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Cell migration assays provide invaluable insights into fundamental
biological processes. In acompanion Review, we describe commercial and

custominvitroand in vivo assays to measure cell migration and provide
guidelines on how to select the most appropriate assay for a given biological
question. Here, we describe the fundamental principles of how to compute—
from the raw data generated by these assays—quantitative cell migration
parameters that help determine the biophysical nature of the cell migration,
such as cell speed, mean-squared displacement, diffusivity, persistence,
speed and anisotropy, and how to quantify cell heterogeneity, with practical
guidance. We also describe new imaging and computational technologies,
including Al-based methods, which have helped establish fast, robust

and accurate tracking of cells and quantification of cell migration. Taken
together, these Reviews offer practical guidance for cell migration assays
from conception to analysis.

Migration is a fundamental cellular process that regulates a wide
variety of biological processes, including immune surveillance and
responses’?, embryonic development®~® and wound healing® . The
onsetand dysregulation of cell migration canlead to adverse outcomes
and diseases, such as metastatic spread of cancer cells to distant organs
and pro-inflammatory dysfunctions'*". Studying the biophysical prin-
ciplesand molecular pathways that drive cell migrationin healthy and
diseased contexts has helped uncover potential therapeutic targets'* %,
In recent decades, numerous cell migration assays have emerged to
investigate the principles and regulators of cellmovementsin diverse
biological scenarios. Inacompanion paper'’, we describein depth com-
mercialand customin vitro andin vivo assays to measure cell migration.
Inthat paper, we provide guidelines on how to select the most appro-
priate assay for agiven biological question, based onrigorous criteria
of biological mimicking, cost, ease of implementation, productive
capacity, necessity of live-cell microscopy, amenability to post-assay
downstream molecular analysis, ability to quantify cell heterogeneity
and number of cells needed to run each assay.

Here, we describe the fundamental principles and practical
guidelines of how to compute—from the raw data generated by these
assays—cell migration parameters, such as cell speed, mean-squared
displacement (MSD), diffusivity, persistence, speed, anisotropy, and
soon, and how to quantify cell heterogeneity. These parameters help
determine the biophysical nature of the cell migration under study and
potential molecular mechanisms of regulation. Thanks to the recent
introduction of new imaging and computational technologies, various
analytical and computational methods, including Al-based methods,
have beenestablished for fast, robust and accurate tracking of cells and
quantification of cell migration, which we review below.

Direct-versus-indirect cell migration
measurements

Cell migration measurements fall into two main categories: direct and
indirect (Fig. 1). Direct-migration measurements involve tracking the
real-time movements of individual cells via video-based microscopy,
providing the time-dependent coordinates (x(¢),y(¢), z(t)) that describe
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Fig. 1| Direct-versus-indirect measurements of cell migration. Direct
measurements entail the tracking of individual cells during their migration,
fromwhich migration parameters such as speed and MSD for individual cells
canbe computed. Indirect measurements entail an end-point measurement as a
proxy of cell migration (see text and companion Review'). Direct measurements
include the 2D and 3D cell migration assays and the microslide chemotaxis
assay. Indirect measurements include the Transwell assay, as well as the standard
wound-healing assay, spheroid and confined migration assays. The wound
healing, spheroid and confined migration assays can be transformed into direct
measurements if tracking of individual cells in these systems is feasible.

the trajectories of each tracked cell. Measurements and analysis of
cell trajectories acknowledge the heterogeneity of cells, even clonal
cells, and offer a wealth of information that reflects underlying com-
plex biological programs and can help reveal sometimes subtle, but
important differences between biological conditions that modulate
migration phenotypes not well described by averages®>*.In addition
to conventional migration parameters such as average speed, which can
bedirectly computed fromtrajectories, statistical profiling of the cell
trajectories and various mathematical models such as the persistence
randomwalk?-*? can be used to gain deeper mechanistic insights into
cell migration (Fig. 2 and Supplementary Table 1).

In contrast to direct measurements, indirect migration meas-
urements refer to assessments that do not involve direct tracking
of individual cells (Fig. 1). Indirect migration measurements gauge
properties that correlate with and produce proxies of cell migration.
Indirect measurements result from end-point experiments, thatis, they
analyze a snapshot of cells obtained at the end of a time-dependent
migratory process (see companion Review"). For instance, in the Tran-
swell migration assay, the extent of cell migration through a porous
membraneisindirectly estimated by counting the number of cells that
traversed the membrane after a defined time period®®*. Such end-point
measurements do not provide mechanistic insight on how the cells
physically migrate through the membrane. However, since live-cell
microscopy is notrequired, end-point measurements tend to be more
readily accessible to laboratories without specialized equipment, such
as time-lapsed fluorescence and intravital two-photon microscopes.

Indirect migration measurements tend to be more scalable than
direct measurements. This scalability allows users to conduct migra-
tion assessments of alarge number of samples and conditions for appli-
cations such as high-throughput CRISPR-based screens and testing
of potential migration inhibitors that may regulate cell migration®*>".
Importantly for indirect end-point measurements, cell migration
assessments can be influenced by cell proliferation®’. Measuring and
comparing motility under conditions with notably different prolif-
eration rates should be approached with caution. Pharmacological
inhibition or serum starvation can help control cell growth; however,
these treatments can also have profound and complex effects on cell
migrationitself, which should be carefully considered when analyzing
cell migration data®. Although many assays have been traditionally
performed as indirect measurements—such as the two-dimensional

(2D) wound-healing assay—the advent of new imaging technologies
has prompted researchers to create live-cell versions of these assays
toacquire richer time-resolved datasets®** (Fig.1).

In the following sections, we describe how direct and indirect
measurements of cell migration are analyzed, outline analytical con-
siderations specific to each assay, and review recent developmentsin
the analysis of large cell migration datasets.

Analysis of direct cell migration measurements

For direct cell migration measurements, the movements of cells are
typically recorded in the form of a video via time-lapsed light micros-
copy. Direct-migration measurements have been (or could) be imple-
mented in the following assays described in the companion Review':
Thewound-healing assay, the 2D/three-dimensional (3D) cell migration
assay, the spheroid/organoid invasion assay, the confined migration
assay and migration on 2D micropatterns. Direct-migration analysis
consists of two main components: (1) the detection and tracking of the
time-dependent locations of cells fromthe acquired time-lapsed videos
and (2) the analysis of the resulting cell trajectories using analytical or
stochastic models of cell migration.

Methods for cell tracking

Time-resolved trajectories of migrating cells are typically obtained
from analysis of video-based cellimaging such as brightfield or fluores-
cence microscopy®*”. Extracting cell trajectories from videos remains
anontrivial task. Manual tracking is the most common approach to
track cell locations in videos®***: The user identifies a cell in the first
frame of the video and registersits time-dependentlocationsin aseries
of sequential image frames. The user can keep track of the identity of
cellsinsequential frames and recognize live from dead cells by playing
the video back and forth. But tracking cells manually could be sub-
jectto user bias and inconsistency. Hence, users should set predeter-
minedrulestoselect the cells tobe tracked to avoid or reduce bias. For
instance, the user should set the minimum size of the objects to track
(toavoid tracking cell debris), avoid tracking cells that undergo division
during the video (unless this is the focus of the study; see also above)
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Fig. 2| Characterization of cell trajectories and associated metrics.

a, Examples of common modes of trajectories of migratory cells. Arandom walk
represents a path where the direction of motionis chosen randomly at each step.
The PRWintroduces directional persistence, leading to smoother trajectories.
Abiased random walk includes a directional bias that influences the trajectory.
The APRW combines both directional persistence and anisotropy, resulting in
highly directed and elongated paths. b, Schematic representation of trajectory
parameters and displacement metrics.
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and cells thatleave and reenter the field of view (to avoid issues of cell
identification) and ensure the cells to be tracked are alive.

Manual tracking tends to be robust and applicable to videos
derived from various imaging modalities, such as brightfield micros-
copy and phase-contrast or differential interference contrast micros-
copy for unlabeled cells and fluorescence microscopy for fluorescently
labeled cells. Cells that are difficult to track, such as cells in noisy or
poorly illuminated images, could still be tracked by adapting and
modulating the intensity ranges or using features beyond strictimage
contrast parameters>*°,

As migrating cells may cross paths with one another in consec-
utive frames, the frame rate in the video should be high enough to
avoid confusion in the identification of tracked cells. The choice of
anadequate frame rate depends on the extent of cell movements and
the density of the cells in culture. In general, the distance traveled by
cells between frames should be substantially lower than the average
distance between neighboring cells. Tracking fast-moving cells such as
monocytesand T cellsrequires arelatively high frame rate compared to
tacking slower-moving cells, such as cancer cells and fibroblast cells*
(see table of typical cell speeds in the companion Review"). Cell divi-
sionmay also occur during the tracking period, and dividing cells could
exhibit different motility behavior compared to cells in interphase’®.
Hence, dividing cells should typically be excluded from the analysis,
which canreduce the number of trackable cells. However, tools such as
TrackMate* and CellTrackVis** have been developed for tracking cells
with consideration of lineages and can be used to study cell migration
associated with cell division or lineage.

Several free open-source and commercial software tools have been
developed to assistin manual cell tracking, such as the manual object
tracking module in MetaMorph®*** or the click-based tracking module
ofImageJ/Fiji**** (Table1). Using such software, a trained researcher may
takeafew hourstotrack100 cellsin100 consecutive frames. Therefore,
thetimerequired to probe, say, 20 different conditions (for example, 20
differentgene perturbations or drugs) and track 100 cells per condition
in biological triplicates, could take weeks. The limited throughput of
manual tracking tools makes them tedious and unfeasible for analyzing
large numbers of samples and cells. Additionally, user bias can influ-
ence the results. For instance, users may be biased toward tracking
cells that move a lot across subsequent image frames or may tend to
predominantly track cells that do not move muchin efforts to maximize
the number of tracked cells. Yet sampling a sufficiently high number of
cells of varying migratory behaviors s critical to accurately define the
distribution of cell migration phenotypes for agiven fixed condition®.

Semiautomated or automated cell tracking methods that utilize
image processing or deep-learning-based algorithms have been devel-
oped to offer unbiased accurate tracking, resulting in much higher
throughput than manual tracking. In fully automated cell tracking, cell
trajectories can be extracted with little to no user input. In contrast,
semiautomated cell tracking requires user-provided inputs, such as
specified cell locations, for the program to process and track the cells.
Thegeneral algorithmsimplemented for cell tracking are categorized
into tracking by detection, model evolution and filtering*®. The appli-
cability of different methods for cell tracking is closely associated
with the type of microscopy used (Table 1). One of the most common
approaches to automatically track cell locations in sequentialimages
isthrough cell segmentation, for which the cell locations are computed
based on the geometric center of the segmented cells or their nuclei.
Segmentation of fluorescently labeled cells offers high accuracy and
is computationally less challenging compared to tracking label-free
cells from brightfield images**5. Software such as CellProfiler*® can
perform cell detection in fluorescence settings utilizing image pro-
cessing pipelines (Table 1). Label-free cell tracking offers the benefit
ofamore streamlined sample preparation and minimal disturbance to
cell physiology, since in many cases the addition of fluorophores can
substantially influence cell behavior* ',

For brightfield images, accurately detecting the location of cells
using traditional image processing approachesis generally more chal-
lenging than for fluorescence images, particularly under crowded
conditions. The development of deep-learning convolutional neural
networks offers solutions, which are revolutionizing the field of cell
detection. Convolutional neural network frameworks are highly effec-
tive in performing segmentation tasks in various types of cell micros-
copy images, including grayscale images obtained with fluorescence
or brightfield microscopy®**.In particular, tools such as CellPose* and
Meta’s Track-Anything® can segment cells directly from brightfield and
fluorescence images. Segmentation-based cell detection and tracking
are particularly relevant for in vivo cell migration studies. Identifying
single cellsin vivois often more challenging due to the densely packed
environment of each cell, for which cell segmentation becomes essen-
tial to detect individual cells. Volumetric imaging is frequently used
toaccount for structural variations in tissue structure>*~, Tools such
as CellPose, IMARIS and 3DeeCellTracker have been developed for
performing 3D cell segmentation and detection.’***. The coordinates
of cells tracked can further be compiledinto time series or trajectories
using packages, such as CellTracksColab, CelltrackR, TrackMateR,
CellPhe, Traject3D and Cellplato (Table 1)°°7¢*,

Thetrajectories of cells can be obtained using other types of algo-
rithms. For example, correlation-based algorithms have been used to
identify displacements of selected cellsin subsequent frames***. This
type of analysis requires the selection of cell objects in the first image
ofavideotoinitiate tracking of the selected objectsin the subsequent
frames. A recent study shows that this type of methodis highly accurate
when tracking large objects®. Free and commercial software that pro-
vide cell tracking tools are provided in Table 1. In-depth reviews of cell
tracking algorithms and methods can be foundinrefs.37,46,55,65,66.

Once cell tracking is performed, quality control needs to be
applied. For instance, the shift in the observation plane relative to
the sample space may occur during experiments, leading to appar-
ent convective movements of the tracked cells. Lack of appropriate
correction for this apparent convection can lead to misinterpreta-
tion of the motility results. The shift can be removed through image
registration before tracking or measuring the relative movementtoa
stagnant object (fiduciary marker) in the field of view®. Additionally,
positioning accuracy relative to actual cell movementis akey factor to
consider, as positioning errors can directly influence measured speed®.
Large positioning errors lead to artificially high-speed measurements,
particularly in (quasi)-immobile cells. Generally, positioning errors
behave as white noise and do not depend on frame rate®®, How their
contribution to speed measurements can be assessed through the
MSD profile over time is described in refs. 25,67-69.

Analysis of cell trajectories
Thetime-dependent coordinates of individual cells obtained via man-
ual or automatic tracking of cells in videos constitute the inputs of
analytical tools and pipelines that generate quantitative metrics of cell
migration (Fig. 2and Supplementary Table 1). Motility parameters are
typically derived from ensemble-averaged measurements across track-
ing time and across all tracked cells for each experimental condition.
Arolling window strategy has also been used to analyze motility data,
and this type of analysis is particularly important for characterizing
non-equilibrium states, where cell motility transitions over time’® 7%
Cell speed is the most straightforward and commonly used
migration parameter that canbe extracted directly from cell trajecto-
ries. However, eukaryotic cell migration is a complex and stochastic
process’> 7, Cells exhibit highly diverse patterns and modes of migra-
tion that tend to be different for different cell types and is context
dependent based on microenvironmental cues (Fig.2a). Forexample,
cancer cells on a2D matrix-coated substrate versus embedded inside a
3D matrix, such as collagen-l or Matrigel, exhibit fundamentally distinct
modes of migration®"*. In addition, confluent cells in a monolayer
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Table 1| Commercial and open-source software to track and analyze cell migration

Tool Availability (source) Applicable image type Tracking algorithm Platform
(imaging modalities)
Commercial
MetaMorph Molecular Devices Fluorescent, brightfield 2D/3D  Correlation-based template Stand-alone
matching

Imaris for Tracking Oxford Instruments Fluorescent, brightfield 2D/3D  Imaris 3D tracking algorithms Stand-alone
Volocity Quorum Technologies Fluorescent 3D Stand-alone
Arivis Pro (Vision4D)  ZEISS Fluorescent, brightfield 2D/3D  Al-based segmentation Stand-alone
Livecyte Phasefocus Fluorescent, brightfield 2D Label-free segmentation Stand-alone
BioTek Gen5 Agilent Fluorescent, brightfield 2D Segmentation Stand-alone

Open source

CellTrack™®

http://db.cse.ohio-state.edu/CellTrack/

Fluorescent, brightfield 2D

Segmentation

Cross-platform

CellTracker'*®

https://github.com/WangLabTHU/
CellTracker/

Fluorescent, brightfield 2D

Segmentation

Cross-platform

CellProfiler*®'#142

https://github.com/

carpenterlab/2018_mcquin_PLOSBio/

Fluorescent, brightfield 2D/3D

Segmentation

Stand-alone

CellPose®'*®

https://www.github.com/
mouseland/cellpose/

Brightfield 2D/3D

Deep-learning-based
segmentation

Cross-platform

MtrackJ®® https://imagescience.org/meijering/ Fluorescent, brightfield 2D/3D  Segmentation (manual) ImageJ/Fiji
software/mtrackj/

TrackMate®*! https://github.com/trackmate-sc/TrackMate/  Fluorescent, brightfield 2D/3D  Segmentation (built-in or external)  ImageJ/Fiji

CellTrackVis* https://github.com/scbeom/celltrackvis/ Brightfield 2D Modeling via labeled random Stand-alone

finite sets

LIM Tracker'* https://github.com/LIMT34/LIM-Tracker/ Fluorescent, brightfield 2D Deep-learning-based recognition ImagelJ/Fiji

DelTA™® https://gitlab.com/delta-microscopy/delta/ Fluorescent, brightfield 2D U-Net deep-learning segmentation  Cross-platform

HFM-Tracker'*® https://pubs.rsc.org/en/content/ Brightfield 2D CA-based detection ACM-based Cross-platform
articlelanding/2024/an/d4an00199k/ tracking

AVeMap'’ https://www.nature.com/articles/ Brightfield (wound healing) 2D  Correlation-based detection MATLAB
nmeth.2209#MOESM310/

TGMM™® https://www.janelia.org/lab/keller-lab/ Light-sheet 2D/3D Gaussian Mixture Model Cross-platform

iTrack4u'® https://journals.plos.org/plosone/ Fluorescent, brightfield 2D Tracking input from other tools Cross-platform

article?id=10.1371/journal.pone.0081266#s3/

CelltrackR®

https://github.com/ingewortel/celltrackR/

Fluorescent two- photon
imaging 2D/3D

Tracking input from other tools

CellMissy™®

https://code.google.com/p/cellmissy/

Brightfield (wound healing) 2D

Tracking input from other tools

Cross-platform

3DeeCellTracker™

https://github.com/WenChentao/

Light-sheet 3D two-photon 3D

Deep-learning segmentation

Python (ImageJ for

3DeeCellTracker/ spinning-disk confocal 3D image alignment)
CellTracksColab®* https://github.com/CellMigrationLab/ Fluorescent, brightfield 2D Tracking input from other tools Cloud-based
CellTracksColab/ Google Colab or

local-based Jupyter

Cellplato®® https://github.com/Michael-shannon/ Fluorescent spinning-disk Cellpose 2.0 -segmentation Python
cellPLATO/ confocal 3D Btrack - tracking

CellPhe® https://zenodo.org/records/7620171#. Fluorescent, phase 2D Phasefocus and R
ZAJZMuzP0o8/ TrackMate-Cellpose

Traject3D®' https://github.com/davebryantlab/Traject3d/ Label-free live-imaging Tracking input from CellProfiler KNIME with R and

(Incucyte) 2D/3D

Python integrations

exhibit collective migration behavior, which is also fundamentally
different from the migration of cells far from one another’® 7%, There-
fore, additional cell migration parameters have been derived from
trajectories to capture the complex behavior of cellsbeyond cell speed,
including the persistence time, the average turning angle and the total
displacement of a cell. We summarize the common cell migration
features that can be computed from cell trajectories in Fig. 2b and
Supplementary Table 1. Due to the inherent stochastic nature of cell
migration, several of these features, including instantaneous speed
and angular displacement, depend on the imaging interval time that
determines the time lag 7. Therefore, examining migration features

at multiple time-lag reference points (typically shorter and longer
than the persistence times of cells per condition) can provide amore
comprehensive view of cell migration as opposed to a single time lag.

Toderive amore comprehensive analysis of cell migration profiles,
various statistical features of cell trajectories can be computed. These
statistical featuresinclude the MSD, the autocorrelation function of cell
velocities, the probability density function of cell displacements, the
probability density function of angular displacements and the velocity
polarization profile, to name afew” (see definitions in Supplementary
Table1). These statistical metrics provide a quantitative outlook of the
strategy used by cells to migrate in a particular milieu. Particularly,

Nature Methods


http://www.nature.com/naturemethods
https://github.com/WangLabTHU/CellTracker/
https://github.com/WangLabTHU/CellTracker/
https://github.com/carpenterlab/2018_mcquin_PLOSBio/
https://github.com/carpenterlab/2018_mcquin_PLOSBio/
https://www.github.com/mouseland/cellpose/
https://www.github.com/mouseland/cellpose/
https://imagescience.org/meijering/software/mtrackj/
https://imagescience.org/meijering/software/mtrackj/
https://github.com/trackmate-sc/TrackMate/
https://github.com/scbeom/celltrackvis/
https://github.com/LIMT34/LIM-Tracker/
https://gitlab.com/delta-microscopy/delta/
https://pubs.rsc.org/en/content/articlelanding/2024/an/d4an00199k/
https://pubs.rsc.org/en/content/articlelanding/2024/an/d4an00199k/
https://www.nature.com/articles/nmeth.2209#MOESM310/
https://www.nature.com/articles/nmeth.2209#MOESM310/
https://www.janelia.org/lab/keller-lab/
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0081266#s3/
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0081266#s3/
https://github.com/ingewortel/celltrackR/
http://code.google.com/p/cellmissy/
https://github.com/WenChentao/3DeeCellTracker/
https://github.com/WenChentao/3DeeCellTracker/
https://github.com/CellMigrationLab/CellTracksColab/
https://github.com/CellMigrationLab/CellTracksColab/
https://github.com/Michael-shannon/cellPLATO/
https://github.com/Michael-shannon/cellPLATO/
https://zenodo.org/records/7620171#.ZAJZMuzP0o8/
https://zenodo.org/records/7620171#.ZAJZMuzP0o8/
https://github.com/davebryantlab/Traject3d/

Review article

https://doi.org/10.1038/s41592-025-02935-5

a b
MSD- 7% > Biased random walk
_ 2 v
o MSD = 4Dt + vt
&
o o
S wa
o) 9V
L \Ld 4\-.(3(\
3 0Z——]a=dy/dx &

2
a < 1: confined migration & MSD (€9

Confined migration

x =log(7) log(7)

Fig. 3| MSD for trajectory characterization. a, Log-log representation

ofthe MSD as a function of time lag 7, showing different scaling behaviors.

The characteristics of cellmovement can be determined through exploring
power-law relationship between MSD and time lag 7 (that is, MSD ~ 1%). The ¢
canbe computed from the slope of MSD profile at the logarithmic scale (that is,
a=dlog(MSD)/dlog(r)). For a =2, the trajectory corresponds to constant-speed
motion. When1< a <2, cellmovements correspond to a biased random walk.
Aslope of a=1corresponds to astandard random walk; & < 1suggests confined or
restricted cell migration. b, Examples of migration models that exhibit complex,
nonuniform MSD scaling profiles, including biased random walk, (anisotropic)
persistent random walk and random migration of cells confined within a space of
size. The MSD for a biased random walk exhibits a of 1at ashort time lag and a of
2atalonger time lag. In PRW or APRW migration, migration is persistent at short
time lag with a > 1and approximate free diffusion (a« = 1) at long time lags. If cell
migration occurs withina confined space, @ approaches 0 at long timescales, and
the MSD value will correspond to the size of the confined space.

the MSD profile as a function of the time lag 7 is essential to provide
crucial information of cell migration processes, such as magnitude
and mode of migration. The MSD of a cell migration is computed as
showninequation (1):

MSD(2) = ((X(t + T) — X(£))* + Wt +T) = )(©)) o

Here, tis the time lag, that is, the duration between images under
consideration. x(¢) and y(¢) are the coordinates of the center of the cell,
and x(¢ + 1) and y(¢ + 1) are the coordinates of the same cell at the time
t+1,thatis,atimelagrlater.If avideo of migrating cellsis collected for
anhourataframerate of 20 frames per hour, then rwill vary between
0 minand 60 min atintervals of 3 min (60 min/20). The MSD profileis
the time ensemble-averaged squared displacement of a cell at different
time lags 7. The brackets (...) signify the time-averaging operation. The
MSD is directly related to cell speed v via v(r) = MSD(1)"%/7.

How rapidly the MSD increases as a function of 7 reflects how the
cellmigrates during the experiment, thatis, whether the cellundergoes
arandomwalkor abiased random walk, forinstance (Fig. 3). A powerful
way to quickly assess possible basic mechanisms of migration of a cell
isto plotthe MSD(7) asafunction of rusingalog-log plotand compute
the exponent a by fitting the data to the following power law (Fig. 3) as
showninequation (2):

MSD (1) ~ ¢ (2)

For cell trajectories moving in a purely random work fashion,
the MSD increases linearly with time lag and the exponent a = 1. For
cells undergoing biased migration, such as when cells are exposed to
achemotacticgradient, the exponent a > 1. When the exponenta =2,
the cell moves at a constant velocity v, where the MSD is expressed as
V’T’. When the exponent a < 1, cells exhibit confined/stalled motion.
Thus, examining the statistical profiles of cells, such asMSD, can reveal
valuable fundamental insights into their mode of migration (Fig. 3).

The migratory behavior of mammalian cells often exhibits more
complex MSD profiles than those described by a universal time-lag
scaling exponent®*??7>7°_ The MSD exponent for cell migration can
vary with time lag, influenced by factors such as noise from cell posi-
tioning errors, the inherently complex and stochastic nature of cell
migration, constraints of the microenvironment (for example, cell-
cell interactions and physical obstacles) or a combination of these
factors®>**%°, Consequently, theoretical models have been developed
to interpret these complex migration behaviors, as reviewed in the
following sections.

Analyzing trajectory data using models of cell migration

Cell migration data can be interpreted through model-based
analysis®”>. This approach aims to elucidate the complex and sto-
chastic nature of cell trajectories using a small set of biologically or
physically meaningful parameters derived from models of migration.
In experiments that lack asymmetry-breaking gradient such as ache-
moattractant source, both bacterial and eukaryotic cell motility are
explained in terms of random-walk statistics. In particular, the per-
sistent random walk (PRW) model is a stochastic model that has been
extensively utilized to characterize eukaryotic cell migration on flat
2D substrates %, The PRW model describes the trajectory of cells
as a succession of uncorrelated movements of duration larger than
the persistence time P. The PRW model of cell migration is derived
from the stochastic differential equation that describes the motion
of aself-propelled cell as shown in equation (3):

dv_ 1, Su 3)

dt— PT7 p

where tis time, vis the cell velocity, Pis the persistence time, Sis the
speed and w is the vector of a so-called Weiner process”. The corre-
sponding MSD of a cell undergoing a persistent random walk can be
derived analytically (Fig. 2 and Supplementary Table 1) as shown in
equation (4):

MSD(z) = nS2P? (e‘fr + 7’, - 1) @)

Here, n=1for one-dimensional cell migration along linear tracks, n =2
for 2D cell migration on aflat plane and n = 3 for 3D cell migration. The
MSD canbeused to extract persistence time Pand speed S fromthe PRW
model by fitting the experimental MSD derived from cell trajectories.
2D cellmigration can often be effectively described with just these two
parameters>?*5°8! Importantly, while the observed MSD data can show
agood fit to equation (4), this alone does not confirm that the migra-
tion under study follows a PRW model. For the PRW model to be valid,
additional criteria must be satisfied, including a Gaussian distribution
of velocities and asingle-exponential decay of the velocity autocorrela-
tion function, anisotropic velocity field and a uniform distribution of
angles between cell movements at extended time scales™ (Fig. 2 and
Supplementary Table1).

Recent studies have shown that cell migration often exhibits
far more complex patterns than those described by the PRW model.
Migration data from various cell types in 2D frequently reveal trends
that deviate significantly from Gaussian distributions. For instance,
non-Gaussian velocity distributions are commonly observed across
different cell types and are associated with the microenvironment.
To address these discrepancies, new models have been proposed to
characterize cell migration®’***"¥ For example, the migration of T cells
in vivo is better characterized by Lévy flight statistics®*®’, exhibit-
ing super-diffusive behavior across a wide range of time lags (that is,
MSD(7) ~ 7* where 1 < a < 2) and consisting of sequences of numerous
short steps interspersed with occasional longer ‘flights™®*%, Recent
studies suggest that the non-Gaussian velocity distribution can be
explained under the PRW model for 2D migration®.
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Table 2 | Summary of computational tools for indirect measurements of cell migration across different assays

Assay type Software Source Platform
Wound healing CellProfiler?'4? https://cellprofiler.org/examples/ Python
Wound healing Tscratch™ https://github.com/cselab/TScratch/ MATLAB
Wound healing pyScratch'? https://github.com/ElsevierSoftwareX/PyScratch/ Python
Wound healing MRI Wound Healing Tool https://github.com/MontpellierRessourcesimagerie/ ImagelJ/Fiji
imagej_macros_and_scripts/wiki/Wound-Healing-Tool/
Wound healing AlM™S2 https://www.mcbeng.it/en/category/software.html/ MATLAB
Transwell migration CELLCOUNTER™* https://bitbucket.org/linora/cellcounter/downloads/ C++
Transwell migration l-abACUS™ https://www.marilisacortesi.com/ MATLAB
Transwell migration Cell Counter https://imagej.net/plugins/cell-counter ImagelJ/Fiji
Spheroid SpheroidSizer™™® https://doi.org/10.3791/51639 MATLAB
Spheroid AnaSP"™’ http://sourceforge.net/p/anasp/ MATLAB
Spheroid SpheroScan™® https://github.com/FunctionalUrology/SpheroScan/ Python
Spheroid OrgaExtractor™® https://github.com/tpark16/orgaextractor/ Python
Spheroid OrganolD'® https://github.com/jono-m/OrganolD/ Python

When cells are embedded in a 3D matrix (for example, cancer
cells migrating in a collagen-1 matrix), their migration displays a high
degree of anisotropy that is not described by the PRW model. As a
result, a new model, the anisotropic random walk (APRW) model,
was introduced, offering a more suitable characterization of 3D cell
migration®. The APRW model is similar to the PRW model; however,
cellmigrationis assumed to display different persistence and diffusiv-
ity along two orthogonal axes, the primary and secondary migration
axes, inthe observation plane (Fig.2 and Supplementary Table1). The
primary and non-primary axes of cell migration are identified through
principal component analysis (PCA) or singular vector decomposi-
tion on the cell velocity?*. The MSD profiles calculated from the cell
movement along the primary and non-primary axes can then be used
todetermine the persistence time and speed along both axes through
equations (5) and (6):

MSD, () = S2P2 (e‘i + Pip - 1) )

and

MSD, (1) = S2,P2, (e‘% + P—:p - 1) (6)

The APRW model characterizes cell migration via the diffusivity,
persistence time along the primary and secondary axes (D,, D,,,, Py, Py,
aswellas thetotal diffusivity D,,,and anisotropy index ¢», computed as
the ratio between the diffusivity of a cell in primary migration direc-
tion to non-primary directions (Fig. 2 and Supplementary Table 1).
Whenthereis no anisotropyin the system, ¢ =1, and the APRW model
converges to the PRW model (Fig. 2 and Supplementary Table 1). The
APRW model has been used to characterize the migration of various
types of cellsembedded in 3D collagen matrices, including monocytes,
T cells and cancer cells, as well as cells embedded in composite 3D
matrix systems*5-.,

Quantification of cell heterogeneity

Cells exhibit heterogeneous movement patterns in response to
microenvironmental signals in the contexts of health and disease®>.
The traditional way to describe cell migration patterns for a tested
condition is to track and analyze the movement of single cells and
thenreportresults as averages across all cells. From these pooled cell
trajectories, one can compute migration parameters such as aver-
age speed, average persistence time and average total displacement.

This approach of reporting cell migration data has led to important
biological insights. However, recent advances in single-cell analyses
areintroducing new ways to measure and interpret cell migration pat-
terns atsingle-cell resolution****’>%, Instead of quantifying and report-
ing only bulk migration parameters, users can use single-cell analysis
approaches that are similar to those used for single-cell sequencing.
In these approaches, datasets are curated and harmonized—aligned
across datasets to correct forimaging parameters, such as, spatial and
temporal resolution, cell types, total imaging/analysis duration, and
then migration parameters are computed per single cell*®. Then using
clustering analyses, including k-means, and unsupervised hierarchical
clustering, and dimensional reduction techniques, including linear or
nonlinear PCA, t-SNE** and UMAP®, groups of cells with similar migra-
tion patterns are identified.

Using single-cell analysis to quantify cell migration presents
advantages, including: (1) the ability to determine cell-to-cell varia-
tions (for instance, cellular heterogeneity can be determined based
on Shannon entropy) across populations of cells and conditions; (2)
visualization schemes that boost biological and statistical interpret-
ability through high-dimensional clustering; (3) allowance for batch
corrections and direct comparisons across multiple experiments and
conditions within a high-dimensional data space; and (4) the ability
tosubcategorize cells across conditions, providing the ability to track
emergent patterns that describe conserved or fractionally shifted cell
populations®.

Analysis of cell migration data obtained by
common assays

Below we review and summarize the analytical tools and methods for
bothdirectandindirect migration measurementsthat canbe deployed
for each assay described in the companion Review”. This overview
focuses on the essential aspects of the analysis of the raw data gener-
ated by each assay described in our companion Review". Software
tools that can assist with the analysis of these indirect migration assays
aresummarized in Table 2. The 2D/3D migration assay and the p-slide
chemotaxis assay primarily measure cell migration directly. Hence,
the analysis of the associated data will not be further reviewed in the
following sections.

The wound-healing assay (scratch assay)

Inthe wound-healing assay, how rapidly cells move tofill the ‘wounded’
spaceis assessed to evaluate cell migration behavior and performance
(Fig. 4). In this assay, the cells undergo transient (biased) migration
patterns, and measuring the reduction of cell-free area or speed of
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Fig. 4 |Indirect analysis of cell migration via common assays. Indirect
measurements entail calculation of the relevant motility index as a proxy of cell
migration. Specific motility indices and other migration-related parameters used
indifferent assays are summarized in the data acquisition column, respectively.
For the Transwell assay, the number of migrated cells is measured in different
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compartments of the Boyden chamber for suspension and adherent cells.
Acquired motility indices can be plotted either as end points or in a time-
resolving manner, as shown in the data analysis column. Created with
BioRender.com.
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boundary of leading edge (wound edge) closure over time is the most
commonly used method to characterize wound-healing assays’®*°.
Images of cell gap area are normally acquired at different time points
using light microscopy, typically at aminimum of two time points—the
beginning and ata user-defined end point—to compute the fraction of
cell-free area Ay relative to the initial size of the cell-free area A. Inthe
case where live-cell microscopy equipment is available, including
on-stageincubators and microscope stage control, real-time imaging
canbe performed to compute the wound closure as afunction of mul-
tiple time points. From these movies, the cell-free area A(t) can be
measured using either manual annotations or automated quantifica-
tion. Armed with the measurement of the cell-free area A(¢), key char-
acteristics of migration, such as the average cell migrationrate Umigration
and halftime to closure ¢;/,, can be computed through curve fitting of
equations (7) and (8)*’:

A() = Ag — 2 X I X Umigration X £ 7)
by, = A0/4 x I x Umigration (8)

Here, listhelength of the cell-free gap inthe image (Fig. 4). Automated
approaches usingimage processing approaches have also been devel-
oped and implemented to assist with the analysis’*"'°". The impedance-
based system has also been developed to speedily (indirectly) measure
the changes in gap areas that bypass imaging®. Inaddition to the bulk
measurement of wound closure, tracking migration of individual cells
inwound-healing assays hasbeen used to assess the motility behavior
of individual cells in the moving cell sheet’®'°*'% In this case,
the analysis can follow the direct-migration analysis described in
the previous sections. The collective migration behavior in the
wound-healing assay can also be characterized using particle image
velocimetry®%4,

The Transwell assay (Boyden chamber assay)

In the Transwell migration assay, cell migration is typically assessed
by counting the number of cells, Vg acear that traverse the membrane
during a specified incubation period T (Fig. 4). A higher number of
cells crossing the membrane indicates greater migration. To count
the cells that have migrated across the membrane, various methods
are used. Cells can be counted on the underside of the membrane, at
the bottom of the wells or in the medium suspension at the bottom,
depending on the cell types. Measurement of migrated cells that fall
to the bottom chamber is typically used for suspension cells, while
measurementon the underside of the membraneis used for adherent
cells. According to assay time and cells’ migratory potential under
various conditions, measurement of adherent cells on the bottom
chamber surface should also beincluded for accurate measurements
of cell migration. Various methods can be used to count migrated cells
including ahemocytometer, image-based counting or biochemical
assays based on ATP hydrolysis or DNA content measurements'*',
Forimage-based counting, brightfield microscopy can be used to count
non-labeled cells. Staining techniques such as ultraviolet dyes and
DAPI, among others, can enhance the contrast of the cell membrane
and assist in cell counting'®*'””, Cells can be counted from the acquired
images using software such as Image)'°*'°%, We note that when counting
cells onthe bottom side of the membrane, it is necessary to remove
cells from the upper side (seeding side) of the membrane through
physical swabbing. This step isimportant due to the close proximity of
cellsinthe upper and lower compartments and the limitations of axial
resolution in typical microscope setups to resolve them. The motility
index, Ml newenr in the Transwell migration assay is usually calculated
asthe percentage of cells that migrate across the membrane, Nyigrated,c- 7
after period of time T relative to the initial seeding cell count at
time 0, Nyeeq, ¢-0, thatis, Mlnawen = Neross, ¢ = 7/ Nsced, c=0- TO Minimize the

confounding effect of cell proliferation, a limited incubation time T
is used. Cell counting has traditionally been the primary method of
quantification. Impedance-based methods have also been developed
for the Transwell migration assay. This method detects changes in
impedance across the membrane as cells move through the pores,

allowing for continuous monitoring of migrated cells over time'?”.

The spheroid/organoid invasion assay

In the spheroid/organoid invasion assay, cell migration is typically
assessed indirectly by measuring how far cells spread from the sphe-
roid’sinitialboundary (Fig. 4). Highly motile cells migrate farther, which
is quantified by evaluating the spreading area or the number of cells that
have moved beyond the initial spheroid boundary"°', Additionally,
the shape of the spreading, such as the number of protrusive fronts,
can be used as a characteristic of cell dissemination'*', To analyze
these features, the morphology of spheroids/organoids is assessed
using imaging-based approaches such as brightfield microscopy or
fluorescence microscopy if the cells are fluorescently labeled. While
spheroids areinherently three-dimensional structures, cross-sectional
2D images are more typically captured and analyzed. This preference
is likely due to the reduced technical challenges associated with volu-
metric imaging and analysis. Both end-point assays at specific time
intervalsand dynamic analyses have been used to evaluate cell migra-
tionin these assays. Various image processing methods and tools have
been developed to segment spheroid contours inimages, facilitating
the analysis of spheroid/organoid results for both brightfield and fluo-
rescence images''>"*1,

In addition to indirect analysis, direct analysis by tracking indi-
vidual cell trajectories can also be used to study migration in sphe-
roid/organoid assays. For such cases, the analysis can refer to the
direct-migration analysis sections outlined in this Review. It isimpor-
tanttonotethatinthe spheroid setting, cell migrationis often reported
inrelation to the cells’ positions relative to the center of the spheroid
core?® Careful sampling of cells for analysis is essential to avoid sam-
pling bias based on their locations within the spheroid. Furthermore,
previous studies have shown that cells in spheroids can follow biased
migration patterns as a result of radical stress that aligns peripheral
matrix fibers'”. Therefore, parameters reflecting biased migration
features—such as persistence, MSD exponent and speed—provide a
more comprehensive characterization of spheroid migration.

The chemotaxis and confined migration assays

Cells typically navigate through complex microenvironments in vivo
and must often respond to various physical and chemical perturbations,
such as confinement, obstacles and chemical gradients. To study cell
migration under diverse microenvironmental cues in a controllable
manner, various configurations of microfluidic devices and micropat-
terning methods have been developed'® %,

The analysis for this type of assay depends on the device design,
for instance, whether cells have to navigate through a series of con-
fined channels or move between pillars of varying spacing. Real-time
imaging is implemented to determine the trajectories of individual
cells within microfluidic or micropatterned devices'* . Insuch a
case, the direct-migration analysis described above is used to process
images and analyze cell migration data. The selection of cell migration
features should consider whether the cells undergo biased or random
migration, based onthe presence of external directional driving forces,
such as chemotactic, electrotactic or durotactic gradients within the
device?>"?#19 34 For cells moving inside confining channels, the most
common readouts are descriptors of speed or capacity of cells to align
their movements with directional cues, including average speed and
persistenCe124'125’135'13°.

Indirectmeasurements are also used to characterize cell migration
in microfluidic assays (Fig. 4). These analyses depend on the specific
design of the device used in the assay. For example, in confinement
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migration microfluidic designs, counting the number of cells that
enter the channels versus those that migrate through to the other side
of the channels is often used as a motility index. In chemotaxis-based
microfluidic setups, the occurrence of cells migrating a specific dis-
tance toward the attractant directionis also commonly used'?*'2517138,

Outlook

Below, we outline some current limitations and needs for new Al tools,
automation and modern datascience approaches, whichifaddressed
could enable considerable advancesin the analysis and interpretability
of cell migration data.

1. A major challenge in analyzing cell migration patterns, espe-
cially at the single-cell level, is accurately tracking individual cell
positions to map their movement trajectories. This inability to
accurately track single cells may stem from a variety of factors,
including high local cell density, highly motile cells moving out-
side the imaging window, poor illumination and noisy images,
and cells with low contrast in brightfield images. To provide so-
lutions for these issues, we need to develop fully automated soft-
ware solutions using deep-learning and Al-based models that (a)
are capable of tracking individual cells within high-density en-
vironments, (b) utilize adaptive learning to adjust for poor illu-
mination and variations in image quality (noise), (c) account for
populations of cells that leave or enter the imaging window, and
(d) properly retain the identity of individuals cells even though
they may partially overlap or come within close proximity dur-
ing imaging. Developing solutions that address these points will
greatly influence the reliability and scalability of cell migration
analyses.

2. There are wide variations in the experimental protocols used
to acquire cell migration data. For instance, the total imaging/
tracking duration, the rate of image acquisition (the time be-
tween consecutive images) and imaging magnification are all
determined based on user preferences. While many factors
go into selecting experimental parameters (see companion
Review'), the lack of proper standardization limits the direct
integration of disparate cell migration datasets. To enable inte-
gration, we need to develop and optimize effective harmoniza-
tion schemes that can predict the intervening positions of cells
that are not physically measured. Some of these approaches
include (a) simple interpolations, which work well for predict-
ing intervening positions that are symmetrically spaced (that
is, midpoints of measured points), (b) weighted interpolations
for non-symmetric intervening positions, which involve adding
adirectional bias based on subsequent cell positions, and (c) uti-
lizing generative Al models that leverage the spatial and tempo-
ral patterns of the cell trajectories to infer intervening positions.

3. Once we have the coordinates of trajectories for large numbers
of cells (that is, thousands to tens of thousands of cells, by inte-
grating datasets), we need to extract biological insights. While
many cell migration papers rely on insights derived from aver-
aged migration parameters, recent advances in single-cell anal-
ysis described above have demonstrated the ability to quantify
complex behaviors and phenotypes that define subgroups of
cells. However, there is currently a need to develop robust ap-
proaches to quantify these behaviors and identify these sub-
groups of cells. For instance, instead of just plotting the average
speed or the average persistence time for each condition, users
can compile data matrices with multiple migration parameters
(tensto hundreds of migration parameters) for each tracked cell.
With this data matrix, users can perform factor analyses or prin-
cipal component analysis to reduce the dimension and identify
orthogonal parameters (that is, independent parameters that
contribute most to the observed variance across conditions).
Cells can be then clustered based on the orthogonal migration

parameters using methods such as k-means, unsupervised hier-
archical clustering and Leiden clustering, then plotting the indi-
vidual cells in a low-dimensional representation space, for ex-
ample, using linear methods such as PCA, or nonlinear methods
such as t-SNE, UMAP or diffusion maps. While these workflows
exist and are routinely used for processing single-cell sequenc-
ing data, it is not yet mainstream for cell migration analysis.
Optimizing similar approaches of cell migration could improve
the biological insights gained from such analysis. Furthermore,
in addition to parameterized approaches using user-selected
parameters to describe trajectories, deep-learning and Al-based
approaches can be leveraged to identify subgroups of cells di-
rectly from the videos of cells, their raw coordinates, or treating
outlines of cell trajectories as images.

. Cells in 3D experience different signaling cues that the same

cells in 2D, which influence their movements. Measuring cell
movements in 3D requires more sophisticated microscopes
and imaging workflows. These workflows require z-stacks that
could limit the temporal resolution of image acquisition due to
the amount of time to capture the multiple z-stack images and
physically moving the stage back to the initial position. To en-
hance the efficiency of image acquisition and analysis, we need
to develop new approaches capable of extracting information of
3D cell movements from single 2D images or sparse sampling of
3D z-stacks.

. Cells exhibit complex biophysical phenotypes across a vari-

ety of biological conditions. Cell migration is just one of the
cellular phenotypes that may help establish biological insights
across conditions. Other relevant cellular phenotypes include
cell mechanics (both the stiffness/deformability of cells and the
magnitude of traction forces they exert) and morphodynamics
(dynamic changes in cell morphology), which is also related to
how cells change their shapes to polarize and move. To strength-
en the biological insights from these cell phenotypes, we need
to develop new analyses capable of simultaneously extracting
information on cell migration, morphodynamics and cell me-
chanics. In the future, we envision approaches where users can
simultaneously measure and analyze multiple cell properties to
define their cell behaviors. Such approaches will likely require
the use and integration of machine learning and other modern
data science approaches.

. Another challenge in analyzing cell migration is establishing

functional relationships between cell migration patterns and
distinct molecular pathways regulating cell migration. Per-
forming cell migration assays along with single-cell assays (for
example, single-cell RNA sequencing) could offer new insights
to identify regulators of cell migration. However, we need to de-
velop new approaches to integrate and align single-cell migra-
tion data with single-cell sequencing data based on inference
mapping. Validation studies can be performed by modulating
the gene expression patterns of the identified target genes, for
example, based on knockdowns using small interfering RNA of
CRISPR. Understanding this relationship could enable the devel-
opment of trained algorithms to predict how specific molecular/
gene expression changes can modulate specific cell migration
phenotypes.

Reporting summary
Furtherinformation onresearch designis available in the Nature Port-
folio Reporting Summary linked to this article.
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