on the presence of external directional driving forces, 
such as chemotactic, electrotactic or durotactic gradients within the 
device122,128,130–134. For cells moving inside confining channels, the most 
common readouts are descriptors of speed or capacity of cells to align 
their movements with directional cues, including average speed and 
persistence124,125,135,136.

Indirect measurements are also used to characterize cell migration 
in microfluidic assays (Fig. 4). These analyses depend on the specific 
design of the device used in the assay. For example, in confinement 
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migration microfluidic designs, counting the number of cells that 
enter the channels versus those that migrate through to the other side 
of the channels is often used as a motility index. In chemotaxis-based 
microfluidic setups, the occurrence of cells migrating a specific dis-
tance toward the attractant direction is also commonly used123,128,137,138.

Outlook
Below, we outline some current limitations and needs for new AI tools, 
automation and modern data science approaches, which if addressed 
could enable considerable advances in the analysis and interpretability 
of cell migration data.

	1.	 A major challenge in analyzing cell migration patterns, espe-
cially at the single-cell level, is accurately tracking individual cell 
positions to map their movement trajectories. This inability to 
accurately track single cells may stem from a variety of factors, 
including high local cell density, highly motile cells moving out-
side the imaging window, poor illumination and noisy images, 
and cells with low contrast in brightfield images. To provide so-
lutions for these issues, we need to develop fully automated soft-
ware solutions using deep-learning and AI-based models that (a) 
are capable of tracking individual cells within high-density en-
vironments, (b) utilize adaptive learning to adjust for poor illu-
mination and variations in image quality (noise), (c) account for 
populations of cells that leave or enter the imaging window, and 
(d) properly retain the identity of individuals cells even though 
they may partially overlap or come within close proximity dur-
ing imaging. Developing solutions that address these points will 
greatly influence the reliability and scalability of cell migration 
analyses.

	2.	 There are wide variations in the experimental protocols used 
to acquire cell migration data. For instance, the total imaging/
tracking duration, the rate of image acquisition (the time be-
tween consecutive images) and imaging magnification are all 
determined based on user preferences. While many factors 
go into selecting experimental parameters (see companion 
Review19), the lack of proper standardization limits the direct 
integration of disparate cell migration datasets. To enable inte-
gration, we need to develop and optimize effective harmoniza-
tion schemes that can predict the intervening positions of cells 
that are not physically measured. Some of these approaches 
include (a) simple interpolations, which work well for predict-
ing intervening positions that are symmetrically spaced (that 
is, midpoints of measured points), (b) weighted interpolations 
for non-symmetric intervening positions, which involve adding 
a directional bias based on subsequent cell positions, and (c) uti-
lizing generative AI models that leverage the spatial and tempo-
ral patterns of the cell trajectories to infer intervening positions.

	3.	 Once we have the coordinates of trajectories for large numbers 
of cells (that is, thousands to tens of thousands of cells, by inte-
grating datasets), we need to extract biological insights. While 
many cell migration papers rely on insights derived from aver-
aged migration parameters, recent advances in single-cell anal-
ysis described above have demonstrated the ability to quantify 
complex behaviors and phenotypes that define subgroups of 
cells. However, there is currently a need to develop robust ap-
proaches to quantify these behaviors and identify these sub-
groups of cells. For instance, instead of just plotting the average 
speed or the average persistence time for each condition, users 
can compile data matrices with multiple migration parameters 
(tens to hundreds of migration parameters) for each tracked cell. 
With this data matrix, users can perform factor analyses or prin-
cipal component analysis to reduce the dimension and identify 
orthogonal parameters (that is, independent parameters that 
contribute most to the observed variance across conditions). 
Cells can be then clustered based on the orthogonal migration 

parameters using methods such as k-means, unsupervised hier-
archical clustering and Leiden clustering, then plotting the indi-
vidual cells in a low-dimensional representation space, for ex-
ample, using linear methods such as PCA, or nonlinear methods 
such as t-SNE, UMAP or diffusion maps. While these workflows 
exist and are routinely used for processing single-cell sequenc-
ing data, it is not yet mainstream for cell migration analysis. 
Optimizing similar approaches of cell migration could improve 
the biological insights gained from such analysis. Furthermore, 
in addition to parameterized approaches using user-selected 
parameters to describe trajectories, deep-learning and AI-based 
approaches can be leveraged to identify subgroups of cells di-
rectly from the videos of cells, their raw coordinates, or treating 
outlines of cell trajectories as images.

	4.	 Cells in 3D experience different signaling cues that the same 
cells in 2D, which influence their movements. Measuring cell 
movements in 3D requires more sophisticated microscopes 
and imaging workflows. These workflows require z-stacks that 
could limit the temporal resolution of image acquisition due to 
the amount of time to capture the multiple z-stack images and 
physically moving the stage back to the initial position. To en-
hance the efficiency of image acquisition and analysis, we need 
to develop new approaches capable of extracting information of 
3D cell movements from single 2D images or sparse sampling of 
3D z-stacks.

	5.	 Cells exhibit complex biophysical phenotypes across a vari-
ety of biological conditions. Cell migration is just one of the 
cellular phenotypes that may help establish biological insights 
across conditions. Other relevant cellular phenotypes include 
cell mechanics (both the stiffness/deformability of cells and the 
magnitude of traction forces they exert) and morphodynamics 
(dynamic changes in cell morphology), which is also related to 
how cells change their shapes to polarize and move. To strength-
en the biological insights from these cell phenotypes, we need 
to develop new analyses capable of simultaneously extracting 
information on cell migration, morphodynamics and cell me-
chanics. In the future, we envision approaches where users can 
simultaneously measure and analyze multiple cell properties to 
define their cell behaviors. Such approaches will likely require 
the use and integration of machine learning and other modern 
data science approaches.

	6.	 Another challenge in analyzing cell migration is establishing 
functional relationships between cell migration patterns and 
distinct molecular pathways regulating cell migration. Per-
forming cell migration assays along with single-cell assays (for 
example, single-cell RNA sequencing) could offer new insights 
to identify regulators of cell migration. However, we need to de-
velop new approaches to integrate and align single-cell migra-
tion data with single-cell sequencing data based on inference 
mapping. Validation studies can be performed by modulating 
the gene expression patterns of the identified target genes, for 
example, based on knockdowns using small interfering RNA of 
CRISPR. Understanding this relationship could enable the devel-
opment of trained algorithms to predict how specific molecular/
gene expression changes can modulate specific cell migration 
phenotypes.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.
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